41,444 research outputs found

    Improving Human Face Recognition Using Deep Learning Based Image Registration And Multi-Classifier Approaches

    Get PDF
    Face detection, registration, and recognition have become a fascinating field for researchers. The motivation behind the enormous interest in the topic is the need to improve the accuracy of many real-time applications. Countless methodologies have been acknowledged and presented in the past years. The complexity of the human face visual and the significant changes based on different effects make it more challenging to design as well as implementing a powerful computational system for object recognition in addition to human face recognition. Using supervised learning often requires extensive training for the computer which results in high execution times. It is an essential step in the face recognition to apply strong preprocessing approaches such as face registration to achieve a high recognition accuracy rate. Although there are exist approaches do both detection and recognition, we believe the absence of a complete end-to-end system capable of performing recognition from an arbitrary scene is in large part due to the difficulty in alignment. Often, the face registration is ignored, with the assumption that the detector will perform a rough alignment, leading to suboptimal recognition performance. In this research, we presented an enhanced approach to improve human face recognition using a back-propagation neural network (BPNN) and features extraction based on the correlation between the training images. A key contribution of this paper is the generation of a new set called the T-Dataset from the original training data set, which is used to train the BPNN. We generated the T-Dataset using the correlation between the training images without using a common technique of image density. The correlated T-Dataset provides a high distinction layer between the training images, which helps the BPNN to converge faster and achieve better accuracy. Data and features reduction is essential in the face recognition process, and researchers have recently focused on the modern neural network. Therefore, we used using a classical conventional Principal Component Analysis (PCA) and Local Binary Patterns (LBP) to prove that there is a potential improvement even using traditional methods. We applied five distance measurement algorithms and then combined them to obtain the T-Dataset, which we fed into the BPNN. We achieved higher face recognition accuracy with less computational cost compared with the current approach by using reduced image features. We test the proposed framework on two small data sets, the YALE and AT&T data sets, as the ground truth. We achieved tremendous accuracy. Furthermore, we evaluate our method on one of the state-of-the-art benchmark data sets, Labeled Faces in the Wild (LFW), where we produce a competitive face recognition performance. In addition, we presented an enhanced framework to improve the face registration using deep learning model. We used deep architectures such as VGG16 and VGG19 to train our method. We trained our model to learn the transformation parameters (Rotation, scaling, and shifting). By leaning the transformation parameters, we will able to transfer the image back to the frontal domain. We used the LFW dataset to evaluate our method, and we achieve high accuracy

    A comparative study on face recognition techniques and neural network

    Full text link
    In modern times, face recognition has become one of the key aspects of computer vision. There are at least two reasons for this trend; the first is the commercial and law enforcement applications, and the second is the availability of feasible technologies after years of research. Due to the very nature of the problem, computer scientists, neuro-scientists and psychologists all share a keen interest in this field. In plain words, it is a computer application for automatically identifying a person from a still image or video frame. One of the ways to accomplish this is by comparing selected features from the image and a facial database. There are hundreds if not thousand factors associated with this. In this paper some of the most common techniques available including applications of neural network in facial recognition are studied and compared with respect to their performance.Comment: 8 page

    2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA

    Full text link
    We present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize it and compensate for illumination variation. Experimental results show that the proposed system is effective for both dimension reduction and good recognition performance when compared to the complete Gabor filter bank. The system has been tested using CASIA, ORL and Cropped YaleB 2D face images Databases and achieved average recognition rate of 98.9 %

    Deep learning architectures for Computer Vision

    Get PDF
    Deep learning has become part of many state-of-the-art systems in multiple disciplines (specially in computer vision and speech processing). In this thesis Convolutional Neural Networks are used to solve the problem of recognizing people in images, both for verification and identification. Two different architectures, AlexNet and VGG19, both winners of the ILSVRC, have been fine-tuned and tested with four datasets: Labeled Faces in the Wild, FaceScrub, YouTubeFaces and Google UPC, a dataset generated at the UPC. Finally, with the features extracted from these fine-tuned networks, some verifications algorithms have been tested including Support Vector Machines, Joint Bayesian and Advanced Joint Bayesian formulation. The results of this work show that an Area Under the Receiver Operating Characteristic curve of 99.6% can be obtained, close to the state-of-the-art performance.El aprendizaje profundo se ha convertido en parte de muchos sistemas en el estado del arte de múltiples ámbitos (especialmente en visión por computador y procesamiento de voz). En esta tesis se utilizan las Redes Neuronales Convolucionales para resolver el problema de reconocer a personas en imágenes, tanto para verificación como para identificación. Dos arquitecturas diferentes, AlexNet y VGG19, ambas ganadores del ILSVRC, han sido afinadas y probadas con cuatro conjuntos de datos: Labeled Faces in the Wild, FaceScrub, YouTubeFaces y Google UPC, un conjunto generado en la UPC. Finalmente con las características extraídas de las redes afinadas, se han probado diferentes algoritmos de verificación, incluyendo Maquinas de Soporte Vectorial, Joint Bayesian y Advanced Joint Bayesian. Los resultados de este trabajo muestran que el Área Bajo la Curva de la Característica Operativa del Receptor puede llegar a ser del 99.6%, cercana al valor del estado del arte.L’aprenentatge profund s’ha convertit en una part importat de molts sistemes a l’estat de l’art de múltiples àmbits (especialment de la visió per computador i el processament de veu). A aquesta tesi s’utilitzen les Xarxes Neuronals Convolucionals per a resoldre el problema de reconèixer persones a imatges, tant per verificació com per identificatió. Dos arquitectures diferents, AlexNet i VGG19, les dues guanyadores del ILSVRC, han sigut afinades i provades amb quatre bases de dades: Labeled Faces in the Wild, FaceScrub, YouTubeFaces i Google UPC, un conjunt generat a la UPC. Finalment, amb les característiques extretes de les xarxes afinades, s’han provat diferents algoritmes de verificació, incloent Màquines de Suport Vectorial, Joint Bayesian i Advanced Joint Bayesian. Els resultats d’aquest treball mostres que un Àrea Baix la Curva de la Característica Operativa del Receptor por arribar a ser del 99.6%, propera al valor de l’estat de l’art

    A Novel Approach to Face Recognition using Image Segmentation based on SPCA-KNN Method

    Get PDF
    In this paper we propose a novel method for face recognition using hybrid SPCA-KNN (SIFT-PCA-KNN) approach. The proposed method consists of three parts. The first part is based on preprocessing face images using Graph Based algorithm and SIFT (Scale Invariant Feature Transform) descriptor. Graph Based topology is used for matching two face images. In the second part eigen values and eigen vectors are extracted from each input face images. The goal is to extract the important information from the face data, to represent it as a set of new orthogonal variables called principal components. In the final part a nearest neighbor classifier is designed for classifying the face images based on the SPCA-KNN algorithm. The algorithm has been tested on 100 different subjects (15 images for each class). The experimental result shows that the proposed method has a positive effect on overall face recognition performance and outperforms other examined methods
    corecore