

Title Page

Efficient and Robust Neuromorphic Computing Design

by

Yandan Wang

Bachelor of Engineering, Chongqing University, 2010

Master of Engineering, North China Electric Power University, 2013

Submitted to the Graduate Faculty of the

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

 ii

Committee Page

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Yandan Wang

It was defended on

November 13, 2019

and approved by

Zhi-Hong Mao, Ph.D., Professor, Department of Electrical and Computer Engineering and

Department of Bioengineering

Hai (Helen) Li, Ph.D., Associate Professor, Department of Electrical and Computer Engineering,

Duke University

Jingtong Hu, Ph.D., Assistant Professor, Department of Electrical and Computer Engineering

Samuel J Dickerson, Ph.D., Assistant Professor, Electrical and Computer Engineering

Bo Zeng, Ph.D., Associate Professor, Industrial Engineering and Electrical and Computer

Engineering

Dissertation Director: Hai (Helen) Li, Associate Professor,

Department of Electrical and Computer Engineering, Duke University

 iii

Copyright © by Yandan Wang

2019

 iv

Abstract

Efficient and Robust Neuromorphic Computing Design

Yandan Wang, PhD

University of Pittsburgh, 2019

In recent years, brain inspired neuromorphic computing system (NCS) has been intensively

studied in both circuit level and architecture level. NCS has demonstrated remarkable advantages

for its high-energy efficiency, extremely compact space occupation and parallel data processing.

However, due to the limited hardware resources, severe IR-Drop and process variation problems

for synapse crossbar, and limited synapse device resolution, it’s still a great challenge for hardware

NCS design to catch up with the fast development of software deep neural networks (DNNs).

This dissertation explores model compression and acceleration methods for deep neural

networks to save both memory and computation resources for the hardware implementation of

DNNs. Firstly, DNNs’ weights quantization work is presented to use three orthogonal methods to

learn synapses with one-level precision, namely, distribution-aware quantization, quantization

regularization and bias tuning, to make image classification accuracy comparable to the state-of-

the-art. And then a two-step framework named group scissor, including rank clipping and group

connection deletion methods, is presented to address the problems on large synapse crossbar

consuming and high routing congestion between crossbars.

Results show that after applying weights quantization methods, accuracy drop can be well

controlled within negligible level for MNIST and CIFAR-10 dataset, compared to an ideal system

without quantization. And for the group scissor framework method, crossbar area and routing area

 v

could be reduced to 8% (at most) of original size, indicating that the hardware implementation area

has been saved a lot. Furthermore, the system scalability has been improved significantly.

 vi

Table of Contents

Acknowledgments ... xii

1.0 Motivation .. 1

1.1 Problem Statement.. 3

1.2 Research Contributions .. 4

1.3 Dissertation Organization .. 6

2.0 Related Work .. 7

3.0 Background ... 10

3.1 Neural Network Models ... 10

3.2 Memristor Technology ... 10

3.3 Neuromorphic Computing Systems .. 12

4.0 The Group Scissor Framework ... 14

4.1 Rank Clipping ... 14

4.2 Group Connection Deletion ... 19

4.3 Area Estimation .. 22

4.4 Experiments ... 23

4.5 MBC Area Reduction ... 24

4.6 Routing Area Reduction ... 26

5.0 Classification Accuracy Improvement for Neuromorphic Computing 30

5.1 Methodology .. 30

5.1.1 Distribution-aware Quantization ... 30

5.1.2 Quantization Regularization ... 32

 vii

5.1.3 Bias Tuning ... 34

5.1.4 Convolution in Memristor Crossbar Array .. 35

5.2 Experiments ... 37

5.2.1 Experiment Setup... 37

5.2.2 Function Validation of MLP on MNIST .. 38

5.2.3 Function Validation of LeNet ... 39

5.2.4 Function Validation of CNN on CIFAR-10 ... 40

5.2.5 Learned Filters ... 41

5.2.6 Bias Tuning to Alleviate Crossbar Variation .. 42

5.2.7 Discussion.. 43

6.0 Deformable Regularization Work ... 45

6.1 Incremental Quantization .. 49

6.2 Function Validation of DR on MNIST .. 51

6.3 Function Validation of DR on CIFAR-10 ... 54

6.4 Discussion... 54

7.0 TRNG Design Leveraging Emerging Memristor Technology .. 57

7.1 Introduction ... 57

7.2 Preliminary .. 59

7.2.1 Memristor ... 59

7.2.2 Stochastic Behaviors of Memristors ... 61

7.3 Methodology .. 62

7.3.1 Stochastic Model of TiO2 Memristor ... 62

7.3.2 The MTRNG Design .. 65

 viii

7.3.3 MTRNG Markov Chain Analysis... 67

7.4 Experiment .. 70

7.4.1 The Selection of Gate Voltage Vg ... 71

7.4.2 MTRNG Simulation... 74

7.4.3 The Design Evaluation ... 75

8.0 Conclusions .. 78

References .. 80

 ix

List of Tables

Table 1. Accuracy and ranks ... 16

Table 2. Experiment parameters ... 24

Table 3. MBC sizes and remained routing wires in large layers .. 27

Table 4. Network and dataset .. 37

Table 5. The accuracy measurement for MLP on MNIST dataset .. 39

Table 6. The accuracy measurement for CNN on MNIST dataset .. 40

Table 7. The accuracy measurement for CNN on CIFAR-10 dataset 41

Table 8. The accuracy measurement for DR and QR on MNIST .. 53

Table 9. The accuracy measurement for DR and QR on CIFAR-10 55

Table 10. Power consumption of MTRNGs .. 76

 x

List of Figures

Figure 1 Statistical memristance distributions of a TiO2 device .. 11

Figure 2 Mapping neural networks to memristor crossbar array ... 12

Figure 3 The NCS designs for (a) a small convolutional layer, and (b) a large layer 13

Figure 4 Rank clipping for crossbar area occupation reduction .. 17

Figure 5 Rank ratio of each layer and accuracy during training with rank clipping 18

Figure 6 The group connection deletion ... 20

Figure 7 The percentage of deleted routing wires and accuracy during group connection

deletion. fc1_u and fc1_v is the low-rank matrix U and V of fc1 after rank clipping, and so

forth. ... 22

Figure 8 The remained ranks in convolutional layers of LeNet. fc1 is omitted for better

visualization as its original rank 500 is out of chart. ... 25

Figure 9 The MBC area for (a) LeNet and (b) ConvNet, after applying the rank clipping. 26

Figure 10 The routing wire (a) and routing area (b) w.r.t. the classification error in ConvNet

... 28

Figure 11. Weight matrices (transposed) after group connection deletion. The deletion starts

from the rank-clipped ConvNet in Table 1. Matrices are plotted in scale in the order of

conv1 u, conv2 u, conv3 u and fc1. White regions have no connections. And connections in

each blue/red block are implemented in a crossbar. ... 29

Figure 12 The blue and orange bars denote the original weight distribution of different layers

and the learned discrete weights after quantization regularization (QR) in LeNet,

respectively. ... 31

Figure 13 Comparison of l1-norm, l2-norm and our proposed regularization 34

Figure 14 The framework of proposed bias tuning method ... 35

Figure 15 Convolution implementation in memristor crossbar array 36

Figure 16 The learned floating-point (upper) and quantified (lower) conv1 filters in LeNet

(the gray-scale ones) and CNN on CIFAR-10 (the color ones). A zero weight is mapped to

pixel value 128, and negative (positive) weights are darker (brighter) ones. 42

Figure 17 The bias tuning in LeNet. The yellow line denotes the accuracy after applying DQ

and QR without noise; The red line is the baseline with quantization and noise; The green

line denotes the accuracy recovered from the baseline after bias tuning; is the standard

deviation of Gaussian noise. ... 43

Figure 18 Quantization regularization method .. 45

 xi

Figure 19 The difference among l1-norm, l2-norm and quantization regularization 46

Figure 20 The left figures show three kinds of changing methods for parameter 𝛂, with

straight line, ellipse and cosin, respectively. The right three figures show the corresponding

error function doing experiments on MNIST dataset with LeNet neural network. 48

Figure 21 ILQ framework illustration. The pre-trained model will be fed into the neural

network model and used for weights initialization. And then all quantized weights will be

fixed after applying DR to the previous layer weights. When all weights are quantized, a

final bias tuning operation will be applied to the whole neural networks. 50

Figure 22 Classification accuracy results on CIFAR-10 dataset after implementing ILQ

framework. Each columnar in the figure demonstrates the intermediate processing result

by incrementally fixing the quantized weights of previous layers. 51

Figure 23 Deformable quantization process on two convolutional layers and the experiments

are conducted on MNIST dataset using LeNet-5-like neural networks. The x-axis is the

weights values and the y-axis is the training iterations. From the very top to the bottom

along the y-axis, it shows the whole training process. ... 52

Figure 24 Deformable quantization process on two fully-connected layers and the

experiments are conducted on MNIST dataset using LeNet-5-like neural networks. The x-

axis is the weights values and the y-axis is the training iterations...................................... 53

Figure 25 The structure of a TiO2 memristor.. 60

Figure 26 Static stochastic behavior ... 63

Figure 27 Cumulative switching probability distribution for ON (a) and OFF (b) switching

under different applied voltage amplitude ... 64

Figure 28 The scheme of the basic 1-branch MTRNG design .. 66

Figure 29 The scheme of the enhanced 2-branch MTRNG design .. 68

Figure 30 The state transition diagram .. 68

Figure 31 Vg vs. Vout: (a) under the means of the high and low resistance states, as

Ron=105Ω and Roff =108Ω; (b) at the worst condition when Ron=106Ω and Roff =107Ω.

... 72

Figure 32 Simulation of 1-branch MTRNG (Ron=105Ω and Roff =108Ω) 73

Figure 33 Simulation of 1-branch MTRNG (Ron=106Ω and Roff =107Ω) 73

Figure 34 Simulation of 2-branch MTRNG ... 73

Figure 35 The probability distribution of random bit in the stream generated by 1-branch

(left) and 2-branch (right) MTRNG .. 75

Figure 36 Dependence of programming voltage for random bit stream sampling period in

ON switching (upper) and OFF switching (lower)... 77

 xii

Acknowledgments

Before diving into the details of this dissertation, I would like to express my deepest

appreciation to my supervisor Hai (Helen) Li, an expert in neuromorphic computing and machine

learning field. The research work in this dissertation can’t be finished successfully without the

careful guidance and financial support from my supervisor. And I would also give my deepest

thankful to my co-supervisor Zhi-Hong Mao, an extremely admirable professor who is always

caring for students and helping students at every moment.

I also would like to thank my committee members, Prof. Jingtong Hu, Prof. Samuel J

Dickerson and Prof. Bo Zeng. Your advice during my dissertation meeting and your reputation in

your field inspire me to dive deep into my research and solve many really interesting and

meaningful topics.

 1

1.0 Motivation

NCS demonstrates many important features including high computing efficiency,

extremely low power consumption, and compact volume [1]. Integrating emerging technologies

potentially enables a more compact and energy-efficient platform for information processing [2].

For instance, the two-terminal nonlinear memristor presents a series of advantages (Aojun Zhou

2017) of good scalability, high endurance and ultra-low power consumption [3]. Thus, it is taken

as a promising candidate for neuromorphic computing system development.

The record-breaking classification performance of deep neural networks (DNNs) below

below [4] in recent years has stimulated the fast-growing research on hardware design of NCS

[5][6][6][7][8][9][2]. NCS utilizes device and circuit components to construct neural networks and

therefore perform intelligent tasks, such as image classification, speech recognition and natural

language processing. Circuit-level and architecture-level NCS designs using emerging memristor

devices [10] and traditional CMOS technologies [6] are being explored. In software applications,

the depth of DNNs rapidly grows from several layers to hundreds or even thousands of layers [11].

However, the scale of NCS hardware design falls far behind. A critical issue that obstructs the

scaling-up of NCS is the limited synaptic connections (e.g., crossbar) in hardware implementation

and induced heavy wire congestion (e.g., the routing between crossbars). Taking the memristor-

based NCS as an example, due to IR-drop and process variations, both reading and writing

reliability will be severely degraded when the size of a memristor-based crossbar is beyond 64x64

[12][13]. The similar scenario can be observed in CMOS-based conventional designs. For

example, the IBM TrueNorth chip, as a pioneer in NCS design, limits the size of neurosynaptic

crossbars to 256x256 [6]. It is inevitable to interconnect multiple crossbars to implement modern

 2

large neural networks. The increasing scale of neural networks could quickly exhaust the resources

of synapse crossbars and deteriorate the wire congestion [14][15]. Solutions have been explored

to solve above issues. Akopyan et al. tend to map logically-connected cores to physically adjacent

cores to reduce spike communications [15]. Such a core placement optimization cannot reduce the

core number. Existing NCS optimization based on sparse neural networks can alleviate the wire

congestion [15]. However, the separation of the software sparsification and hardware deployment

makes the optimization very challenging.

At the same time, neuromorphic hardware implementations usually face a major challenge

on system accuracy. TrueNorth, for example, allows only a few synaptic weights (e.g., 0, ±1, ±2).

Accuracy degradation is inevitable when directly deploying a learned model to the system with

limited precision [1]. The situation remains in memristor (or RRAM) based design. Theoretically,

nanoscale memristor can obtain continuously analog resistance. While, a real device often can

achieve only several stable resistance states [16]. The distinction between theoretical and actual

properties results in significant accuracy loss. Extensive studies on learning low-resolution

synapses have been performed to improve the accuracy of neuromorphic systems. Wen et al.

presented a new learning method for IBM TrueNorth platform which biases the learned connection

probability to binary states (0/1) to hinder accuracy loss [9]. Neural networks with binary

resolution are more suitable for generic platforms [17][18][19]. BinaryConnect [18] as an example

can achieve comparable accuracy in deep neural networks. However, neither TrueNorth nor

BinaryConnect are pure binary neural networks: TrueNorth relies on the ensemble averaging layer

in floating-point precision while the last layer of BinaryConnect is a floating-point L2-SVM.

 3

1.1 Problem Statement

As stated before, NCS can fully utilize emerging devices and synapse crossbars to

implement deep neural networks, which demonstrates lots of important features such as high

computing efficiency, extremely low power consumption, and compact volume. However, due to

the scaling up of DNN and the imperfect features of both synapse crossbar and single memristor,

there still exists plenty of issues when mapping between software DNN and hardware

implementation NCS design, which largely impedes the development of NCS. Furthermore, due

to the limited resolution of hardware synapse device, classification accuracy can be severely

affected when applying neural networks to NCS hardware implementation. Based on the above

analysis, the main issues and challenges that should be addressed in this dissertation can be

summarized as follows:

• High crossbar area occupation: As the scale of modern neural network grows from

several layers to hundreds of or even thousands of layers, the hardware realization area of

NCS implementation will be inevitable to grow fast. However, the hardware resources are

always very limited, which can hardly catch up the scaling up speed of software level. In

such as situation, the hardware resources will be easily and quickly exhausted. Thus, how

to design an efficient NCS is extremely important in circuit level and architecture level

when mapping the software level neural networks to hardware neuromorphic computing

design.

• Heavy routing congestion: For both traditional CMOS based NCS design and emerging

memristor NCS based design, they all suffer from severe writing and reading reliability

degradation with the increase of crossbar size. Therefore, in the implementation of neural

networks, we should divide the large neural layer into many small crossbars, whose size is

 4

in the safe scope. As we need lots of small crossbars to implement a large neural network

layer, huge of interconnection routing will be induced among different crossbars. Even

though memristor is a nanoscale device and crossbar is compact manufactured, heavy

routing connection will still occupy a large amount of area for the whole NCS design.

• Accuracy degradation: In algorithm level, weights are stored in floating-point type which

can achieve a high classification accuracy for neural network system. However, in circuit

level, weight representative devices usually have limited resolution, which can only

represent several discrete number of weights. For example, in memristor based NCS,

theoretically, memristor can perform analog continuous memristive and thus can represent

floating-point synapse weights. However, in reality, memristor only can obtain two stable

memristive states. Thus, when mapping algorithm level floating-point weights to circuit

level representatives, there exists inevitable large classification accuracy degradation.

1.2 Research Contributions

Research contributions for this dissertation can be concluded as:

• A two-step framework named group scissor is proposed to overcome high crossbar area

occupation and heavy routing congestion issues.

➢ The first step, rank clipping, integrates low-rank approximation into the training

process of neural networks. It targets to reduce the dimensions of connection arrays

in a group-wise way and therefore reduce the consumption of synapse crossbars in

NCS.

 5

➢ The second step, group connection deletion, structurally deletes/prunes groups of

connections. The approach directly learns sparse neural networks friendly to

hardware and therefore deletes the routing wires between crossbars.

• Pure binary (1-level precision1) neural networks are proposed to address accuracy

degradation issue caused by limited hardware synapse device resolution. While the

realization of continuous analogue resistance states is still challenging, the 1-level

precision is well supported by most of memory materials and architectures. Three

orthogonal methods of leaning 1-level precision synapses and tuning bias to improve image

classification accuracy are proposed:

➢ Distribution-aware quantization discretizes weights in different layers to different

values. The method is proposed based on the observation that the weight

distributions of a network by layers.

➢ Quantization regularization directly learns a network with discrete weights during

training process. The regularization can reduce the distance between a weight and

its nearest quantization level with a constant gradient.

➢ Bias tuning dynamically learns the best bias compensation to minimize the impact

of quantization. It can also alleviate the impact of synaptic variation in memristor

based neuromorphic systems.

• Deformable quantization regularization method is presented to control the image

classification accuracy loss under a negligible value for small and simple dataset such as

MNIST or CIFAR-10, or under an acceptable value for larger and more complex dataset

such as CIFAR-100, ImageNet, etc. This regularization method will combine the

traditional l1-norm or l2-norm regularization method and the newly used quantization

 6

regularization method. Therefore, this new deformable quantization regularization method

will behave the characteristics and advantages of both l1-norm (l2-norm) and quantization

regularization methods.

1.3 Dissertation Organization

This dissertation is organized as follows:

Chapter 2.0 introduces some related work of model compression and acceleration.

Chapter 3.0 introduces some background information for this dissertation, mainly about

the neural network models, memristor technology and neuromorphic computing system.

Chapter 4.0 explores a framework named group scissor to overcome high crossbar area

occupation and heavy routing congestion issues. Two steps are presented in group scissor

including rank clipping and group connection deletion, which address the high crossbar area

occupation and heavy routing congestion, respectively.

Chapter 5.0 presents three methods to improve image classification accuracy with one-

level precision synapse for neuromorphic computing system. These three methods are distribution-

aware quantization, quantization regularization and bias tuning.

Chapter 6.0 presents the deformable quantization regularization method to further control

the image classification accuracy loss.

Chapter 7.0 presents a novel true random number generator design leveraging emerging

memristor technology.

Chapter 8.0 concludes all the research works in this dissertation.

 7

2.0 Related Work

In recent years, lots of excellent neural network models, such as AlexNet [4], VGG [31],

GoogLeNet [32], ResNet [33], have been proposed and quickly becomes popular both in academia

and industry, where excellent performance can be achieved in many artificial intelligence fields

such as computer vision, image classification, speech recognition and natural language processing.

All these outstanding models own one common feature that is large size and complex structure

with a large amount of parameters, which is beneficial for model performance improvement,

however on the contrary, it becomes a big obstacle to the hardware deployment for these models

since portable devices usually have limited memory and computation resources. Although there

exits lots of difficulties in neural network model deployment, we still face a rapid increasing on

artificial intelligence applications especially in fields like mobile devices, drone, AR/VR devices

and self-driving car. In order to meet the increasing demand of deployment for excellent

performance but large size models, there is an explosive growth research on how to use low-

precision representatives to represent full precision ones with small or negligible loss of

performance. This low-precision learning process can be achieved by quantizing full precision

representatives to low-precision ones.

Quantization operations can be applied to weights, activations, gradients or other

representatives in neural network models. Low-precision representatives could be binary, ternary,

2bits, 4bits, 8bits or some other reasonable low bits. For example, BinaryConnect [34], Binarized

Neural Networks [35] and XNOR-Net [36] all constrains weights or activations to +1 or -1. The

very beginning work BinaryConnect encounters a relatively high accuracy loss on image dataset

by quantizing only weights to +1 or -1. Based on BinaryConnect, XNOR-Net further introduces a

 8

scaling factor to quantized weights, which largely improves the image classification accuracy.

Besides the weights quantization done in BinaryConnect and XNOR-Net, Binarized Neural

Networks constrained both weights and activations to +1 and -1, which inevitably results in a

relatively high accuracy drop on more complex dataset like CIFAR-10. Some other work such as

Trained Ternary Quantization [37], Deep Compression [38], fixed point quantization [39], fine-

grained ternary quantization [40] all quantize weights or activations to multiple bits

representatives. It’s obvious that increasing quantized bits can improve the compressed model

performance, however, at the same time, it can also consume more hardware resources. Unlike

previous stated work, [41] proposes a novel incremental network quantization (INQ) method to

quantize pre-trained full-precision convolutional neural network (CNN) model to low-precision

one, where the quantized values are either powers of two or zero. While powers of two or zero are

very friendly to hardware implementations, since the computation involving these numbers can be

easily handled by shift operations.

Weights and activations quantization can speed up training and inference, save hardware

memory and power resource requirements, however, there still exists a big issue that is

nondifferentiable optimization in backpropagation stage during training [42]. To avoid this issue,

some work like [39][43] conducts quantization operation after model training. Other work like

[17][18][41] tries to solve this issue by utilizing a continues approximated function to approximate

the quantized function during back propagation stage. What’s more, a novel structure named

relaxed quantization neural networks are put forward in [44], which introduces a differentiable

quantization procedure for better gradient-based optimization.

In most recent one to two years, lots of other quantization work incorporating some

emerging optimization method are also arising. For example, [45] put forward a new model

 9

compression method, which combines weights quantization with novel distillation technology to

compress the network model from larger “teacher” networks to smaller “student” networks. And

in [38], trained quantization and weight sharing methods are applied based on the pre-pruned NN

model. To address the gradient mismatch issue between forward and backward approximations,

[42] proposes a half-wave Gaussian quantizer (HWGQ) for forward approximation and meanwhile

utilizes batch normalization and activations statistics. From the aspect of bandwidth, [46] proposes

an 8-bit approximation algorithms to compress 32-bit gradients and nonlinear activations to 8-bit

approximations to better use the available bandwidth. To take inference stage into consideration,

[47] proposes a new quantization method to use integer-only arithmetic, which can make inference

more efficient compared with floating-point arithmetic operations.

 10

3.0 Background

3.1 Neural Network Models

Neural networks (NNs) are a series of models inspired by biological neuron networks. The

function can be formulated as:

𝒚 = 𝑾 ∙ 𝒙 + 𝒃 (1)

 𝒛 = 𝒉(𝒚) (2)

 where the output neuron vector z is determined by the input neuron vector x, the weight matrix of

connections 𝑾 and the bias vector b. Usually, ℎ(∙) is a non-linear activation function and all the

data in (1) and (2) are in floating-point precision.

3.2 Memristor Technology

Memristor, firstly introduced by Professor Leon Chua in 1971, is regarded as the fourth

fundamental circuit element, representing the dynamic relationship between the charge 𝑞(𝑡) and

the 𝜑(𝑡) [20]. Most significantly, the total electric flux flowing through a memristor device can be

“remembered” by recording it as its memristance (M). In 2008, HP Lab demonstrated the first

actual memristor through a TiO2 thin-film device and realized the memristive property by moving

its doping front [10].

 11

Figure 1 Statistical memristance distributions of a TiO2 device

Theoretically, a memristor device can achieve continuous analog resistance states.

However, the imperfection of fabrication process causes variations and therefore memristance

varies from device to device. Even worse, the memristance of a single memristor changes from

time to time [21]. In most system designs, only two stable resistance states, high- and low-

resistance state (HRS and LRS), are adopted. As the real statistical measurement data of a

TiO2 memristor in Figure 1 shows, the distribution of HRS (LRS) follows an approximated

lognormal probability density function (PDF) [16].

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+00 5.E+03 1.E+04

M
em

r
is

ta
n

c
e(
Ω

)

Cycle

LRS

HRS

 12

3.3 Neuromorphic Computing Systems

Neuromorphic computing systems (NCS) represents the hardware implementations of NNs

by mimicking the neuro-biological architectures. For example, IBM TrueNorth chip is made of a

network of neuro-synaptic cores, each of which includes a configurable synaptic crossbar

connecting 256 axons and 256 neurons in close proximity [1]. The synaptic weight in the crossbar

can be selected from 4 possible integers. Memristor based NCS has also be investigated [22].

Matrix-vector multiplication, the key operation in NNs, can be realized by memristor crossbar

arrays as illustrated in Figure 2 [14]. The conductance matrix of memristor crossbar array is

utilized as the weight matrix of NNs [22].

The synaptic weights in these neuromorphic computing systems usually have a limited

precision, constrained either by design cost (e.g., the SRAM cells for each weight representation

in TrueNorth) or current technology process (e.g., two or only a few resistance levels of memristor

devices). As such, the classification accuracy loss could be very significant in NCS. To improve

Figure 2 Mapping neural networks to memristor crossbar array

...Output: y

Array: W

 13

the classification accuracy, lots of research has been done [18][19][23]. Even though, some of

them have floating-point layers and some ignore circuit design constraints. In this work, we focus

on pure binary neural networks considering the constraints in NCS hardware implementation.

Figure 3 (a) illustrates the implementation of a convolutional layer in neural network using

memristor-based crossbars (MBC), where memristors (a.k.a. synapses) in each column encode the

weights of one filter [24]. The implementation of a fully-connected layer utilizes the similar

structure, but each column realizes the connections to one output neuron. As the size of crossbars

is limited, implementing large neural networks requires a high volume of crossbars and the induced

interconnection. Figure (b) depicts a circuit-level implementation of a large layer by tiling and

interconnecting MBC [14]. As the scale of modern neural networks grows, the high crossbar area

occupation and heavy routing congestion emerge as critical issues that obstruct the scalability of

the hardware implementation.

Figure 3 The NCS designs for (a) a small convolutional layer, and (b) a large layer

filter 1 filter n
…

input

convolutional layer

(a) (b)

… …

…

…

in
p

u
t

output

…

…

…

 14

4.0 The Group Scissor Framework

In this work, we propose the Group Scissor framework to improve the scalability of

neuromorphic computing design. The framework consists of two steps: rank clipping to reduce

crossbar area occupation and group connection deletion for routing congestion reduction. The

details of the proposed design are described in this section. Moreover, the estimations of circuit

area and routing wires for MBC-based neuromorphic design are formulated.

4.1 Rank Clipping

As discussed above, the high crossbar area occupation and heavy routing congestion are

the major challenges in realizing large neural networks. We propose to utilize low-rank

approximation (LRA) to reduce the dimensions of weight (connection) matrices in large neural

networks. LRA is a mathematical technique that uses the product of smaller matrices with reduced

rank to approximate a given large matrix. Specifically, an original weight matrix can be

approximated as:

 W ≈ U ∙ VT = W̃ (3)

Where U ∈ ℝN×K, VT ∈ ℝK×M, and K is the rank of the approximation. When K << M, U

and V are reduced to skinny matrices. The total crossbar area occupation can be reduced when K

satisfies:

 K <
NM

N+M
 (4)

WÎ» N´M

 15

There are various LRA techniques. Without losing generality, commonly used principal

components analysis (PCA) [25] and singular value decomposition (SVD) [13] are adopted as the

representatives in this work.

The PCA approach is formulated in Algorithm 1. Its essence is a linear projection from a

high dimensional space (wn ∈ ℝM) to a lower dimensional subspace (un ∈ ℝK, K ≪ M) to

minimize the reconstruction error of W, where wn and un are the n-th row of W and U,

respectively, and V is the basis of the subspace. The reconstruction error is

𝐞𝐊 =
‖𝐖−𝐖̃‖

𝟐

‖𝐖‖𝟐 =
∑ 𝛌𝐦

𝐌
𝐦=𝐊+𝟏

∑ 𝛌𝐦
𝐌
𝐦=𝟏

 (5)

where ‖∙‖ is the Euclidean norm, namely Euclidean distance.

Algorithm 1: Principal Components Analysis (PCA)

Input: 𝑁 × 𝑀 matrix W, and rank K

1 Get mean of rows w𝑛 ∀𝑛 ∈ [1 ⋯ 𝑁]: 𝜇 =
1

𝑁
∑ w𝑛

𝑁
𝑛=1 ,

2 Centralize the data: replace each 𝑤𝑛 with 𝑤𝑛 − 𝜇 ;

3 Calculate the 𝑀 × 𝑀 covariance matrix: C =
W𝑇W

𝑁−1

4 Calculate the eigenvectors v𝑚 and eigenvalues 𝜆𝑚 of covariance matrix C: Cv𝑚=
=

λ𝑚v𝑚 , ∀𝑚 ∈ [1 ⋯ 𝑀];

5 Project to subspace: 𝑁 × 𝐾 matrix U = WV, where 𝑉 = [v1, ⋯ , v𝐾] is a 𝑀 × 𝐾 matrix and

v1, ⋯ , v𝐾 are eigenvectors corresponding to the largest K eigenvalues;

Output: 𝑁 × 𝑀 approximation matrix W̃=U∙VT

Though LRA can approximately reconstruct the original weights, small perturbation in

weights can deteriorate the classification accuracy. We compares the performance of the original

baseline design (Original) and the low-rank networks which are directly decomposed by PCA

 16

Table 1. Accuracy and ranks

(Direct LRA). The accuracy drops rapidly after applying Direct LRA. Fine-tuning (retraining) the

low-rank neural networks can recover accuracy, but the optimal ranks in all layers are unknown.

More importantly, it is very time-consuming to explore the entire design space by decomposing

and retraining a wide variety of neural networks. We propose the LRA-based rank clipping that

not only can successfully retain the accuracy but also can automatically converge to the optimal

low ranks in all layers. Lower ranks are actually obtained by our rank clipping method as shown

in the following table.

The key idea of rank clipping is illustrated in Figure 4 Rank clipping for crossbar area

occupation reduction. Rather than direct LRA after training, we integrate LRA into the training

process, carefully clip some ranks with small reconstruction errors, followed by a fixed number of

training iterations, say, S iterations. The gentle clipping induces small reconstruction errors and

thus slightly affect the classification accuracy, which could be recovered by the following S

iterations. The iteration of clipping and training not only avoids irremediable accuracy degradation

but also enables neural networks to gradually converge to the optimal ranks for all layers.

 17

Figure 4 Rank clipping for crossbar area occupation reduction

Algorithm 2 describes the detailed operation of the rank clipping. The tolerable clipping

error, ϵ, is the maximum allowable reconstruction error of each rank clipping. A gentle clipping

can be enabled by setting a small ϵ, e.g., 0:01.

Rank clipping starts with a full-rank LRA. It iteratively examines if the low-dimensional

U can be further projected to a lower-rank subspace with only reconstruction error of ϵ. Note that

PCA is used as the representative of LRA in Algorithm 2. Other LRA methods like SVD can also

×≈

W U
VT

 = Clipped = Clipping = Remained

 18

be used. The only modification is to replace the approximation of weight matrix by other LRA

methods.

Figure 5 plots the trends of rank reduction and accuracy retention of LeNet in Table 1,

during PCA-based rank clipping. Rank clipping is examined every S = 500 iterations with ϵ = 0.03.

In the figure, the rank ratio is defined as the remained rank over full rank, i.e., K/M. The figure

demonstrates that ranks are rapidly clipped at the beginning of iterations and converge to optimal

low ranks. During the entire process, the accuracy fluctuations are limited within a small range.

As shown in Figure 5and Table 1, rank clipping successfully reduces the ranks in both

convolutional layers and fully-connected layers without accuracy loss. The crossbar area

occupation of the entire LeNet (ConvNet) reduces to 13.62% (51.81%). When applying SVD, the

whole crossbar area can be reduced to 32.97% (55.64%) for LeNet (ConvNet), which indicates

SVD is inferior to PCA. Therefore, we mainly conduct experiments using PCA approach. Note

that the last layers of LeNet and ConvNet are not clipped because the rank (M = 10) is already

very small so little improvement space exists.

Figure 5 Rank ratio of each layer and accuracy during training with rank clipping

0.8

0.85

0.9

0.95

1

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

A
cc

u
ra

cy

R
an

k
 r

at
io

Training iteration (500)

conv1

conv2

fc1

Accuracy

 19

4.2 Group Connection Deletion

The rank clipping reduces the total number of required crossbars, while there are still a

large number of crossbars to implement modern large neural networks. The second step of group

scissor framework---group connection deletion aims to remove interconnections between synapse

crossbars so as to reduce the circuit-level routing congestion and architecture-level inter-core

communication for NCS.

Figure 6 gives the basic idea. An array of MBCs is connected to implement a large weight

matrix U ∈ ℝN×K. Suppose the elementary synapse crossbar has P inputs and Q outputs (P ≪

N, Q ≪ K), a ⌈
N

P
⌉ × ⌈

K

Q
⌉ array of crossbars must be interconnected to implement U as illustrated in

Figure 6.

The implementation of matrix V follows the similar way. As memristors are densely

manufactured in the crossbar and the area of each memristor cell is feature-size level, the routing

wires dominate the circuit area [14]. Suppose a row group of connections in Figure 6 all have zero

weights, implying that those connections are removable, we can delete/prune the wire routing to

the input of this row group. Similarly, the wire routing from the output of a column group can be

deleted when the column group of connections are all-zeros. Our group connection deletion

method actively deletes those groups of connections during the learning of neural networks,

meanwhile maintaining the classification accuracy at the similar level.

 20

Figure 6 The group connection deletion

We harness group Lasso regularization to delete groups of connections. Group Lasso is an

efficient regularization in the study of structured sparsity learning [26][27]. With group Lasso

regularization on each group of weights, a high percentage of groups can be regularized to all-

zeros. In group connection deletion method, weights are split into row groups and column groups

as illustrated in the figure. And group Lasso regularization is enforced on each group.

Mathematically, the minimization function for training neural network with group Lasso can be

formulated as:

E(W) = ED(W) + λ ∙ (∑ ‖Wg
(r)

‖G(r)

g=1 + ∑ ‖Wg
(c)

‖G(c)

g=1) (6)

where W is the set of weights of neural network, ED(W) is the original minimization function

when training traditional neural networks. G(r) and G(c) respectively denote the number of row

groups and column groups, and Wg
(r)

 and Wg
(c)

 are the sets of weights in the g-th row group and

column group, respectively. And

… …

…

…
in

p
u
t

output

…

…
…

×

×column
group

N
 i

n
p

u
ts

K outputs

Q

P

row
group

 21

⋃ Wg
(r)G(r)

g=1 = ⋃ Wg
(c)G(c)

g=1 = W (7)

λ is the hyper-parameter to control the trade-o between classification accuracy and routing

congestion reduction. A larger λ can result in lower accuracy but larger reduction of routing wires.

During the back-propagation training with equation (6) , each weight w will be updated as

w ← w − η (
∂ED(W)

∂w
+

λw

‖Wi
(r)

‖
+

λw

‖Wi
(c)

‖
) (8)

where η is the learning rate, i ∈ [1 ⋯ G(r)], j ∈ [1 ⋯ G(c)], w ∈ WI
(r)

 and w ∈ Wj
(c)

.

With group connection deletion, we disconnect all the zero-weighted connections and

prune all the routing wires connecting to all-zero row groups or column groups. After deletion, we

fine-tune (retrain) the structurally-sparse neural networks to improve accuracy. Figure 7 plots the

trends of deleted routing wires (i.e., all-zero row/column groups) and the classification accuracy

versus the iterations of group connection deletion. The deletion process starts with the low-rank

LeNet in Table 1 that was already compressed by rank clipping. In Figure 7, we only delete the

matrices of U and V whose dimensions are beyond the largest size of MBC. Even for low-rank

neural networks, our method can delete the routing wires dramatically, e.g., 93.9% interconnection

wires are removed in the crossbar array of fc1_v. Fine-tuning the deleted neural networks attains

the baseline accuracy (99.1%).

 22

Figure 7 The percentage of deleted routing wires and accuracy during group connection deletion. fc1_u and

fc1_v is the low-rank matrix U and V of fc1 after rank clipping, and so forth.

Note that compared with our method, it is more difficult to reduce the routing wires on

traditional sparse neural networks. This is because its sparse weights are randomly distributed in

the crossbar arrays and the corresponding routing wire must be preserved even there exists one

nonzero weight in the row group or column group.

4.3 Area Estimation

This section formulates the area estimation method for hardware evaluation in this work.

MBC area estimation: The use of MBCs in NCS design has been extensively studied. As a

critical component in such a system, MBCs occupy a significant proportion of whole design area.

Each MBC is an ultra dense cross-point structure formed by a set of memristors and wires. The

area of a memristor cell in MBC is 4F2 under the state-of-the-art technology [13], where F is the

minimum feature size. Restricted by the technology limitations, a feasible MBC implementation

only considers MBCs that are not larger than 64x64 [12]. To ensure the system reliability and

0.8

0.85

0.9

0.95

1

0

20

40

60

80

100

1 11 21 31 41 51 61

A
cc

u
ra

cy

%
d

el
et

ed
ro

u
ti

n
g

w
ir

es

conv2_u

fc1_u

fc1_v

fc2_u

Accuracy

0 10 20 30 40 50 60

Training iterations (500)

 23

robustness, we only consider MBCs with dimensions constrained within 64x64 in the standard

library. For those large weight matrices in neural networks, their connections can be distributed

into several/many MBCs as demonstrated in Figure 1.

Routing area estimation: Assume that the metal width is Wm, the distance between two

metals is Wd, and the length of i-th wire between crossbars is Li. The total routing area occupied

by the wires can be roughly formulated as

Ar = (Wm + Wd) ∑ LI
Nw
i (9)

Here Nw is total wire count including electrostatic shielding wires. Suppose the average

wire length is linearly proportional to Nw, the routing area is estimated as

Ar = αNw
2 (10)

where α is a scalar.

4.4 Experiments

This section describes the experiments that evaluate the effectiveness of the proposed rank

clipping and group connection deletion methods. All the experiments are based on the NCS

implemented by MBC. The related experiment parameters on memristor and MBC are summarized

in Table 2. We mainly implement two neural networks--LeNet on MNIST and ConvNet on

CIFAR-10. The detailed network structures can refer Table 1.

 24

Table 2. Experiment parameters

4.5 MBC Area Reduction

In our experiments, we clip all the convolutional and fully-connected layers, except the last

classier layer. The original rank in the last layer is determined by the number of classes so the

further reduction is meaningless. The rank clipping method compresses each large weight matrix

to two skinny matrices by reducing the rank. Figure 8 shows the final remained ranks with respect

to the accuracy and tolerable clipping error ϵ for convolutional layers in LeNet. Here the original

rank of conv1 and conv2 is 20 and 50, respectively, as denoted by upper markers on the stems. For

each layer, the rank decreases as ϵ increases, and finally reaches to a very small value. It can be

seen that the corresponding accuracy is well maintained. We also observe similar results in fc1.

More specifically, the layer-wise ranks are reduced to 5, 12 and 36 without accuracy loss, and to

4, 6 and 6 with merely 1% accuracy loss.

 25

Figure 8 The remained ranks in convolutional layers of LeNet. fc1 is omitted for better visualization as its

original rank 500 is out of chart.

Figure 9 (a, b) respectively plot the percentage of remained MBC area with respect to the

classification error for LeNet and ConvNet. Routing area is excluded in this evaluation. The area

of each layer is the sum of the areas of U and V. Total area includes the area of the last classier

layer, i.e., fc2 in LeNet or fc1 in ConvNet. For both networks, the layer-wise areas of both

convolutional layers and fully-connected layers rapidly reduce with small accuracy loss.

In summary, the rank clipping can reduce the total crossbar area of LeNet to 13.62% without

sacrificing any accuracy loss. The crossbar area can be further reduced to 3.78% with merely 1%

accuracy loss. For more complex ConvNet, no accuracy loss is observed when the crossbar area

decreases to 51.81%. By paying 1% loss, the total crossbar area is reduced to 38.14%.

 26

Figure 9 The MBC area for (a) LeNet and (b) ConvNet, after applying the rank clipping

4.6 Routing Area Reduction

To evaluate the routing congestion alleviated by group connection deletion, we use the

number of routing wires and remained routing area of Eq. (10) as our metrics. Although the

estimation of routing area in real circuit can be more complex, the real routing area reduction in

hardware must be positively correlated to our results.

As aforementioned in Section 3.5, our standard library contains all types of memristor

crossbars with dimensions constrained within 64x64. When implementing a N × K weight matrix

U, the MBC sizes are selected based on the following criteria: (1) Implement U in a N × K MBC,

when N ≪ 64 and K ≪ 64; (2) Implement U by an array of MBCs when N > 64 or K > 64 ,

with the largest available MBC size P × Q, where N and K is divisible by P and Q, respectively.

In the experiments, the group connection deletion starts with the rank-clipped LeNet or

ConvNet without accuracy loss as presented in Table 1. Based on the MBC selection criteria, the

0%

20%

40%

60%

80%

100%

0.8% 1.4% 2.0% 2.6%

C
ro

ss
b

ar
 a

re
a

Error

conv1

conv2

fc1

total

17.5% 18.5% 19.5% 20.5%

Error

conv1

conv2

conv3

total

(a) (b)

 27

Table 3. MBC sizes and remained routing wires in large layers

sizes of MBC utilized in large layers are shown in Table 3. Matrices with sizes constrained by 64

x64 are omitted in the table, and no group Lasso regularization is enforced on those small matrices.

The experimental results of the remained routing wires after applying the group connection

deletion without allowing accuracy loss are also presented in Table 3. The results for LeNet are

remarkable. We achieve the same accuracy of the baseline, with routing wires being only 47.5%,

24.8%, 6.7% and 18.0% of the original ones in respective layer. This can reduce the layer-wise

routing area to 8.1%, on average.

Table 3 also shows that, in ConvNet, our method on average reduces the layer-wise routing

wires to 70.03% and therefore decrease the layer-wise routing areas to 52.06%, while achieving

the same accuracy as the baseline. With an acceptable accuracy loss, the routing congestion can

also be significantly alleviated. Figure 10 comprehensively studies the remained routing wires and

routing area under different classification errors. With merely 1.5% accuracy loss, the routing area

in each layer is reduced to 56.25%, 7.64%, 21.44% and 31.64%, respectively.

 28

Figure 10 The routing wire (a) and routing area (b) w.r.t. the classification error in ConvNet

At last, Figure 11 shows the sparse weight matrices after group connection deletion for

ConvNet in Table 3 without accuracy loss. Each blue/red block stands for a collection of weights,

which are implemented by one crossbar in the NCS design. White regions indicate that there are

no connections.

After applying the group connection deletion, the connections in crossbars become sparse.

More importantly, the sparsity is structural instead of being randomly distributed in traditional

sparse neural networks. In the figure, a high ratio of column groups in crossbars are regularized to

all-zeros, such that interconnection wires routing from those crossbar columns can be removed.

Impressively, as conv2_u and fc1 in the figure show, some blocks have no connections in the

whole region, indicating that the entire crossbar can be removed in the NCS implementation. It is

significant because not only routing congestion can be alleviated, but also crossbar area can be

reduced. We also note that a crossbar with some zero columns/rows can be replaced by a smaller

but dense crossbar after removing those zero groups, which can further reduce the crossbar area.

0%

25%

50%

75%

100%

0.175 0.18 0.185 0.19 0.195 0.2

R
em

ai
n
ed

ro
u
ti

n
g

w
ir

es

Classification error

conv1 conv2 conv3 fc1

0%

25%

50%

75%

100%

0.175 0.18 0.185 0.19 0.195 0.2

R
o

u
ti

n
g

ar
ea

Classification error

conv1 conv2 conv3 fc1

(a) (b)

 29

Figure 11. Weight matrices (transposed) after group connection deletion. The deletion starts from the rank-

clipped ConvNet in Table 1. Matrices are plotted in scale in the order of conv1 u, conv2 u, conv3 u and fc1.

White regions have no connections. And connections in each blue/red block are implemented in a crossbar.

 30

5.0 Classification Accuracy Improvement for Neuromorphic Computing

5.1 Methodology

This paper aims at improving the classification accuracy of pure binary neural networks in

all layers. Such neural networks can be naturally implemented on NCS, such as TrueNorth chip

and memristor based design. Three novel classification accuracy improving methods are proposed

in the work, namely, distribution-aware quantization, quantization regularization and bias tuning.

The implementation of convolutional neural network (CNN) convolution operation in memristor

crossbar array and a crossbar variation demo for accuracy improvement are also presented.

To explain our methodologies, in this section, we take LeNet [15] as the example of CNN

trained on MNIST – a 28x28 handwritten digit database. Experiments and analysis on more neural

networks and databases shall be presented in Section 4.2.

5.1.1 Distribution-aware Quantization

 In training of neural networks, l2-norm regularization is commonly adopted to avoid over-

fitting. With l2-norm regularization, the final distribution of learned weights in a layer

approximately follows the normal distribution [28]. A naive quantization method in

implementation is to quantify all weights to the same group of level selection. However, as shown

in Figure 12 The blue and orange bars denote the original weight distribution of different layers

and the learned discrete weights after quantization regularization (QR) in LeNet, respectively.

 31

Figure 12 The blue and orange bars denote the original weight distribution of different layers and the learned

discrete weights after quantization regularization (QR) in LeNet, respectively.

 Let’s taking LeNet as an example, the weight distribution varies from layer to layer: the

first convolutional layer (conv1) has the most scattered distribution with a wider range scope, while

the weights of second convolutional layer (conv2) and two fully connected layers (ip1, ip2) have

concentrated to a relatively narrow scope. The data implies that a quantization optimized for one

layer may result in a large information loss in another layer.

Here, we propose a heuristic method -- distribution-aware quantization (DQ) which

discretizes weights in different layers to different values. In memristor-based NCS, this can be

realized by programming the resistance states of each crossbar to different values [2]. Our

experiments on LeNet show that when applying the aforementioned naive method, the test

accuracy of 1-level quantization quickly drops from 99.15% to 90.77%, while our proposed

0.3

0.3

0.3

0.3

 32

distribution-aware quantization can still achieve 98.31% accuracy. Note that without explicit

mention, the quantization levels are selected by cross-validation [29].

5.1.2 Quantization Regularization

Distribution-aware quantization separates the training and quantifying processes and

therefore it cannot avoid the accuracy loss once the quantization is completed. To further improve

system performance, we propose quantization regularization (QR) which directly learns a neural

network with discrete weights.

During the training of a network, a regularization term can be added to the error function

to control the distribution of weights and avoid overfitting. For example, l2-norm regularization

can learn weights with normal distribution and l1-norm is commonly utilized to learn sparse

networks (Glorot and Bengio 2010). The total error function to be minimized with a generic

regularization term can be formulated as

E(W) = ED(W) + λ ∙ EW(W) (11)

where λ is the coefficient controlling the importance between data-dependent error ED(W) and

regularization term EW(W). W is the set of all weights in neural networks. We propose a new

quantization regularization as

EW
q (W) = sgn(Wk − Q(Wk)) ∙ (Wk − Q(Wk)) (12)

where Wk is the k-th weight, Q(Wk) is the quantization value nearest to Wk and sgn(∙) is the

sign function. After forwarding and back propagation, the weight updating with learning rate η can

be formulated as:

Wk ← Wk − η ∙
∂ED(W)

∂Wk
− η ∙ sgn(Wk − Q(Wk)) (13)

 33

 Through the third term on the right side of (13), our regularization descents (reduces) the

distance between a weight and its nearest quantization level with a constant gradient (±1).

Compared with the l1-norm and l2 –norm regularization, our proposed regularization method can

quantify learning weights to the desired discrete values more precisely, meanwhile properly

control the weight distribution and overfitting. Figure 13 demonstrates and compares the three

regularization methods. Zero is one of the targeted quantification values in this work, which is

usually realized through l1-norm based neural network sparsification. In addition, our proposed

method includes more discrete quantification values. Orange bars in Figure 1 correspond to the

new weight distribution of LeNet after applying QR, indicating our method can efficiently learn

weights around quantization levels. Compared with the naive 1-level quantization, including QR

only can improve accuracy 6.21%. Combining with DQ, the accuracy drop from the ideal case is

controlled within only 0.20% with 1-level quantization. More experiments will be discussed in

section 5.2.

 34

Figure 13 Comparison of l1-norm, l2-norm and our proposed regularization

5.1.3 Bias Tuning

The quantization of weights deviating the information can be formulated as

yi + ∆yi = ∑ (Wji + ∆Wji)i ∙ xi+bj (14)

where Wji is the weight connecting the i-th neuron in the previous layer to the j-th neuron in this

layer. ∆Wji and ∆yi = ∑ ∆Wji ∙ xii are the deviation of weight and input of activation function,

respectively, resulted from quantization. The deviation ∆yi propagates through layers toward the

output classier neurons and deteriorates the classification accuracy.

In circuit design of neuron model, the bias usually is an adjustable parameter, e.g. the fire

threshold in TrueNorth neuron model works as bias. Therefore, to compensate the deviation, we

may adjust the neuron bias from bj to bj + ∆bj such that

∆bj = −∆yi =-∑ ∆Wji ∙ xii (15)

-3 -2 -1 0 1 2 3

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
h

e
er

ro
r

n
o

rm
s

l1-norm

l2-norm

proposed-norm

 35

Figure 14 The framework of proposed bias tuning method

As such, the neuron activation can remain the original value before quantization.

Unfortunately, the input xi varies randomly with the input samples (e.g., images) and a unique

bias compensation ∆bj cannot be identified.

We propose bias tuning (BT) which learns the optimal bias compensation to minimize the

impact of quantization. Figure 14 The framework of proposed bias tuning method shows the

framework of the bias tuning: first, both weights and biases are trained without quantization;

second, weights are quantified and programmed into NCS; third, weights are frozen and biases are

learned to improve classification accuracy; and finally, the tuned biases are programmed into

NCS. Impressively, bias tuning method can achieve 7.89% classification improvement compared

to the naive 1-level quantization baseline on LeNet. Combining with the above DQ and QR

methods, the total accuracy drop can be reduced to merely 0.19%.

5.1.4 Convolution in Memristor Crossbar Array

The memristor crossbar structure can be naturally mapped to fully connected layers. Here,

we extend its use to convolution layers. A pixel value (y) in a post feature map is computed by

𝒚 = ∑ 𝑭𝒌𝒌 ∙ 𝒘𝒌 + 𝒃 (16)

Weight and

bias training

Weight

quantification

Weight freezing

and bias learning

Bias

programming

Memristor

programming

Deployment

in NCS

 36

where wk is the k-th weight in the filter and Fk is the corresponding input feature. Because the

essence of convolution is multiplication-accumulation, we can employ memristor crossbar array

to compute. Figure 15 shows an example to compute the convolution of a 5-by-5 feature map with

a 3-by-3 filter. At the time stamp t0, the green elements are converted to a vector and sent into a

memristor array through word lines. And at t1, the pink elements are processed similarly to the

green ones. As the filter shifts, the corresponding features in the previous layer are sent into the

crossbar in a time-division sequence, such that the output features are computed by the bit line

(blue) whose weights belong to the filter. As shown in the figure, each bit line is mapped to one

filter in the convolutional layer. We note that the proposed DQ, DR and BT methods also work for

weights in CNN.

Figure 15 Convolution implementation in memristor crossbar array

 37

5.2 Experiments

5.2.1 Experiment Setup

To evaluate the effectiveness of proposed methods, we conducted three experiments using

multilayer perception (MLP) and CNN neural network structures on two datasets: MNIST and

CIFAR-10 (a 32x32 color image database). The first two experiments are both conducted on

MNIST dataset using a MLP and a CNN network, respectively. The third experiment is conducted

on CIFAR-10 dataset using a CNN network. The adopted deep leaning framework is Caffe

developed by the Berkeley Vision and Learning Center (BVLC) and community contributors

(Krizhevsky, Sutskever, and Hinton 2012). Detailed network parameters and dataset are

summarized in Table 4.

Table 4. Network and dataset

 38

5.2.2 Function Validation of MLP on MNIST

 Network 1 is a MLP network with a size of 784x500x300x10, which can't be directly

implemented in NCS. Previously, we presented the hardware implementation of mapping a large

network to small crossbar arrays [14]. Here, 784 corresponds to the 28x28 MNIST image input

pattern; 500 and 300 are the neuron numbers of the first and second hidden layers, respectively;

and 10 is the final classification outputs.

The baseline is set as the highest accuracy (all the layers quantified to 0.06) of all naive 1-

level quantization situations without applying any proposed method. To explore the effectiveness

of each single method and their combination situations, we conducted 8 separate experiments with

combinations, the experiment results of which are summarized in Table 5.

Compared with the baseline accuracy, there is a large accuracy increase when applied only

one of three accuracy improvement methods (1.52%, 1.26%, 0.4%, respectively). Applying any

two of three methods will make the accuracy further increased. Combining all three methods

together can achieve a highest accuracy with only 0.39% accuracy drop compared with the ideal

value without any quantization. We note that, in some cases (e.g. DQ+QR+BT vs. DQ+BT),

integrating more than one proposed methods does not improve accuracy much. This is because

MNIST is a relative simpler database so the effectiveness of these methods on accuracy

improvement quickly approaches to a saturated level. In more challenging CIFAR-10 database,

experiments show that more methods of DQ, QR and BT are harnessed, higher accuracy can

always be obtained by a large margin.

 39

Table 5. The accuracy measurement for MLP on MNIST dataset

5.2.3 Function Validation of LeNet

 LeNet, which has strong robustness to image geometric transformations, is a much more

popular network. We utilized it for MNIST and shows the results in Table 6. Compared with the

MLP network, 1-level precision LeNet can achieve an even lower accuracy drop (0.19% compared

with 0.39%) after combining all our methods. Remarkably, although the DQ method separates the

training and quantifying processes, directly quantifying weights in each layer has accuracy loss

less than 1%, without further fine-tuning. The orthogonality among DQ, QR and BT is also

indicated by the results.

 40

Table 6. The accuracy measurement for CNN on MNIST dataset

5.2.4 Function Validation of CNN on CIFAR-10

We also evaluate the proposed methods in more challenging natural image dataset CIFAR-

10 to verify their generality. The CNN in [4] is adopted without data augmentation. Table 7

presents the results of all the interested combinations. As expected, CNN has a large accuracy drop

(64.32%) when applying the naive 1-level quantization while each our proposed technique can

dramatically hinder the accuracy loss. However, unlike the experiments on MNIST, a sole method

cannot improve the accuracy of CNN to a satisfactory level. Some combinations of two methods

perform excellent accuracy improvement. For example, DQ+RQ makes the accuracy level to

74.43% BinaryConnect neural network in [18] performs state-of-the-art accuracy when the last

layer utilizes L2-SVM. The parameters in the L2-SVM layer are floating-point and critical for

accuracy maintaining. However, the SVM is not good for circuit implementation. Our work

quantifies all weights to one level and controls the accuracy loss within 5.53% for more efficient

circuit (e.g., memristor crossbar) design.

 41

Table 7. The accuracy measurement for CNN on CIFAR-10 dataset

5.2.5 Learned Filters

Figure 16 presents the learned floating-point and 1-level precision conv1 filters in LeNet

and CNN on CIFAR-10, respectively. Our methods can efficiently learn the feature extractors

similar to the corresponding original ones, even with 1-level precision. Furthermore, the number

of input channels (RGB) of CIFAR-10 image is 3, such that each pixel in the filter has 33 possible

colors. For filters with n channels, a 1-level precision filter still has a large learning space with

3n∙k∙k possibilities, where k is the filter size. Those explain why our method can maintain the

comparable accuracy.

 42

Figure 16 The learned floating-point (upper) and quantified (lower) conv1 filters in LeNet (the gray-scale ones)

and CNN on CIFAR-10 (the color ones). A zero weight is mapped to pixel value 128, and negative (positive)

weights are darker (brighter) ones.

5.2.6 Bias Tuning to Alleviate Crossbar Variation

 As aforementioned, the memristive variations caused by fabrication imperfection can

result in deviation of the programmed weights [4]. Our bias tuning method can also be extended

to overcome memristor variation. After programming weights to memristors under the impact of

variation, we read out the real programmed weights, then ne-tune the bias with weights frozen,

and finally the tuned biases are reprogrammed to the circuit neuron models to compensate the

impact of weight variation.

Figure 17 plots the accuracy vs. the variance of programming process. The entry 4 in Table

III is taken as the baseline in this investigation on variation impact. The figure shows that the bias

tuning method successfully hinders the negative impact of variation.

 43

Figure 17 The bias tuning in LeNet. The yellow line denotes the accuracy after applying DQ and QR without

noise; The red line is the baseline with quantization and noise; The green line denotes the accuracy recovered

from the baseline after bias tuning; is the standard deviation of Gaussian noise.

5.2.7 Discussion

Our previous research study [5] species for spiking neural networks, where the probability

distribution can only be biased to two poles (0 or 1). In this work, we extend the method to

memristor-based neural networks adopted by state-of-the-art research and large-scale applications

[30]. The proposed methods can regularize the weights to multiple levels with uniform or

nonuniform quantization. For example, in our CIFAR-10 experiments, the quantization points in

layer conv1, conv2, conv3 and ip1 are [-0.12, 0, 0.12], [-0. 08, 0, 0.08], [-0.02, 0, 0.02] and [-0.

008, 0, 0.008], respectively. Moreover, we discharge the reliance on the floating-point layer in [9]

and explore a pure one-level precision solution. Comprehensive experiments and analyses on MLP

and CNN using MNIST and CIFAR-10 datasets are conducted. Our experiments on MNIST shows

negligible accuracy drop (0.19% in CNN), which is much better than the previous work like [9].

0.75

0.8

0.85

0.9

0.95

1

0 0.01 0.02 0.03 0.04

ideal
noisy
bias tuning

!

A
cc

u
ra

cy

 44

From the aspect of the system implementation, there are extensive research studies on

binary neural networks deployed in traditional platforms such as CPUs, GPUs and FPGAs.

However, those approaches may not suitable for the hardware characteristics of brain-inspired

systems like memristor-based systems. For example, BinaryConnect [18] uses L2-SVM layer,

which is very costly to be implemented by memristor hardware. In circuit design, bias has the

characteristic of adjustability, which inspires our bias tuning method in this work. As shown in the

paper, bias tuning can be used to control quantization accuracy as well as overcome the process

variation of memristor technology.

 45

6.0 Deformable Regularization Work

Quantization regularization method directly learns a network with discrete weights during

training process and only brings with small accuracy loss for image classification task.

Quantization regularization method can be demonstrated in the following figure. In the figure,

each point falling on the X axis is one of the quantization values. As mentioned before, we can set

as many discrete quantization values as we can and regularize synapse weights to the predefined

quantization values.

As l1-norm and l2-norm regularization methods won’t bring any accuracy loss in the neural

network training and testing process, a new regularization method can be proposed to gradually

change the regularization from l1-norm or l2-norm to our quantization regularization method. In

Figure 18 Quantization regularization method

-3 -2 -1 0 1 2 3

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
h

e
er

ro
r

n
o

rm
s

l1-norm

l2-norm

proposed-norm

 46

this way, we can avoid accuracy loss as well as adopt the previous quantization regularization

method. This process can be demonstrated in the following figure. The blue dashed line is

Quantization regularization method, and black and red line are l1-norm and l2-norm, respectively.

Green arrows show the changing process from l1-norm or l2-norm to quantization regularization

norm.

To further improve the network model performance, the advanced deformable

regularization (DR) method has been put forward to gradually learn the floating-point weights to

desired quantized values, which guarantees both accuracy and quantifying results. At the

beginning of training process, this approach targets to purely train the neural network model. While

Figure 19 The difference among l1-norm, l2-norm and quantization regularization

-3 -2 -1 0 1 2 3

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
h

e
er

ro
r

n
o

rm
s

l1-norm

l2-norm

proposed-norm

 47

at the end of training process, the main goal is to do quantization based on previous well trained

model. However, during the middle stage, the regularization task will gradually shift from the

training to quantization. Traditional commonly used l1-norm and l2-norm regularization methods

won’t bring any accuracy loss to neural network models. Thus, based on the equation (12) on

quantization regularization method, deformable regularization can be formulated as:

 EW
d (W) = αEW

l1(W) + (1 − α)EW
q

(W) (17)

 EW
d (W) = αEW

l2(W) + (1 − α)EW
q

(W) (18)

Where equation (17) (18) describe the advanced deformable regularization method

gradually changing from l1-norm and l2 -norm regularization respectively. α here represents the

weighted parameter to control the balance between traditional regularization term and quantization

regularization term. It can be easily inferred that when α is equal to 1, EW
d is just the basic l1-norm

or l2-norm term. While when α is equal to 0, it represents the quantization regularization instead.

When α gradually changes from 1 to 0, the whole deformable regularization term will put more

emphasize on traditional l1 -norm and l2-norm at the beginning and do more quantization work at

the end. Here, α itself can also be changed in different ways, such as straight line, ellipse

and even cosin. For example, when α is changing with a straight line, it can be denoted as:

α = −
1

N
n + 1 (19)

Or α changing like an ellipse or cosin function:

α = √1 −
n2

N2 (20)

α = 0.5(1 + cos
π

N
n) (21)

Here in the above equations, N denotes the total training iterations, and n denotes the n-th

training iteration along the whole training process. Figure 20 illustrates the three changing patterns

 48

Figure 20 The left figures show three kinds of changing methods for parameter 𝛂, with straight line, ellipse and

cosin, respectively. The right three figures show the corresponding error function doing experiments on MNIST

dataset with LeNet neural network.

with the corresponding error function of doing experiments on LeNet neural network for MNIST

dataset. Compared with straight line pattern, the latter two could have much more smooth error

function curve and help the network model converge much faster.

Based on the above analysis, the total cost function can be summarized as (here we only

take l2-norm as an example):

E(W) = ED(W) + λ(αEW
l2(W) + (1 − α)EW

q
(W)) (22)

Here ED(W), EW
l2(W) and EW

q (W) are the generic, l2-norm and quantization regularization

term, respectively. Accordingly, the model synapse parameters can be updated by the following

rule after forward and back propagation in each iteration:

Wk ← Wk − η
∂ED(W)

∂Wk
− ηλ(αWk + (1 − α)sgn(Wk − Q(Wk))) (23)

!

!

!

iterations

error

error

error

iterations

 49

6.1 Incremental Quantization

In order to implement deformable regularization method more efficiently, we propose a

novel incremental layer-wise quantization (ILQ) framework inspired by the INQ work presented

by [41]. The key idea of INQ work is to use weights partition operation for group generating on

the pre-trained neural networks model. Then quantization operation will be applied to one weight

group while re-train the other groups to compensate the accuracy loss brought by quantization. In

the following iterations, quantized weights will firstly be fixed, and weight partition, quantization

and re-training will be repeated on the rest parts of weights. In our ILQ framework, weights

partition is applied layer by layer, in other words, all weights on one layer will be partitioned as

one single group. The whole ILQ framework is demonstrated in Figure 21. At the very beginning,

the neural networks will be trained from scratch and the pre-trained model will be prepared for the

follow-up operations. Deformable regularization methods together with distribution-aware

quantization will be applied to the first convolutional layer in the 1st iteration and quantized

weights can be got after this DR operation. Then quantized weights on first convolutional layer

will be fixed and continue to apply DR to the second convolutional layer and so on forth. While at

the end, before the hardware deployment of model, we will fix all quantized weights for all layers

and apply a bias tuning to the whole model.

 50

Figure 21 ILQ framework illustration. The pre-trained model will be fed into the neural network model and

used for weights initialization. And then all quantized weights will be fixed after applying DR to the previous

layer weights. When all weights are quantized, a final bias tuning operation will be applied to the whole neural

networks.

ILQ framework together with DR method can efficiently learn a neural network and

achieve a high accuracy. Figure 22 demonstrates the accuracy results after applying DR to each

previous layer on CIFAR-10 dataset. We only achieve 3.6% accuracy loss by quantizing 32-bit

floating-point weights to three levels compared with baseline model with the full-precision weights.

As we can see from this figure, DR method outperforms the previous quantization regularization

method (5.53% accuracy loss).

conv1 conv2 ip1

ip2ip3

bias tuning

pre-trained

model
DR on conv1 DR on conv2 DR on ip1

DR on ip3

quantized

model

hardware

deployment

DR on ip2
1 fix conv1 weights

2 fix conv1 & conv2 weights
3 fix conv1, conv2 & ip1 weights
4 fix conv1, conv2 , ip1 & ip2 weights
5 fix all weights

1 2

3

45

 51

Figure 22 Classification accuracy results on CIFAR-10 dataset after implementing ILQ framework. Each

columnar in the figure demonstrates the intermediate processing result by incrementally fixing the quantized

weights of previous layers.

6.2 Function Validation of DR on MNIST

Experiments have been conducted on MNIST dataset using TensorFlow framework to

evaluate the deformable regularization method together with distribution-aware quantization and

bias tuning methods. Experimental results can be clearly visualized on TensorBoard, a suite of

visualization tools accompanying with Tensorboard. Figure 23 and Figure 24 demonstrates the

deformable quantization process on two convolutional layers and two fully-connected layers of

LeNet-5-like CNN neural network structures. From these two figures starting from the very top to

the very bottom along the y-axis, we can easily see that at the beginning of training, the neural

network is more emphasize on training the network model, while at the end, the model is targeting

baseline conv1 conv2 ip1 ip2 ip3

84.5%

83.6%

82.6%

82.0%

81.7%

80.9%

80.0%

81.0%

82.0%

83.0%

84.0%

85.0%

1 2 3 4 5 6

 52

on quantifying weights parameters. During the whole training process, the model is gradually

transforming from learning with full-precision parameters to quantized parameters. Also, we

compared the deformable regularization with basic quantization regularization method on MNIST

dataset by combining the distribution-aware quantization and bias tuning methods. Only

0.1% accuracy loss is observed for deformable regularization method, which outperforms the

results obtained by utilizing quantization regularization method (0.19%). More detailed

information is shown in Table 8.

Figure 23 Deformable quantization process on two convolutional layers and the experiments are conducted on

MNIST dataset using LeNet-5-like neural networks. The x-axis is the weights values and the y-axis is the

training iterations. From the very top to the bottom along the y-axis, it shows the whole training process.

QR

DR

(straight line)

DR

(cosine)

conv1 conv2

it
er

at
io

n
s

it
er

at
io

n
s

it
er

at
io

n
s

weights weights

 53

Figure 24 Deformable quantization process on two fully-connected layers and the experiments are conducted

on MNIST dataset using LeNet-5-like neural networks. The x-axis is the weights values and the y-axis is the

training iterations.

Table 8. The accuracy measurement for DR and QR on MNIST

DQ QR DR BT Baseline Accuracy Drop

   99.15% 98.96% 0.19%

   99.2% 99.1% 0.1%

QR

DR

(straight line)

DR

(cosine)

ip1 ip2

weights weights

it
er

at
io

n
s

it
er

at
io

n
s

it
er

at
io

n
s

 54

6.3 Function Validation of DR on CIFAR-10

Since promising results have been achieved on MNIST dataset utilizing LeNet-5-like

neural network, in order to explore its generality, we also implement this advanced quantization

method on more complex and challenging CIFAR-10 dataset. Table 9 shows the comparison

results between basic quantization regularization and advanced deformable regularization methods.

As we can see that deformable regularization method can achieve less accuracy loss, which proves

that deformable regularization method is more efficiently and friendly in the quantization process

during training.

6.4 Discussion

Our previous research study specifies for spiking neural networks, where the probability

distribution can only be biased to two poles (0 or 1). In this work, we extend the method to

memristor-based neural networks adopted by state-of-the-art research and large-scale applications.

The proposed methods can regularize the floating-point weights to multiple levels with uniform or

nonuniform quantization. For example in our CIFAR-10 experiments, the quantization points in

layer conv1, conv2, conv3 and ip1 are [0:12; 0; 0:12] , [0:08; 0; 0:08] , [0:02; 0; 0:02] and [0:008;

0; 0:008] , respectively. Moreover, we discharge the reliance on the floating-point layer and

explore a pure ternary precision solution. Comprehensive experiments and analyses on MLP and

CNN using MNIST and CIFAR-10 datasets arealso conducted. Our experiments on MNIST shows

negligible accuracy drop (0.1% in CNN), which is much better than the previous work like.

 55

Table 9. The accuracy measurement for DR and QR on CIFAR-10

DQ QR DR BT Baseline Accuracy Drop

   82.12% 76.59% 5.53%

   84.5% 80.9%% 3.6%

From the aspect of the system implementation, there are extensive research studies on

binary neural networks deployed in traditional platforms such as CPUs, GPUs and FPGAs.

However, those approaches may not suitable for the hardware characteristics of brain-inspired

systems like memristor-based systems. For example, BinaryConnect uses L2-SVM layer, which

is very costly to be implemented by memristor hardware. In circuit design, bias has the

characteristic of adjustability, which inspires our bias tuning method in this work. As shown in the

paper, bias tuning can be used to control quantization accuracy as well as overcome the process

variation of memristor technology.

Furthermore, in our work, the quantization regularization method and deformable

regularization method are directly applied into model training stage, which can well overcomes

the big non-differential issue existing in quantization during feedforward and backforward

propagation. This is because that the quantization regularization terms added to the generic error

function for both methods are differential. Take the quantization regularization method as an

example, it can descent the distance between a weight and its nearest quantization level with a

constant gradient in each iteration. Quantifying weight parameters in training stage can largely

alleviate the performance degradation for network model, one reason lies in that during train- ing,

network model can be re-trained to tune weight parameters after quantization in later training

iterations. The other important reason is that after quantization term is added to the generic cost

 56

function term, both terms can be minimized during training stage which guarantees the

quantization and performance degradation concurrently.

 57

7.0 TRNG Design Leveraging Emerging Memristor Technology

7.1 Introduction

Random number generators (RNGs) are broadly used in various systems and applications

where unpredictable data are required, such as communication systems, statistical sampling,

computer simulation, and cryptography systems[48]. There are two types of typical RNG designs,

pseudo random number generator (PRNG) and true random number generator (TRNG). PRNG

generates a sequence of numbers by injecting an initial seed to a given computing algorithm.

Because the initial seed is deterministic, the properties (correlation, probability distribution, etc.)

of these numbers can only be an approximation of true randomness, that is, the number sequence

is pseudo random. TRNG, instead, usually leverages unpredictable physical phenomenon, such as

thermal noise, random telegraph noise (RTN), atmospheric noise, electromagnetic and quantum

[49]. Random data plays a crucial role in system protection of many applications where the true

stochastic characteristic is highly appreciated.

Thermal noise is an intrinsic noise induced by thermal agitation of charge carriers (usually

the electrons) inside an electrical conductor at equilibrium, which occurs regardless of applied

voltage. RTN refers to a kind of electronic noise in semiconductors: when applying discrete

voltage or current levels on semiconductors, sudden step-like RTN signals can be generated.

Traditional thermal-noise-based TRNG usually is composed of a stochastic signal source, multi-

level amplifiers, A/D converter and post-processing circuits [50]. Recently, a TRNG based on

RTN in contact resistive random access memory (CRRAM) was proposed in which the high- and

low-resistance states (HRS and LRS) of CRRAM are subject to RTN and therefore the resistance

 58

fluctuations can be converted to a stream of random bits [51]. Some TRNG designs leveraging the

nanotechnologies have also been investigated. For example, Vivoli et al. presented a device-

independent quantum TRNGs using a photon pair source based on spontaneous parametric down

conversion (SPDC) which can gain both high entropy and high rate of random bit generation [52].

Spin dice is a spintronic-based TRNG that utilizes the stochastic nature of spin-torque switching

in a magnetic tunnel junction (MTJ) to generate random numbers [53].

Memristors, as emerging two-terminal nonlinear dynamic electronic devices [54], have

been extensively studied in recent years. Because of the advantages of good scalability, high

endurance and ultra-low power consumption [55]. Memristors have been applied in non-volatile

memory storage, logic implementation and neuromorphic computing systems [56][57][58].

Moreover, the memristive behaviors in various memristive devices have been thoroughly

investigated, in which the stochastic processes have been clearly demonstrated [59][60]. For

instance, the distribution of static memristances at HRS/LRS can be approximated with a

lognormal probability density function, and the cumulative probability of dynamic switching from

one static state to the other is also a lognormal function of the applied voltage. The standard

deviation of the static stochastic behavior is negligible compared to the large gap between HRS

and LRS, making memristor as an ideal component for binary data storage. Due to the big variance

of physical materials and the flexible configuration in programming operation, the dynamic

switching of memristive devices demonstrates a very large scalability. The state-of-the-art

switching performance in real tantalum-oxide based memristors showed the cycling endurances of

over 1012 cycles and fast switching speed below 10ns [61]. Moreover, the sub-nanosecond

switching time has been demonstrated through tantalum-oxide based memristors with durations of

105 and 120ps for low- and high-memristance switching, respectively [62].

 59

In this work, we propose a novel memristor-based true random number generator (MTRNG)

design by leveraging the stochastic behaviors of memristor. By modulating the width and

amplitude of programming pulses applied on memristor devices, the zero-versus-one distribution

and the sampling rate of bit streams can be flexibly adjusted. More importantly, the adoption of

memristor technology effectively simplifies the structure of TRNG, offering a compact, fast and

energy-efficient design. To further improve the entropy of random bit streams, we propose to

enhance the design by integrating two basic (1-branch) MTRNGs through an XOR gate. The

circuit simulations show that the clock of 1-branch and 2-branch designs based on TiO2

memristors [67][68] can reach at 1.05GHz and 0.96GHz with the power assumptions of 31.1μW

and 80.3μW, respectively.

7.2 Preliminary

7.2.1 Memristor

As the fourth fundamental component besides resistor, capacitor and inductor, memristor

describes the dynamic relationship between charge (q) and flux (φ) [63]. Particularly, it can

“remember” the total electric flux flowing through the device and represent it as the memristance

(M).

 60

Pt

Pt

TiO2

TiO2-x

V+/V-

Memristor

Figure 25 The structure of a TiO2 memristor

Figure 25 illustrates the structure of a TiO2 memristor sandwiched between two metal wires.

The device consists of two titanium dioxide layers: the doped layer TiO2-x is filled with oxygen

vacancies and therefore has a high conductivity; the pure TiO2 (undoped layer), in contrast, has

the character of insulator. While there is a positive bias voltage (V+) applying to the device, the

oxygen vacancies will be forced into the undoped area and therefore the total resistance (or

memristance) continuously reduces. On the contrary, a reversed bias voltage (V‒) will force the

vacancies back to its original position and raise the memristance. Without enough external voltage,

the oxygen vacancies within the structure remain so as that the memristance maintains [64].

For ease of explanation, we define the following terminologies and variables that will be

referred in this paper:

• Static states – the state in which the equivalent resistance is high (Roff) or low (Ron). OFF

state and ON state denote the states of Roff and Ron, respectively.

 61

• Dynamic switching – the process of switching from one static state to the other. OFF

switching refers to the process switching from ON to OFF, while ON switching

corresponds to the opposite operation.

• Programming pulse – the voltage pulse applied on the memristor to trigger the dynamic

switching process.

7.2.2 Stochastic Behaviors of Memristors

Stochastic behaviors have been widely observed in metal oxide based memristor devices,

including the variations in static states and dynamic switching processes.

Static stochastic behavior: The final resistance value of a memristor during a programming

operation is not deterministic but a stochastic variable related to the voltage amplitude and duration

of the programming pulse. The randomness of Ron and Roff is denoted as the static stochastic

behavior of memristors. The distributions of Ron and Roff usually follow the lognormal probability

density functions [65][66].

Dynamic stochastic behavior is resulted by means of the complicated stochastic oxide

electroforming process during ON/OFF switching [65] in which the successful switching

probability monotonically increases along with the increase of the amplitude and/or duration of

programming pulse. More specific, the cumulative probability function of a successful switching

between Ron and Roff follows a lognormal distribution [67].

 62

7.3 Methodology

In this work, we propose a new memristor-based true random number generator (MTRNG)

design. The reconfigurable dynamic stochastic behavior of memristors provides a flexible design

space for various applications with different sampling rate requirements. Though the memristance

value of each programming is not deterministic due to the static stochastic behavior, the stability

of the design can still be promised by the large gap between the high and low memristance states.

Moreover, we design and customize a 2-branch MTRNG which integrates two pieces of basic 1-

branch MTRNGs. Markov chain analysis shows that the 2-branch scheme further maximizes the

entropy of the random number sequence. Our work not only presents a novel circuit to generate

random number streams but also can be generalized to a statistical methodology for memristor-

based design.

7.3.1 Stochastic Model of TiO2 Memristor

Because of the static stochastic behavior, the memristor resistance in ON or OFF state is

not deterministic but random, even for a single identical device. In a TiO2 memristor, the

distributions of static state resistance Ron and Roff both can be approximated to the lognormal

probability density function (pdf) such as [67]:

0,
2

)/(ln
exp

2

1
),;(

2

2















−= x

x

x
xf x








, (24)

where, μ is the normal mean and σ is the standard deviation of the normal distribution of the initial

barrier width of the memristor device. Certainly, the parameters of μ and σ for Ron and Roff are

different. Figure 26 presents the real measurement data of a TiO2 memristor [68].

 63

Giving E[Ron] and E[Roff] as the means of Ron and Roff, respectively; and their standard

deviations are D[Ron] and D[Roff], respectively. The device demonstrated in Figure 26 has E[Ron]

≈ 105Ω and E[Roff] ≈ 108Ω. Both D[Ron] and D[Roff] are more than 2 orders smaller than the gap

between the means (E[Roff] − E[Ron]). Such a highly isolated binary characteristic in memristors

guarantees an ideal physical mechanism for MTRNG design. Details shall be presented and

discussed in Section 7.4.

The dynamic stochastic behavior refers to the successful switching probability between

ON and OFF state. Under an external programming pulse, the switching probability is determined

by the voltage amplitude and the pulse width (duration) t. The cumulative distribution can be

approximated by lognormal distribution [67]:














−== 














−

t

t

T

t

t
t

erfcdTe
T

tF t






2

ln

2

1

2

1
),;(

0

2

ln
2

. (25)

Where, τ is the mean of the switching time, which has an exponential dependency on the

applied voltage amplitude, while its deviation σt only has a weak dependence on the voltage.

Figure 26 Static stochastic behavior

0

0.05

0.1

0.15

0.2

0.25

4 5 6 7 8 9

F
r
e
q

u
e
n

c
y

log10R (Ω)

Ron

RoffRoff

Ron

(

b)

 64

Figure 27 Cumulative switching probability distribution for ON (a) and OFF (b) switching under different

applied voltage amplitude

Figure 27 shows the cumulative switching probability distributions of ON and OFF

switching. Both results reveal that increasing the programming duration of a constant-amplitude

pulse can increase the switching probability. Moreover, a larger voltage amplitude decreases the

required programming duration to reach a given switch probability.

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7

S
w

it
ch

in
g
 p

ro
b

a
b

il
it

y

Programming pulse duration, log10(t µs)

-4.75V

-4.50V

-4.25V

-4.00V

-3.75V

-3.50V

-3.25V

-3.00V

-2.75V

(a)

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7

S
w

it
ch

in
g
 p

ro
b

a
b

il
it

y

Programming pulse duration, log10(t µs)

4.0V

4.5V

5.0V

5.5V

6.0V

6.5V

7.0V

 65

7.3.2 The MTRNG Design

Our proposed MTRNG design switches between the programming mode and the reading

mode to generate the random bit stream. In the programming mode, a programming pulse is

applied on the memristor to trigger a dynamic switching between the ON and OFF states. In the

reading mode, the programmed binary resistance is converted to a binary bit. In the design, the

selection of the programming pulse amplitude determines the maximal allowable sampling rate of

the bit stream. We can control the ratio of the probability of 0’s and 1’s by modulating the

programming duration. Ideally, a uniform distribution of 0/1 bit stream can be obtained by aligning

the pulse width to the switching probability of 0.5 under a given pulse voltage (refer Figure 27).

Figure 28 depicts the proposed MTRNG circuit with the following key control and internal

signals: Vdc_r, Vdc_on and Vdc_off are the DC voltage sources used in reading mode, the ON switching

and the OFF switching programming, respectively.

Vread is the control signal to enable the reading mode to detect the state of the memristor.

Vp_on and Vp_off are used for program the memristor to ON and OFF states, respectively.

Vd is the bias voltage representing the state of memristor. It determines the generated output

bit of the MTRNG.

Vg is used to modulate Vd for bit generation.

Clk is the clock signal to control the data capture at D flip-flop.

The sequence of control signals is also illustrated in Figure 28. Vp_on and Vp_off are turned

on alternatively to enable the ON and OFF switching. Under the ideal condition with the sufficient

programming voltage and pulse duration, the memristor can always be programmed, that is, the

device switches between ON and OFF states. By properly controlling the programming voltage

amplitude together with the pulse duration corresponding to the required bit distribution, the

 66

switching of the memristor becomes more random. In our design, following every programming

period is a read operation enabled by Vread. The ON and OFF states of the memristor will be

transferred to 1 or 0, respectively, under appropriate Vg setup. Here, a D flip-flop is used to recover

distorted binary signal resulted by stochastic memristance values. More details of our design

configurations and the experimental results of simulation shall be conveyed and discussed in

Section 7.4.

The simple MTRNG in Figure 28 can be used to generate a stream of random bits. However,

the scheme cannot obtain the maximal entropy because the memristor will keep at the ON or OFF

state if the previous switching fails. Take the signal sequence in Figure 28 as an example and

assume the previous state of the memristor is OFF: if an ON switching triggered by Vp_on fails so

that the memristor remains as OFF, the following OFF switching initialized by Vp_off does not

affect the state of the memristor. In such a case, this OFF switching is not a stochastic process.

D

Clk

Q

Vg

Memristor

Random Bit Stream

Vd

Vp_off

Vdc_on

Vdc_r

Vread

Vp_on

Vread

Vp_off

Vdc_off

Vd

Clk

Vp_off Vp_on

Vp_on
Programming Mode

Reading Mode

VoutMrd

 Figure 28 The scheme of the basic 1-branch MTRNG design

 67

To improve the entropy of the random bit stream, we further enhance the design. As

illustrated in Figure 29, it integrates two basic (1-branch) MTRNGs through an XOR gate. Because

the stochastic switching of one memristor is independent to the other, the entropy of the random

bit stream through the XOR function can be maximized under appropriate dynamic switching

probability. We name this scheme as 2-branch MTRNG design.

7.3.3 MTRNG Markov Chain Analysis

Here, we will give a detailed probability analysis for both the basic 1-branch and the

enhanced 2-branch MTRNG designs based on the Markov chain analysis. The variables used

include:

• Peven(i) – the probability of an even bit in the random bit stream as logic state i(0,1) after

ON switching operation.

• Podd(i) – the probability of an odd bit in the random bit stream as logic state i(0,1) after

OFF switching operation.

• Pon – the ON switching probability to which the Vp_on cumulates, which is also the

successful switching probability from OFF to ON state shown in Figure 27 (upper).

• Poff – the OFF switching probability to which the Vp_off cumulates. It is equivalent to the

successful switching probability from ON to OFF state shown in Figure 27 (lower).

• S – the state space of a bit in the random stream, S = {Smn | m=0,1 and n=0,1}. m and n

denote the position and value of the bit, respectively. The bit is the even-th (odd-th) one in

the stream if m=0 (m=1) and its value is n. n=0 (n=1) corresponds to Roff (Ron).

 68

D

Clk

Q

Random Bit Stream

Branch1

Branch2

D

Clk

Q Clk

Figure 29 The scheme of the enhanced 2-branch MTRNG design

S
00

S
10

S
01

S
11

1-Pon

1 1-Poff

1

Pon

Poff

Figure 30 The state transition diagram

•
(2)

evenP – the two-step transition matrix between two sequential even bits.

•
(2)

oddP – the two-step transition matrix between two sequential odd bits.

• P2-branch(i) – the probability distribution of the output of 2-branch MTRNG (i=0,1).

Figure 30 summarizes the state transition diagram. As aforementioned in Section 7.3.2 ,

the transition probability of 1 exists because of the invalid ON (OFF) switching operation on ON

(OFF) state.

 69

The stochastic process of generating the random bit stream is a first-order Markov chain.

To simplify the Markov chain analysis, we separately calculate the 0/1 probability distributions of

the even and the odd bits, such as:

(2)
1 0 1

1 0 1

on on

even

off off

P P

P P

  − 
=    −   

P

, (26)

(2)
1 01

10 1

on on

odd

off off

P P

P P

−   
=     −   

P

. (27)

Given 0 < Poff < 1 and 0 < Pon < 1, every element in
(2)

evenP and
(2)

oddP is larger than 0. As such,

the Markov chains with the transition matrixes of Eqs. (26) and (27) have stationary distributions

evenπ and oddπ , denoting the stationary 0/1 distributions of even and odd bits, respectively. They

satisfy

 
 

(2)

(2)

(0) , (1)

(0) , (1)

even even even even even

odd odd odd odd odd

P P

P P

  = =


 = =

π P π

π P π
. (28)

Given Pon and Poff, the solution of the equation set is













−+
=−=

−+

−
=−=

offonoffon

off
oddodd

offonoffon

offonoff
eveneven

PPPP

P
PP

PPPP

PPP
PP

)1(1)0(

)1(1)0(

. (29)

To maximize the Shannon entropy of random bit stream generated by MTRNG, the

probability should be uniformly distributed:

(0) (1)(0 0.) 5(1)odd odd even evenP P P P= = = =
. (30)

Note that Eq. (7) cannot be a solution of Eq. (6), indicating that the basic 1-branch MTRNG

design cannot generate an entropy-maximized random number sequence. Only skewed probability

distribution can be produced where Peven(i) ≠ 0.5 or Podd(i) ≠ 0.5.

 70

The enhanced 2-branch MTRNG design, in contrast, can obtain the maximized entropy by

appropriately setting Pon and Poff, e.g., aligning Vp_off of a branch to Vp_on of the other branch and

setting Peven(0) = Peven(1) = 0.5, uniformly distributed P2-branch(i) can be satisfied because

2

2

(0) (0) (0) (1) (1) 0.5

(1) (0) (1) (1) (0) 0.5

branch even odd even odd

branch even odd even odd

P P P P P

P P P P P

−

−

=  +  =


=  +  = . (31)

In this case,

1

off

on

off

P
P

P
=

+
. (32)

Poff and Pon shall be carefully selected for the enhanced 2-branch design. From the one hand,

smaller Poff and Pon are more preferable because the circuit can operate under a faster sampling

rate. From the other hand, we tend to avoid the steep slope of switching probability curve because

a tiny fluctuation of programming duration can result in a large drift of the switch probability.

7.4 Experiment

We evaluate the proposed MTRNG designs through circuit simulations in Cadence

Virtuoso environment. The 180nm CMOS technology and the memristor device parameters in [67]

were adopted. Here, we first discuss the design configuration followed by the simulation of

MTRNGs and the probability distribution of random bits. At the end, the speed and power

consumptions of the proposed designs are evaluated and analyzed.

 71

7.4.1 The Selection of Gate Voltage Vg

The gate voltage of transistor Mrd (Vg) in Figure 28 is a crucial parameter to modulate the

bias voltage Vd and the finally output Vout. As aforementioned in Section 3.1, the distributions of

Ron and Roff are approximated to the lognormal probability density function. Based on the real

measured resistance distribution of a TiO2 memristor in Figure 2, the means of the high and low

resistance states, E[Ron] and E[Roff], are about 105Ω and 108Ω, respectively. Even considering the

worst situation where Ron is 106Ω and Roff is 107Ω, Roff is still one order higher than Ron.

Comparing the difference between E[Ron] and E[Roff] and the noise margin of CMOS transistors,

we are able to map the static memristor resistances to binary code by constraining Vg within a

critical range.

We start the evaluation with the typical condition when Ron=105Ω and Roff =108Ω. To

find the critical range for Vg, the memristor resistance is fixed and Vg is scanned from 0V to

Vdc=1.8V. The simulation results in Figure 31 (upper) show that Vout falls from high to low when

Vg is higher than a critical voltage and therefore the equivalent resistance of Mrd is smaller than a

threshold. More specific, under the typical situation when Roff =108Ω, Vout drops to low as Vg

approaches to 0.34V. For Ron=105Ω, the critical falling point is around 0.66V. Thus, the ON and

OFF states of memristor can be respectively mapped to HIGH and LOW of Vout if setting Vg

within the range from 0.34V to 0.66V.

We also verify the circuit stability under the worst scenario condition when Ron=106Ω and

Roff =107Ω. Figure 31 (lower) presents the simulation results. A similar trend as Figure 31 (upper)

can be observed except that the allowable range of Vg reduces to 0.43V ~ 0.53V. The narrower

critical range indicates the degraded circuit stability. Even though, the inclusion relationship of the

critical ranges in Figure 31 (upper) and (lower) shows that Vg in the intersection set can guarantee

 72

our MTRNG functions properly even under the worst scenario condition. Based on the analysis,

we set the gate voltage Vg to 0.5V in the following simulations.

Figure 31 Vg vs. Vout: (a) under the means of the high and low resistance states, as Ron=105Ω and Roff

=108Ω; (b) at the worst condition when Ron=106Ω and Roff =107Ω.

0

0.3

0.6

0.9

1.2

1.5

1.8

0 0.3 0.6 0.9 1.2 1.5 1.8

100K 100M

V
o
u

t
(V

)

Vg (V)

0

0.3

0.6

0.9

1.2

1.5

1.8

0 0.3 0.6 0.9 1.2 1.5 1.8

1M 10M

Vg (V)

V
o
u

t
(V

)

 73

Figure 32 Simulation of 1-branch MTRNG (Ron=105Ω and Roff =108Ω)

Figure 33 Simulation of 1-branch MTRNG (Ron=106Ω and Roff =107Ω)

Figure 34 Simulation of 2-branch MTRNG

 74

7.4.2 MTRNG Simulation

Figure 32 and Figure 33 show the simulation results of the basic 1-branch MTRNG at the

typical (Ron=105Ω and Roff =108Ω) and the worst-case (Ron=106Ω and Roff =107Ω) conditions,

respectively. The simulations show that stochastic binary states of memristor can be successfully

converted to random bit stream. Even in the extreme situation when Roff is very close to Ron, the

basic 1-branch MTRNG design still functions properly. Figure 33 shows the simulation result of

the enhanced 2-branch MTRNG, the output random bit stream of which is dependent on the signals

of two bit sequences generated by the two 1-branch MTRNGs.

To analyze the probability distribution of the 1-branch and 2-branch MTRNG designs, the

memristor ON switching and OFF switching probabilities are set to Pon=1/4 and Poff=1/3,

respectively. To ease the explanation, we show the probability distributions of the first 100 bits

generated by 1-branch and 2-branch MTRNG in Figure 35. Here, each point represents the

probability of logic 1 at the bit. Simulation shows that both MTRNG schemes rapidly converge

towards their stationary distributions after only a few steps because of the ergodicity of the Markov

chain. The fast convergence of the Markov chain guarantees that the bit probability approaches to

the desired distributions quickly.

For the 1-branch MTRNG design, the probability distribution of the odd-th bits is non-

uniform. The situation can be solved by passing two bit streams of the 1-branch design through an

XOR gate. Consistent to the theoretical analysis in Section 7.3.3, a uniformly distributed random

bit stream can be generated via the 2-branch MTRNG design.

 75

Figure 35 The probability distribution of random bit in the stream generated by 1-branch (left) and 2-branch

(right) MTRNG

7.4.3 The Design Evaluation

Traditional thermal noise based TRNGs usually require multistage voltage amplifiers to

magnify the weak signals, resulting in high design complexity and cost [68]. The latest random

telegraph noise (RTN) based TRNG requires an analogy comparator to convert RTN to binary

code [51]. For the reason, its sampling rate is relatively low at only 11.4Hz. Thus, its applications

are limited to low-speed systems such as encryption system [51].

Amplifier is not necessary in our MTRNGs for the large bias voltage Vd. The design is

realized in a much simpler form: the basic 1-branch MTRNG consists of only one memristor, six

access control transistors, and one D flip-flop. Determined by the memristor programming voltage

and duration, the proposed MTRNGs can operate under a large frequency range varying from Hz

to GHz. Our simulations show that the minimal reading periods of the 1-branch and 2-branch

 76

designs are only 0.95ns (1.05GHz) and 1.04ns (0.96GHz), respectively. Moreover, Figure 36

shows the relationship between the random bit stream sampling period T and the voltage of

programming pulse for the 2-branch MTRNG when setting Poff=1/3 and Pon=1/4. The log function

of sampling period approximately linearly decreases with the voltage amplitude.

The detailed power consumption results of the 1-branch and 2-branch MTRNGs are

summarized in Table 10. Benefiting from the simple structure and the ultra-low energy

characteristic of memristors, MTRNGs obtain low power consumption of tens of μW regardless

of 1-branch or 2-branch design styles.

Table 10. Power consumption of MTRNGs

 HRS (μW) LRS (μW) Average (μW)

1-branch 16.5 45.6 31.1

2-branch 44.6 115.9 80.3

 77

Figure 36 Dependence of programming voltage for random bit stream sampling period in ON switching

(upper) and OFF switching (lower)

0

1

2

3

4

5

6

-4.75 -3.75 -2.75

Programming voltage (V)

l o
g

1
0
(T

u
s)

0

1

2

3

4

5

6

4 5 6 7

lo
g

1
0
(T

u
s)

Programming voltage (V)

 78

8.0 Conclusions

Firstly, a framework named group scissor that aims to alleviates the impact of hardware

limitations on the NCS implementation of large neural networks has been introduced. Specifically,

rank clipping and group connection deletion methods are proposed to reduce area consumption of

synapse crossbars and routing area between crossbars, respectively. The experiments show that

our methods can reduce crossbar area and routing area to 13.62% and 8.1%, respectively, with no

accuracy loss for LeNet. Furthermore, for implementation of more challenging ConvNet, we can

safely reduce the crossbar and routing areas to 51.81% and 52.06% respectively without losing

classification accuracy. The proposed framework can significantly save hardware area and

improve system scalability.

Secondly, in the weight quantization work, we first analyze the impact on accuracy

degradation of low-resolution synapses (weights) in neuromorphic hardware implementations

theoretically. In order to maintain the high image classification accuracy for neural network model

with full precision weights and minimize the performance degradation during NCS deployment,

we propose three orthogonal methods (distribution-aware quantization, quantization regularization

and bias tuning) to learn synapses with ternary levels. What’s more, based on quantization

regularization method, we further propose an advanced deformable regularization method with

incremental lay-wise quantization framework, which can further improve the low-precision

network model performance. We firstly applied three orthogonal methods and their combinations

to MLP on MNIST, CNN on MNIST and CNN on CIFAR-10 database, comparable state-of-the-

art achievements are obtained: only 0.39%, 0.19%, and 5.53% accuracy loss, respectively. Our

work will be more suitable for memristor-based neural networks. And then we applied advanced

 79

deformable method and their combinations to CNN on MNIST and CNN on CIFAR-10 database,

comparable state-of-the-art achievements are obtained: only 0.39%, 0.1%, and 3.6% accuracy loss,

respectively. Even though our work is conducted based on the theory of memristor devices, all

proposed methods in this paper are general solutions and can be applied to any other low-precision

NCS design.

At last, a memristor-based true random number generator (MTRNG), which leverages the

stochastic behavior of memristors and converts the programmed resistances to random binary bit

stream, has been proposed in this work. Besides the basic 1-branch MTRNG, we also enhance the

design to 2-branch scheme which can obtain the identical generating probability of bit 1 and bit 0,

promising the maximum entropy of random number generation. Sampling rate of our designs can

reach at GHz with minimum power consumption of 31.1μW. The proposed MTRNG designs

exhibit characteristics of simple structure, compact area, high frequency, low power and flexible

configurability.

 80

References

[1] Cassidy, Andrew S., Paul Merolla, John V. Arthur, Steve K. Esser, Bryan Jackson, Rodrigo

Alvarez-Icaza, Pallab Datta et al. "Cognitive computing building block: A versatile and

efficient digital neuron model for neurosynaptic cores." In The 2013 International Joint

Conference on Neural Networks (IJCNN), pp. 1-10. IEEE, 2013.

[2] Hu, Miao, Hai Li, Yiran Chen, Qing Wu, Garrett S. Rose, and Richard W. Linderman.

"Memristor crossbar-based neuromorphic computing system: A case study." IEEE

transactions on neural networks and learning systems 25, no. 10 (2014): 1864-1878.

[3] Gaba, Siddharth, Phil Knag, Zhengya Zhang, and Wei Lu. "Memristive devices for

stochastic computing." In 2014 IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 2592-2595. IEEE, 2014.

[4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with

deep convolutional neural networks." In Advances in neural information processing

systems, pp. 1097-1105. 2012.

[5] Jo, Sung Hyun, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki Mazumder,

and Wei Lu. "Nanoscale memristor device as synapse in neuromorphic systems." Nano

letters 10, no. 4 (2010): 1297-1301.

[6] Esser, Steve K., Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab Datta, Davis

Barch, Arnon Amir, John Arthur et al. "Cognitive computing systems: Algorithms and

applications for networks of neurosynaptic cores." In The 2013 International Joint

Conference on Neural Networks (IJCNN), pp. 1-10. IEEE, 2013.

[7] Xu, Cong, Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. "Design implications of

memristor-based RRAM cross-point structures." In 2011 Design, Automation & Test in

Europe, pp. 1-6. IEEE, 2011.

[8] Li, Boxun, Yuzhi Wang, Yu Wang, Yiran Chen, and Huazhong Yang. "Training itself:

Mixed-signal training acceleration for memristor-based neural network." In 2014 19th Asia

and South Pacific Design Automation Conference (ASP-DAC), pp. 361-366. IEEE, 2014.

[9] Wen, Wei, Chunpeng Wu, Yandan Wang, Kent Nixon, Qing Wu, Mark Barnell, Hai Li,

and Yiran Chen. "A new learning method for inference accuracy, core occupation, and

performance co-optimization on TrueNorth chip." In 2016 53nd ACM/EDAC/IEEE

Design Automation Conference (DAC), pp. 1-6. IEEE, 2016.

[10]Strukov, Dmitri B., Gregory S. Snider, Duncan R. Stewart, and R. Stanley Williams. "The

missing memristor found." nature 453, no. 7191 (2008): 80.

 81

[11]He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for

image recognition." In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770-778. 2016.

[12]Liang, Jiale, and H-S. Philip Wong. "Cross-point memory array without cell selectors—

Device characteristics and data storage pattern dependencies." IEEE Transactions on

Electron Devices 57, no. 10 (2010): 2531-2538.

[13]Liu, Beiye, Hai Li, Yiran Chen, Xin Li, Tingwen Huang, Qing Wu, and Mark Barnell.

"Reduction and IR-drop compensations techniques for reliable neuromorphic computing

systems." In Proceedings of the 2014 IEEE/ACM International Conference on Computer-

Aided Design, pp. 63-70. IEEE Press, 2014.

[14]Wen, Wei, Chi-Ruo Wu, Xiaofang Hu, Beiye Liu, Tsung-Yi Ho, Xin Li, and Yiran Chen.

"An EDA framework for large scale hybrid neuromorphic computing systems." In 2015

52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6. IEEE, 2015.

[15]Akopyan, Filipp, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul

Merolla, Nabil Imam et al. "Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip." IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 34, no. 10 (2015): 1537-1557.

[16]Hu, Miao, Yu Wang, Qinru Qiu, Yiran Chen, and Hai Li. "The stochastic modeling of TiO

2 memristor and its usage in neuromorphic system design." In 2014 19th Asia and South

Pacific Design Automation Conference (ASP-DAC), pp. 831-836. IEEE, 2014.

[17]Rastegari, Mohammad, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. "Xnor-net:

Imagenet classification using binary convolutional neural networks." In European

Conference on Computer Vision, pp. 525-542. Springer, Cham, 2016.

[18]Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training

deep neural networks with binary weights during propagations." In Advances in neural

information processing systems, pp. 3123-3131. 2015.

[19]Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.

"Binarized neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).

[20]Chua, Leon. "Memristor-the missing circuit element." IEEE Transactions on circuit

theory 18, no. 5 (1971): 507-519.

[21]Yi, Wei, Frederick Perner, Muhammad Shakeel Qureshi, Hisham Abdalla, Matthew D.

Pickett, J. Joshua Yang, Min-Xian Max Zhang, Gilberto Medeiros-Ribeiro, and R. Stanley

Williams. "Feedback write scheme for memristive switching devices." Applied Physics

A 102, no. 4 (2011): 973-982.

 82

[22]Hu, Miao, Hai Li, Qing Wu, and Garrett S. Rose. "Hardware realization of BSB recall

function using memristor crossbar arrays." In Proceedings of the 49th Annual Design

Automation Conference, pp. 498-503. ACM, 2012.

[23]Kim, Minje, and Paris Smaragdis. "Bitwise neural networks." arXiv preprint

arXiv:1601.06071 (2016).

[24]Song, Linghao, Xuehai Qian, Hai Li, and Yiran Chen. "Pipelayer: A pipelined reram-based

accelerator for deep learning." In 2017 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pp. 541-552. IEEE, 2017.

[25]Wold, Svante, Kim Esbensen, and Paul Geladi. "Principal component

analysis." Chemometrics and intelligent laboratory systems 2, no. 1-3 (1987): 37-52.

[26]Yuan, Ming, and Yi Lin. "Model selection and estimation in regression with grouped

variables." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68,

no. 1 (2006): 49-67.

[27]Wen, Wei, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. "Learning structured

sparsity in deep neural networks." In Advances in neural information processing systems,

pp. 2074-2082. 2016.

[28]Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep

feedforward neural networks." In Proceedings of the thirteenth international conference on

artificial intelligence and statistics, pp. 249-256. 2010.

[29]Golub, Gene H., Michael Heath, and Grace Wahba. "Generalized cross-validation as a

method for choosing a good ridge parameter." Technometrics 21, no. 2 (1979): 215-223.

[30]Tang, Tianqi, Lixue Xia, Boxun Li, Rong Luo, Yiran Chen, Yu Wang, and Huazhong

Yang. "Spiking neural network with rram: Can we use it for real-world application?."

In Proceedings of the 2015 Design, Automation & Test in Europe Conference &

Exhibition, pp. 860-865. EDA Consortium, 2015.

[31]Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-

scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

[32]Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper

with convolutions." In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 1-9. 2015.

[33]He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for

image recognition." In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770-778. 2016.

 83

[34]Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training

deep neural networks with binary weights during propagations." In Advances in neural

information processing systems, pp. 3123-3131. 2015.

[35]Hubara, Itay, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.

"Binarized neural networks." In Advances in neural information processing systems, pp.

4107-4115. 2016.

[36]Rastegari, Mohammad, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. "Xnor-net:

Imagenet classification using binary convolutional neural networks." In European

Conference on Computer Vision, pp. 525-542. Springer, Cham, 2016.

[37]Zhu, Chenzhuo, Song Han, Huizi Mao, and William J. Dally. "Trained ternary

quantization." arXiv preprint arXiv:1612.01064 (2016).

[38]Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding." arXiv preprint

arXiv:1510.00149 (2015).

[39]Lin, Darryl, Sachin Talathi, and Sreekanth Annapureddy. "Fixed point quantization of

deep convolutional networks." In International Conference on Machine Learning, pp.

2849-2858. 2016.

[40]Mellempudi, Naveen, Abhisek Kundu, Dheevatsa Mudigere, Dipankar Das, Bharat Kaul,

and Pradeep Dubey. "Ternary neural networks with fine-grained quantization." arXiv

preprint arXiv:1705.01462 (2017).

[41]Zhou, Aojun, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. "Incremental network

quantization: Towards lossless cnns with low-precision weights." arXiv preprint

arXiv:1702.03044 (2017).

[42]Cai, Zhaowei, Xiaodong He, Jian Sun, and Nuno Vasconcelos. "Deep learning with low

precision by half-wave gaussian quantization." In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 5918-5926. 2017.

[43]Vanhoucke, Vincent, Andrew Senior, and Mark Z. Mao. "Improving the speed of neural

networks on CPUs." (2011).

[44]Louizos, Christos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max

Welling. "Relaxed quantization for discretized neural networks." arXiv preprint

arXiv:1810.01875 (2018).

[45]Polino, Antonio, Razvan Pascanu, and Dan Alistarh. "Model compression via distillation

and quantization." arXiv preprint arXiv:1802.05668 (2018).

[46]Dettmers, Tim. "8-bit approximations for parallelism in deep learning." arXiv preprint

arXiv:1511.04561 (2015).

 84

[47]Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. "Quantization and training of neural

networks for efficient integer-arithmetic-only inference." In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 2704-2713. 2018.

[48]Blackwell, Trevor Leslie. Applications of randomness in system performance

measurement. Harvard University, 1998.

[49]Lewis, Peter A. W., Allan S. Goodman, and James M. Miller. "A pseudo-random number

generator for the System/360." IBM Systems Journal 8, no. 2 (1969): 136-146.

[50]Fujita, S., Ken Uchida, S. Yasuda, R. Ohba, H. Nozaki, and T. Tanamoto. "Si nanodevices

for random number generating circuits for cryptographic security." In 2004 IEEE

International Solid-State Circuits Conference (IEEE Cat. No. 04CH37519), pp. 294-295.

IEEE, 2004.

[51]Huang, Chien-Yuan, Wen Chao Shen, Yuan-Heng Tseng, Ya-Chin King, and Chrong-

Jung Lin. "A contact-resistive random-access-memory-based true random number

generator." IEEE Electron Device Letters 33, no. 8 (2012): 1108-1110.

[52]Vivoli, V. Caprara, P. Sekatski, J. D. Bancal, C. C. W. Lim, A. Martin, R. T. Thew, H.

Zbinden, N. Gisin, and N. Sangouard. "Device-independent quantum random number

generator with a photon pair source." arXiv preprint (2014).

[53]Fukushima, Akio, Takayuki Seki, Kay Yakushiji, Hitoshi Kubota, Hiroshi Imamura, Shinji

Yuasa, and Koji Ando. "Spin dice: A scalable truly random number generator based on

spintronics." Applied Physics Express 7, no. 8 (2014): 083001.

[54]Yang, Yuchao, and Wei Lu. "Nanoscale resistive switching devices: mechanisms and

modeling." Nanoscale 5, no. 21 (2013): 10076-10092.

[55]Gaba, Siddharth, Phil Knag, Zhengya Zhang, and Wei Lu. "Memristive devices for

stochastic computing." In 2014 IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 2592-2595. IEEE, 2014.

[56]Kim, Sungho, ShinHyun Choi, and Wei Lu. "Comprehensive physical model of dynamic

resistive switching in an oxide memristor." ACS nano 8, no. 3 (2014): 2369-2376.

[57]Chua, Leon. "Resistance switching memories are memristors." Applied Physics A 102, no.

4 (2011): 765-783.

[58]Hu, Miao, Hai Li, Yiran Chen, Qing Wu, Garrett S. Rose, and Richard W. Linderman.

"Memristor crossbar-based neuromorphic computing system: A case study." IEEE

transactions on neural networks and learning systems 25, no. 10 (2014): 1864-1878.

[59]Vincent, Adrien F., Jerome Larroque, W. S. Zhao, N. Ben Romdhane, Olivier Bichler,

Christian Gamrat, J-O. Klein, Sylvie Galdin-Retailleau, and Damien Querlioz. "Spin-

 85

transfer torque magnetic memory as a stochastic memristive synapse." In 2014 IEEE

International Symposium on Circuits and Systems (ISCAS), pp. 1074-1077. IEEE, 2014.

[60]Gaba, Siddharth, Patrick Sheridan, Jiantao Zhou, Shinhyun Choi, and Wei Lu. "Stochastic

memristive devices for computing and neuromorphic applications." Nanoscale 5, no. 13

(2013): 5872-5878.

[61]Lee, Myoung-Jae, Chang Bum Lee, Dongsoo Lee, Seung Ryul Lee, Man Chang, Ji Hyun

Hur, Young-Bae Kim et al. "A fast, high-endurance and scalable non-volatile memory

device made from asymmetric Ta 2 O 5− x/TaO 2− x bilayer structures." Nature

materials 10, no. 8 (2011): 625.

[62]Torrezan, Antonio C., John Paul Strachan, Gilberto Medeiros-Ribeiro, and R. Stanley

Williams. "Sub-nanosecond switching of a tantalum oxide

memristor." Nanotechnology 22, no. 48 (2011): 485203.

[63]Chua, Leon. "Memristor-the missing circuit element." IEEE Transactions on circuit

theory 18, no. 5 (1971): 507-519.

[64]Stanley Williams, R. "How we found the missing memristor." In Chaos, CNN, Memristors

and Beyond: A Festschrift for Leon Chua With DVD-ROM, composed by Eleonora

Bilotta, pp. 483-489. 2013.

[65]Hu, Miao, Yu Wang, Qinru Qiu, Yiran Chen, and Hai Li. "The stochastic modeling of TiO

2 memristor and its usage in neuromorphic system design." In 2014 19th Asia and South

Pacific Design Automation Conference (ASP-DAC), pp. 831-836. IEEE, 2014.

[66]Yu, Shimeng, Bin Gao, Zheng Fang, Hongyu Yu, Jinfeng Kang, and H-S. Philip Wong.

"Stochastic learning in oxide binary synaptic device for neuromorphic

computing." Frontiers in neuroscience 7 (2013): 186.

[67]Medeiros-Ribeiro, Gilberto, Frederick Perner, Richard Carter, Hisham Abdalla, Matthew

D. Pickett, and R. Stanley Williams. "Lognormal switching times for titanium dioxide

bipolar memristors: origin and resolution." Nanotechnology 22, no. 9 (2011): 095702.

[68]Yi, Wei, Frederick Perner, Muhammad Shakeel Qureshi, Hisham Abdalla, Matthew D.

Pickett, J. Joshua Yang, Min-Xian Max Zhang, Gilberto Medeiros-Ribeiro, and R. Stanley

Williams. "Feedback write scheme for memristive switching devices." Applied Physics

A 102, no. 4 (2011): 973-982.

	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1.0 Motivation
	1.1 Problem Statement
	1.2 Research Contributions
	1.3 Dissertation Organization

	2.0 Related Work
	3.0 Background
	3.1 Neural Network Models
	3.2 Memristor Technology
	Figure 1 Statistical memristance distributions of a TiO2 device

	3.3 Neuromorphic Computing Systems
	Figure 2 Mapping neural networks to memristor crossbar array
	Figure 3 The NCS designs for (a) a small convolutional layer, and (b) a large layer

	4.0 The Group Scissor Framework
	4.1 Rank Clipping
	Table 1. Accuracy and ranks
	Figure 4 Rank clipping for crossbar area occupation reduction
	Figure 5 Rank ratio of each layer and accuracy during training with rank clipping

	4.2 Group Connection Deletion
	Figure 6 The group connection deletion
	Figure 7 The percentage of deleted routing wires and accuracy during group connection deletion. fc1_u and fc1_v is the low-rank matrix U and V of fc1 after rank clipping, and so forth.

	4.3 Area Estimation
	4.4 Experiments
	Table 2. Experiment parameters

	4.5 MBC Area Reduction
	Figure 8 The remained ranks in convolutional layers of LeNet. fc1 is omitted for better visualization as its original rank 500 is out of chart.
	Figure 9 The MBC area for (a) LeNet and (b) ConvNet, after applying the rank clipping

	4.6 Routing Area Reduction
	Table 3. MBC sizes and remained routing wires in large layers
	Figure 10 The routing wire (a) and routing area (b) w.r.t. the classification error in ConvNet

	5.0 Classification Accuracy Improvement for Neuromorphic Computing
	5.1 Methodology
	5.1.1 Distribution-aware Quantization
	Figure 12 The blue and orange bars denote the original weight distribution of different layers and the learned discrete weights after quantization regularization (QR) in LeNet, respectively.

	5.1.2 Quantization Regularization
	Figure 13 Comparison of l1-norm, l2-norm and our proposed regularization

	5.1.3 Bias Tuning
	Figure 14 The framework of proposed bias tuning method

	5.1.4 Convolution in Memristor Crossbar Array
	Figure 15 Convolution implementation in memristor crossbar array

	5.2 Experiments
	5.2.1 Experiment Setup
	Table 4. Network and dataset

	5.2.2 Function Validation of MLP on MNIST
	Table 5. The accuracy measurement for MLP on MNIST dataset

	5.2.3 Function Validation of LeNet
	Table 6. The accuracy measurement for CNN on MNIST dataset

	5.2.4 Function Validation of CNN on CIFAR-10
	Table 7. The accuracy measurement for CNN on CIFAR-10 dataset

	5.2.5 Learned Filters
	Figure 16 The learned floating-point (upper) and quantified (lower) conv1 filters in LeNet (the gray-scale ones) and CNN on CIFAR-10 (the color ones). A zero weight is mapped to pixel value 128, and negative (positive) weights are darker (brighter) ones.

	5.2.6 Bias Tuning to Alleviate Crossbar Variation
	Figure 17 The bias tuning in LeNet. The yellow line denotes the accuracy after applying DQ and QR without noise; The red line is the baseline with quantization and noise; The green line denotes the accuracy recovered from the baseline after bias tunin...

	5.2.7 Discussion

	6.0 Deformable Regularization Work
	Figure 18 Quantization regularization method
	Figure 19 The difference among l1-norm, l2-norm and quantization regularization
	Figure 20 The left figures show three kinds of changing methods for parameter 𝛂, with straight line, ellipse and cosin, respectively. The right three figures show the corresponding error function doing experiments on MNIST dataset with LeNet neural n...
	6.1 Incremental Quantization
	Figure 22 Classification accuracy results on CIFAR-10 dataset after implementing ILQ framework. Each columnar in the figure demonstrates the intermediate processing result by incrementally fixing the quantized weights of previous layers.

	6.2 Function Validation of DR on MNIST
	Figure 23 Deformable quantization process on two convolutional layers and the experiments are conducted on MNIST dataset using LeNet-5-like neural networks. The x-axis is the weights values and the y-axis is the training iterations. From the very top ...
	Figure 24 Deformable quantization process on two fully-connected layers and the experiments are conducted on MNIST dataset using LeNet-5-like neural networks. The x-axis is the weights values and the y-axis is the training iterations.
	Table 8. The accuracy measurement for DR and QR on MNIST

	6.3 Function Validation of DR on CIFAR-10
	6.4 Discussion
	Table 9. The accuracy measurement for DR and QR on CIFAR-10

	7.0 TRNG Design Leveraging Emerging Memristor Technology
	7.1 Introduction
	7.2 Preliminary
	7.2.1 Memristor
	Figure 25 The structure of a TiO2 memristor

	7.2.2 Stochastic Behaviors of Memristors

	7.3 Methodology
	7.3.1 Stochastic Model of TiO2 Memristor
	Figure 26 Static stochastic behavior
	Figure 27 Cumulative switching probability distribution for ON (a) and OFF (b) switching under different applied voltage amplitude

	7.3.2 The MTRNG Design
	Figure 28 The scheme of the basic 1-branch MTRNG design

	7.3.3 MTRNG Markov Chain Analysis
	Figure 29 The scheme of the enhanced 2-branch MTRNG design
	Figure 30 The state transition diagram

	7.4 Experiment
	7.4.1 The Selection of Gate Voltage Vg
	Figure 31 Vg vs. Vout: (a) under the means of the high and low resistance states, as Ron=105Ω and Roff =108Ω; (b) at the worst condition when Ron=106Ω and Roff =107Ω.
	Figure 32 Simulation of 1-branch MTRNG (Ron=105Ω and Roff =108Ω)
	Figure 33 Simulation of 1-branch MTRNG (Ron=106Ω and Roff =107Ω)
	Figure 34 Simulation of 2-branch MTRNG

	7.4.2 MTRNG Simulation
	Figure 35 The probability distribution of random bit in the stream generated by 1-branch (left) and 2-branch (right) MTRNG

	7.4.3 The Design Evaluation
	Table 10. Power consumption of MTRNGs
	Figure 36 Dependence of programming voltage for random bit stream sampling period in ON switching (upper) and OFF switching (lower)

	8.0 Conclusions
	References

