451 research outputs found

    A new family of facet defining inequalities for the maximum edge-weighted clique problem

    Get PDF
    This paper considers a family of cutting planes, recently developed for mixed 0–1 polynomial programs and shows that they define facets for the maximum edge-weighted clique problem. There exists a polynomial time exact separation algorithm for these inequalities. The result of this paper may contribute to the development of more efficient algorithms for the maximum edge-weighted clique problem that use cutting planes

    The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect

    Get PDF
    Abstract Fuzzy antihat graphs are graphs obtained as 2-clique-bond compositions of fuzzy line graphs with three different types of three-cliqued graphs. By the decomposition theorem of Chudnovsky and Seymour [2] , fuzzy antihat graphs form a large subclass of claw-free, not quasi-line graphs with stability number at least four and with no 1-joins. A graph is W -perfect if its stable set polytope is described by: nonnegativity, rank, and lifted 5-wheel inequalities. By exploiting the polyhedral properties of the 2-clique-bond composition, we prove that fuzzy antihat graphs are W -perfect and we move a crucial step towards the solution of the longstanding open question of finding an explicit linear description of the stable set polytope of claw-free graphs
    • …
    corecore