2,572 research outputs found

    A machine learning approach with verification of predictions and assisted supervision for a rule-based network intrusion detection system

    Get PDF
    Network security is a branch of network management in which network intrusion detection systems provide attack detection features by monitorization of traffic data. Rule-based misuse detection systems use a set of rules or signatures to detect attacks that exploit a particular vulnerability. These rules have to be handcoded by experts to properly identify vulnerabilities, which results in misuse detection systems having limited extensibility. This paper proposes a machine learning layer on top of a rule-based misuse detection system that provides automatic generation of detection rules, prediction verification and assisted classification of new data. Our system offers an overall good performance, while adding an heuristic and adaptive approach to existing rule-based misuse detection systems

    Evaluation of Machine Learning Algorithms for Intrusion Detection System

    Full text link
    Intrusion detection system (IDS) is one of the implemented solutions against harmful attacks. Furthermore, attackers always keep changing their tools and techniques. However, implementing an accepted IDS system is also a challenging task. In this paper, several experiments have been performed and evaluated to assess various machine learning classifiers based on KDD intrusion dataset. It succeeded to compute several performance metrics in order to evaluate the selected classifiers. The focus was on false negative and false positive performance metrics in order to enhance the detection rate of the intrusion detection system. The implemented experiments demonstrated that the decision table classifier achieved the lowest value of false negative while the random forest classifier has achieved the highest average accuracy rate

    Abstraction, aggregation and recursion for generating accurate and simple classifiers

    Get PDF
    An important goal of inductive learning is to generate accurate and compact classifiers from data. In a typical inductive learning scenario, instances in a data set are simply represented as ordered tuples of attribute values. In our research, we explore three methodologies to improve the accuracy and compactness of the classifiers: abstraction, aggregation, and recursion;Firstly, abstraction is aimed at the design and analysis of algorithms that generate and deal with taxonomies for the construction of compact and robust classifiers. In many applications of the data-driven knowledge discovery process, taxonomies have been shown to be useful in constructing compact, robust, and comprehensible classifiers. However, in many application domains, human-designed taxonomies are unavailable. We introduce algorithms for automated construction of taxonomies inductively from both structured (such as UCI Repository) and unstructured (such as text and biological sequences) data. We introduce AVT-Learner, an algorithm for automated construction of attribute value taxonomies (AVT) from data, and Word Taxonomy Learner (WTL), an algorithm for automated construction of word taxonomy from text and sequence data. We describe experiments on the UCI data sets and compare the performance of AVT-NBL (an AVT-guided Naive Bayes Learner) with that of the standard Naive Bayes Learner (NBL). Our results show that the AVTs generated by AVT-Learner are compeitive with human-generated AVTs (in cases where such AVTs are available). AVT-NBL using AVTs generated by AVT-Learner achieves classification accuracies that are comparable to or higher than those obtained by NBL; and the resulting classifiers are significantly more compact than those generated by NBL. Similarly, our experimental results of WTL and WTNBL on protein localization sequences and Reuters newswire text categorization data sets show that the proposed algorithms can generate Naive Bayes classifiers that are more compact and often more accurate than those produced by standard Naive Bayes learner for the Multinomial Model;Secondly, we apply aggregation to construct features as a multiset of values for the intrusion detection task. For this task, we propose a bag of system calls representation for system call traces and describe misuse and anomaly detection results on the University of New Mexico (UNM) and MIT Lincoln Lab (MIT LL) system call sequences with the proposed representation. With the feature representation as input, we compare the performance of several machine learning techniques for misuse detection and show experimental results on anomaly detection. The results show that standard machine learning and clustering techniques using the simple bag of system calls representation based on the system call traces generated by the operating system\u27s kernel is effective and often performs better than approaches that use foreign contiguous sequences in detecting intrusive behaviors of compromised processes;Finally, we construct a set of classifiers by recursive application of the Naive Bayes learning algorithms. Naive Bayes (NB) classifier relies on the assumption that the instances in each class can be described by a single generative model. This assumption can be restrictive in many real world classification tasks. We describe recursive Naive Bayes learner (RNBL), which relaxes this assumption by constructing a tree of Naive Bayes classifiers for sequence classification, where each individual NB classifier in the tree is based on an event model (one model for each class at each node in the tree). In our experiments on protein sequences, Reuters newswire documents and UC-Irvine benchmark data sets, we observe that RNBL substantially outperforms NB classifier. Furthermore, our experiments on the protein sequences and the text documents show that RNBL outperforms C4.5 decision tree learner (using tests on sequence composition statistics as the splitting criterion) and yields accuracies that are comparable to those of support vector machines (SVM) using similar information

    A Hierarchical Temporal Memory Sequence Classifier for Streaming Data

    Get PDF
    Real-world data streams often contain concept drift and noise. Additionally, it is often the case that due to their very nature, these real-world data streams also include temporal dependencies between data. Classifying data streams with one or more of these characteristics is exceptionally challenging. Classification of data within data streams is currently the primary focus of research efforts in many fields (i.e., intrusion detection, data mining, machine learning). Hierarchical Temporal Memory (HTM) is a type of sequence memory that exhibits some of the predictive and anomaly detection properties of the neocortex. HTM algorithms conduct training through exposure to a stream of sensory data and are thus suited for continuous online learning. This research developed an HTM sequence classifier aimed at classifying streaming data, which contained concept drift, noise, and temporal dependencies. The HTM sequence classifier was fed both artificial and real-world data streams and evaluated using the prequential evaluation method. Cost measures for accuracy, CPU-time, and RAM usage were calculated for each data stream and compared against a variety of modern classifiers (e.g., Accuracy Weighted Ensemble, Adaptive Random Forest, Dynamic Weighted Majority, Leverage Bagging, Online Boosting ensemble, and Very Fast Decision Tree). The HTM sequence classifier performed well when the data streams contained concept drift, noise, and temporal dependencies, but was not the most suitable classifier of those compared against when provided data streams did not include temporal dependencies. Finally, this research explored the suitability of the HTM sequence classifier for detecting stalling code within evasive malware. The results were promising as they showed the HTM sequence classifier capable of predicting coding sequences of an executable file by learning the sequence patterns of the x86 EFLAGs register. The HTM classifier plotted these predictions in a cardiogram-like graph for quick analysis by reverse engineers of malware. This research highlights the potential of HTM technology for application in online classification problems and the detection of evasive malware

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Network intrusion detection using genetic programming.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Pietermaritzburg.Network intrusion detection is a real-world problem that involves detecting intrusions on a computer network. Detecting whether a network connection is intrusive or non-intrusive is essentially a binary classification problem. However, the type of intrusive connections can be categorised into a number of network attack classes and the task of associating an intrusion to a particular network type is multiclass classification. A number of artificial intelligence techniques have been used for network intrusion detection including Evolutionary Algorithms. This thesis investigates the application of evolutionary algorithms namely, Genetic Programming (GP), Grammatical Evolution (GE) and Multi-Expression Programming (MEP) in the network intrusion detection domain. Grammatical evolution and multi-expression programming are considered to be variants of GP. In this thesis, a comparison of the effectiveness of classifiers evolved by the three EAs within the network intrusion detection domain is performed. The comparison is performed on the publicly available KDD99 dataset. Furthermore, the effectiveness of a number of fitness functions is evaluated. From the results obtained, standard genetic programming performs better than grammatical evolution and multi-expression programming. The findings indicate that binary classifiers evolved using standard genetic programming outperformed classifiers evolved using grammatical evolution and multi-expression programming. For evolving multiclass classifiers different fitness functions used produced classifiers with different characteristics resulting in some classifiers achieving higher detection rates for specific network intrusion attacks as compared to other intrusion attacks. The findings indicate that classifiers evolved using multi-expression programming and genetic programming achieved high detection rates as compared to classifiers evolved using grammatical evolution
    corecore