85,135 research outputs found

    A new ghost cell/level set method for moving boundary problems:application to tumor growth

    Get PDF
    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth

    Memory in a new variant of King's family for solving nonlinear systems

    Full text link
    [EN] In the recent literature, very few high-order Jacobian-free methods with memory for solving nonlinear systems appear. In this paper, we introduce a new variant of King's family with order four to solve nonlinear systems along with its convergence analysis. The proposed family requires two divided difference operators and to compute only one inverse of a matrix per iteration. Furthermore, we have extended the proposed scheme up to the sixth-order of convergence with two additional functional evaluations. In addition, these schemes are further extended to methods with memory. We illustrate their applicability by performing numerical experiments on a wide variety of practical problems, even big-sized. It is observed that these methods produce approximations of greater accuracy and are more efficient in practice, compared with the existing methods.This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE).Kansal, M.; Cordero Barbero, A.; Bhalla, S.; Torregrosa Sánchez, JR. (2020). Memory in a new variant of King's family for solving nonlinear systems. Mathematics. 8(8):1-15. https://doi.org/10.3390/math8081251S11588Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zCordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2011). Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 217(9), 4548-4556. doi:10.1016/j.amc.2010.11.006Babajee, D. K. R., Cordero, A., Soleymani, F., & Torregrosa, J. R. (2012). On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-12. doi:10.1155/2012/165452Zheng, Q., Zhao, P., & Huang, F. (2011). A family of fourth-order Steffensen-type methods with the applications on solving nonlinear ODEs. Applied Mathematics and Computation, 217(21), 8196-8203. doi:10.1016/j.amc.2011.01.095Sharma, J., & Arora, H. (2013). An efficient derivative free iterative method for solving systems of nonlinear equations. Applicable Analysis and Discrete Mathematics, 7(2), 390-403. doi:10.2298/aadm130725016sSharma, J. R., Arora, H., & Petković, M. S. (2014). An efficient derivative free family of fourth order methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 235, 383-393. doi:10.1016/j.amc.2014.02.103Wang, X., Zhang, T., Qian, W., & Teng, M. (2015). Seventh-order derivative-free iterative method for solving nonlinear systems. Numerical Algorithms, 70(3), 545-558. doi:10.1007/s11075-015-9960-2Chicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2020). On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory. Applied Mathematics Letters, 104, 106277. doi:10.1016/j.aml.2020.106277Petković, M. S., & Sharma, J. R. (2015). On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numerical Algorithms, 71(2), 457-474. doi:10.1007/s11075-015-0003-9Narang, M., Bhatia, S., Alshomrani, A. S., & Kanwar, V. (2019). General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 352, 23-39. doi:10.1016/j.cam.2018.10.048King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Hermite, M. C., & Borchardt, M. (1878). Sur la formule d’interpolation de Lagrange. Journal für die reine und angewandte Mathematik (Crelles Journal), 1878(84), 70-79. doi:10.1515/crelle-1878-18788405Petkovic, M., Dzunic, J., & Petkovic, L. (2011). A family of two-point methods with memory for solving nonlinear equations. Applicable Analysis and Discrete Mathematics, 5(2), 298-317. doi:10.2298/aadm110905021pCordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8Noor, M. A., Waseem, M., & Noor, K. I. (2015). New iterative technique for solving a system of nonlinear equations. Applied Mathematics and Computation, 271, 446-466. doi:10.1016/j.amc.2015.08.125Pramanik, S. (2002). Kinematic Synthesis of a Six-Member Mechanism for Automotive Steering. Journal of Mechanical Design, 124(4), 642-645. doi:10.1115/1.150337

    Multipoint efficient iterative methods and the dynamics of Ostrowski's method

    Full text link
    This is an Author's Accepted Manuscript of an article published in José L. Hueso, Eulalia Martínez & Carles Teruel (2019) Multipoint efficient iterative methods and the dynamics of Ostrowski's method, International Journal of Computer Mathematics, 96:9, 1687-1701, DOI: 10.1080/00207160.2015.1080354 in the International Journal of Computer Mathematics, SEP 2 2019 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/00207160.2015.1080354[EN] In this work, we introduce a modification into the technique, presented in A. Cordero, J.L. Hueso, E. Martinez, and J.R. Torregrosa [Increasing the convergence order of an iterative method for nonlinear systems, Appl. Math. Lett. 25 (2012), pp. 2369-2374], that increases by two units the convergence order of an iterative method. The main idea is to compose a given iterative method of order p with a modification of Newton's method that introduces just one evaluation of the function, obtaining a new method of order p+2, avoiding the need to compute more than one derivative, so we improve the efficiency index in the scalar case. This procedure can be repeated n times, with the same approximation to the derivative, obtaining new iterative methods of order p+2n. We perform different numerical tests that confirm the theoretical results. By applying this procedure to Newton's method one obtains the well known fourth order Ostrowski's method. We finally analyse its dynamical behaviour on second and third degree real polynomials.This research was supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22 and by the project of Generalitat Valenciana Prometeo/2016/089.Hueso, JL.; Martínez Molada, E.; Teruel-Ferragud, C. (2019). Multipoint efficient iterative methods and the dynamics of Ostrowski's method. International Journal of Computer Mathematics. 96(9):1687-1701. https://doi.org/10.1080/00207160.2015.1080354S16871701969Amat, S., Busquier, S., & Plaza, S. (2010). Chaotic dynamics of a third-order Newton-type method. Journal of Mathematical Analysis and Applications, 366(1), 24-32. doi:10.1016/j.jmaa.2010.01.047Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Cordero, A., Martínez, E., & Torregrosa, J. R. (2009). Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 231(2), 541-551. doi:10.1016/j.cam.2009.04.015Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2012). Increasing the convergence order of an iterative method for nonlinear systems. Applied Mathematics Letters, 25(12), 2369-2374. doi:10.1016/j.aml.2012.07.005Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-

    On generalization based on Bi et al. Iterative methods with eighth-order convergence for solving nonlinear equations

    Get PDF
    The primary goal of this work is to provide a general optimal three-step class of iterative methods based on the schemes designed by Bi et al. (2009). Accordingly, it requires four functional evaluations per iteration with eighth-order convergence. Consequently, it satisfies Kung and Traub's conjecture relevant to construction optimal methods without memory. Moreover, some concrete methods of this class are shown and implemented numerically, showing their applicability and efficiency.The authors thank the anonymous referees for their valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Islamic Azad University, Hamedan Branch, and Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Lotfi, T.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Abadi, MA.; Zadeh, MM. (2014). On generalization based on Bi et al. Iterative methods with eighth-order convergence for solving nonlinear equations. The Scientific World Journal. 2014. https://doi.org/10.1155/2014/272949S2014Behl, R., Kanwar, V., & Sharma, K. K. (2012). Another Simple Way of Deriving Several Iterative Functions to Solve Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-22. doi:10.1155/2012/294086Fernández-Torres, G., & Vásquez-Aquino, J. (2013). Three New Optimal Fourth-Order Iterative Methods to Solve Nonlinear Equations. Advances in Numerical Analysis, 2013, 1-8. doi:10.1155/2013/957496Kang, S. M., Rafiq, A., & Kwun, Y. C. (2013). A New Second-Order Iteration Method for Solving Nonlinear Equations. Abstract and Applied Analysis, 2013, 1-4. doi:10.1155/2013/487062Soleimani, F., Soleymani, F., & Shateyi, S. (2013). Some Iterative Methods Free from Derivatives and Their Basins of Attraction for Nonlinear Equations. Discrete Dynamics in Nature and Society, 2013, 1-10. doi:10.1155/2013/301718Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004Bi, W., Wu, Q., & Ren, H. (2009). A new family of eighth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 214(1), 236-245. doi:10.1016/j.amc.2009.03.077Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). New modifications of Potra–Pták’s method with optimal fourth and eighth orders of convergence. Journal of Computational and Applied Mathematics, 234(10), 2969-2976. doi:10.1016/j.cam.2010.04.009Cordero, A., & Torregrosa, J. R. (2011). A class of Steffensen type methods with optimal order of convergence. Applied Mathematics and Computation, 217(19), 7653-7659. doi:10.1016/j.amc.2011.02.067Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004Džunić, J., & Petković, M. S. (2012). A Family of Three-Point Methods of Ostrowski’s Type for Solving Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-9. doi:10.1155/2012/425867Džunić, J., Petković, M. S., & Petković, L. D. (2011). A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Applied Mathematics and Computation, 217(19), 7612-7619. doi:10.1016/j.amc.2011.02.055Heydari, M., Hosseini, S. M., & Loghmani, G. B. (2011). On two new families of iterative methods for solving nonlinear equations with optimal order. Applicable Analysis and Discrete Mathematics, 5(1), 93-109. doi:10.2298/aadm110228012hGeum, Y. H., & Kim, Y. I. (2010). A multi-parameter family of three-step eighth-order iterative methods locating a simple root. Applied Mathematics and Computation, 215(9), 3375-3382. doi:10.1016/j.amc.2009.10.030Geum, Y. H., & Kim, Y. I. (2011). A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots. Applied Mathematics Letters, 24(6), 929-935. doi:10.1016/j.aml.2011.01.002Geum, Y. H., & Kim, Y. I. (2011). A biparametric family of eighth-order methods with their third-step weighting function decomposed into a one-variable linear fraction and a two-variable generic function. Computers & Mathematics with Applications, 61(3), 708-714. doi:10.1016/j.camwa.2010.12.020Kou, J., Wang, X., & Li, Y. (2010). Some eighth-order root-finding three-step methods. Communications in Nonlinear Science and Numerical Simulation, 15(3), 536-544. doi:10.1016/j.cnsns.2009.04.013Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040Wang, X., & Liu, L. (2010). New eighth-order iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 234(5), 1611-1620. doi:10.1016/j.cam.2010.03.002Wang, X., & Liu, L. (2010). Modified Ostrowski’s method with eighth-order convergence and high efficiency index. Applied Mathematics Letters, 23(5), 549-554. doi:10.1016/j.aml.2010.01.009Sharma, J. R., & Sharma, R. (2009). A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numerical Algorithms, 54(4), 445-458. doi:10.1007/s11075-009-9345-5Soleymani, F. (2011). Novel Computational Iterative Methods with Optimal Order for Nonlinear Equations. Advances in Numerical Analysis, 2011, 1-10. doi:10.1155/2011/270903Soleymani, F., Sharifi, M., & Somayeh Mousavi, B. (2011). An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight. Journal of Optimization Theory and Applications, 153(1), 225-236. doi:10.1007/s10957-011-9929-9Soleymani, F., Karimi Vanani, S., & Afghani, A. (2011). A General Three-Step Class of Optimal Iterations for Nonlinear Equations. Mathematical Problems in Engineering, 2011, 1-10. doi:10.1155/2011/469512Soleymani, F., Vanani, S. K., Khan, M., & Sharifi, M. (2012). Some modifications of King’s family with optimal eighth order of convergence. Mathematical and Computer Modelling, 55(3-4), 1373-1380. doi:10.1016/j.mcm.2011.10.016Soleymani, F., Karimi Vanani, S., & Jamali Paghaleh, M. (2012). A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/568740Thukral, R. (2010). A new eighth-order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 217(1), 222-229. doi:10.1016/j.amc.2010.05.048Thukral, R. (2011). Eighth-Order Iterative Methods without Derivatives for Solving Nonlinear Equations. ISRN Applied Mathematics, 2011, 1-12. doi:10.5402/2011/693787Thukral, R. (2012). New Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations. International Journal of Mathematics and Mathematical Sciences, 2012, 1-12. doi:10.1155/2012/493456Thukral, R., & Petković, M. S. (2010). A family of three-point methods of optimal order for solving nonlinear equations. Journal of Computational and Applied Mathematics, 233(9), 2278-2284. doi:10.1016/j.cam.2009.10.012Wang, J. (2013). He’s Max-Min Approach for Coupled Cubic Nonlinear Equations Arising in Packaging System. Mathematical Problems in Engineering, 2013, 1-4. doi:10.1155/2013/382509Babajee, D. K. R., Cordero, A., Soleymani, F., & Torregrosa, J. R. (2012). On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-12. doi:10.1155/2012/165452Montazeri, H., Soleymani, F., Shateyi, S., & Motsa, S. S. (2012). On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/751975Soleymani, F. (2012). A Rapid Numerical Algorithm to Compute Matrix Inversion. International Journal of Mathematics and Mathematical Sciences, 2012, 1-11. doi:10.1155/2012/134653Soleymani, F. (2013). A new method for solving ill-conditioned linear systems. Opuscula Mathematica, 33(2), 337. doi:10.7494/opmath.2013.33.2.337Thukral, R. (2012). Further Development of Jarratt Method for Solving Nonlinear Equations. Advances in Numerical Analysis, 2012, 1-9. doi:10.1155/2012/493707Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Multi-step derivative-free preconditioned Newton method for solving systems of nonlinear equations

    Get PDF
    Preconditioning of systems of nonlinear equations modifies the associated Jacobian and provides rapid convergence. The preconditioners are introduced in a way that they do not affect the convergence order of parent iterative method. The multi-step derivative-free iterative method consists of a base method and multi-step part. In the base method, the Jacobian of the system of nonlinear equation is approximated by finite difference operator and preconditioners add an extra term to modify it. The inversion of modified finite difference operator is avoided by computing LU factors. Once we have LU factors, we repeatedly use them to solve lower and upper triangular systems in the multi-step part to enhance the convergence order. The convergence order of m-step Newton iterative method is m + 1. The claimed convergence orders are verified by computing the computational order of convergence and numerical simulations clearly show that the good selection of preconditioning provides numerical stability, accuracy and rapid convergence.Peer ReviewedPostprint (author's final draft
    • …
    corecore