51,577 research outputs found

    Ant colony optimization for multi-UAV minimum time search in uncertain domains

    Get PDF
    This paper presents a new approach based on ant colony optimization (ACO) to determine the trajectories of a fleet of unmanned air vehicles (UAVs) looking for a lost target in the minimum possible time. ACO is especially suitable for the complexity and probabilistic nature of the minimum time search (MTS) problem, where a balance between the computational requirements and the quality of solutions is needed. The presented approach includes a new MTS heuristic that exploits the probability and spatial properties of the problem, allowing our ant based algorithm to quickly obtain high-quality high-level straight-segmented UAV trajectories. The potential of the algorithm is tested for different ACO parameterizations, over several search scenarios with different characteristics such as number of UAVs, or target dynamics and location distributions. The statistical comparison against other techniques previously used for MTS (ad hoc heuristics, cross entropy optimization, bayesian optimization algorithm and genetic algorithms) shows that the new approach outperforms the others.This work was supported by Airbus under the SAVIER AER-30459 project

    An ACO-Inspired, Probabilistic, Greedy Approach to the Drone Traveling Salesman Problem

    Get PDF
    In recent years, major companies have done research on using drones for parcel delivery. Research has shown that this can result in significant savings, which has led to the formulation of various truck and drone routing and scheduling optimization problems. This paper explains and analyzes a new approach to the Drone Traveling Salesman Problem (DTSP) based on ant colony optimization (ACO). The ACO-based approach has an acceptance policy that maximizes the usage of the drone. The results reveal that the pheromone causes the algorithm to converge quickly to the best solution. The algorithm performs comparably to the MIP model, CP model, and EA of Rich & Ham (2018), especially in instances with a larger number of stops

    Learning relational dynamics of stochastic domains for planning

    Get PDF
    Probabilistic planners are very flexible tools that can provide good solutions for difficult tasks. However, they rely on a model of the domain, which may be costly to either hand code or automatically learn for complex tasks. We propose a new learning approach that (a) requires only a set of state transitions to learn the model; (b) can cope with uncertainty in the effects; (c) uses a relational representation to generalize over different objects; and (d) in addition to action effects, it can also learn exogenous effects that are not related to any action, e.g., moving objects, endogenous growth and natural development. The proposed learning approach combines a multi-valued variant of inductive logic programming for the generation of candidate models, with an optimization method to select the best set of planning operators to model a problem. Finally, experimental validation is provided that shows improvements over previous work.Peer ReviewedPostprint (author's final draft

    An (MI)LP-based Primal Heuristic for 3-Architecture Connected Facility Location in Urban Access Network Design

    Full text link
    We investigate the 3-architecture Connected Facility Location Problem arising in the design of urban telecommunication access networks. We propose an original optimization model for the problem that includes additional variables and constraints to take into account wireless signal coverage. Since the problem can prove challenging even for modern state-of-the art optimization solvers, we propose to solve it by an original primal heuristic which combines a probabilistic fixing procedure, guided by peculiar Linear Programming relaxations, with an exact MIP heuristic, based on a very large neighborhood search. Computational experiments on a set of realistic instances show that our heuristic can find solutions associated with much lower optimality gaps than a state-of-the-art solver.Comment: This is the authors' final version of the paper published in: Squillero G., Burelli P. (eds), EvoApplications 2016: Applications of Evolutionary Computation, LNCS 9597, pp. 283-298, 2016. DOI: 10.1007/978-3-319-31204-0_19. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-31204-0_1

    Proposed shunt rounding technique for large-scale security constrained loss minimization

    Get PDF
    The official published version can be obtained from the link below - Copyright @ 2010 IEEE.Optimal reactive power flow applications often model large numbers of discrete shunt devices as continuous variables, which are rounded to their nearest discrete value at the final iteration. This can degrade optimality. This paper presents novel methods based on probabilistic and adaptive threshold approaches that can extend existing security constrained optimal reactive power flow methods to effectively solve large-scale network problems involving discrete shunt devices. Loss reduction solutions from the proposed techniques were compared to solutions from the mixed integer nonlinear mathematical programming algorithm (MINLP) using modified IEEE standard networks up to 118 buses. The proposed techniques were also applied to practical large-scale network models of Great Britain. The results show that the proposed techniques can achieve improved loss minimization solutions when compared to the standard rounding method.This work was supported in part by the National Grid and in part by the EPSRC. Paper no. TPWRS-00653-2009
    • …
    corecore