385 research outputs found

    A new geometric approach to Sturmian words

    Get PDF
    We introduce a new geometric approach to Sturmian words by means of a mapping that associates certain lines in the n x n -grid and sets of finite Sturmian words of length n. Using this mapping, we give new proofs of the formulas enumerating the finite Sturmian words and the palindromic finite Sturmian words of a given length. We also give a new proof for the well-known result that a factor of a Sturmian word has precisely two return words.Comment: 12 pages, 7 figures. A preprint of a paper to appear in Theoretical Computer Scienc

    The number of binary rotation words

    Get PDF
    We consider binary rotation words generated by partitions of the unit circle to two intervals and give a precise formula for the number of such words of length n. We also give the precise asymptotics for it, which happens to be O(n^4). The result continues the line initiated by the formula for the number of all Sturmian words obtained by Lipatov in 1982, then independently by Berenstein, Kanal, Lavine and Olson in 1987, Mignosi in 1991, and then with another technique by Berstel and Pocchiola in 1993.Comment: Submitted to RAIRO IT

    Local Rules for Computable Planar Tilings

    Full text link
    Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-periodic tilings obtained by digitizing irrational vector spaces. Namely, we prove that such tilings are aperiodic if and only if the digitized vector spaces are computable.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Minimal complexity of equidistributed infinite permutations

    Full text link
    An infinite permutation is a linear ordering of the set of natural numbers. An infinite permutation can be defined by a sequence of real numbers where only the order of elements is taken into account. In the paper we investigate a new class of {\it equidistributed} infinite permutations, that is, infinite permutations which can be defined by equidistributed sequences. Similarly to infinite words, a complexity p(n)p(n) of an infinite permutation is defined as a function counting the number of its subpermutations of length nn. For infinite words, a classical result of Morse and Hedlund, 1938, states that if the complexity of an infinite word satisfies p(n)≤np(n) \leq n for some nn, then the word is ultimately periodic. Hence minimal complexity of aperiodic words is equal to n+1n+1, and words with such complexity are called Sturmian. For infinite permutations this does not hold: There exist aperiodic permutations with complexity functions growing arbitrarily slowly, and hence there are no permutations of minimal complexity. We show that, unlike for permutations in general, the minimal complexity of an equidistributed permutation α\alpha is pα(n)=np_{\alpha}(n)=n. The class of equidistributed permutations of minimal complexity coincides with the class of so-called Sturmian permutations, directly related to Sturmian words.Comment: An old (weaker) version of the paper was presented at DLT 2015. The current version is submitted to a journa

    Nested quasicrystalline discretisations of the line

    Get PDF
    One-dimensional cut-and-project point sets obtained from the square lattice in the plane are considered from a unifying point of view and in the perspective of aperiodic wavelet constructions. We successively examine their geometrical aspects, combinatorial properties from the point of view of the theory of languages, and self-similarity with algebraic scaling factor θ\theta. We explain the relation of the cut-and-project sets to non-standard numeration systems based on θ\theta. We finally examine the substitutivity, a weakened version of substitution invariance, which provides us with an algorithm for symbolic generation of cut-and-project sequences
    • …
    corecore