1,003 research outputs found

    A glance at imaging bladder cancer.

    Get PDF
    Purpose: Early and accurate diagnosis of Bladder cancer (BCa) will contribute extensively to the management of the disease. The purpose of this review was to briefly describe the conventional imaging methods and other novel imaging modalities used for early detection of BCa and outline their pros and cons. Methods: Literature search was performed on Pubmed, PMC, and Google scholar for the period of January 2014 to February 2018 and using such words as bladder cancer, bladder tumor, bladder cancer detection, diagnosis and imaging . Results: A total of 81 published papers were retrieved and are included in the review. For patients with hematuria and suspected of BCa, cystoscopy and CT are most commonly recommended. Ultrasonography, MRI, PET/CT using 18F-FDG or 11C-choline and recently PET/MRI using 18F-FDG also play a prominent role in detection of BCa. Conclusion: For initial diagnosis of BCa, cystoscopy is generally performed. However, cystoscopy can not accurately detect carcinoma insitu (CIS) and can not distinguish benign masses from malignant lesions. CT is used in two modes, CT and computed tomographic urography (CTU), both for dignosis and staging of BCa. However, they cannot differentiate T1 and T2 BCa. MRI is performed to diagnose invasive BCa and can differentiate muscle invasive bladder carcinoma (MIBC) from non-muscle invasive bladder carcinoma (NMIBC). However, CT and MRI have low sensitivity for nodal staging. For nodal staging PET/CT is preferred. PET/MRI provides better differentiation of normal and pathologic structures as compared with PET/CT. Nonetheless none of the approaches can address all issues related for the management of BCa. Novel imaging methods that target specific biomarkers, image BCa early and accurately, and stage the disease are warranted

    Comparison of manual and semi-automated delineation of regions of interest for radioligand PET imaging analysis

    Get PDF
    BACKGROUND As imaging centers produce higher resolution research scans, the number of man-hours required to process regional data has become a major concern. Comparison of automated vs. manual methodology has not been reported for functional imaging. We explored validation of using automation to delineate regions of interest on positron emission tomography (PET) scans. The purpose of this study was to ascertain improvements in image processing time and reproducibility of a semi-automated brain region extraction (SABRE) method over manual delineation of regions of interest (ROIs). METHODS We compared 2 sets of partial volume corrected serotonin 1a receptor binding potentials (BPs) resulting from manual vs. semi-automated methods. BPs were obtained from subjects meeting consensus criteria for frontotemporal degeneration and from age- and gender-matched healthy controls. Two trained raters provided each set of data to conduct comparisons of inter-rater mean image processing time, rank order of BPs for 9 PET scans, intra- and inter-rater intraclass correlation coefficients (ICC), repeatability coefficients (RC), percentages of the average parameter value (RM%), and effect sizes of either method. RESULTS SABRE saved approximately 3 hours of processing time per PET subject over manual delineation (p 0.8) for both methods. RC and RM% were lower for the manual method across all ROIs, indicating less intra-rater variance across PET subjects' BPs. CONCLUSION SABRE demonstrated significant time savings and no significant difference in reproducibility over manual methods, justifying the use of SABRE in serotonin 1a receptor radioligand PET imaging analysis. This implies that semi-automated ROI delineation is a valid methodology for future PET imaging analysis

    Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration

    Get PDF
    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship

    Dynamic PET-Tau Quantification for Progressive Supranuclear Palsy Diagnosis

    Full text link
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2023-2024. Tutor: Raúl Tudela ; Director: Aida Niñerola, Raúl TudelaTauopathies are neurodegenerative diseases caused by the abnormal accumulation of tau proteins in the brain. One uncommon tauopathy is progressive supranuclear palsy (PSP), whose symptoms often overlap with other brain disorders, and its detection is only possible postmortem since there is not an available ideal biomarker. PET-tau imaging has the potential to revolutionize the early detection of this disease. PET is a nuclear imaging test which allows seeing the functionality of organs and tissues in vivo using a radiotracer that emits radiation from inside the body. A new PET tracer called 18F-PI-2620 has shown promising results concerning the detection of PSP, with high affinity to tau aggregates and low off-target binding. This project consists of designing and testing a software for the quantification of PET images of the brain with a dynamic acquisition, which show the radiotracer distribution through time. The software performs a coregistration of the images to the standard space, where the different regions of the brain can be segmented using an atlas, and provides two physiologically meaningful parameters which are the Distribution Volume Ratio (DVR) and Standardized Uptake Value Ratio (SUVR). It gives out the DVR and SUVR values for any region of interest, as well as parametric images which help visualizing the radiotracer distribution in the brain. A set of brain PET images from 13 subjects acquired using 18F-PI-2620 has been used for the development and testing of the software, divided into healthy controls, subjects with Down syndrome, some of whom have developed Alzheimer’s disease (AD), which also implies a higher amount of abnormal deposited tau proteins. The results have shown higher DVR and SUVR values for several brain regions in those subjects who have developed AD, confirming that they have a higher radiotracer uptake and a greater amount of deposited tau proteins. This proves the correct functionality of the software and its potential as a future tool for detecting tauopathies such as PSP in combination with the radiotracer

    Volumetry of [11C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme

    Get PDF
    We investigated the relationship between three-dimensional volumetric data of the metabolically active tumour volume assessed using [(11)C]-methionine positron emission tomography (MET-PET) and the area of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) enhancement assessed using magnetic resonance imaging (MRI) in patients with recurrent glioblastoma (GBM).MET-PET and contrast-enhanced MRI with Gd-DTPA were performed in 12 uniformly pretreated patients with recurrent GBM. To calculate the volumes in cubic centimetres, a threshold-based volume-of-interest (VOI) analysis of the metabolically active tumour volume (MET uptake indexes of > or = 1.3 and > or = 1.5) and of the area of Gd-DTPA enhancement was performed after coregistration of all images.In all patients, the metabolically active tumour volume as shown using a MET uptake index of > or = 1.3 was larger than the volume of Gd-DTPA enhancement (30.2 + or - 22.4 vs. 13.7 + or - 10.6 cm(3); p = 0.04). Metabolically active tumour volumes as shown using MET uptake indexes of > or =1.3 and > or = 1.5 and the volumes of Gd-DTPA enhancement showed a positive correlation (r = 0.76, p = 0.003, for an index of > or =1.3, and r = 0.74, p = 0.005, for an index of > or =1.5).The present data suggest that in patients with recurrent GBM the metabolically active tumour volume may be substantially underestimated by Gd-DTPA enhancement. The findings support the notion that complementary information derived from MET uptake and Gd-DTPA enhancement may be helpful in developing individualized, patient-tailored therapy strategies in patients with recurrent GBM

    Transcranial Magnetic Stimulation and Neuroimaging Coregistration

    Get PDF
    The development of neuroimaging techniques is one of the most impressive advancements in neuroscience. The main reason for the widespread use of these instruments lies in their capacity to provide an accurate description of neural activity during a cognitive process or during rest. This important advancement is related to the possibility to selectively detect changes of neuronal activity in space and time by means of different biological markers. Specifically, functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and nearinfrared spectroscopy (NIRS) use metabolic markers of ongoing neuronal activity to provide an accurate description of the activation of specific brain areas with high spatial resolution. Similarly, electroencephalography (EEG) is able to detect electric markers of neuronal activity, providing an accurate description of brain activation with high temporal resolution. The application of these techniques during a cognitive task allows important inferences regarding the relation between the detected neural activity, the cognitive process involved in an ongoing task, and behaviour: this is known as a \u201ccorrelational approach\u201d

    Magnetic resonance imaging of the human locus coeruleus: A systematic review

    Get PDF
    The locus coeruleus (LC), the major origin of noradrenergic modulation of the central nervous system, innervates extensive areas throughout the brain and is implicated in a variety of autonomic and cognitive functions. Alterations in the LC-noradrenergic system have been associated with healthy ageing and neuropsychiatric disorders including Parkinson's disease, Alzheimer's disease and depression. The last decade has seen advances in imaging the structure and function of the LC, and this paper systematically reviews the methodology and outcomes of sixty-nine structural and functional MRI studies of the LC in humans. Structural MRI studies consistently showed lower LC signal intensity and volume in clinical groups compared to healthy controls. Within functional studies, the LC was activated by a variety of tasks/stimuli and had functional connectivity to a range of brain regions. However, reported functional LC location coordinates were widely distributed compared to previously published neuroanatomical locations. Methodological and demographic factors potentially contributing to these differences are discussed, together with recommendations to optimize the reliability and validity of future LC imaging studies

    An automatic analysis framework for FDOPA PET neuroimaging

    Get PDF

    An automatic analysis framework for FDOPA PET neuroimaging

    Get PDF
    In this study we evaluate the performance of a fully automated analytical framework for FDOPA PET neuroimaging data, and its sensitivity to demographic and experimental variables and processing parameters. An instance of XNAT imaging platform was used to store the King's College London institutional brain FDOPA PET imaging archive, alongside individual demographics and clinical information. By re-engineering the historical Matlab-based scripts for FDOPA PET analysis, a fully automated analysis pipeline for imaging processing and data quantification was implemented in Python and integrated in XNAT. The final data repository includes 892 FDOPA PET scans organized from 23 different studies. We found good reproducibility of the data analysis by the automated pipeline (in the striatum for the Kicer: for the controls ICC = 0.71, for the psychotic patients ICC = 0.88). From the demographic and experimental variables assessed, gender was found to most influence striatal dopamine synthesis capacity (F = 10.7, p < 0.001), with women showing greater dopamine synthesis capacity than men. Our automated analysis pipeline represents a valid resourse for standardised and robust quantification of dopamine synthesis capacity using FDOPA PET data. Combining information from different neuroimaging studies has allowed us to test it comprehensively and to validate its replicability and reproducibility performances on a large sample size
    corecore