23 research outputs found

    Efficient and Robust Neuromorphic Computing Design

    Get PDF
    In recent years, brain inspired neuromorphic computing system (NCS) has been intensively studied in both circuit level and architecture level. NCS has demonstrated remarkable advantages for its high-energy efficiency, extremely compact space occupation and parallel data processing. However, due to the limited hardware resources, severe IR-Drop and process variation problems for synapse crossbar, and limited synapse device resolution, it’s still a great challenge for hardware NCS design to catch up with the fast development of software deep neural networks (DNNs). This dissertation explores model compression and acceleration methods for deep neural networks to save both memory and computation resources for the hardware implementation of DNNs. Firstly, DNNs’ weights quantization work is presented to use three orthogonal methods to learn synapses with one-level precision, namely, distribution-aware quantization, quantization regularization and bias tuning, to make image classification accuracy comparable to the state-ofthe-art. And then a two-step framework named group scissor, including rank clipping and group connection deletion methods, is presented to address the problems on large synapse crossbar consuming and high routing congestion between crossbars. Results show that after applying weights quantization methods, accuracy drop can be well controlled within negligible level for MNIST and CIFAR-10 dataset, compared to an ideal system without quantization. And for the group scissor framework method, crossbar area and routing area could be reduced to 8% (at most) of original size, indicating that the hardware implementation area has been saved a lot. Furthermore, the system scalability has been improved significantly

    Spiker: an FPGA-optimized Hardware accelerator for Spiking Neural Networks

    Get PDF
    Spiking Neural Networks (SNN) are an emerging type of biologically plausible and efficient Artificial Neural Net- work (ANN). This work presents the development of a hardware accelerator for a SNN for high-performance inference, targeting a Xilinx Artix-7 Field Programmable Gate Array (FPGA). The model used inside the neuron is the Leaky Integrate and Fire (LIF). The execution is clock-driven, meaning that the internal state of the neuron is updated at every clock cycle, even in absence of spikes. The inference capabilities of the accelerator are evaluated using the MINST dataset. The training is performed offline on a full precision model. The results show a good improvement in performance if compared with the state-of- the-art accelerators, requiring 215ÎĽs per image. The energy consumption is slightly higher than the most optimized design, with an average value of 13mJ per image. The test design consists of a single layer of four-hundred neurons and uses around 40% of the available resources on the FPGA. This makes it suitable for a time-constrained application at the edge, leaving space for other acceleration tasks on the FPGA

    REMODEL: Rethinking Deep CNN Models to Detect and Count on a NeuroSynaptic System

    Get PDF
    In this work, we perform analysis of detection and counting of cars using a low-power IBM TrueNorth Neurosynaptic System. For our evaluation we looked at a publicly-available dataset that has overhead imagery of cars with context present in the image. The trained neural network for image analysis was deployed on the NS16e system using IBM's EEDN training framework. Through multiple experiments we identify the architectural bottlenecks present in TrueNorth system that does not let us deploy large neural network structures. Following these experiments we propose changes to CNN model to circumvent these architectural bottlenecks. The results of these evaluations have been compared with caffe-based implementations of standard neural networks that were deployed on a Titan-X GPU. Results showed that TrueNorth can detect cars from the dataset with 97.60% accuracy and can be used to accurately count the number of cars in the image with 69.04% accuracy. The car detection accuracy and car count (–/+ 2 error margin) accuracy are comparable to high-precision neural networks like AlexNet, GoogLeNet, and ResCeption, but show a manifold improvement in power consumption

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Analog Photonics Computing for Information Processing, Inference and Optimisation

    Full text link
    This review presents an overview of the current state-of-the-art in photonics computing, which leverages photons, photons coupled with matter, and optics-related technologies for effective and efficient computational purposes. It covers the history and development of photonics computing and modern analogue computing platforms and architectures, focusing on optimization tasks and neural network implementations. The authors examine special-purpose optimizers, mathematical descriptions of photonics optimizers, and their various interconnections. Disparate applications are discussed, including direct encoding, logistics, finance, phase retrieval, machine learning, neural networks, probabilistic graphical models, and image processing, among many others. The main directions of technological advancement and associated challenges in photonics computing are explored, along with an assessment of its efficiency. Finally, the paper discusses prospects and the field of optical quantum computing, providing insights into the potential applications of this technology.Comment: Invited submission by Journal of Advanced Quantum Technologies; accepted version 5/06/202
    corecore