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Abstract 

Efficient and Robust Neuromorphic Computing Design 

 

 

Yandan Wang, PhD 

 

University of Pittsburgh, 2019 

 

 

 

 

In recent years, brain inspired neuromorphic computing system (NCS) has been intensively 

studied in both circuit level and architecture level. NCS has demonstrated remarkable advantages 

for its high-energy efficiency, extremely compact space occupation and parallel data processing. 

However, due to the limited hardware resources, severe IR-Drop and process variation problems 

for synapse crossbar, and limited synapse device resolution, it’s still a great challenge for hardware 

NCS design to catch up with the fast development of software deep neural networks (DNNs).  

This dissertation explores model compression and acceleration methods for deep neural 

networks to save both memory and computation resources for the hardware implementation of 

DNNs. Firstly, DNNs’ weights quantization work is presented to use three orthogonal methods to 

learn synapses with one-level precision, namely, distribution-aware quantization, quantization 

regularization and bias tuning, to make image classification accuracy comparable to the state-of-

the-art. And then a two-step framework named group scissor, including rank clipping and group 

connection deletion methods, is presented to address the problems on large synapse crossbar 

consuming and high routing congestion between crossbars.  

Results show that after applying weights quantization methods, accuracy drop can be well 

controlled within negligible level for MNIST and CIFAR-10 dataset, compared to an ideal system 

without quantization. And for the group scissor framework method, crossbar area and routing area 
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could be reduced to 8% (at most) of original size, indicating that the hardware implementation area 

has been saved a lot. Furthermore, the system scalability has been improved significantly. 
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1.0 Motivation 

NCS demonstrates many important features including high computing efficiency, 

extremely low power consumption, and compact volume [1]. Integrating emerging technologies 

potentially enables a more compact and energy-efficient platform for information processing [2]. 

For instance, the two-terminal nonlinear memristor presents a series of advantages (Aojun Zhou 

2017) of good scalability, high endurance and ultra-low power consumption [3]. Thus, it is taken 

as a promising candidate for neuromorphic computing system development.  

The record-breaking classification performance of deep neural networks (DNNs) below 

below [4] in recent years has stimulated the fast-growing research on hardware design of NCS 

[5][6][6][7][8][9][2]. NCS utilizes device and circuit components to construct neural networks and 

therefore perform intelligent tasks, such as image classification, speech recognition and natural 

language processing. Circuit-level and architecture-level NCS designs using emerging memristor 

devices [10] and traditional CMOS technologies [6] are being explored. In software applications, 

the depth of DNNs rapidly grows from several layers to hundreds or even thousands of layers [11]. 

However, the scale of NCS hardware design falls far behind. A critical issue that obstructs the 

scaling-up of NCS is the limited synaptic connections (e.g., crossbar) in hardware implementation 

and induced heavy wire congestion (e.g., the routing between crossbars). Taking the memristor-

based NCS as an example, due to IR-drop and process variations, both reading and writing 

reliability will be severely degraded when the size of a memristor-based crossbar is beyond 64x64 

[12][13]. The similar scenario can be observed in CMOS-based conventional designs. For 

example, the IBM TrueNorth chip, as a pioneer in NCS design, limits the size of neurosynaptic 

crossbars to 256x256 [6]. It is inevitable to interconnect multiple crossbars to implement modern 
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large neural networks. The increasing scale of neural networks could quickly exhaust the resources 

of synapse crossbars and deteriorate the wire congestion [14][15]. Solutions have been explored 

to solve above issues. Akopyan et al. tend to map logically-connected cores to physically adjacent 

cores to reduce spike communications [15]. Such a core placement optimization cannot reduce the 

core number. Existing NCS optimization based on sparse neural networks can alleviate the wire 

congestion [15]. However, the separation of the software sparsification and hardware deployment 

makes the optimization very challenging.  

At the same time, neuromorphic hardware implementations usually face a major challenge 

on system accuracy. TrueNorth, for example, allows only a few synaptic weights (e.g., 0, ±1, ±2). 

Accuracy degradation is inevitable when directly deploying a learned model to the system with 

limited precision [1]. The situation remains in memristor (or RRAM) based design. Theoretically, 

nanoscale memristor can obtain continuously analog resistance. While, a real device often can 

achieve only several stable resistance states [16]. The distinction between theoretical and actual 

properties results in significant accuracy loss. Extensive studies on learning low-resolution 

synapses have been performed to improve the accuracy of neuromorphic systems. Wen et al. 

presented a new learning method for IBM TrueNorth platform which biases the learned connection 

probability to binary states (0/1) to hinder accuracy loss [9]. Neural networks with binary 

resolution are more suitable for generic platforms [17][18][19]. BinaryConnect [18] as an example 

can achieve comparable accuracy in deep neural networks. However, neither TrueNorth nor 

BinaryConnect are pure binary neural networks: TrueNorth relies on the ensemble averaging layer 

in floating-point precision while the last layer of BinaryConnect is a floating-point L2-SVM. 
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1.1 Problem Statement 

As stated before, NCS can fully utilize emerging devices and synapse crossbars to 

implement deep neural networks, which demonstrates lots of important features such as high 

computing efficiency, extremely low power consumption, and compact volume. However, due to 

the scaling up of DNN and the imperfect features of both synapse crossbar and single memristor, 

there still exists plenty of issues when mapping between software DNN and hardware 

implementation NCS design, which largely impedes the development of NCS. Furthermore, due 

to the limited resolution of hardware synapse device, classification accuracy can be severely 

affected when applying neural networks to NCS hardware implementation. Based on the above 

analysis, the main issues and challenges that should be addressed in this dissertation can be 

summarized as follows: 

• High crossbar area occupation: As the scale of modern neural network grows from 

several layers to hundreds of or even thousands of layers, the hardware realization area of 

NCS implementation will be inevitable to grow fast. However, the hardware resources are 

always very limited, which can hardly catch up the scaling up speed of software level. In 

such as situation, the hardware resources will be easily and quickly exhausted. Thus, how 

to design an efficient NCS is extremely important in circuit level and architecture level 

when mapping the software level neural networks to hardware neuromorphic computing 

design. 

• Heavy routing congestion: For both traditional CMOS based NCS design and emerging 

memristor NCS based design, they all suffer from severe writing and reading reliability 

degradation with the increase of crossbar size. Therefore, in the implementation of neural 

networks, we should divide the large neural layer into many small crossbars, whose size is 
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in the safe scope. As we need lots of small crossbars to implement a large neural network 

layer, huge of interconnection routing will be induced among different crossbars. Even 

though memristor is a nanoscale device and crossbar is compact manufactured, heavy 

routing connection will still occupy a large amount of area for the whole NCS design.  

• Accuracy degradation: In algorithm level, weights are stored in floating-point type which 

can achieve a high classification accuracy for neural network system. However, in circuit 

level, weight representative devices usually have limited resolution, which can only 

represent several discrete number of weights. For example, in memristor based NCS, 

theoretically, memristor can perform analog continuous memristive and thus can represent 

floating-point synapse weights. However, in reality, memristor only can obtain two stable 

memristive states. Thus, when mapping algorithm level floating-point weights to circuit 

level representatives, there exists inevitable large classification accuracy degradation.  

1.2 Research Contributions 

Research contributions for this dissertation can be concluded as: 

• A two-step framework named group scissor is proposed to overcome high crossbar area 

occupation and heavy routing congestion issues.  

➢ The first step, rank clipping, integrates low-rank approximation into the training 

process of neural networks. It targets to reduce the dimensions of connection arrays 

in a group-wise way and therefore reduce the consumption of synapse crossbars in 

NCS. 
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➢ The second step, group connection deletion, structurally deletes/prunes groups of 

connections. The approach directly learns sparse neural networks friendly to 

hardware and therefore deletes the routing wires between crossbars. 

• Pure binary (1-level precision1) neural networks are proposed to address accuracy 

degradation issue caused by limited hardware synapse device resolution. While the 

realization of continuous analogue resistance states is still challenging, the 1-level 

precision is well supported by most of memory materials and architectures. Three 

orthogonal methods of leaning 1-level precision synapses and tuning bias to improve image 

classification accuracy are proposed: 

➢ Distribution-aware quantization discretizes weights in different layers to different 

values. The method is proposed based on the observation that the weight 

distributions of a network by layers. 

➢ Quantization regularization directly learns a network with discrete weights during 

training process. The regularization can reduce the distance between a weight and 

its nearest quantization level with a constant gradient. 

➢ Bias tuning dynamically learns the best bias compensation to minimize the impact 

of quantization. It can also alleviate the impact of synaptic variation in memristor 

based neuromorphic systems. 

• Deformable quantization regularization method is presented to control the image 

classification accuracy loss under a negligible value for small and simple dataset such as 

MNIST or CIFAR-10, or under an acceptable value for larger and more complex dataset 

such as CIFAR-100, ImageNet, etc. This regularization method will combine the 

traditional l1-norm or l2-norm regularization method and the newly used quantization 
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regularization method. Therefore, this new deformable quantization regularization method 

will behave the characteristics and advantages of both l1-norm (l2-norm) and quantization 

regularization methods. 

1.3 Dissertation Organization 

This dissertation is organized as follows: 

Chapter 2.0 introduces some related work of model compression and acceleration. 

Chapter 3.0 introduces some background information for this dissertation, mainly about 

the neural network models, memristor technology and neuromorphic computing system. 

Chapter 4.0 explores a framework named group scissor to overcome high crossbar area 

occupation and heavy routing congestion issues. Two steps are presented in group scissor 

including rank clipping and group connection deletion, which address the high crossbar area 

occupation and heavy routing congestion, respectively.  

Chapter 5.0 presents three methods to improve image classification accuracy with one-

level precision synapse for neuromorphic computing system. These three methods are distribution-

aware quantization, quantization regularization and bias tuning. 

Chapter 6.0 presents the deformable quantization regularization method to further control 

the image classification accuracy loss.  

Chapter 7.0 presents a novel true random number generator design leveraging emerging 

memristor technology. 

Chapter 8.0 concludes all the research works in this dissertation. 
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2.0 Related Work 

In recent years, lots of excellent neural network models, such as AlexNet [4], VGG [31], 

GoogLeNet [32], ResNet [33], have been proposed and quickly becomes popular both in academia 

and industry, where excellent performance can be achieved in many artificial intelligence fields 

such as computer vision, image classification, speech recognition and natural language processing. 

All these outstanding models own one common feature that is large size and complex structure 

with a large amount of parameters, which is beneficial for model performance improvement, 

however on the contrary, it becomes a big obstacle to the hardware deployment for these models 

since portable devices usually have limited memory and computation resources. Although there 

exits lots of difficulties in neural network model deployment, we still face a rapid increasing on 

artificial intelligence applications especially in fields like mobile devices, drone, AR/VR devices 

and self-driving car. In order to meet the increasing demand of deployment for excellent 

performance but large size models, there is an explosive growth research on how to use low-

precision representatives to represent full precision ones with small or negligible loss of 

performance. This low-precision learning process can be achieved by quantizing full precision 

representatives to low-precision ones. 

Quantization operations can be applied to weights, activations, gradients or other 

representatives in neural network models. Low-precision representatives could be binary, ternary, 

2bits, 4bits, 8bits or some other reasonable low bits. For example, BinaryConnect [34], Binarized 

Neural Networks [35] and XNOR-Net [36] all constrains weights or activations to +1 or -1. The 

very beginning work BinaryConnect encounters a relatively high accuracy loss on image dataset 

by quantizing only weights to +1 or -1. Based on BinaryConnect, XNOR-Net further introduces a 
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scaling factor to quantized weights, which largely improves the image classification accuracy. 

Besides the weights quantization done in BinaryConnect and XNOR-Net, Binarized Neural 

Networks constrained both weights and activations to +1 and -1, which inevitably results in a 

relatively high accuracy drop on more complex dataset like CIFAR-10. Some other work such as 

Trained  Ternary Quantization [37], Deep Compression [38], fixed point quantization [39], fine-

grained ternary quantization [40] all quantize weights or activations to multiple bits 

representatives. It’s obvious that increasing quantized bits can improve the compressed model 

performance, however, at the same time, it can also consume more hardware resources. Unlike 

previous stated work, [41] proposes a novel incremental network quantization (INQ) method to 

quantize pre-trained full-precision convolutional neural network (CNN) model to low-precision 

one, where the quantized values are either powers of two or zero. While powers of two or zero are 

very friendly to hardware implementations, since the computation involving these numbers can be 

easily handled by shift operations. 

Weights and activations quantization can speed up training and inference, save hardware 

memory and power resource requirements, however, there still exists a big issue that is 

nondifferentiable optimization in backpropagation stage during training [42]. To avoid this issue, 

some work like [39][43] conducts quantization operation after model training. Other work like 

[17][18][41] tries to solve this issue by utilizing a continues approximated function to approximate 

the quantized function during back propagation stage. What’s more, a novel structure named 

relaxed quantization neural networks are put forward in [44], which introduces a differentiable 

quantization procedure for better gradient-based optimization. 

In most recent one to two years, lots of other quantization work incorporating some 

emerging optimization method are also arising. For example, [45] put forward a new model 



 9 

compression method, which combines weights quantization with novel distillation technology to 

compress the network model from larger “teacher” networks to smaller “student” networks. And 

in [38], trained quantization and weight sharing methods are applied based on the pre-pruned NN 

model. To address the gradient mismatch issue between forward and backward approximations, 

[42] proposes a half-wave Gaussian quantizer (HWGQ) for forward approximation and meanwhile 

utilizes batch normalization and activations statistics. From the aspect of bandwidth, [46] proposes 

an 8-bit approximation algorithms to compress 32-bit gradients and nonlinear activations to 8-bit 

approximations to better use the available bandwidth. To take inference stage into consideration, 

[47] proposes a new quantization method to use integer-only arithmetic, which can make inference 

more efficient compared with floating-point arithmetic operations. 
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3.0 Background 

3.1 Neural Network Models 

Neural networks (NNs) are a series of models inspired by biological neuron networks. The 

function can be formulated as: 

𝒚 = 𝑾 ∙ 𝒙 + 𝒃                                                                      ( 1 ) 

 𝒛 = 𝒉(𝒚)                                                                           ( 2 ) 

 where the output neuron vector z is determined by the input neuron vector x, the weight matrix of 

connections 𝑾 and the bias vector b. Usually, ℎ(∙) is a non-linear activation function and all the 

data in (1) and (2) are in floating-point precision. 

3.2  Memristor Technology 

Memristor, firstly introduced by Professor Leon Chua in 1971, is regarded as the fourth 

fundamental circuit element, representing the dynamic relationship between the charge 𝑞(𝑡) and 

the 𝜑(𝑡) [20]. Most significantly, the total electric flux flowing through a memristor device can be 

“remembered” by recording it as its memristance (M ). In 2008, HP Lab demonstrated the first 

actual memristor through a TiO2 thin-film device and realized the memristive property by moving 

its doping front [10].  
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Figure 1 Statistical memristance distributions of a TiO2 device 

 

Theoretically, a memristor device can achieve continuous analog resistance states. 

However, the imperfection of fabrication process causes variations and therefore memristance 

varies from device to device. Even worse, the memristance of a single memristor changes from  

time to time [21]. In most system designs, only two stable resistance states, high- and low-

resistance state (HRS and LRS), are adopted. As the real statistical measurement data of a 

TiO2 memristor in Figure 1 shows, the distribution of HRS (LRS) follows an approximated 

lognormal probability density function (PDF) [16]. 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

1.E+08 

1.E+09 

1.E+00 5.E+03 1.E+04 

M
em

r
is

ta
n

c
e(
Ω

) 

Cycle 

LRS 

HRS 



 12 

3.3 Neuromorphic Computing Systems 

Neuromorphic computing systems (NCS) represents the hardware implementations of NNs 

by mimicking the neuro-biological architectures. For example, IBM TrueNorth chip is made of a 

network of neuro-synaptic cores, each of which includes a configurable synaptic crossbar 

connecting 256 axons and 256 neurons in close proximity [1]. The synaptic weight in the crossbar  

can be selected from 4 possible integers. Memristor based NCS has also be investigated [22]. 

Matrix-vector multiplication, the key operation in NNs, can be realized by memristor crossbar 

arrays as illustrated in Figure 2 [14]. The conductance matrix of memristor crossbar array is 

utilized as the weight matrix of NNs [22]. 

The synaptic weights in these neuromorphic computing systems usually have a limited 

precision, constrained either by design cost (e.g., the SRAM cells for each weight representation 

in TrueNorth) or current technology process (e.g., two or only a few resistance levels of memristor 

devices). As such, the classification accuracy loss could be very significant in NCS. To improve  

 

 
 

 
Figure 2 Mapping neural networks to memristor crossbar array 
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the classification accuracy, lots of research has been done [18][19][23]. Even though, some of 

them have floating-point layers and some ignore circuit design constraints. In this work, we focus 

on pure binary neural networks considering the constraints in NCS hardware implementation. 

Figure 3 (a) illustrates the implementation of a convolutional layer in neural network using 

memristor-based crossbars (MBC), where memristors (a.k.a. synapses) in each column encode the 

weights of one filter [24]. The implementation of a fully-connected layer utilizes the similar 

structure, but each column realizes the connections to one output neuron. As the size of crossbars 

is limited, implementing large neural networks requires a high volume of crossbars and the induced 

interconnection. Figure (b) depicts a circuit-level implementation of a large layer by tiling and 

interconnecting MBC [14]. As the scale of modern neural networks grows, the high crossbar area 

occupation and heavy routing congestion emerge as critical issues that obstruct the scalability of 

the hardware implementation. 

 

 

 
 

 
Figure 3 The NCS designs for (a) a small convolutional layer, and (b) a large layer 
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4.0 The Group Scissor Framework 

In this work, we propose the Group Scissor framework to improve the scalability of 

neuromorphic computing design. The framework consists of two steps: rank clipping to reduce 

crossbar area occupation and group connection deletion for routing congestion reduction. The 

details of the proposed design are described in this section. Moreover, the estimations of circuit 

area and routing wires for MBC-based neuromorphic design are formulated. 

4.1 Rank Clipping 

As discussed above, the high crossbar area occupation and heavy routing congestion are 

the major challenges in realizing large neural networks. We propose to utilize low-rank 

approximation (LRA) to reduce the dimensions of weight (connection) matrices in large neural 

networks. LRA is a mathematical technique that uses the product of smaller matrices with reduced 

rank to approximate a given large matrix. Specifically, an original weight matrix can be 

approximated as: 

              W ≈ U ∙ VT = W̃                                                     ( 3 ) 

Where U ∈ ℝN×K, VT ∈ ℝK×M, and K is the rank of the approximation. When K << M, U 

and V are reduced to skinny matrices. The total crossbar area occupation can be reduced when K 

satisfies: 

  K <
NM

N+M
                                                             ( 4 ) 

WÎ» N´M
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There are various LRA techniques. Without losing generality, commonly used principal 

components analysis (PCA) [25] and singular value decomposition (SVD) [13] are adopted as the 

representatives in this work. 

The PCA approach is formulated in Algorithm 1. Its essence is a linear projection from a 

high dimensional space ( wn ∈ ℝM ) to a lower dimensional subspace ( un ∈ ℝK, K ≪ M ) to 

minimize the reconstruction error of W, where wn  and un are the n-th row of W and U, 

respectively, and V is the basis of the subspace. The reconstruction error is 

𝐞𝐊 =
‖𝐖−𝐖̃‖

𝟐

‖𝐖‖𝟐 =
∑ 𝛌𝐦

𝐌
𝐦=𝐊+𝟏

∑ 𝛌𝐦
𝐌
𝐦=𝟏

                                                  ( 5 ) 

where ‖∙‖ is the Euclidean norm, namely Euclidean distance.  

 

 

Algorithm 1: Principal Components Analysis (PCA) 

Input: 𝑁 × 𝑀 matrix W, and rank K 

1 Get mean of rows w𝑛 ∀𝑛 ∈ [1 ⋯ 𝑁]: 𝜇 =
1

𝑁
∑ w𝑛

𝑁
𝑛=1 , 

2 Centralize the data: replace each 𝑤𝑛 with 𝑤𝑛 − 𝜇 ; 

3 Calculate the 𝑀 × 𝑀 covariance matrix: C =
W𝑇W

𝑁−1
 

4 Calculate the eigenvectors v𝑚 and eigenvalues 𝜆𝑚 of covariance matrix C: Cv𝑚=
=

λ𝑚v𝑚 , ∀𝑚 ∈ [1 ⋯ 𝑀]; 

5 Project to subspace: 𝑁 × 𝐾 matrix U = WV, where 𝑉 = [v1, ⋯ , v𝐾] is a 𝑀 × 𝐾 matrix and 

v1, ⋯ , v𝐾 are eigenvectors corresponding to the largest K eigenvalues; 

Output: 𝑁 × 𝑀 approximation matrix W̃=U∙VT 

 

 

Though LRA can approximately reconstruct the original weights, small perturbation in 

weights can deteriorate the classification accuracy. We compares the performance of the original 

baseline design (Original) and the low-rank networks which are directly decomposed by PCA  
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Table 1. Accuracy and ranks 

 

 

 

(Direct LRA). The accuracy drops rapidly after applying Direct LRA. Fine-tuning (retraining) the 

low-rank neural networks can recover accuracy, but the optimal ranks in all layers are unknown. 

More importantly, it is very time-consuming to explore the entire design space by decomposing 

and retraining a wide variety of neural networks. We propose the LRA-based rank clipping that 

not only can successfully retain the accuracy but also can automatically converge to the optimal 

low ranks in all layers. Lower ranks are actually obtained by our rank clipping method as shown 

in the following table. 

The key idea of rank clipping is illustrated in Figure 4 Rank clipping for crossbar area 

occupation reduction. Rather than direct LRA after training, we integrate LRA into the training 

process, carefully clip some ranks with small reconstruction errors, followed by a fixed number of 

training iterations, say, S iterations. The gentle clipping induces small reconstruction errors and 

thus slightly affect the classification accuracy, which could be recovered by the following S 

iterations. The iteration of clipping and training not only avoids irremediable accuracy degradation 

but also enables neural networks to gradually converge to the optimal ranks for all layers. 
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Figure 4 Rank clipping for crossbar area occupation reduction 

 

Algorithm 2 describes the detailed operation of the rank clipping. The tolerable clipping 

error, ϵ, is the maximum allowable reconstruction error of each rank clipping. A gentle clipping 

can be enabled by setting a small ϵ, e.g., 0:01. 

 

 

Rank clipping starts with a full-rank LRA. It iteratively examines if the low-dimensional 

U can be further projected to a lower-rank subspace with only reconstruction error of ϵ. Note that 

PCA is used as the representative of LRA in Algorithm 2. Other LRA methods like SVD can also 

×≈

 
   

   

W U 
VT 

 = Clipped  = Clipping  = Remained 
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be used. The only modification is to replace the approximation of weight matrix by other LRA 

methods. 

Figure 5 plots the trends of rank reduction and accuracy retention of LeNet in Table 1, 

during PCA-based rank clipping. Rank clipping is examined every S = 500 iterations with ϵ = 0.03. 

In the figure, the rank ratio is defined as the remained rank over full rank, i.e., K/M. The figure 

demonstrates that ranks are rapidly clipped at the beginning of iterations and converge to optimal 

low ranks. During the entire process, the accuracy fluctuations are limited within a small range. 

As shown in Figure 5and Table 1, rank clipping successfully reduces the ranks in both 

convolutional layers and fully-connected layers without accuracy loss. The crossbar area 

occupation of the entire LeNet (ConvNet) reduces to 13.62% (51.81%). When applying SVD, the 

whole crossbar area can be reduced to 32.97% (55.64%) for LeNet (ConvNet), which indicates 

SVD is inferior to PCA. Therefore, we mainly conduct experiments using PCA approach. Note 

that the last layers of LeNet and ConvNet are not clipped because the rank (M = 10) is already 

very small so little improvement space exists. 

 

 
 

 
Figure 5 Rank ratio of each layer and accuracy during training with rank clipping 
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4.2 Group Connection Deletion 

The rank clipping reduces the total number of required crossbars, while there are still a 

large number of crossbars to implement modern large neural networks. The second step of group 

scissor framework---group connection deletion aims to remove interconnections between synapse 

crossbars so as to reduce the circuit-level routing congestion and architecture-level inter-core 

communication for NCS. 

Figure 6 gives the basic idea. An array of MBCs is connected to implement a large weight 

matrix U ∈ ℝN×K. Suppose the elementary synapse crossbar has P inputs and Q outputs (P ≪

N, Q ≪ K), a ⌈
N

P
⌉ × ⌈

K

Q
⌉ array of crossbars must be interconnected to implement U as illustrated in 

Figure 6. 

The implementation of matrix V follows the similar way. As memristors are densely 

manufactured in the crossbar and the area of each memristor cell is feature-size level, the routing 

wires dominate the circuit area [14]. Suppose a row group of connections in Figure 6 all have zero 

weights, implying that those connections are removable, we can delete/prune the wire routing to 

the input of this row group. Similarly, the wire routing from the output of a column group can be 

deleted when the column group of connections are all-zeros. Our group connection deletion 

method actively deletes those groups of connections during the learning of neural networks, 

meanwhile maintaining the classification accuracy at the similar level. 
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Figure 6 The group connection deletion 

 

We harness group Lasso regularization to delete groups of connections. Group Lasso is an 

efficient regularization in the study of structured sparsity learning [26][27]. With group Lasso 

regularization on each group of weights, a high percentage of groups can be regularized to all-

zeros. In group connection deletion method, weights are split into row groups and column groups 

as illustrated in the figure. And group Lasso regularization is enforced on each group. 

Mathematically, the minimization function for training neural network with group Lasso can be 

formulated as: 

E(W) = ED(W) + λ ∙ (∑ ‖Wg
(r)

‖G(r)

g=1 + ∑ ‖Wg
(c)

‖G(c)

g=1 )                                ( 6 )  

where W is the set of weights of neural network, ED(W) is the original minimization function 

when training traditional neural networks. G(r) and G(c) respectively denote the number of row 

groups and column groups, and Wg
(r)

 and Wg
(c)

 are the sets of weights in the g-th row group and 

column group, respectively. And 
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⋃ Wg
(r)G(r)

g=1 = ⋃ Wg
(c)G(c)

g=1 = W                                                  ( 7 ) 

λ is the hyper-parameter to control the trade-o between classification accuracy and routing 

congestion reduction. A larger λ can result in lower accuracy but larger reduction of routing wires. 

During the back-propagation training with equation (6) , each weight w will be updated as 

w ← w − η (
∂ED(W)

∂w
+

λw

‖Wi
(r)

‖
+

λw

‖Wi
(c)

‖
)                                     ( 8 ) 

where η is the learning rate, i ∈ [1 ⋯ G(r)], j ∈ [1 ⋯ G(c)], w ∈ WI
(r)

 and w ∈ Wj
(c)

. 

With group connection deletion, we disconnect all the zero-weighted connections and 

prune all the routing wires connecting to all-zero row groups or column groups. After deletion, we 

fine-tune (retrain) the structurally-sparse neural networks to improve accuracy. Figure 7 plots the 

trends of deleted routing wires (i.e., all-zero row/column groups) and the classification accuracy 

versus the iterations of group connection deletion. The deletion process starts with the low-rank 

LeNet in Table 1 that was already compressed by rank clipping. In Figure 7, we only delete the 

matrices of U and V whose dimensions are beyond the largest size of MBC. Even for low-rank 

neural networks, our method can delete the routing wires dramatically, e.g., 93.9% interconnection 

wires are removed in the crossbar array of fc1_v. Fine-tuning the deleted neural networks attains 

the baseline accuracy (99.1%). 
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Figure 7 The percentage of deleted routing wires and accuracy during group connection deletion. fc1_u and 

fc1_v is the low-rank matrix U and V of fc1 after rank clipping, and so forth. 

 

Note that compared with our method, it is more difficult to reduce the routing wires on 

traditional sparse neural networks. This is because its sparse weights are randomly distributed in 

the crossbar arrays and the corresponding routing wire must be preserved even there exists one 

nonzero weight in the row group or column group. 

4.3 Area Estimation 

This section formulates the area estimation method for hardware evaluation in this work. 

MBC area estimation: The use of MBCs in NCS design has been extensively studied. As a 

critical component in such a system, MBCs occupy a significant proportion of whole design area. 

Each MBC is an ultra dense cross-point structure formed by a set of memristors and wires. The 

area of a memristor cell in MBC is 4F2 under the state-of-the-art technology [13], where F is the 

minimum feature size. Restricted by the technology limitations, a feasible MBC implementation 

only considers MBCs that are not larger than 64x64 [12]. To ensure the system reliability and 
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robustness, we only consider MBCs with dimensions constrained within 64x64 in the standard 

library. For those large weight matrices in neural networks, their connections can be distributed 

into several/many MBCs as demonstrated in Figure 1. 

Routing area estimation: Assume that the metal width is Wm, the distance between two 

metals is Wd, and the length of i-th wire between crossbars is Li. The total routing area occupied 

by the wires can be roughly formulated as 

Ar = (Wm + Wd) ∑ LI
Nw
i                                                         ( 9 ) 

Here Nw is total wire count including electrostatic shielding wires. Suppose the average 

wire length is linearly proportional to Nw, the routing area is estimated as 

Ar = αNw
2                                                                    ( 10 ) 

where α is a scalar. 

4.4 Experiments 

This section describes the experiments that evaluate the effectiveness of the proposed rank 

clipping and group connection deletion methods. All the experiments are based on the NCS 

implemented by MBC. The related experiment parameters on memristor and MBC are summarized 

in Table 2. We mainly implement two neural networks--LeNet on MNIST and ConvNet on 

CIFAR-10. The detailed network structures can refer Table 1. 
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Table 2. Experiment parameters 

 

 

4.5 MBC Area Reduction 

In our experiments, we clip all the convolutional and fully-connected layers, except the last 

classier layer. The original rank in the last layer is determined by the number of classes so the 

further reduction is meaningless. The rank clipping method compresses each large weight matrix 

to two skinny matrices by reducing the rank. Figure 8 shows the final remained ranks with respect 

to the accuracy and tolerable clipping error ϵ for convolutional layers in LeNet. Here the original 

rank of conv1 and conv2 is 20 and 50, respectively, as denoted by upper markers on the stems. For 

each layer, the rank decreases as ϵ increases, and finally reaches to a very small value. It can be 

seen that the corresponding accuracy is well maintained. We also observe similar results in fc1. 

More specifically, the layer-wise ranks are reduced to 5, 12 and 36 without accuracy loss, and to 

4, 6 and 6 with merely 1% accuracy loss. 
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Figure 8 The remained ranks in convolutional layers of LeNet. fc1 is omitted for better visualization as its 

original rank 500 is out of chart. 

 

 

Figure 9 (a, b) respectively plot the percentage of remained MBC area with respect to the 

classification error for LeNet and ConvNet. Routing area is excluded in this evaluation. The area 

of each layer is the sum of the areas of U and V. Total area includes the area of the last classier 

layer, i.e., fc2 in LeNet or fc1 in ConvNet. For both networks, the layer-wise areas of both 

convolutional layers and fully-connected layers rapidly reduce with small accuracy loss. 

In summary, the rank clipping can reduce the total crossbar area of LeNet to 13.62% without 

sacrificing any accuracy loss. The crossbar area can be further reduced to 3.78% with merely 1% 

accuracy loss. For more complex ConvNet, no accuracy loss is observed when the crossbar area 

decreases to 51.81%. By paying 1% loss, the total crossbar area is reduced to 38.14%. 
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Figure 9 The MBC area for (a) LeNet and (b) ConvNet, after applying the rank clipping 

4.6 Routing Area Reduction 

To evaluate the routing congestion alleviated by group connection deletion, we use the 

number of routing wires and remained routing area of Eq. (10) as our metrics. Although the 

estimation of routing area in real circuit can be more complex, the real routing area reduction in 

hardware must be positively correlated to our results.  

As aforementioned in Section 3.5, our standard library contains all types of memristor 

crossbars with dimensions constrained within 64x64. When implementing a N × K weight matrix 

U, the MBC sizes are selected based on the following criteria: (1) Implement U in a N × K MBC, 

when N ≪ 64 and K ≪ 64; (2) Implement U by an array of MBCs when N > 64  or K > 64  , 

with the largest available MBC size P × Q, where N and K is divisible by P and Q, respectively. 

In the experiments, the group connection deletion starts with the rank-clipped LeNet or 

ConvNet without accuracy loss as presented in Table 1. Based on the MBC selection criteria, the  
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Table 3. MBC sizes and remained routing wires in large layers 

 

 

 
 

sizes of MBC utilized in large layers are shown in Table 3. Matrices with sizes constrained by 64 

x64 are omitted in the table, and no group Lasso regularization is enforced on those small matrices. 

The experimental results of the remained routing wires after applying the group connection 

deletion without allowing accuracy loss are also presented in Table 3. The results for LeNet are 

remarkable. We achieve the same accuracy of the baseline, with routing wires being only 47.5%, 

24.8%, 6.7% and 18.0% of the original ones in respective layer. This can reduce the layer-wise 

routing area to 8.1%, on average.  

Table 3 also shows that, in ConvNet, our method on average reduces the layer-wise routing 

wires to 70.03% and therefore decrease the layer-wise routing areas to 52.06%, while achieving 

the same accuracy as the baseline. With an acceptable accuracy loss, the routing congestion can 

also be significantly alleviated. Figure 10 comprehensively studies the remained routing wires and 

routing area under different classification errors. With merely 1.5% accuracy loss, the routing area 

in each layer is reduced to 56.25%, 7.64%, 21.44% and 31.64%, respectively. 
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Figure 10 The routing wire (a) and routing area (b) w.r.t. the classification error in ConvNet 

 

At last, Figure 11 shows the sparse weight matrices after group connection deletion for 

ConvNet in Table 3 without accuracy loss. Each blue/red block stands for a collection of weights, 

which are implemented by one crossbar in the NCS design. White regions indicate that there are 

no connections. 

After applying the group connection deletion, the connections in crossbars become sparse. 

More importantly, the sparsity is structural instead of being randomly distributed in traditional 

sparse neural networks. In the figure, a high ratio of column groups in crossbars are regularized to 

all-zeros, such that interconnection wires routing from those crossbar columns can be removed. 

Impressively, as conv2_u and fc1 in the figure show, some blocks have no connections in the 

whole region, indicating that the entire crossbar can be removed in the NCS implementation. It is 

significant because not only routing congestion can be alleviated, but also crossbar area can be 

reduced. We also note that a crossbar with some zero columns/rows can be replaced by a smaller 

but dense crossbar after removing those zero groups, which can further reduce the crossbar area. 
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Figure 11. Weight matrices (transposed) after group connection deletion. The deletion starts from the rank-

clipped ConvNet in Table 1. Matrices are plotted in scale in the order of conv1 u, conv2 u, conv3 u and fc1. 

White regions have no connections. And connections in each blue/red block are implemented in a crossbar. 
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5.0 Classification Accuracy Improvement for Neuromorphic Computing 

5.1  Methodology 

This paper aims at improving the classification accuracy of pure binary neural networks in 

all layers. Such neural networks can be naturally implemented on NCS, such as TrueNorth chip 

and memristor based design. Three novel classification accuracy improving methods are proposed 

in the work, namely, distribution-aware quantization, quantization regularization and bias tuning. 

The implementation of convolutional neural network  (CNN) convolution operation in memristor 

crossbar array and a crossbar variation demo for accuracy improvement are also presented. 

To explain our methodologies, in this section, we take LeNet [15] as the example of CNN 

trained on MNIST – a 28x28 handwritten digit database. Experiments and analysis on more neural 

networks and databases shall be presented in Section 4.2. 

5.1.1   Distribution-aware Quantization 

 In training of neural networks, l2-norm regularization is commonly adopted to avoid over-

fitting. With l2-norm regularization, the final distribution of learned weights in a layer 

approximately follows the normal distribution [28]. A naive quantization method in 

implementation is to quantify all weights to the same group of level selection. However, as shown 

in Figure 12 The blue and orange bars denote the original weight distribution of different layers 

and the learned discrete weights after quantization regularization (QR) in LeNet, respectively. 

 

 



 31 

 
 

 
Figure 12 The blue and orange bars denote the original weight distribution of different layers and the learned 

discrete weights after quantization regularization (QR) in LeNet, respectively. 

 

 

 Let’s taking LeNet as an example, the weight distribution varies from layer to layer: the 

first convolutional layer (conv1) has the most scattered distribution with a wider range scope, while 

the weights of second convolutional layer (conv2) and two fully connected layers (ip1, ip2) have 

concentrated to a relatively narrow scope. The data implies that a quantization optimized for one 

layer may result in a large information loss in another layer. 

Here, we propose a heuristic method -- distribution-aware quantization (DQ) which 

discretizes weights in different layers to different values. In memristor-based NCS, this can be 

realized by programming the resistance states of each crossbar to different values [2]. Our 

experiments on LeNet show that when applying the aforementioned naive method, the test 

accuracy of 1-level quantization quickly drops from 99.15% to 90.77%, while our proposed 
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distribution-aware quantization can still achieve 98.31% accuracy. Note that without explicit 

mention, the quantization levels are selected by cross-validation [29]. 

 

5.1.2   Quantization Regularization 

Distribution-aware quantization separates the training and quantifying processes and 

therefore it cannot avoid the accuracy loss once the quantization is completed. To further improve 

system performance, we propose quantization regularization (QR) which directly learns a neural 

network with discrete weights. 

During the training of a network, a regularization term can be added to the error function 

to control the distribution of weights and avoid overfitting. For example, l2-norm regularization 

can learn weights with normal distribution and l1-norm is commonly utilized to learn sparse 

networks (Glorot and Bengio 2010). The total error function to be minimized with a generic 

regularization term can be formulated as 

E(W) = ED(W) + λ ∙ EW(W)                                                 ( 11 ) 

where λ is the coefficient controlling the importance between data-dependent error ED(W) and 

regularization term EW(W). W is the set of all weights in neural networks. We propose a new 

quantization regularization as  

EW
q (W) = sgn(Wk − Q(Wk)) ∙ (Wk − Q(Wk))                               ( 12 ) 

where Wk  is the k-th weight, Q(Wk) is the quantization value nearest to Wk  and  sgn(∙) is the 

sign function. After forwarding and back propagation, the weight updating with learning rate η can 

be formulated as: 

Wk ← Wk − η ∙
∂ED(W)

∂Wk
− η ∙ sgn(Wk − Q(Wk))                             ( 13 ) 
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 Through the third term on the right side of (13), our regularization descents (reduces) the 

distance between a weight and its nearest quantization level with a constant gradient (±1). 

Compared with the l1-norm and l2 –norm regularization, our proposed regularization method can 

quantify learning weights to the desired discrete values more precisely, meanwhile properly 

control the weight distribution and overfitting. Figure 13 demonstrates and compares the three 

regularization methods. Zero is one of the targeted quantification values in this work, which is 

usually realized through l1-norm based neural network sparsification. In addition, our proposed 

method includes more discrete quantification values. Orange bars in Figure 1 correspond to the 

new weight distribution of LeNet after applying QR, indicating our method can efficiently learn 

weights around quantization levels. Compared with the naive 1-level quantization, including QR 

only can improve accuracy 6.21%. Combining with DQ, the accuracy drop from the ideal case is 

controlled within only 0.20% with 1-level quantization. More experiments will be discussed in 

section 5.2. 
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Figure 13 Comparison of l1-norm, l2-norm and our proposed regularization 

5.1.3   Bias Tuning 

The quantization of weights deviating the information can be formulated as 

yi + ∆yi = ∑ (Wji + ∆Wji)i ∙ xi+bj                                        ( 14 ) 

where Wji  is the weight connecting the i-th neuron in the previous layer to the j-th neuron in this 

layer. ∆Wji  and ∆yi = ∑ ∆Wji ∙ xii  are the deviation of weight and input of activation function, 

respectively, resulted from quantization. The deviation ∆yi  propagates through layers toward the 

output classier neurons and deteriorates the classification accuracy. 

In circuit design of neuron model, the bias usually is an adjustable parameter, e.g.  the fire 

threshold in TrueNorth neuron model works as bias. Therefore, to compensate the deviation, we 

may adjust the neuron bias from bj  to bj + ∆bj such that 

∆bj = −∆yi =-∑ ∆Wji ∙ xii                                               ( 15 ) 
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Figure 14 The framework of proposed bias tuning method 

 

 

 

As such, the neuron activation can remain the original value before quantization. 

Unfortunately, the input xi varies randomly with the input samples (e.g., images) and  a unique 

bias compensation ∆bj  cannot be identified. 

We propose bias tuning (BT) which learns the optimal bias compensation to minimize the 

impact of quantization. Figure 14 The framework of proposed bias tuning method shows the 

framework of the bias tuning: first, both weights and biases are trained without quantization; 

second, weights are quantified and programmed into NCS; third, weights are frozen and biases are 

learned to improve classification accuracy; and finally, the tuned  biases are programmed into 

NCS. Impressively, bias tuning method can achieve 7.89% classification improvement compared 

to the naive 1-level quantization baseline on LeNet. Combining with the above DQ and QR 

methods, the total accuracy drop can be reduced to merely 0.19%. 

5.1.4   Convolution in Memristor Crossbar Array 

The memristor crossbar structure can be naturally mapped to fully connected layers. Here, 

we extend its use to convolution layers. A pixel value (y) in a post feature map is computed by 

𝒚 = ∑ 𝑭𝒌𝒌 ∙ 𝒘𝒌 + 𝒃                                                        ( 16 ) 
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where wk  is the k-th weight in the filter and Fk is the corresponding input feature. Because the 

essence of convolution is multiplication-accumulation, we can employ memristor crossbar array 

to compute. Figure 15 shows an example to compute the convolution of a 5-by-5 feature map with 

a 3-by-3 filter. At the time stamp t0, the green elements are converted to a vector and sent into a 

memristor array through word lines. And at t1, the pink elements are processed similarly to the 

green ones. As the filter shifts, the corresponding features in the previous layer are sent into the 

crossbar in a time-division sequence, such that the output features are computed by the bit line 

(blue) whose weights belong to the filter. As shown in the figure, each bit line is mapped to one 

filter in the convolutional layer. We note that the proposed DQ, DR and BT methods also work for 

weights in CNN. 

 

 

 
Figure 15 Convolution implementation in memristor crossbar array 
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5.2  Experiments 

5.2.1   Experiment Setup 

To evaluate the effectiveness of proposed methods, we conducted three experiments using  

multilayer perception  (MLP) and CNN neural network structures on two datasets: MNIST and 

CIFAR-10 (a 32x32 color image database). The first two experiments are both conducted on 

MNIST dataset using a MLP and a CNN network, respectively. The third experiment is conducted 

on CIFAR-10 dataset using a CNN network. The adopted deep leaning framework is Caffe 

developed by the Berkeley Vision and Learning Center (BVLC) and community contributors 

(Krizhevsky, Sutskever, and Hinton 2012). Detailed network parameters and dataset are 

summarized in Table 4. 

 

Table 4. Network and dataset 
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5.2.2   Function Validation of MLP on MNIST 

 Network 1 is a MLP network with a size of 784x500x300x10, which can't be directly 

implemented in NCS. Previously, we presented the hardware implementation of mapping a large 

network to small crossbar arrays [14]. Here, 784 corresponds to the 28x28 MNIST image input 

pattern; 500 and 300 are the neuron numbers of the first and second hidden layers, respectively; 

and 10 is the final classification outputs. 

The baseline is set as the highest accuracy (all the layers quantified to 0.06) of all naive 1-

level quantization situations without applying any proposed method. To explore the effectiveness 

of each single method and their combination situations, we conducted 8 separate experiments with 

combinations, the experiment results of which are summarized in Table 5. 

Compared with the baseline accuracy, there is a large accuracy increase when applied only 

one of three accuracy improvement methods (1.52%, 1.26%, 0.4%, respectively). Applying any 

two of three methods will make the accuracy further increased. Combining all three methods 

together can achieve a highest accuracy with only 0.39% accuracy drop compared with the ideal 

value without any quantization. We note that, in some cases (e.g.  DQ+QR+BT vs. DQ+BT), 

integrating more than one proposed methods does not improve accuracy much. This is because 

MNIST is a relative simpler database so the effectiveness of these methods on accuracy 

improvement quickly approaches to a saturated level. In more challenging CIFAR-10 database, 

experiments show that more methods of DQ, QR and BT are harnessed, higher accuracy can 

always be obtained by a large margin. 
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Table 5. The accuracy measurement for MLP on MNIST dataset 

 

 

 

5.2.3   Function Validation of LeNet 

 LeNet, which has strong robustness to image geometric transformations, is a much more 

popular network. We utilized it for MNIST and shows the results in Table 6. Compared with the 

MLP network, 1-level precision LeNet can achieve an even lower accuracy drop (0.19% compared 

with 0.39%) after combining all our methods. Remarkably, although the DQ method separates the 

training and quantifying processes, directly quantifying weights in each layer has accuracy loss 

less than 1%, without further fine-tuning. The orthogonality among DQ, QR and BT is also 

indicated by the results. 
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Table 6. The accuracy measurement for CNN on MNIST dataset 

 

 

5.2.4   Function Validation of CNN on CIFAR-10 

We also evaluate the proposed methods in more challenging natural image dataset CIFAR-

10 to verify their generality. The CNN in [4] is adopted without data augmentation. Table 7 

presents the results of all the interested combinations. As expected, CNN has a large accuracy drop 

(64.32%) when applying the naive 1-level quantization while each our proposed technique can 

dramatically hinder the accuracy loss. However, unlike the experiments on MNIST, a sole method 

cannot improve the accuracy of CNN to a satisfactory level. Some combinations of two methods 

perform excellent accuracy improvement. For example, DQ+RQ makes the accuracy level to 

74.43% BinaryConnect neural network in [18] performs state-of-the-art accuracy when the last 

layer utilizes L2-SVM. The parameters in the L2-SVM layer are floating-point and critical for 

accuracy maintaining. However, the SVM is not good for circuit implementation. Our work 

quantifies all weights to one level and controls the accuracy loss within 5.53% for more efficient 

circuit (e.g., memristor crossbar) design. 
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Table 7. The accuracy measurement for CNN on CIFAR-10 dataset 

 

 
 

5.2.5  Learned Filters 

Figure 16 presents the learned floating-point and 1-level precision conv1 filters in LeNet 

and CNN on CIFAR-10, respectively. Our methods can efficiently learn the feature extractors 

similar to the corresponding original ones, even with 1-level precision. Furthermore, the number 

of input channels (RGB) of CIFAR-10 image is 3, such that each pixel in the filter has 33 possible 

colors. For filters with n channels, a 1-level precision filter still has a large learning space with 

3n∙k∙k possibilities, where k is the filter size. Those explain why our method can maintain the 

comparable accuracy. 
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Figure 16 The learned floating-point (upper) and quantified (lower) conv1 filters in LeNet (the gray-scale ones) 

and CNN on CIFAR-10 (the color ones). A zero weight is mapped to pixel value 128, and negative (positive) 

weights are darker (brighter) ones. 

 

5.2.6  Bias Tuning to Alleviate Crossbar Variation 

 As aforementioned, the memristive variations caused by fabrication imperfection can 

result in deviation of the programmed weights [4]. Our bias tuning method can also be extended 

to overcome memristor variation. After programming weights to memristors under the impact of 

variation, we read out the real programmed weights, then ne-tune the bias with weights frozen, 

and finally the tuned biases are reprogrammed to the circuit neuron models to compensate the 

impact of weight variation. 

Figure 17 plots the accuracy vs. the variance of programming process. The entry 4 in Table 

III is taken as the baseline in this investigation on variation impact. The figure shows that the bias 

tuning method successfully hinders the negative impact of variation. 
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Figure 17 The bias tuning in LeNet. The yellow line denotes the accuracy after applying DQ and QR without 

noise; The red line is the baseline with quantization and noise; The green line denotes the accuracy recovered 

from the baseline after bias tuning;  is the standard deviation of Gaussian noise. 

 

5.2.7  Discussion 

Our previous research study [5] species for spiking neural networks, where the probability 

distribution can only be biased to two poles (0 or 1). In this work, we extend the method to 

memristor-based neural networks adopted by state-of-the-art research and large-scale applications 

[30]. The proposed methods can regularize the weights to multiple levels with uniform or 

nonuniform quantization. For example, in our CIFAR-10 experiments, the quantization points in 

layer conv1, conv2, conv3 and ip1 are [-0.12, 0, 0.12], [-0. 08, 0, 0.08], [-0.02, 0, 0.02] and [-0. 

008, 0, 0.008], respectively. Moreover, we discharge the reliance on the floating-point layer in [9] 

and explore a pure one-level precision solution. Comprehensive experiments and analyses on MLP 

and CNN using MNIST and CIFAR-10 datasets are conducted. Our experiments on MNIST shows 

negligible accuracy drop (0.19% in CNN), which is much better than the previous work like [9]. 
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From the aspect of the system implementation, there are extensive research studies on 

binary neural networks deployed in traditional platforms such as CPUs, GPUs and FPGAs. 

However, those approaches may not suitable for the hardware characteristics of brain-inspired 

systems like memristor-based systems. For example, BinaryConnect [18] uses L2-SVM layer, 

which is very costly to be implemented by memristor hardware. In circuit design, bias has the 

characteristic of adjustability, which inspires our bias tuning method in this work. As shown in the 

paper, bias tuning can be used to control quantization accuracy as well as overcome the process 

variation of memristor technology. 
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6.0 Deformable Regularization Work 

Quantization regularization method directly learns a network with discrete weights during 

training process and only brings with small accuracy loss for image classification task. 

Quantization regularization method can be demonstrated in the following figure. In the figure, 

each point falling on the X axis is one of the quantization values. As mentioned before, we can set 

as many discrete quantization values as we can and regularize synapse weights to the predefined 

quantization values.  

As l1-norm and l2-norm regularization methods won’t bring any accuracy loss in the neural 

network training and testing process, a new regularization method can be proposed to gradually 

change the regularization from l1-norm or l2-norm to our quantization regularization method. In 

 

 

 

 

 

 

Figure 18 Quantization regularization method 
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this way, we can avoid accuracy loss as well as adopt the previous quantization regularization 

method. This process can be demonstrated in the following figure. The blue dashed line is 

Quantization regularization method, and black and red line are l1-norm and l2-norm, respectively. 

Green arrows show the changing process from l1-norm or l2-norm to quantization regularization 

norm. 

To further improve the network model performance, the advanced deformable 

regularization (DR) method has been put forward to gradually learn the floating-point weights to 

desired quantized values, which guarantees both accuracy and quantifying results. At the 

beginning of training process, this approach targets to purely train the neural network model. While  

 

 

 

 

 

 

Figure 19 The difference among l1-norm, l2-norm and quantization regularization 
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at the end of training process, the main goal is to do quantization based on previous well trained 

model. However, during the middle stage, the regularization task will gradually shift from the 

training to quantization. Traditional commonly used l1-norm and l2-norm regularization methods 

won’t bring any accuracy loss to neural network models. Thus, based on the equation (12) on 

quantization regularization method, deformable regularization can be formulated as: 

    EW
d (W) = αEW

l1(W) + (1 − α)EW
q

(W)                                      (17) 

    EW
d (W) = αEW

l2(W) + (1 − α)EW
q

(W)                                      (18) 

Where equation (17) (18) describe the advanced deformable regularization method 

gradually changing from l1-norm and l2 -norm regularization respectively.  α here represents the 

weighted parameter to control the balance between traditional regularization term and quantization 

regularization term. It can be easily inferred that when α is equal to 1,  EW
d  is just the basic l1-norm 

or l2-norm term. While when α is equal to 0, it represents the quantization regularization instead. 

When α gradually changes from 1 to 0, the whole deformable regularization term will put more 

emphasize on traditional l1 -norm and l2-norm at the beginning and do more quantization work at 

the end. Here, α itself can also be changed in different ways, such as straight line, ellipse 

and even cosin. For example, when α is changing with a straight line, it can be denoted as: 

α =  −
1

N
n + 1                                                               (19) 

Or α changing like an ellipse or cosin function: 

α =  √1 −
n2

N2                                                                (20) 

α = 0.5(1 + cos
π

N
n)                                                        (21) 

Here in the above equations, N denotes the total training iterations, and n denotes the n-th 

training iteration along the whole training process. Figure 20 illustrates the three changing patterns  
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Figure 20 The left figures show three kinds of changing methods for parameter 𝛂, with straight line, ellipse and 

cosin, respectively. The right three figures show the corresponding error function doing experiments on MNIST 

dataset with LeNet neural network. 

 

 

 

with the corresponding error function of doing experiments on LeNet neural network for MNIST 

dataset. Compared with straight line pattern, the latter two could have much more smooth error 

function curve and help the network model converge much faster. 

Based on the above analysis, the total cost function can be summarized as (here we only 

take l2-norm as an example): 

E(W) = ED(W) + λ(αEW
l2(W) + (1 − α)EW

q
(W))                                      (22) 

Here ED(W), EW
l2(W) and EW

q (W) are the generic, l2-norm and quantization regularization 

term, respectively. Accordingly, the model synapse parameters can be updated by the following 

rule after forward and back propagation in each iteration: 

Wk ← Wk − η
∂ED(W)

∂Wk
− ηλ(αWk + (1 − α)sgn(Wk − Q(Wk)))                   (23) 

!

!

!

iterations

error

error

error

iterations



 49 

6.1 Incremental Quantization 

In order to implement deformable regularization method more efficiently, we propose a 

novel incremental layer-wise quantization (ILQ) framework inspired by the INQ work presented 

by [41]. The key idea of INQ work is to use weights partition operation for group generating on 

the pre-trained neural networks model. Then quantization operation will be applied to one weight 

group while re-train the other groups to compensate the accuracy loss brought by quantization. In 

the following iterations, quantized weights will firstly be fixed, and weight partition, quantization 

and re-training will be repeated on the rest parts of weights. In our ILQ framework, weights 

partition is applied layer by layer, in other words, all weights on one layer will be partitioned as 

one single group. The whole ILQ framework is demonstrated in Figure 21. At the very beginning, 

the neural networks will be trained from scratch and the pre-trained model will be prepared for the 

follow-up operations. Deformable regularization methods together with distribution-aware 

quantization will be applied to the first convolutional layer in the 1st iteration and quantized 

weights can be got after this DR operation. Then quantized weights on first convolutional layer 

will be fixed and continue to apply DR to the second convolutional layer and so on forth. While at 

the end, before the hardware deployment of model, we will fix all quantized weights for all layers 

and apply a bias tuning to the whole model. 
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Figure 21 ILQ framework illustration. The pre-trained model will be fed into the neural network model and 

used for weights initialization. And then all quantized weights will be fixed after applying DR to the previous 

layer weights. When all weights are quantized, a final bias tuning operation will be applied to the whole neural 

networks. 

 

 

 

ILQ framework together with DR method can efficiently learn a neural network and 

achieve a high accuracy. Figure 22 demonstrates the accuracy results after applying DR to each 

previous layer on CIFAR-10 dataset. We only achieve 3.6% accuracy loss by quantizing 32-bit 

floating-point weights to three levels compared with baseline model with the full-precision weights. 

As we can see from this figure, DR method outperforms the previous quantization regularization 

method (5.53% accuracy loss). 
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Figure 22 Classification accuracy results on CIFAR-10 dataset after implementing ILQ framework. Each 

columnar in the figure demonstrates the intermediate processing result by incrementally fixing the quantized 

weights of previous layers. 

6.2 Function Validation of DR on MNIST 

Experiments have been conducted on MNIST dataset using TensorFlow framework to 

evaluate the deformable regularization method together with distribution-aware quantization and 

bias tuning methods. Experimental results can be clearly visualized on TensorBoard, a suite of 

visualization tools accompanying with Tensorboard. Figure 23 and Figure 24 demonstrates the 

deformable quantization process on two convolutional layers and two fully-connected layers of 

LeNet-5-like CNN neural network structures. From these two figures starting from the very top to 

the very bottom along the y-axis, we can easily see that at the beginning of training, the neural 

network is more emphasize on training the network model, while at the end, the model is targeting 

baseline conv1 conv2 ip1 ip2 ip3
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on quantifying weights parameters. During the whole training process, the model is gradually 

transforming from learning with full-precision parameters to quantized parameters. Also, we 

compared the deformable regularization with basic quantization regularization method on MNIST 

dataset by combining the distribution-aware quantization and bias tuning methods. Only 

0.1% accuracy loss is observed for deformable regularization method, which outperforms the 

results obtained by utilizing quantization regularization method (0.19%). More detailed 

information is shown in Table 8. 

 

 

 

 
 

 
Figure 23 Deformable quantization process on two convolutional layers and the experiments are conducted on 

MNIST dataset using LeNet-5-like neural networks. The x-axis is the weights values and the y-axis is the 

training iterations. From the very top to the bottom along the y-axis, it shows the whole training process. 
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Figure 24 Deformable quantization process on two fully-connected layers and the experiments are conducted 

on MNIST dataset using LeNet-5-like neural networks. The x-axis is the weights values and the y-axis is the 

training iterations. 

 

 

Table 8. The accuracy measurement for DR and QR on MNIST 

 

 
DQ QR DR BT Baseline Accuracy Drop 

    99.15% 98.96% 0.19% 

    99.2% 99.1% 0.1% 
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6.3 Function Validation of DR on CIFAR-10 

 

Since promising results have been achieved on MNIST dataset utilizing LeNet-5-like 

neural network, in order to explore its generality, we also implement this advanced quantization 

method on more complex and challenging CIFAR-10 dataset. Table 9 shows the comparison 

results between basic quantization regularization and advanced deformable regularization methods. 

As we can see that deformable regularization method can achieve less accuracy loss, which proves 

that deformable regularization method is more efficiently and friendly in the quantization process 

during training. 

6.4 Discussion 

Our previous research study specifies for spiking neural networks, where the probability 

distribution can only be biased to two poles (0 or 1). In this work, we extend the method to 

memristor-based neural networks adopted by state-of-the-art research and large-scale applications. 

The proposed methods can regularize the floating-point weights to multiple levels with uniform or 

nonuniform quantization. For example in our CIFAR-10 experiments, the quantization points in 

layer conv1, conv2, conv3 and ip1 are [0:12; 0; 0:12] , [0:08; 0; 0:08] , [0:02; 0; 0:02]  and [0:008; 

0; 0:008] , respectively. Moreover, we discharge the reliance on the floating-point layer and 

explore a pure ternary precision solution. Comprehensive experiments and analyses on MLP and 

CNN using MNIST and CIFAR-10 datasets arealso conducted. Our experiments on MNIST shows 

negligible accuracy drop (0.1% in CNN), which is much better than the previous work like.  
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Table 9. The accuracy measurement for DR and QR on CIFAR-10 

 

 
DQ QR DR BT Baseline Accuracy Drop 

    82.12% 76.59% 5.53% 

    84.5% 80.9%% 3.6% 

 

 

From the aspect of the system implementation, there are extensive research studies on 

binary neural networks deployed in traditional platforms such as CPUs, GPUs and FPGAs. 

However, those approaches may not suitable for the hardware characteristics of brain-inspired 

systems like memristor-based systems. For example, BinaryConnect uses L2-SVM layer, which 

is very costly to be implemented by memristor hardware. In circuit design, bias has the 

characteristic of adjustability, which inspires our bias tuning method in this work. As shown in the 

paper, bias tuning can be used to control quantization accuracy as well as overcome the process 

variation of memristor technology. 

Furthermore, in our work, the quantization regularization method and deformable 

regularization method are directly applied into model training stage, which can well overcomes 

the big non-differential issue existing in quantization during feedforward and backforward 

propagation. This is because that the quantization regularization terms added to the generic error 

function for both methods are differential. Take the quantization regularization method as an 

example, it can descent the distance between a weight and its nearest quantization level with a 

constant gradient in each iteration. Quantifying weight parameters in training stage can largely 

alleviate the performance degradation for network model, one reason lies in that during train-  ing, 

network model can be re-trained to tune weight parameters after quantization in later training 

iterations. The other important reason is that after quantization term is added to the generic cost 
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function term, both terms can be minimized during training stage which guarantees the 

quantization and performance degradation concurrently. 
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7.0  TRNG Design Leveraging Emerging Memristor Technology 

7.1 Introduction 

Random number generators (RNGs) are broadly used in various systems and applications 

where unpredictable data are required, such as communication systems, statistical sampling, 

computer simulation, and cryptography systems[48]. There are two types of typical RNG designs, 

pseudo random number generator (PRNG) and true random number generator (TRNG). PRNG 

generates a sequence of numbers by injecting an initial seed to a given computing algorithm. 

Because the initial seed is deterministic, the properties (correlation, probability distribution, etc.) 

of these numbers can only be an approximation of true randomness, that is, the number sequence 

is pseudo random. TRNG, instead, usually leverages unpredictable physical phenomenon, such as 

thermal noise, random telegraph noise (RTN), atmospheric noise, electromagnetic and quantum 

[49]. Random data plays a crucial role in system protection of many applications where the true 

stochastic characteristic is highly appreciated. 

Thermal noise is an intrinsic noise induced by thermal agitation of charge carriers (usually 

the electrons) inside an electrical conductor at equilibrium, which occurs regardless of applied 

voltage. RTN refers to a kind of electronic noise in semiconductors: when applying discrete 

voltage or current levels on semiconductors, sudden step-like RTN signals can be generated. 

Traditional thermal-noise-based TRNG usually is composed of a stochastic signal source, multi-

level amplifiers, A/D converter and post-processing circuits [50]. Recently, a TRNG based on 

RTN in contact resistive random access memory (CRRAM) was proposed in which the high- and 

low-resistance states (HRS and LRS) of CRRAM are subject to RTN and therefore the resistance 
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fluctuations can be converted to a stream of random bits [51]. Some TRNG designs leveraging the 

nanotechnologies have also been investigated. For example, Vivoli et al. presented a device-

independent quantum TRNGs using a photon pair source based on spontaneous parametric down 

conversion (SPDC) which can gain both high entropy and high rate of random bit generation [52]. 

Spin dice is a spintronic-based TRNG that utilizes the stochastic nature of spin-torque switching 

in a magnetic tunnel junction (MTJ) to generate random numbers [53]. 

Memristors, as emerging two-terminal nonlinear dynamic electronic devices [54], have 

been extensively studied in recent years. Because of the advantages of good scalability, high 

endurance and ultra-low power consumption [55]. Memristors have been applied in non-volatile 

memory storage, logic implementation and neuromorphic computing systems [56][57][58]. 

Moreover, the memristive behaviors in various memristive devices have been thoroughly 

investigated, in which the stochastic processes have been clearly demonstrated [59][60]. For 

instance, the distribution of static memristances at HRS/LRS can be approximated with a 

lognormal probability density function, and the cumulative probability of dynamic switching from 

one static state to the other is also a lognormal function of the applied voltage. The standard 

deviation of the static stochastic behavior is negligible compared to the large gap between HRS 

and LRS, making memristor as an ideal component for binary data storage. Due to the big variance 

of physical materials and the flexible configuration in programming operation, the dynamic 

switching of memristive devices demonstrates a very large scalability. The state-of-the-art 

switching performance in real tantalum-oxide based memristors showed the cycling endurances of 

over 1012 cycles and fast switching speed below 10ns [61]. Moreover, the sub-nanosecond 

switching time has been demonstrated through tantalum-oxide based memristors with durations of 

105 and 120ps for low- and high-memristance switching, respectively [62]. 
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In this work, we propose a novel memristor-based true random number generator (MTRNG) 

design by leveraging the stochastic behaviors of memristor. By modulating the width and 

amplitude of programming pulses applied on memristor devices, the zero-versus-one distribution 

and the sampling rate of bit streams can be flexibly adjusted. More importantly, the adoption of 

memristor technology effectively simplifies the structure of TRNG, offering a compact, fast and 

energy-efficient design. To further improve the entropy of random bit streams, we propose to 

enhance the design by integrating two basic (1-branch) MTRNGs through an XOR gate. The 

circuit simulations show that the clock of 1-branch and 2-branch designs based on TiO2 

memristors [67][68] can reach at 1.05GHz and 0.96GHz with the power assumptions of 31.1μW 

and 80.3μW, respectively. 

7.2 Preliminary 

7.2.1  Memristor 

As the fourth fundamental component besides resistor, capacitor and inductor, memristor 

describes the dynamic relationship between charge (q) and flux (φ) [63]. Particularly, it can 

“remember” the total electric flux flowing through the device and represent it as the memristance 

(M).  
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Figure 25 The structure of a TiO2 memristor 

 

 

Figure 25 illustrates the structure of a TiO2 memristor sandwiched between two metal wires. 

The device consists of two titanium dioxide layers: the doped layer TiO2-x is filled with oxygen 

vacancies and therefore has a high conductivity; the pure TiO2 (undoped layer), in contrast, has 

the character of insulator. While there is a positive bias voltage (V+) applying to the device, the 

oxygen vacancies will be forced into the undoped area and therefore the total resistance (or 

memristance) continuously reduces. On the contrary, a reversed bias voltage (V‒) will force the 

vacancies back to its original position and raise the memristance. Without enough external voltage, 

the oxygen vacancies within the structure remain so as that the memristance maintains [64]. 

For ease of explanation, we define the following terminologies and variables that will be 

referred in this paper: 

• Static states – the state in which the equivalent resistance is high (Roff) or low (Ron). OFF 

state and ON state denote the states of Roff and Ron, respectively. 
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• Dynamic switching – the process of switching from one static state to the other. OFF 

switching refers to the process switching from ON to OFF, while ON switching 

corresponds to the opposite operation. 

• Programming pulse – the voltage pulse applied on the memristor to trigger the dynamic 

switching process. 

7.2.2  Stochastic Behaviors of Memristors 

Stochastic behaviors have been widely observed in metal oxide based memristor devices, 

including the variations in static states and dynamic switching processes.  

Static stochastic behavior: The final resistance value of a memristor during a programming 

operation is not deterministic but a stochastic variable related to the voltage amplitude and duration 

of the programming pulse. The randomness of Ron and Roff is denoted as the static stochastic 

behavior of memristors. The distributions of Ron and Roff usually follow the lognormal probability 

density functions [65][66]. 

Dynamic stochastic behavior is resulted by means of the complicated stochastic oxide 

electroforming process during ON/OFF switching [65] in which the successful switching 

probability monotonically increases along with the increase of the amplitude and/or duration of 

programming pulse. More specific, the cumulative probability function of a successful switching 

between Ron and Roff follows a lognormal distribution [67]. 
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7.3 Methodology 

In this work, we propose a new memristor-based true random number generator (MTRNG) 

design. The reconfigurable dynamic stochastic behavior of memristors provides a flexible design 

space for various applications with different sampling rate requirements. Though the memristance 

value of each programming is not deterministic due to the static stochastic behavior, the stability 

of the design can still be promised by the large gap between the high and low memristance states. 

Moreover, we design and customize a 2-branch MTRNG which integrates two pieces of basic 1-

branch MTRNGs. Markov chain analysis shows that the 2-branch scheme further maximizes the 

entropy of the random number sequence. Our work not only presents a novel circuit to generate 

random number streams but also can be generalized to a statistical methodology for memristor-

based design. 

7.3.1  Stochastic Model of TiO2 Memristor 

Because of the static stochastic behavior, the memristor resistance in ON or OFF state is 

not deterministic but random, even for a single identical device.  In a TiO2 memristor, the 

distributions of static state resistance Ron and Roff both can be approximated to the lognormal 

probability density function (pdf) such as [67]: 
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where, μ is the normal mean and σ is the standard deviation of the normal distribution of the initial 

barrier width of the memristor device. Certainly, the parameters of μ and σ for Ron and Roff are 

different. Figure 26 presents the real measurement data of a TiO2 memristor [68].  
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Giving E[Ron] and E[Roff] as the means of Ron and Roff, respectively; and their standard 

deviations are D[Ron] and D[Roff], respectively. The device demonstrated in Figure 26 has E[Ron] 

≈  105Ω and E[Roff] ≈ 108Ω. Both D[Ron] and D[Roff] are more than 2 orders smaller than the gap 

between the means (E[Roff] − E[Ron]). Such a highly isolated binary characteristic in memristors 

guarantees an ideal physical mechanism for MTRNG design. Details shall be presented and 

discussed in Section 7.4.  

The dynamic stochastic behavior refers to the successful switching probability between 

ON and OFF state. Under an external programming pulse, the switching probability is determined 

by the voltage amplitude and the pulse width (duration) t. The cumulative distribution can be 

approximated by lognormal distribution [67]: 
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Where, τ is the mean of the switching time, which has an exponential dependency on the 

applied voltage amplitude, while its deviation σt only has a weak dependence on the voltage.  

 

 

Figure 26 Static stochastic behavior 
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Figure 27 Cumulative switching probability distribution for ON (a) and OFF (b) switching under different 

applied voltage amplitude 

 

 

 

Figure 27 shows the cumulative switching probability distributions of ON and OFF 

switching. Both results reveal that increasing the programming duration of a constant-amplitude 

pulse can increase the switching probability. Moreover, a larger voltage amplitude decreases the 

required programming duration to reach a given switch probability.  
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7.3.2  The MTRNG Design 

Our proposed MTRNG design switches between the programming mode and the reading 

mode to generate the random bit stream. In the programming mode, a programming pulse is 

applied on the memristor to trigger a dynamic switching between the ON and OFF states. In the 

reading mode, the programmed binary resistance is converted to a binary bit. In the design, the 

selection of the programming pulse amplitude determines the maximal allowable sampling rate of 

the bit stream. We can control the ratio of the probability of 0’s and 1’s by modulating the 

programming duration. Ideally, a uniform distribution of 0/1 bit stream can be obtained by aligning 

the pulse width to the switching probability of 0.5 under a given pulse voltage (refer Figure 27).   

Figure 28 depicts the proposed MTRNG circuit with the following key control and internal 

signals: Vdc_r, Vdc_on and Vdc_off are the DC voltage sources used in reading mode, the ON switching 

and the OFF switching programming, respectively. 

Vread is the control signal to enable the reading mode to detect the state of the memristor. 

Vp_on and Vp_off are used for program the memristor to ON and OFF states, respectively. 

Vd is the bias voltage representing the state of memristor. It determines the generated output 

bit of the MTRNG. 

Vg is used to modulate Vd for bit generation. 

Clk is the clock signal to control the data capture at D flip-flop. 

The sequence of control signals is also illustrated in Figure 28. Vp_on and Vp_off are turned 

on alternatively to enable the ON and OFF switching. Under the ideal condition with the sufficient 

programming voltage and pulse duration, the memristor can always be programmed, that is, the 

device switches between ON and OFF states. By properly controlling the programming voltage 

amplitude together with the pulse duration corresponding to the required bit distribution, the 
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switching of the memristor becomes more random. In our design, following every programming 

period is a read operation enabled by Vread. The ON and OFF states of the memristor will be 

transferred to 1 or 0, respectively, under appropriate Vg setup. Here, a D flip-flop is used to recover 

distorted binary signal resulted by stochastic memristance values. More details of our design 

configurations and the experimental results of simulation shall be conveyed and discussed in 

Section 7.4. 

The simple MTRNG in Figure 28 can be used to generate a stream of random bits. However, 

the scheme cannot obtain the maximal entropy because the memristor will keep at the ON or OFF 

state if the previous switching fails. Take the signal sequence in Figure 28 as an example and 

assume the previous state of the memristor is OFF: if an ON switching triggered by Vp_on fails so 

that the memristor remains as OFF, the following OFF switching initialized by Vp_off does not 

affect the state of the memristor. In such a case, this OFF switching is not a stochastic process.  
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               Figure 28 The scheme of the basic 1-branch MTRNG design 
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To improve the entropy of the random bit stream, we further enhance the design. As 

illustrated in Figure 29, it integrates two basic (1-branch) MTRNGs through an XOR gate. Because 

the stochastic switching of one memristor is independent to the other, the entropy of the random 

bit stream through the XOR function can be maximized under appropriate dynamic switching 

probability. We name this scheme as 2-branch MTRNG design.   

 

7.3.3  MTRNG Markov Chain Analysis  

Here, we will give a detailed probability analysis for both the basic 1-branch and the 

enhanced 2-branch MTRNG designs based on the Markov chain analysis. The variables used 

include: 

• Peven(i) – the probability of an even bit in the random bit stream as logic state i(0,1) after 

ON switching operation. 

• Podd(i) – the probability of an odd bit in the random bit stream as logic state i(0,1) after 

OFF switching operation. 

• Pon – the ON switching probability to which the Vp_on cumulates, which is also the 

successful switching probability from OFF to ON state shown in Figure 27 (upper). 

• Poff – the OFF switching probability to which the Vp_off cumulates. It is equivalent to the 

successful switching probability from ON to OFF state shown in Figure 27 (lower). 

• S – the state space of a bit in the random stream, S = {Smn | m=0,1 and n=0,1}. m and n 

denote the position and value of the bit, respectively. The bit is the even-th (odd-th) one in 

the stream if m=0 (m=1) and its value is n. n=0 (n=1) corresponds to Roff  (Ron). 
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Figure 29 The scheme of the enhanced 2-branch MTRNG design 
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Figure 30 The state transition diagram 

 

 

• 
(2)

evenP – the two-step transition matrix between two sequential even bits. 

• 
(2)

oddP – the two-step transition matrix between two sequential odd bits. 

• P2-branch(i) – the probability distribution of the output of 2-branch MTRNG (i=0,1). 

 

Figure 30 summarizes the state transition diagram. As aforementioned in Section 7.3.2 , 

the transition probability of 1 exists because of the invalid ON (OFF) switching operation on ON 

(OFF) state.  
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The stochastic process of generating the random bit stream is a first-order Markov chain. 

To simplify the Markov chain analysis, we separately calculate the 0/1 probability distributions of 

the even and the odd bits, such as: 

(2)
1 0 1

1 0 1

on on
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off off

P P

P P

  − 
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,                                                 (26) 
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Given 0 < Poff < 1 and 0 < Pon < 1, every element in
(2)

evenP  and 
(2)

oddP  is larger than 0. As such, 

the Markov chains with the transition matrixes of Eqs. (26) and (27) have stationary distributions 

evenπ and oddπ , denoting the stationary 0/1 distributions of even and odd bits, respectively. They 

satisfy 
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Given Pon and Poff, the solution of the equation set is 
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To maximize the Shannon entropy of random bit stream generated by MTRNG, the 

probability should be uniformly distributed: 

(0) (1)(0 0.) 5(1)odd odd even evenP P P P= = = =
.                                       (30) 

Note that Eq. (7) cannot be a solution of Eq. (6), indicating that the basic 1-branch MTRNG 

design cannot generate an entropy-maximized random number sequence. Only skewed probability 

distribution can be produced where Peven(i) ≠ 0.5 or Podd(i) ≠ 0.5. 
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The enhanced 2-branch MTRNG design, in contrast, can obtain the maximized entropy by 

appropriately setting Pon and Poff, e.g., aligning Vp_off of a branch to Vp_on of the other branch and 

setting Peven(0) = Peven(1) = 0.5, uniformly distributed P2-branch(i) can be satisfied because  

2

2

(0) (0) (0) (1) (1) 0.5

(1) (0) (1) (1) (0) 0.5

branch even odd even odd

branch even odd even odd
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off
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off
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+
.                                                         (32) 

Poff and Pon shall be carefully selected for the enhanced 2-branch design. From the one hand, 

smaller Poff and Pon are more preferable because the circuit can operate under a faster sampling 

rate. From the other hand, we tend to avoid the steep slope of switching probability curve because 

a tiny fluctuation of programming duration can result in a large drift of the switch probability. 

7.4 Experiment 

We evaluate the proposed MTRNG designs through circuit simulations in Cadence 

Virtuoso environment. The 180nm CMOS technology and the memristor device parameters in [67] 

were adopted. Here, we first discuss the design configuration followed by the simulation of 

MTRNGs and the probability distribution of random bits. At the end, the speed and power 

consumptions of the proposed designs are evaluated and analyzed.  
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7.4.1  The Selection of Gate Voltage Vg 

The gate voltage of transistor Mrd (Vg) in Figure 28 is a crucial parameter to modulate the 

bias voltage Vd and the finally output Vout. As aforementioned in Section 3.1, the distributions of 

Ron and Roff are approximated to the lognormal probability density function. Based on the real 

measured resistance distribution of a TiO2 memristor in Figure 2, the means of the high and low 

resistance states, E[Ron] and E[Roff], are about 105Ω and 108Ω, respectively. Even considering the 

worst situation where Ron is 106Ω and Roff is 107Ω, Roff is still one order higher than Ron. 

Comparing the difference between E[Ron] and E[Roff] and the noise margin of CMOS transistors, 

we are able to map the static memristor resistances to binary code by constraining Vg within a 

critical range.  

We start the evaluation with the typical condition when Ron=105Ω and Roff =108Ω. To 

find the critical range for Vg, the memristor resistance is fixed and Vg is scanned from 0V to 

Vdc=1.8V. The simulation results in Figure 31 (upper) show that Vout falls from high to low when 

Vg is higher than a critical voltage and therefore the equivalent resistance of Mrd is smaller than a 

threshold. More specific, under the typical situation when Roff =108Ω, Vout drops to low as Vg 

approaches to 0.34V. For Ron=105Ω, the critical falling point is around 0.66V. Thus, the ON and 

OFF states of memristor can be respectively mapped to HIGH and LOW of Vout if setting Vg 

within the range from 0.34V to 0.66V.  

We also verify the circuit stability under the worst scenario condition when Ron=106Ω and 

Roff =107Ω. Figure 31 (lower) presents the simulation results. A similar trend as Figure 31 (upper) 

can be observed except that the allowable range of Vg reduces to 0.43V ~ 0.53V. The narrower 

critical range indicates the degraded circuit stability. Even though, the inclusion relationship of the 

critical ranges in Figure 31 (upper) and (lower) shows that Vg in the intersection set can guarantee 
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our MTRNG functions properly even under the worst scenario condition. Based on the analysis, 

we set the gate voltage Vg to 0.5V in the following simulations. 

 

 

 

Figure 31 Vg vs. Vout: (a) under the means of the high and low resistance states, as Ron=105Ω and Roff 

=108Ω; (b) at the worst condition when Ron=106Ω and Roff =107Ω. 
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Figure 32 Simulation of 1-branch MTRNG (Ron=105Ω and Roff =108Ω) 

 

 

 
 

 
Figure 33 Simulation of 1-branch MTRNG (Ron=106Ω and Roff =107Ω) 

 

 

 

 

 

 

 

 

 
Figure 34 Simulation of 2-branch MTRNG 
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7.4.2  MTRNG Simulation 

Figure 32 and Figure 33 show the simulation results of the basic 1-branch MTRNG at the 

typical (Ron=105Ω and Roff =108Ω) and the worst-case (Ron=106Ω and Roff =107Ω) conditions, 

respectively. The simulations show that stochastic binary states of memristor can be successfully 

converted to random bit stream. Even in the extreme situation when Roff is very close to Ron, the 

basic 1-branch MTRNG design still functions properly. Figure 33 shows the simulation result of 

the enhanced 2-branch MTRNG, the output random bit stream of which is dependent on the signals 

of two bit sequences generated by the two 1-branch MTRNGs. 

To analyze the probability distribution of the 1-branch and 2-branch MTRNG designs, the 

memristor ON switching and OFF switching probabilities are set to Pon=1/4 and Poff=1/3, 

respectively. To ease the explanation, we show the probability distributions of the first 100 bits 

generated by 1-branch and 2-branch MTRNG in Figure 35. Here, each point represents the 

probability of logic 1 at the bit. Simulation shows that both MTRNG schemes rapidly converge 

towards their stationary distributions after only a few steps because of the ergodicity of the Markov 

chain. The fast convergence of the Markov chain guarantees that the bit probability approaches to 

the desired distributions quickly.  

For the 1-branch MTRNG design, the probability distribution of the odd-th bits is non-

uniform. The situation can be solved by passing two bit streams of the 1-branch design through an 

XOR gate. Consistent to the theoretical analysis in Section 7.3.3, a uniformly distributed random 

bit stream can be generated via the 2-branch MTRNG design.  
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Figure 35 The probability distribution of random bit in the stream generated by 1-branch (left) and 2-branch 

(right) MTRNG 

 

7.4.3  The Design Evaluation 

Traditional thermal noise based TRNGs usually require multistage voltage amplifiers to 

magnify the weak signals, resulting in high design complexity and cost [68]. The latest random 

telegraph noise (RTN) based TRNG requires an analogy comparator to convert RTN to binary 

code [51]. For the reason, its sampling rate is relatively low at only 11.4Hz.  Thus, its applications 

are limited to low-speed systems such as encryption system [51].  

Amplifier is not necessary in our MTRNGs for the large bias voltage Vd. The design is 

realized in a much simpler form: the basic 1-branch MTRNG consists of only one memristor, six 

access control transistors, and one D flip-flop. Determined by the memristor programming voltage 

and duration, the proposed MTRNGs can operate under a large frequency range varying from Hz 

to GHz. Our simulations show that the minimal reading periods of the 1-branch and 2-branch 
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designs are only 0.95ns (1.05GHz) and 1.04ns (0.96GHz), respectively. Moreover, Figure 36 

shows the relationship between the random bit stream sampling period T and the voltage of 

programming pulse for the 2-branch MTRNG when setting Poff=1/3 and Pon=1/4. The log function 

of sampling period approximately linearly decreases with the voltage amplitude.  

The detailed power consumption results of the 1-branch and 2-branch MTRNGs are 

summarized in Table 10. Benefiting from the simple structure and the ultra-low energy 

characteristic of memristors, MTRNGs obtain low power consumption of tens of μW regardless 

of 1-branch or 2-branch design styles. 

 

Table 10. Power consumption of MTRNGs 

 
 HRS (μW) LRS (μW) Average (μW) 

1-branch 16.5 45.6 31.1 

2-branch 44.6 115.9 80.3 

 

 

 

 

 



 77 

 

 

Figure 36 Dependence of programming voltage for random bit stream sampling period in ON switching 

(upper) and OFF switching (lower) 
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8.0  Conclusions 

Firstly, a framework named group scissor that aims to alleviates the impact of hardware 

limitations on the NCS implementation of large neural networks has been introduced. Specifically, 

rank clipping and group connection deletion methods are proposed to reduce area consumption of 

synapse crossbars and routing area between crossbars, respectively. The experiments show that 

our methods can reduce crossbar area and routing area to 13.62% and 8.1%, respectively, with no 

accuracy loss for LeNet. Furthermore, for implementation of more challenging ConvNet, we can 

safely reduce the crossbar and routing areas to 51.81% and 52.06% respectively without losing 

classification accuracy. The proposed framework can significantly save hardware area and 

improve system scalability. 

Secondly, in the weight quantization work, we first analyze the impact on accuracy 

degradation of low-resolution synapses (weights) in neuromorphic hardware implementations 

theoretically. In order to maintain the high image classification accuracy for neural network model 

with full precision weights and minimize the performance degradation during NCS deployment, 

we propose three orthogonal methods (distribution-aware quantization, quantization regularization 

and bias tuning) to learn synapses with ternary levels. What’s more, based on quantization 

regularization method, we further propose an advanced deformable regularization method with 

incremental lay-wise quantization framework, which can further improve the low-precision 

network model performance. We firstly applied three orthogonal methods and their combinations 

to MLP on MNIST, CNN on MNIST and CNN on CIFAR-10 database, comparable state-of-the-

art achievements are obtained: only 0.39%, 0.19%, and 5.53% accuracy loss, respectively. Our 

work will be more suitable for memristor-based neural networks. And then we applied advanced 
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deformable method and their combinations to CNN on MNIST and CNN on CIFAR-10 database, 

comparable state-of-the-art achievements are obtained: only 0.39%, 0.1%, and 3.6% accuracy loss, 

respectively. Even though our work is conducted based on the theory of memristor devices, all 

proposed methods in this paper are general solutions and can be applied to any other low-precision 

NCS design. 

At last, a memristor-based true random number generator (MTRNG), which leverages the 

stochastic behavior of memristors and converts the programmed resistances to random binary bit 

stream, has been proposed in this work. Besides the basic 1-branch MTRNG, we also enhance the 

design to 2-branch scheme which can obtain the identical generating probability of bit 1 and bit 0, 

promising the maximum entropy of random number generation. Sampling rate of our designs can 

reach at GHz with minimum power consumption of 31.1μW. The proposed MTRNG designs 

exhibit characteristics of simple structure, compact area, high frequency, low power and flexible 

configurability. 
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