8,615 research outputs found

    Eye Tracker Accuracy: Quantitative Evaluation of the Invisible Eye Center Location

    Full text link
    Purpose. We present a new method to evaluate the accuracy of an eye tracker based eye localization system. Measuring the accuracy of an eye tracker's primary intention, the estimated point of gaze, is usually done with volunteers and a set of fixation points used as ground truth. However, verifying the accuracy of the location estimate of a volunteer's eye center in 3D space is not easily possible. This is because the eye center is an intangible point hidden by the iris. Methods. We evaluate the eye location accuracy by using an eye phantom instead of eyes of volunteers. For this, we developed a testing stage with a realistic artificial eye and a corresponding kinematic model, which we trained with {\mu}CT data. This enables us to precisely evaluate the eye location estimate of an eye tracker. Results. We show that the proposed testing stage with the corresponding kinematic model is suitable for such a validation. Further, we evaluate a particular eye tracker based navigation system and show that this system is able to successfully determine the eye center with sub-millimeter accuracy. Conclusions. We show the suitability of the evaluated eye tracker for eye interventions, using the proposed testing stage and the corresponding kinematic model. The results further enable specific enhancement of the navigation system to potentially get even better results

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe
    • …
    corecore