The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are \mathcal{W}-perfect

A. Galluccio, C. Gentile, P. Ventura
Istituto di Analisi dei Sistemi ed Informatica" A. Ruberti", Consiglio Nazionale delle Ricerche (IASI-CNR), viale Manzoni 30, 00185 Roma, Italy

A R T I C L E I N F O

Article history:

Received 15 July 2010
Available online xxxx

Keywords:

Polyhedral combinatorics
Stable set polytope
Claw-free graphs

Abstract

Fuzzy antihat graphs are graphs obtained as 2-clique-bond compositions of fuzzy line graphs with three different types of three-cliqued graphs. By the decomposition theorem of Chudnovsky and Seymour [2], fuzzy antihat graphs form a large subclass of claw-free, not quasi-line graphs with stability number at least four and with no 1 -joins. A graph is \mathcal{W}-perfect if its stable set polytope is described by: nonnegativity, rank, and lifted 5 -wheel inequalities. By exploiting the polyhedral properties of the 2-cliquebond composition, we prove that fuzzy antihat graphs are \mathcal{W}-perfect and we move a crucial step towards the solution of the longstanding open question of finding an explicit linear description of the stable set polytope of claw-free graphs.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Given a graph $G=(V, E)$ and a vector $w \in \mathbb{Q}_{+}^{V}$ of node weights, the stable set problem is the problem of finding a set of pairwise nonadjacent nodes (stable set) of maximum weight. Let $\alpha(G, w)$ denote the maximum weight of a stable set of G; we refer

[^0]http://dx.doi.org/10.1016/j.jctb.2014.02.006
0095-8956/® 2014 Elsevier Inc. All rights reserved.
to $\alpha(G)=\alpha(G, \mathbb{1})$ ($\mathbb{1}$ being the vector of all ones) as the stability number of G. The stable set polytope, denoted by $\operatorname{STAB}(G)$, is the convex hull of the incidence vectors of the stable sets of G. A linear system $A x \leqslant b$ is said to be defining for $\operatorname{STAB}(G)$ if $S T A B(G)=\left\{x \in \mathbb{R}^{V}: A x \leqslant b\right\}$. Since the stable set problem is $N P$-hard, it is unlikely to find a defining linear system of $\operatorname{STAB}(G)$ for general graphs. Nevertheless the study of the stable set polytope of claw-free graphs, i.e., graphs such that the neighbourhood of each node has stability number at most two, attracts the attention of the scientific community since early seventies when the pioneering work of Edmonds on the matching polytope [6] was translated for the stable set polytope of line graphs (a line graph $L(G)$ of a graph G is obtained by considering the edges of G as nodes of $L(G)$ and two nodes of $L(G)$ are adjacent if and only if the corresponding edges of G have a common endnode). At that time it seemed natural to look for a linear description of the stable set polytope for classes of graphs that properly contain line graphs such as claw-free graphs or quasi-line graphs, i.e., graphs such that the neighbourhood of each node can be partitioned into two cliques. Notice that the class of claw-free graphs properly contains the class of quasi-line graphs. A number of conjectures were posed on the inequalities that are facet defining for $\operatorname{STAB}(G)$ when G is claw-free [14,29], but an explicit linear description of $\operatorname{STAB}(G)$ is not known yet.

The study of the stable set polytope of claw-free graphs revived in late 80's after Grötschel, Lovász and Schrijver proved the equivalence of the separation and the optimization problems over polyhedra [15]. They also noted that claw-free graphs constitute an anomaly in this respect [16]. Indeed, a defining linear system for the stable set polytope is known for almost all classes of graphs for which a polynomial time algorithm to solve the weighted stable set problem is known. This is true for bipartite graphs, line graphs [6], series-parallel graphs [19], and perfect graphs. On the contrary, for claw-free graphs, a polynomial time algorithm to solve the weighted stable set problem is known since $1980[20,21]$ but no linear description of $\operatorname{STAB}(G)$ is at hand (see also [27]).

A breakthrough to start to understand the structure of claw-free graphs came out with the decomposition theorem of Chudnovsky and Seymour [2,3]. This theorem states that the class of claw-free graphs is the union of different classes of graphs that have very specific features. In particular, Chudnovsky and Seymour proved that every clawfree graph that does not admit a 1-join satisfies one of the following conditions: it has stability number at most 3 , or it is a fuzzy circular interval graph, or it can be obtained by "properly composing" five types of graphs, called strips: fuzzy linear interval strips (also called fuzzy Z_{1}-strips), fuzzy Z_{2}-strips, fuzzy Z_{3}-strips, fuzzy Z_{4}-strips, and fuzzy Z_{5}-strips.

We call fuzzy line the graphs that are composition of fuzzy linear interval strips and denote them by \mathcal{Q}^{ℓ}. Then we denote by \mathcal{Q}^{c} the set of quasi-line graphs that are fuzzy circular interval and by \mathcal{C}^{s} the class of striped graphs, claw-free graphs obtained by composing fuzzy Z_{i}-strips, $i=1,2,3,4,5$. Thus the Chudnovsky-Seymour decomposition states that every claw-free graph with stability number at least 4 and without 1 -joins belongs to \mathcal{Q}^{c} or to \mathcal{C}^{s}. This result partially explains why it was so hard to deal with
$S T A B(G)$ for all claw-free graphs simultaneously and suggests that, in order to find a linear description of $\operatorname{STAB}(G)$ for claw-free graphs, it is convenient to study the facet defining inequalities for each of the subclasses identified by the decomposition separately.

A linear inequality $\sum_{j \in V} \pi_{j} x_{j} \leqslant \pi_{0}$ is said to be a rank inequality for $\operatorname{STAB}(G)$ if there exists a subset $U \subseteq V$ such that $\pi_{i}=1$ for each $i \in U, \pi_{i}=0$ for each $i \in V \backslash U$ and $\pi_{0}=\alpha(G[U])$ where $G[U]$ is the subgraph of G induced by U.

A defining linear system for $\operatorname{STAB}(G)$, when $G \in \mathcal{Q}^{\ell}$, was given by Chudnovsky and Seymour [1] and consists of nonnegativity and rank inequalities. In 2008 Eisenbrand et al. [7] provided a linear description of $S T A B(G)$ when $G \in \mathcal{Q}^{c}$. Their result shows that rank inequalities are not sufficient to describe $\operatorname{STAB}(G)$ as soon as G is not fuzzy line. Indeed, a special class of inequalities with two different nonzero coefficients (clique-family inequalities [24]) has to be added to rank inequalities in order to describe $\operatorname{STAB}(G)$ when G is quasi-line.

In this paper we investigate the polyhedral properties of the following strips: fuzzy Z_{2}-strips, fuzzy Z_{3}-strips, and fuzzy Z_{4}-strips, and their composition with fuzzy line graphs. Since all these strips share the common feature of being three-cliqued, namely their node set is partitionable into three cliques, we refer to graphs that are "composition" of fuzzy line graphs with fuzzy Z_{i}-strips, $i=2,3,4$, as fuzzy antihat graphs.

We consider a family \mathcal{W} of inequalities consisting of: nonnegativity, rank, and lifted 5 -wheel inequalities (for formal definitions of these inequalities see the end of Section 2) and we say that a graph is \mathcal{W}-perfect if its stable set polytope is described only by inequalities in \mathcal{W}. Finally we prove that fuzzy antihat graphs are \mathcal{W}-perfect.

When a Z_{5}-strip is induced in a claw-free graph G, the inequalities in \mathcal{W} are not sufficient to describe $\operatorname{STAB}(G)$ and new facet defining inequalities for $\operatorname{STAB}(G)$ come into play [9]. This case will be investigated in a companion paper [12] where it will be provided a complete linear description of the stable set polytope of striped graphs.

In Sections 2 and 3 we recall the basic definitions and some polyhedral results. In Section 4 we give some properties of the stable set polytope of claw-free graphs that contain homogeneous pairs of cliques. In Section 5 we provide the minimal linear description of the stable set polytope of an important subclass of three-cliqued graphs. In Sections 6, 7 and 8, we provide the minimal linear description of the stable set polytope of fuzzy closed Z_{i}-strips, $i=2,3,4$, respectively. Finally, in Section 9, we prove that fuzzy antihat graphs are \mathcal{W}-perfect, i.e., the minimal linear description of the stable set polytope of fuzzy antihat graphs consists of: nonnegativity, rank, and lifted 5 -wheel inequalities.

2. Basic definitions

Let $G=(V, E)$ be a simple, connected graph with node set $V(G)$ and edge set $E(G)$. Two nodes u and v are adjacent (nonadjacent) if $u v \in E(G)(u v \notin E(G))$. The neighbourhood of v, written $N_{G}(v)$ or $N(v)$, is the set of nodes of $V(G)$ that are adjacent to v and the closed neighbourhood $N[v]$ is the set $N(v) \cup\{v\}$. Two adjacent nodes u and v are twins if $N[u]=N[v]$. The neighbourhood of a set $S \subseteq V$, denoted by $N(S)$, is the set
of nodes of $V \backslash S$ that are adjacent to at least one node in S. The closed neighbourhood of a set $A \subset V$ is $N[A]=\bigcup_{v \in A} N[v]=A \cup N(A)$.

We also denote by $G \backslash A$ the subgraph of G induced by $V \backslash A$ where $A \subseteq V$ and by $G+e(G-e, G / e)$ the subgraph of G obtained by adding (deleting, contracting, respectively) the edge e. Given two subsets of nodes $U, Z \subset V$, we say that U is Z-complete (Z-anticomplete) if every node $u \in U$ is adjacent (nonadjacent) to every node $z \in Z$. Obviously, U is Z-complete (Z-anticomplete) if and only if Z is U-complete (U-anticomplete).

A k-path is a chordless path with k nodes and it is denoted by P_{k}. A k-hole $C_{k}=$ $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is a chordless cycle of length k; a k-antihole \bar{C}_{k} is the complement of a k-hole. A k-antiwheel $W=\left(h: \bar{C}_{k}\right)$ is a graph consisting of a k-antihole \bar{C}_{k} and a node $h(h u b$ of $W)$ adjacent to every node of \bar{C}_{k}. If $k=3$, the 3 -antiwheel is called claw and denoted by $\left(y: w_{1}, w_{2}, w_{3}\right)$, where y is the centre of the claw. If $k=5$, then \bar{C}_{5} is isomorphic to C_{5} and we refer to W as a 5 -wheel. A node is simplicial if its neighbourhood induces a clique, i.e., a complete subgraph. An edge $a b$ is simplicial if $N(a) \backslash\{b\}$ and $N(b) \backslash\{a\}$ are both cliques.

A clique-cutset of G is a clique whose removal disconnects G. A graph $G=(V, E)$ admits a 1-join if V can be partitioned into two sets V_{1} and V_{2} and, for $i=1,2$, there are subsets A_{i} of V_{i} such that: $A_{1} \cup A_{2}$ is a clique, $V_{1} \backslash A_{1}$ and $V_{2} \backslash A_{2}$ are nonempty, and the only edges between V_{1} and V_{2} are those between A_{1} and A_{2}. Clearly, if G admits a 1-join then $A_{1} \cup A_{2}$ is a clique-cutset of G.

Suppose that V_{0}, V_{1}, and V_{2} are a partition of V and, for $i=1,2$, there are subsets A_{i}, B_{i} of V_{i} satisfying the following:

- $V_{0} \cup A_{1} \cup A_{2}$ and $V_{0} \cup B_{1} \cup B_{2}$ are cliques, and no node of V_{0} is adjacent to $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$ for $i=1,2$,
- for $i=1,2, A_{i} \cap B_{i}=\emptyset$ and A_{i}, B_{i} and $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$ are all nonempty,
- for all $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, either v_{1} is not adjacent to v_{2}, or $v_{1} \in A_{1}$ and $v_{2} \in A_{2}$, or $v_{1} \in B_{1}$ and $v_{2} \in B_{2}$.

The triple $\left(V_{0}, V_{1}, V_{2}\right)$ is called a generalized 2-join in [3].
A $\operatorname{strip}\left(H, a_{0}, b_{0}\right)$ is a claw-free graph H with two nonadjacent simplicial nodes $a_{0}, b_{0} \in V(H)$.

A closed strip $\left(H, a_{0} b_{0}\right)$ is the graph $H+a_{0} b_{0}$ where $\left(H, a_{0}, b_{0}\right)$ is a strip. A contracted closed strip $H / a_{0} b_{0}$ is obtained from $\left(H, a_{0} b_{0}\right)$ by contracting the edge $a_{0} b_{0}$ into the node z_{0}.

Given two strips $\left(G_{i}, a_{0}^{i}, b_{0}^{i}\right)$, for $i=1,2$, let A_{i}, B_{i} denote the set of nodes of $G_{i} \backslash\left\{a_{0}^{i}, b_{0}^{i}\right\}$ adjacent in G_{i} to a_{0}^{i}, b_{0}^{i} respectively. The strip composition defined by Chudnovsky and Seymour in [1] produces a new graph G by deleting the four nodes a_{0}^{i}, b_{0}^{i}, for $i=1,2$, and by completely joining the nodes of A_{1} with those of A_{2} and the nodes of B_{1} with those in B_{2}. Clearly, this new graph G admits the generalized 2-join
$\left(V_{0}, V\left(G_{1}\right) \backslash\left\{a_{0}^{1}, b_{0}^{1}\right\}, V\left(G_{2}\right) \backslash\left\{a_{0}^{2}, b_{0}^{2}\right\}\right)$ where $V_{0}=\left(A_{1} \cap B_{1}\right) \cup\left(A_{2} \cap B_{2}\right)$. Note that, by claw-freeness, $N\left[A_{i} \cap B_{i}\right]=N\left[a_{0}^{i}\right] \cup N\left[b_{0}^{i}\right]$ for $i=1,2$.

Observation 1. The closed strip $\left(G, a_{0} b_{0}\right)$ is obtained as a strip composition of $\left(H, v_{1}^{1}, v_{2}^{1}\right)$ and the 4-path $\left(v_{1}^{2}, a_{0}, b_{0}, v_{2}^{2}\right)$. The contracted closed strip $G / a_{0} b_{0}$ is obtained as a strip composition of $\left(H, v_{1}^{1}, v_{2}^{1}\right)$ and the 3 -path $\left(v_{1}^{2}, z_{0}, v_{2}^{2}\right)$.

In [11] we introduced the following composition.

Definition 2. Let G_{1} and G_{2} be two disjoint graphs. Let $\left(a_{0}^{i}, b_{0}^{i}\right)$ be an ordered pair of nodes such that $a_{0}^{i} b_{0}^{i}$ is a simplicial edge of G_{i} and let $A_{i}=N\left(a_{0}^{i}\right) \backslash\left\{b_{0}^{i}\right\}$ and $B_{i}=$ $N\left(b_{0}^{i}\right) \backslash\left\{a_{0}^{i}\right\}, i=1,2$.

The 2 -clique-bond composition of G_{1} and G_{2} along $\left(a_{0}^{1}, b_{0}^{1}\right)$ and $\left(a_{0}^{2}, b_{0}^{2}\right)$ is the graph G obtained by deleting the nodes a_{0}^{i} and b_{0}^{i}, for $i=1,2$, and joining every node in A_{1} with every node in A_{2} and every node of B_{1} with every node of B_{2}.

Under the restriction that $N\left[A_{i} \cap B_{i}\right]=N\left[a_{0}^{i}\right] \cup N\left[b_{0}^{i}\right]$ for $i=1,2$, the 2-clique-bond produces graphs that admit generalized 2-joins where the role of V_{0} is played by the set $\left(A_{1} \cap B_{1}\right) \cup\left(A_{2} \cap B_{2}\right)$. In the following we say that an edge $a_{0}^{i} b_{0}^{i}$ is super simplicial if it is simplicial and moreover it satisfies $N\left[A_{i} \cap B_{i}\right]=N\left[a_{0}^{i}\right] \cup N\left[b_{0}^{i}\right]$. It is not difficult to check that the 2 -clique-bond composition preserves claw-freeness when performed along ordered pairs corresponding to super simplicial edges. Thus, the 2-clique-bond composition applied on claw-free graphs along such ordered pairs produces the same graphs as the strip composition: the only difference is that the former applies on closed strips while the latter applies on strips. In [11] we provide examples of graphs obtained by 2 -clique-bond composition that do not admit a generalized 2 -join.

For basic results on the stable set polytope we refer to textbooks such as [23,16, 27]. In particular, we will use the following concepts: n vectors $x_{1}, x_{2}, \ldots, x_{n}$ are affinely independent if and only if the vectors $\left(1, x_{1}\right),\left(1, x_{2}\right), \ldots,\left(1, x_{n}\right)$ are linearly independent. A polyhedron contained in \mathbb{R}^{n} has dimension p if and only if it contains $p+1$ affinely independent vectors. Note that $\operatorname{STAB}(G)$ has dimension $n=|V(G)|$ as the n vectors of the canonical base of \mathbb{R}^{n} plus the zero vector constitute $n+1$ affinely independent vectors in $\operatorname{STAB}(G)$.

Given a vector $\beta \in \mathbb{R}^{|V|}$ and a subset $U \subseteq V$, define $\beta_{U} \in \mathbb{R}^{|V|}$ as the subvector of β restricted to the elements of U and let $\beta(U)=\sum_{i \in U} \beta_{i}$. A linear inequality $\sum_{j \in V(G)} \beta_{j} x_{j} \leqslant \beta_{0}$ is valid for $\operatorname{STAB}(G)$ if it holds for all $x \in \operatorname{STAB}(G)$. For short, we also denote a linear inequality $\beta^{T} x \leqslant \beta_{0}$ as $\left(\beta, \beta_{0}\right)$. A valid inequality for $\operatorname{STAB}(G)$ defines a facet of $\operatorname{STAB}(G)$ if and only if it is satisfied as an equality by $|V(G)|$ affinely independent incidence vectors of stable sets of G. A stable set S is tight for $\left(\beta, \beta_{0}\right)$ if $\beta(S)=\beta_{0}$ and S violates $\left(\beta, \beta_{0}\right)$ if $\beta(S)>\beta_{0}$. Given a valid inequality $\left(\beta, \beta_{0}\right)$ of $S T A B(G)$, its supporting graph G_{β} is the subgraph of G induced by the nodes with nonzero coefficients in $\left(\beta, \beta_{0}\right)$. The nonnegativity inequalities $x_{v} \geqslant 0, v \in V(G)$, are

[^1]known to be facet defining for $\operatorname{STAB}(G)$ and we refer to them as trivial inequalities. Basic properties of the stable set polytope (see $[8,25,22]$) establish that the nonnegativity inequalities define the only facets of $S T A B(G)$ containing the zero vector and that any other facet defining inequality $\left(\beta, \beta_{0}\right)$ has $\beta \geqslant 0$, and $\beta_{0}>0$. This implies that for each nontrivial facet defining inequality $\beta^{T} x \leqslant \beta_{0}$, there exist n linearly independent vectors x_{i} satisfying $\beta^{T} x_{i}=\beta_{0}$ for $i=1, \ldots, n$. As a consequence there exists at least one tight stable set for $\left(\beta, \beta_{0}\right)$ containing v, for each node $v \in V(G)$. Moreover, it is not difficult to see that if $\left(\beta, \beta_{0}\right)$ is facet defining for $\operatorname{STAB}(G)$ with supporting graph G_{β}, then $\left(\beta, \beta_{0}\right)$ is also facet defining for $\operatorname{STAB}\left(G_{\beta}\right)$.

A clique inequality (5-hole inequality) is a rank inequality where the subgraph $G[U]$ is a clique (a 5 -hole, respectively). Given a 5 -wheel $W=\left(h: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$, the inequality $\sum_{i=1}^{5} x_{v_{i}}+2 x_{h} \leqslant 2$ is called 5-wheel inequality and it is facet defining for $\operatorname{STAB}(W)$.

For the sake of completeness, we recall the definition of the sequential lifting procedure defined in [25] that will be often mentioned in the following sections. Let $\mathscr{S}(G)$ denote the family of the stable sets of $G=(V, E)$. If $\sum_{j \in V \backslash\{v\}} \beta_{j} x_{j} \leqslant \beta_{0}$ is a facet defining inequality of $S T A B(G \backslash\{v\})$, then the inequality

$$
\begin{equation*}
\sum_{j \in V \backslash\{v\}} \beta_{j} x_{j}+\beta_{v} x_{v} \leqslant \beta_{0} \quad \text { with } \quad \beta_{v}=\beta_{0}-\max _{S \in \mathscr{S}(G \backslash N[v])} \beta(S) \tag{1}
\end{equation*}
$$

is facet defining for $\operatorname{STAB}(G)$. This inequality is called sequential lifting of $\left(\beta_{V \backslash\{v\}}, \beta_{0}\right)$ and β_{v} is called the lifting coefficient of v. Starting from a facet defining inequality in a class \mathcal{C} for a lower dimensional polytope, say $\operatorname{STAB}\left(G^{\prime}\right)$ with G^{\prime} being an induced subgraph of G, the lifting procedure is usually applied sequentially: nodes in the set $V(G) \backslash V\left(G^{\prime}\right)$ are lifted one after the other and a separate optimization problem has to be solved to determine each lifting coefficient. The resulting inequality depends on the order in which the variables are lifted, but, in all cases, it is a facet defining inequality for the higher dimensional polytope $S T A B(G)$. Inequalities obtained in this way are called lifted \mathcal{C} inequalities.

3. Preliminary results

In this section we present some general results on the stable set polytope of a graph G. The first lemma will be often used in the remainder of the paper. Its proof follows from the full dimensionality of $\operatorname{STAB}(G)$ [27].

Lemma 3. Let $\left(\beta, \beta_{0}\right)$ be a facet defining inequality of $\operatorname{STAB}(G)$. Then, for any valid inequality $\left(\gamma, \gamma_{0}\right)$ that is not a positive scalar multiple of $\left(\beta, \beta_{0}\right)$, there exists a stable set S such that $\beta(S)=\beta_{0}$ and $\gamma(S)<\gamma_{0}$.

Moreover, it is not difficult to observe the following:

Proposition 4. Let $\left(\beta, \beta_{0}\right)$ be a nontrivial facet defining inequality of $\operatorname{STAB}(G)$. If $u, v \in$ $V(G)$ with $N[u] \subseteq N[v]$, then $\beta_{u} \leqslant \beta_{v}$. In particular, if u and v are twins, then $\beta_{u}=\beta_{v}$.

Proof. As $\left(\beta, \beta_{0}\right)$ is facet defining there exists a tight stable set S containing v. Since $S \backslash\{v\} \cup\{u\}$ is a stable set, $\beta(S \backslash\{v\} \cup\{u\})=\beta(S)-\beta_{v}+\beta_{u} \leqslant \beta_{0}=\beta(S)$ and the claim follows.

Next, we present a few results on the stable set polytope of graphs with stability number two.

Definition 5. Let G be a graph and H an induced subgraph of G with $\alpha(H)=2$. For any set $K \subseteq V(H)$, let $\tilde{N}_{H}(K)$ denote the set of all nodes $v \in V(H) \backslash K$ for which $N_{H}(v) \supseteq K$. If K induces a clique or $K=\emptyset$ then the inequality

$$
\begin{equation*}
2 x(K)+x\left(\tilde{N}_{H}(K)\right) \leqslant 2 \tag{2}
\end{equation*}
$$

is the clique-neighbourhood inequality generated by K.
Notice that, for any maximal clique $K, \tilde{N}_{H}(K)=\emptyset$ and the associated cliqueneighbourhood inequality becomes a clique inequality. Rank inequalities with right hand side two are also particular clique-neighbourhood inequalities where $\tilde{N}_{H}(K)=V(H)$ and $K=\emptyset$. Finally, lifted 5 -wheel inequalities are clique-neighbourhood inequalities where the nodes in K are copies of the hub of a 5 -wheel. In the following we simply write $\tilde{N}(K)$ when $H=G$ and thus $\alpha(G)=2$.

The next result is attributed to W. Cook in [28].
Theorem 6. Let G be a graph with $\alpha(G)=2$. Then $\operatorname{STAB}(G)$ is described by:

- nonnegativity inequalities,
- clique-neighbourhood inequalities.

Moreover, a clique-neighbourhood inequality is facet defining for $\operatorname{STAB}(G)$ if and only if no connected component of $\bar{G}[\tilde{N}(K)]$ is bipartite.

As an easy consequence of Theorem 6 we have that:
Corollary 7. Let $G=(V, E)$ be a graph. Let $\left(\beta, \beta_{0}\right)$ be a clique-neighbourhood inequality generated by $K \subset V$ that is not a clique inequality. If $\tilde{N}_{G_{\beta}}(K)$ is partitionable into two cliques then $\left(\beta, \beta_{0}\right)$ is not facet defining.

Corollary 8. Let $G=(V, E)$ be a claw-free graph with a super simplicial edge $a_{0} b_{0}$ and let z_{0} be the node obtained by the contraction of $a_{0} b_{0}$. Let $\left(\beta, \beta_{0}\right)$ be a clique-neighbourhood inequality generated by K that is facet defining for $\operatorname{STAB}(G)\left(S T A B\left(G / a_{0} b_{0}\right)\right)$. Then no node in $N\left[a_{0}\right] \cup N\left[b_{0}\right]$ ($N\left[z_{0}\right]$, respectively) belongs to K.

Proof. Suppose conversely that there exists a node $h \in K \cap\left(N\left[a_{0}\right] \cup N\left[b_{0}\right]\right)$. By Corollary $7, h$ is different from a_{0} and b_{0} and it does not belong to $N\left(a_{0}\right) \cap N\left(b_{0}\right)$ because all these nodes have a neighbourhood that is partitioned into two cliques. The same holds for the node z_{0}.

Let A and B denote the sets $N\left(a_{0}\right)$ and $N\left(b_{0}\right)$, respectively, and assume, without loss of generality, that $h \in K \cap(A \backslash B)$. Since G is claw-free and $\alpha\left(G_{\beta}\right)=2$, it follows, by Theorem 6, that each connected component of $\overline{G_{\beta}}[\tilde{N}(K)]$ contains an odd hole C of length at least 5 . Let T indicate the nodes of $C \backslash\left(A \cup\left\{a_{0}\right\}\right)$. Clearly T is a clique since otherwise ($h: a_{0}, u, v$) would be a claw for each pair of nonadjacent nodes $u, v \in T$. Thus, the odd hole C partitions into the cliques T and $C \cap\left(A \cup\left\{a_{0}\right\}\right)$, a contradiction.

We now show a property of clique-neighbourhood inequalities that will be used later:
Lemma 9. Let G be a claw-free graph that does not contain a $(2 t+1)$-antiwheel with $t \geqslant 3$. Let $\left(\beta, \beta_{0}\right)$ be a clique-neighbourhood inequality generated by K that is facet defining for $S T A B(G)$ and is different from a clique inequality. If $K \neq \emptyset$ and $\overline{G_{\beta}}[\tilde{N}(K)]$ is connected then $\left(\beta, \beta_{0}\right)$ is a lifted 5 -wheel inequality.

Proof. Since the inequality $\left(\beta, \beta_{0}\right)$ is facet defining, no connected component of $\overline{G_{\beta}}[\tilde{N}(K)]$ is bipartite and, in particular, $\overline{G_{\beta}}[\tilde{N}(K)]$ does not contain isolated nodes. Since G is claw-free, $\overline{G_{\beta}}[\tilde{N}(K)]$ is triangle-free, and so $\overline{G_{\beta}}[\tilde{N}(K)]$ contains a $(2 t+1)$-hole with $t \geqslant 2$. Then, by hypothesis, $t=2$, i.e., there exists a 5 -hole C contained in $\overline{G_{\beta}}[\tilde{N}(K)]$. As 5 -holes are self-complementary, C induces a 5 -hole also in G_{β}.

Now we prove that (β, β_{0}) can be obtained from the (lifted) 5 -wheel inequality induced by $C \cup K$ by sequentially lifting all the nodes of $V\left(G_{\beta}\right) \backslash(C \cup K)$. This amounts to show that all nodes in $V\left(G_{\beta}\right) \backslash(C \cup K)$ can be lifted with coefficient one.

Now, let $W=\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ be the longest sequence of nodes of $V\left(G_{\beta}\right) \backslash(C \cup K)$ that can be lifted with coefficient 1 starting from the (lifted) 5 -wheel inequality defined by $C \cup K$. Suppose that $s<\left|V\left(G_{\beta}\right) \backslash(C \cup K)\right|$, i.e., $V\left(G_{\beta}\right) \backslash(C \cup K \cup W)$ is nonempty.

Since $V\left(G_{\beta}\right) \backslash(C \cup W) \subseteq \tilde{N}_{G_{\beta}}(K)$, each node $v \in V\left(G_{\beta}\right) \backslash(C \cup W)$ is adjacent to all nodes with coefficient 2 and, moreover, $\alpha\left(G_{\beta} \backslash N[v]\right) \leqslant 1$. Thus, according to equation (1) and by the maximality of W, the lifting coefficient of v is 2 for each $v \in V\left(G_{\beta}\right) \backslash(C \cup W)$. It follows that $V\left(G_{\beta}\right) \backslash(C \cup K \cup W)$ is $(C \cup K \cup W)$-complete, i.e., $\overline{G_{\beta}}[\tilde{N}(K)]$ is not connected, a contradiction. Hence, $s=|V(H) \backslash(C \cup K)|$ and the lemma follows.

In [1] Chudnovsky and Seymour give the following definition of fuzzy linear interval graphs:

Definition 10. A graph $G=(V, E)$ is said to be fuzzy linear interval if:

1. there is a map ϕ from V to a line L, and
2. there is a family \mathcal{I} of intervals of L (none including another) such that no point of L is an end of more than one interval, so that
3. for $u, v \in V$, if $u v \in E$ then $\{\phi(u), \phi(v)\}$ is a subset of one interval of \mathcal{I}, and if $u v \notin E$ then $\phi(u)$ and $\phi(v)$ are both ends of any interval of \mathcal{I} containing both of them (and in particular, if $\phi(u)=\phi(v)$ then u and v are adjacent).

Moreover, if $[a, b]$ is an interval of \mathcal{I} such that $\phi^{-1}(a)$ and $\phi^{-1}(b)$ are both nonempty subsets of V and at least one of the sets $\phi^{-1}(a)$ and $\phi^{-1}(b)$ has more than one member, then the interval $[a, b]$ is said to be $f u z z y$.

A fuzzy linear interval graph with two nonadjacent simplicial nodes a_{0} and b_{0} is a fuzzy linear interval strip (G, a_{0}, b_{0}) and graphs that are strip compositions of fuzzy linear interval strips are called fuzzy line graphs.

Chudnovsky and Seymour provided a linear description of the stable set polytope of fuzzy line graphs (see [29] for an alternative proof):

Theorem 11. (Chudnovsky and Seymour [1]) If G is a fuzzy line graph, then $S T A B(G)$ is described by nonnegativity and rank inequalities.

Next proposition concerns the coefficients of the endnodes of simplicial edges in facet defining inequalities of $S T A B(G)$.

Proposition 12. (Galluccio et al. [10]) Let G be a graph and let $\left(\beta, \beta_{0}\right)$ be a nontrivial facet defining inequality of $\operatorname{STAB}(G)$. If $u v$ is a simplicial edge of G_{β}, then $\beta_{u}=\beta_{v}$.

Finally, we consider two different polyhedral compositions. The first one was introduced by Chvátal [4] and concerns the stable set polytope of graphs composed via clique-cutsets. More precisely:

Theorem 13. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. Let $G_{1} \cup G_{2}=$ $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ and $G_{1} \cap G_{2}=\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)$. If $G_{1} \cap G_{2}$ is a complete graph, then the defining linear system of $\operatorname{STAB}\left(G_{1} \cup G_{2}\right)$ is given by the union of the defining linear systems of $\operatorname{STAB}\left(G_{1}\right)$ and $\operatorname{STAB}\left(G_{2}\right)$.

As a corollary of the previous result we have the following:
Corollary 14. Let G be a graph and let $\left(\beta, \beta_{0}\right)$ be a facet defining inequality for $S T A B(G)$. Then
i) G_{β} does not contain a clique-cutset;
ii) if $u \in V\left(G_{\beta}\right)$ is a simplicial node in G_{β}, then G_{β} is a maximal clique of G.

Proof. As observed in Section 2, $\left(\beta, \beta_{0}\right)$ is also a facet defining inequality for $\operatorname{STAB}\left(G_{\beta}\right)$.
i) Suppose by contradiction that G_{β} contains a clique Q such that $G_{\beta} \backslash Q$ is disconnected. Let H_{1} and H_{2} be the two (possibly disconnected) nonempty subgraphs of G_{β}

[^2]obtained by deleting Q. For $i=1,2$, let G_{i} be the graph induced by $V\left(H_{i}\right) \cup Q$. Then $G_{\beta}=G_{1} \cup G_{2}, G_{1} \cap G_{2}$ is the complete graph induced by Q, and, by Theorem $13, G_{\beta}$ is a subgraph of either G_{1} or G_{2}, a contradiction.
ii) Suppose there exists a node $v \in V\left(G_{\beta}\right) \backslash N_{G_{\beta}}(u)$ different from u. Then $N_{G_{\beta}}(u)$ is a clique-cutset in G_{β}, contradicting i).

From ii) of Corollary 14 and Proposition 12, it follows:
Corollary 15. Let G be a graph with a simplicial edge uv. Then the only facet defining inequalities for $\operatorname{STAB}(G)$ with different coefficients on u and v are the clique inequalities $x(N[u] \backslash\{v\}) \leqslant 1$ and $x(N[v] \backslash\{u\}) \leqslant 1$.

It is then convenient to give names to the facet defining inequalities indicated in Proposition 12 and to some particular facet defining inequalities for $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$:

Definition 16. Let G be a graph with a simplicial edge $a_{0} b_{0}$ and let $A=N\left(a_{0}\right) \backslash\left\{b_{0}\right\}$ and $B=N\left(b_{0}\right) \backslash\left\{a_{0}\right\}$. We call even a facet defining inequality of $S T A B(G)$ with nonzero coefficients on a_{0} and b_{0} that is different from $x_{a_{0}}+x_{b_{0}} \leqslant 1$ and we call odd a facet defining inequality of $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$ with nonzero coefficient on z_{0} that is different from $x\left(A \cup\left\{z_{0}\right\}\right) \leqslant 1, x\left(B \cup\left\{z_{0}\right\}\right) \leqslant 1$ and $x_{z_{0}} \geqslant 0$.

The second composition we consider is the 2-clique-bond composition described in Definition 2. In order to present the major polyhedral features of this composition we need the following definition describing the facet defining inequalities obtained as composition of inequalities of smaller polytopes:

Definition 17. Let G be the 2 -clique-bond composition of G_{1} and G_{2} along (a_{0}^{1}, b_{0}^{1}) and $\left(a_{0}^{2}, b_{0}^{2}\right)$. Let z_{0}^{i} be the node resulting from the contraction of $a_{0}^{i} b_{0}^{i}, i=1,2$.

Let $\beta^{i} x \leqslant \beta_{0}^{i}$ be an even inequality of $S T A B\left(G_{i}\right)$ and let $\beta^{j} x \leqslant \beta_{0}^{j}$ be an odd inequality of $\operatorname{STAB}\left(G_{j} / a_{0}^{j} b_{0}^{j}\right)$ such that $\beta_{a_{0}^{i}}^{i}=\beta_{b_{0}^{i}}^{i}=\beta_{z_{0}^{j}}^{j}=1$, for $i, j \in\{1,2\}$ and $i \neq j$.

An inequality of the form

$$
\begin{equation*}
\sum_{v \in V\left(G_{i} \backslash\left\{a_{0}^{i}, b_{0}^{i}\right\}\right)} \beta_{v}^{i} x_{v}+\sum_{v \in V\left(\left(G_{j} / a_{0}^{j} b_{0}^{j}\right) \backslash\left\{z_{0}^{j}\right\}\right)} \beta_{v}^{j} x_{v} \leqslant \beta_{0}^{i}+\beta_{0}^{j}-1 \tag{3}
\end{equation*}
$$

is said to be an even-odd combination of $\left(\beta^{i}, \beta_{0}^{i}\right)$ and $\left(\beta^{j}, \beta_{0}^{j}\right)$ (see Fig. 1 for an example).
Note that the conditions $\beta_{a_{0}^{i}}^{i}=\beta_{b_{0}^{i}}^{i}=\beta_{z_{0}^{j}}^{j}=1$, for $i, j=1,2$ and $i \neq j$, are not restrictive because, by Proposition 12, $\beta_{a_{0}^{i}}^{i}=\beta_{b_{0}^{i}}^{i}$.

Theorem 18. (Galluccio et al. [11]) Let G_{i} be a graph with a simplicial edge $a_{0}^{i} b_{0}^{i}, i=1,2$, and let G be the 2 -clique-bond composition of G_{1} and G_{2} along $\left(a_{0}^{1}, b_{0}^{1}\right)$ and $\left(a_{0}^{2}, b_{0}^{2}\right)$. The following system is defining for $\operatorname{STAB}(G)$:

- nonnegativity inequalities;
- clique inequalities induced by $A_{1} \cup A_{2}$ and $B_{1} \cup B_{2}$;
- facet defining inequalities of $S T A B\left(G_{i}\right)$ with zero coefficients on a_{0}^{i} and $b_{0}^{i}, i=1,2$;
- even-odd combinations of facet defining inequalities of $\operatorname{STAB}\left(G_{i}\right)$ and $\operatorname{STAB}\left(G_{j} /\right.$ $\left.a_{0}^{j} b_{0}^{j}\right)$ for each $i, j=1,2$ and $i \neq j$.

Fig. 1. (a) The odd inequality $\sum_{u \in \bullet} x_{u} \leqslant 2$; (b) the even inequality $\sum_{u \in \bullet} x_{u} \leqslant 3$; (c) $\sum_{x \in \bullet} x_{u} \leqslant 4$, the even-odd combination of (a) and (b).

The above result shows explicitly how to combine the facet defining inequalities of four polytopes related to G_{1} and G_{2} in order to obtain a defining linear system for $\operatorname{STAB(G)}$ when G is the 2-clique-bond composition of G_{1} and G_{2}. The next lemma shows that the class of rank facet defining inequalities of the stable set polytope is closed under even-odd combinations.

Lemma 19. (Chudnovsky and Seymour [11]) Even-odd combinations of rank inequalities that are facet defining for $\operatorname{STAB}\left(G_{i}\right)$ and $\operatorname{STAB}\left(G_{j} / a_{0}^{j} b_{0}^{j}\right), i, j=1,2$ and $i \neq j$, are rank inequalities that are facet defining for $\operatorname{STAB}(G)$.

Notice that the 2-clique-bond composition requires an edge to be simplicial but, in order to preserve the claw-freeness of the resulting graph, in the rest of the paper we always assume that the edges involved in the 2-clique-bond composition are super simplicial. This requirement guarantees that in claw-free graphs the 2-clique-bond composition is equivalent to the strip composition described by Chudnovsky and Seymour.

4. Homogeneous pairs of cliques

In [3], a homogeneous pair of cliques in a graph G is defined as a pair (A, B) such that: i) A, B are cliques in G and $A \cap B=\emptyset$; ii) no vertex of $G \backslash(A \cup B)$ has both a neighbour and a non-neighbour in A, and the same for B; iii) $|A| \geqslant 2$ or $|B| \geqslant 2$. A homogeneous pair of cliques is then a particular case of the homogeneous pair defined by Chvátal and Sbihi in [5].

Definition 20. Let $G=(V, E)$ be a claw-free graph. A pair of nodes $\{u, v\} \subset V$ is said to be fuzzy if one of the following holds:
a) if $u v \in E$ then $G-u v$ is claw-free,
b) if $u v \notin E$ then $G+u v$ is claw-free.

Chudnovsky and Seymour define the thickening as a procedure to build homogeneous pair of cliques in claw-free graphs. We slightly extend their definition [3] to include deletion/addition of the single edge $u v$.

Definition 21. Given a graph H and a set F of disjoint fuzzy pairs of nodes of $V(H)$, a thickening of H on F is a graph G satisfying the following:

- for every $v \in V(H)$ there is a nonempty clique $X_{v} \subseteq V(G)$ and the family $\left\{X_{v} \mid v \in\right.$ $V(H)\}$ is a partition of $V(G)$;
- if $u v \notin E(H)$ and $\{u, v\} \notin F$, then X_{u} is X_{v}-anticomplete in G;
- if $u v \in E(H)$ and $\{u, v\} \notin F$, then X_{u} is X_{v}-complete in G;
- if $\{u, v\} \in F$, then
either X_{u} is neither X_{v}-complete nor X_{v}-anticomplete in G or X_{u} is X_{v}-complete (X_{v}-anticomplete) if and only if $u v \notin E(H)(u v \in E(H))$.

Observe that if $F=\emptyset$, then G is obtained only by substituting cliques for nodes in H (see [4]). Observe also that a thickening on the fuzzy pair $\{u, v\}$ of F such that $\left|X_{u}\right| \geqslant 2$ or $\left|X_{v}\right| \geqslant 2$ produces a homogeneous pair of cliques $\left(X_{u}, X_{v}\right)$ in G.

We say that a graph G is fuzzy if it is obtained from H by performing a thickening on a (possibly empty) set of fuzzy pairs. In order to investigate the stable set polytope of a fuzzy graph G it is convenient to deal with facet defining inequalities $\left(\beta, \beta_{0}\right)$ whose supporting graph G_{β} is minimal in some respect. For instance, we may assume that G_{β} does not contain twins, because twins have the same coefficient in any facet defining inequality of $\operatorname{STAB}(G)$ by Proposition 4. Furthermore, G_{β} has no clique-cutset because of item i) of Corollary 14. The structure of G_{β} can be further specified by considering the following lemma of Eisenbrand et al.:

Lemma 22. (Eisenbrand et al. [7]) Let $\left(\beta, \beta_{0}\right)$ be a facet defining inequality of $\operatorname{STAB}(G)$. Then there exists a graph G^{\prime}, obtained from G by removing some edges, such that $\left(\beta, \beta_{0}\right)$ is also facet defining for $\operatorname{STAB}\left(G^{\prime}\right)$ and no homogeneous pair of cliques of G^{\prime} contains an induced C_{4}.

As a consequence, we may assume that the homogeneous pairs of cliques contained in G_{β} do not contain any induced C_{4}. In his thesis, King proved an interesting property of homogeneous pair of cliques that do not contain C_{4} 's:

Lemma 23. (King [17]) Let $\left(X_{u}, X_{v}\right)$ be a homogeneous pair of cliques with $X_{u}=$ $\left\{u_{1}, u_{2}, \ldots, u_{\left|X_{u}\right|}\right\}$ and $X_{v}=\left\{v_{1}, v_{2}, \ldots, v_{\left|X_{v}\right|}\right\}$. If $\left(X_{u}, X_{v}\right)$ contains no induced C_{4}, then the nodes of X_{u} and X_{v} can be ordered so that:

- $N\left(u_{i}\right) \cap X_{v} \supseteq N\left(u_{j}\right) \cap X_{v}$ for $1 \leqslant i \leqslant j \leqslant\left|X_{u}\right|$,
- $N\left(v_{i}\right) \cap X_{u} \supseteq N\left(v_{j}\right) \cap X_{u}$ for $1 \leqslant i \leqslant j \leqslant\left|X_{v}\right|$.

To our purposes we can further reduce the number of nodes of $X_{u} \cup X_{v}$ by eliminating twins. This allows us to identify a few types of homogeneous pairs of cliques that can appear in the supporting graph of a minimal facet defining inequality.

Lemma 24. Let $\left(\beta, \beta_{0}\right)$ be a facet defining inequality such that G_{β} contains a homogeneous pair of cliques $\left(X_{u}, X_{v}\right)$ with $\left|X_{u}\right|=p$ and $\left|X_{v}\right|=q, p \geqslant q \geqslant 1$. If $\left(X_{u}, X_{v}\right)$ contains no twins and no induced C_{4}, then $p \in\{q, q+1\}$ and the nodes in $X_{u} \cup X_{v}$ can be ordered so that:

1. if $p=q$ then either $N\left(u_{i}\right) \cap X_{v}=\left\{v_{1}, v_{2}, \ldots, v_{q-i+1}\right\}$ for $i=1, \ldots, p$, and $N\left(v_{i}\right) \cap$ $X_{u}=\left\{u_{1}, u_{2}, \ldots, u_{p-i+1}\right\}$ for $i=1, \ldots, q$, or $N\left(u_{i}\right) \cap X_{v}=\left\{v_{1}, v_{2}, \ldots, v_{q-i}\right\}$ for $i=1, \ldots, p$, and $N\left(v_{i}\right) \cap X_{u}=\left\{u_{1}, u_{2}, \ldots, u_{p-i}\right\}$ for $i=1, \ldots, q$;
2. if $p=q+1$ then $N\left(u_{i}\right) \cap X_{v}=\left\{v_{1}, v_{2}, \ldots, v_{q-i+1}\right\}$ for $i=1, \ldots, p$, and $N\left(v_{i}\right) \cap X_{u}=$ $\left\{u_{1}, u_{2}, \ldots, u_{p-i}\right\}$ for $i=1, \ldots, q$.

Proof. Assume that the nodes of $\left(X_{u}, X_{v}\right)$ are ordered according to Lemma 23. Since X_{u} contains no twins, there do not exist two nodes of X_{u} with the same adjacencies in X_{v}. It follows that $N\left(u_{i}\right) \cap X_{v} \supset N\left(u_{i+1}\right) \cap X_{v}$ and, in particular, that $\left|N\left(u_{i}\right) \cap X_{v}\right|>$ $\left|N\left(u_{i+1}\right) \cap X_{v}\right|$, for $i=1, \ldots, p-1$.

Then, as $0 \leqslant\left|N\left(u_{i}\right) \cap X_{v}\right| \leqslant q$ for all $i=1, \ldots, p$, for the pigeon hole principle, we have that $p \leqslant q+1$. Moreover $\left|N\left(u_{i}\right) \cap X_{v}\right|-\left|N\left(u_{i+1}\right) \cap X_{v}\right|=1$, for $i=1, \ldots, p-1$. Indeed, assume by contradiction that there exist $u_{i}, u_{i+1} \in X_{u}$ such that $N\left(u_{i}\right) \cap X_{v}=$ $\left\{v_{1}, \ldots, v_{j}\right\}, N\left(u_{i+1}\right) \cap X_{v}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $j-k \geqslant 2$. Let $v_{h} \in X_{v}$ with $j>h>k$. Then $N\left(v_{h}\right) \cap X_{u}$ is either $\left\{u_{1}, \ldots, u_{i}\right\}=N\left(v_{j}\right) \cap X_{u}$ or $\left\{u_{1}, \ldots, u_{i}, u_{i+1}\right\}=N\left(v_{k}\right) \cap X_{u}$, contradicting the hypothesis that X_{v} contains no twins.

Now, it is not difficult to verify that the only feasible configurations are those listed in the statement.

We call canonical the homogeneous pair of cliques satisfying Lemma 24. See Fig. 2 to see examples of the three types of canonical homogeneous pair of cliques.

Summarizing the previous results, hereafter we consider facet defining inequalities whose supporting graph contains no twins and each of its homogeneous pair of cliques is canonical. For short, we say that such facet defining inequalities are minimal.

Fig. 2. In (a) and (b) homogeneous pairs of cliques $\left(X_{u}, X_{v}\right)$ with $p=q=4$; in (c) a homogeneous pair of cliques with $p=4$ and $q=3$.

5. Nice three-cliqued graphs

In this section we deal with graphs whose node set can be covered by three cliques.

Definition 25. Let H be a graph whose node set can be covered by three cliques A, B, and C such that $A \cap C=\emptyset$ and $B \cap C=\emptyset$. The graph G obtained from H by adding two nodes a_{0} and b_{0} such that $N\left(a_{0}\right)=A$ and $N\left(b_{0}\right)=B$ is a three-cliqued strip and is denoted by $G=\left(A, B, C, a_{0}, b_{0}\right)$.

A nice three-cliqued graph is a closed three-cliqued strip $G=\left(A, B, C, a_{0} b_{0}\right)$ such that $\alpha\left(G \backslash\left\{a_{0}, b_{0}\right\}\right) \leqslant 2$.

The previous definition of three-cliqued strip is slightly more general than the one given by Chudnovsky and Seymour [3]. In fact, we allow A and B to intersect. Notice also that three-cliqued graphs (even if nice) are in general not claw-free. The following results concern the linear description of the stable set polytope of nice three-cliqued graphs.

Theorem 26. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a nice three-cliqued graph such that $a_{0} b_{0}$ is super simplicial. Then $\operatorname{STAB}(G)$ is described by nonnegativity and clique-neighbourhood inequalities. In particular, the inequalities with nonzero coefficients on the nodes a_{0} and b_{0} are rank inequalities.

Proof. Suppose conversely that there exists a nontrivial facet defining inequality (β, β_{0}) of $S T A B(G)$ that is not a clique-neighbourhood inequality. Since clique inequalities are a special kind of clique-neighbourhood inequalities, we may assume that $\left(\beta, \beta_{0}\right)$ is not a clique inequality.

First observe that $\alpha(G) \leqslant 3$. Denote by G_{β} the supporting graph of $\left(\beta, \beta_{0}\right)$. Let $A_{\beta}=A \cap V\left(G_{\beta}\right), B_{\beta}=B \cap V\left(G_{\beta}\right)$, and $C_{\beta}=C \cap V\left(G_{\beta}\right)$. Then $C_{\beta} \neq \emptyset$, since otherwise G_{β} is partitionable into two cliques, i.e., $\alpha\left(G_{\beta}\right) \leqslant 2$, and, by Theorem $6,\left(\beta, \beta_{0}\right)$ is a clique-neighbourhood inequality. Contradiction.

Moreover, as $a_{0} b_{0}$ is simplicial, $\beta_{a_{0}}=\beta_{b_{0}}$ by Corollary 15. If $\beta_{a_{0}}=\beta_{b_{0}}=0$, then $\alpha\left(G_{\beta}\right) \leqslant 2$ and $\left(\beta, \beta_{0}\right)$ is a clique-neighbourhood inequality by Theorem 6. So assume

[^3]that $\beta_{a_{0}}=\beta_{b_{0}} \neq 0$, i.e., a_{0} and b_{0} belong to $V\left(G_{\beta}\right)$. Then there exist two nonadjacent nodes $a_{1} \in A_{\beta} \backslash B_{\beta}$ and $b_{1} \in B_{\beta} \backslash A_{\beta}$, since otherwise $A_{\beta} \cup B_{\beta}$ would be a clique-cutset in G_{β}, contradicting claim i) of Corollary 14.

As $\left(\beta, \beta_{0}\right)$ is not the clique inequality defined by $A_{\beta} \cup\left\{a_{0}\right\}$, there exists, by Lemma 3 , a stable set S that is tight for $\left(\beta, \beta_{0}\right)$ and that does not intersect $A_{\beta} \cup\left\{a_{0}\right\}$. It follows that $b_{0} \in S$, otherwise $S \cup\left\{a_{0}\right\}$ would be a stable set violating $\left(\beta, \beta_{0}\right)$. As a consequence, $S=\left\{b_{0}, \tilde{c}\right\}$ with $\tilde{c} \in C_{\beta}$ and, by Proposition 12, also $S^{\prime}=\left\{a_{0}, \tilde{c}\right\}$ is tight.

If there exists $a \in\left(A_{\beta} \backslash B_{\beta}\right) \backslash N(\tilde{c})$, then $\left\{b_{0}, \tilde{c}, a\right\}$ violates $\left(\beta, \beta_{0}\right)$, a contradiction. Symmetrically, if there exists $b \in\left(B_{\beta} \backslash A_{\beta}\right) \backslash N(\tilde{c})$, then $\left\{a_{0}, \tilde{c}, b\right\}$ violates $\left(\beta, \beta_{0}\right)$, a contradiction. It follows that $N(\tilde{c}) \supseteq\left(A_{\beta} \backslash B_{\beta}\right) \cup\left(B_{\beta} \backslash A_{\beta}\right)$.

Consider now the inequality $(\gamma, 2)$ obtained from the 5 -hole inequality induced by $\left(a_{0}, b_{0}, b_{1}, \tilde{c}, a_{1}\right)$ by sequentially lifting the other nodes of G_{β} as follows: first the nodes in $\left(A_{\beta} \backslash B_{\beta}\right) \cup\left(B_{\beta} \backslash A_{\beta}\right)$ receive coefficient 1 because their non-neighbourhood in the supporting graph of the inequality that is lifted is a nonempty clique; then the nodes in $A_{\beta} \cap B_{\beta}$ receive coefficient 1 because their non-neighbourhood is \tilde{c} (since $a_{0} b_{0}$ is super simplicial); finally, we lift with coefficient 1 the nodes in $C_{\beta} \backslash\{\tilde{c}\}$ whose nonneighbourhood is a clique and with coefficient 0 all the remaining nodes in C_{β}.

Suppose now that there exists a stable set $S^{\prime \prime}$ that is tight for $\left(\beta, \beta_{0}\right)$ and not tight for ($\gamma, 2$). Then $S^{\prime \prime}=\{u, v\}$ with $u \in C_{\beta} \backslash C_{\gamma}$ and $v \in A_{\beta} \cap B_{\beta}$. As $\gamma_{u}=0$ then $G_{\gamma} \backslash N[u]$ contains a stable set of size 2: either $\left\{a, b_{0}\right\}$ with $a \in A_{\beta} \backslash B_{\beta}$ or $\left\{b, a_{0}\right\}$ with $b \in B_{\beta} \backslash A_{\beta}$. Let us assume without loss of generality that the former case occurs, and so $\beta_{u}+\beta_{a}+\beta_{b_{0}} \leqslant \beta_{0}$. Since $\left\{b_{0}, \tilde{c}\right\}$ is tight for $\left(\beta, \beta_{0}\right), \beta_{\tilde{c}}+\beta_{b_{0}}=\beta_{0}$ and so, $\beta_{\tilde{c}} \geqslant$ $\beta_{u}+\beta_{a}$, i.e., $\beta_{\tilde{c}}>\beta_{u}$ and $\beta_{\tilde{c}}>\beta_{a}$. Therefore $\{\tilde{c}, v\}$ is a stable set that violates $\left(\beta, \beta_{0}\right)$. A contradiction.

By Lemma 3 it follows that $\left(\beta, \beta_{0}\right)$ is a positive scalar multiple of $(\gamma, 2)$ and the thesis follows.

Theorem 27. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a nice three-cliqued graph and let z_{0} denote the node resulting from the contraction of $a_{0} b_{0}$. Then $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$ is described by nonnegativity and clique-neighbourhood inequalities. In particular, z_{0} has coefficient zero or one in every facet defining inequality of $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$.

Proof. As $\alpha\left(G \backslash\left\{a_{0}, b_{0}\right\}\right) \leqslant 2$ and $G \backslash N\left[z_{0}\right]$ is a clique, it follows that $\alpha\left(G / a_{0} b_{0}\right) \leqslant 2$. Thus we can apply Theorem 6 to obtain the first part of the thesis. Now we prove that every clique-neighbourhood inequality with nonzero coefficient on z_{0} has coefficient 1 on such a node. Indeed, select a clique $K \ni z_{0}$ and consider the clique-neighbourhood inequality generated by $K: 2 x(K)+x(\tilde{N}(K)) \leqslant 2$. Since $\tilde{N}(K) \subseteq A \cup B$ is partitioned into two cliques, it follows, by Corollary 7 , that the clique-neighbourhood inequality generated by K is not facet defining unless $\tilde{N}(K)=\emptyset$, i.e., the clique-neighbourhood inequality is actually a clique inequality. Hence, $z_{0} \notin K$ in any facet defining inequality with coefficients $\{1,2\}$ and the thesis follows.

(a)

(b)

(c)

Fig. 3. (a) A nice three-cliqued strip $G=\left(A, B, C, a_{0}, b_{0}\right)$; (b) the corresponding closed strip ($G, a_{0} b_{0}$); (c) the contracted graph $G / a_{0} b_{0}$.

Observe now that there exist non-rank facet defining inequalities with nonzero coefficient on z_{0} : for instance, consider the nice three-cliqued graph $\left(A, B, C, a_{0} b_{0}\right)$ with $A=\left\{a_{1}, a_{2}\right\}, B=\left\{b_{1}\right\}, C=\left\{c_{1}, c_{2}\right\}$, and edges as in Fig. 3 (b). It is easy to verify that the graph obtained by contracting the edge $a_{0} b_{0}$ into a single node z_{0} supports a 5 -wheel inequality with coefficient 1 on node z_{0} (see Fig. 3). Notice that G is not claw-free.

In the next sections we shall prove that this situation never occurs in claw-free threecliqued strips $Z_{i}, i=2,3,4$.

6. Fuzzy Z_{2}-strips

In this section we specialize the results obtained so far to a special class of claw-free nice three-cliqued graphs: the closed fuzzy Z_{2}-strips.

Definition 28. Let G^{*} be a three-cliqued strip $\left(A^{*}, B^{*}, C^{*}, a_{0}, b_{0}\right)$ such that the following conditions hold:

1) $A^{*}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, B^{*}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, and $C^{*}=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ are three pairwise disjoint cliques,
2) for $1 \leqslant i, j \leqslant n, a_{i}$ and b_{j} are adjacent if and only if $i=j$,
3) for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant n, c_{i}$ is adjacent to a_{j}, b_{j} if and only if $i \neq j$.

A fuzzy Z_{2}-strip $\left(A, B, C, a_{0}, b_{0}\right)$ is obtained from G^{*} by deleting a (possibly empty) set of nodes $Y \subseteq A^{*} \cup B^{*} \cup C^{*}$, such that $A=A^{*} \backslash Y, B=B^{*} \backslash Y, C=C^{*} \backslash Y,|C| \geqslant 2$, and possibly performing a thickening on the following pairs:

- $\left\{a_{i}, c_{i}\right\}$ for at most one value of $i \in\{1, \ldots, n\}$, with $b_{i} \in Y$,
- $\left\{b_{i}, c_{i}\right\}$ for at most one value of $i \in\{1, \ldots, n\}$, with $a_{i} \in Y$,
- $\left\{a_{i}, b_{i}\right\}$ for at most one value of $i \in\{1, \ldots, n\}$, with $c_{i} \in Y$.

In the following, we denote by \hat{u} a generic node in X_{u}.

Lemma 29. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a closed fuzzy Z_{2}-strip. Then G and $G / a_{0} b_{0}$ do not contain a $(2 t+1)$-antihole, $t \geqslant 3$, as an induced subgraph.

Proof. Suppose conversely that G contains a $(2 t+1)$-antihole H with $t \geqslant 3$ and let the nodes of $H=\left(v_{0}, v_{1}, \ldots, v_{2 t}\right)$ be ordered so that two nodes are not adjacent if and only if they are consecutive on H (sums are taken modulo $2 t+1$). Suppose first that $a_{0} \in H$. Then a_{0} is adjacent to exactly $2 t-2$ nodes of H and, consequently, H contains either $2 t-3$ (if $b_{0} \in H$) or $2 t-2$ (if $b_{0} \notin H$) nodes of A. In both cases, H would contain a clique of size $2 t-2$, contradicting the hypothesis that $t \geqslant 3$. Hence $a_{0} \notin H$ and symmetrically $b_{0} \notin H$.

Suppose now that $z_{0} \in H$ and let $z_{0}=v_{0}$. Then v_{1} and $v_{2 t}$ belong to C and, moreover, $\left\{v_{2}, v_{3}, \ldots, v_{2 t-1}\right\} \subseteq A \cup B$. To preserve the nonadjacency of consecutive nodes in H, the nodes in $H \backslash\left\{v_{2 t}, v_{0}, v_{1}\right\}$ belong alternatively to A and B. Without loss of generality, let $v_{2}=\hat{a}_{i} \in X_{a_{i}}$ for some $i \in\{1, \ldots, n\}$ (where $n=\left|A^{*}\right|=\left|B^{*}\right|=\left|C^{*}\right|$ as in Definition 28). Thus $v_{1}=\hat{c}_{i} \in X_{c_{i}}$ and $v_{2 t-1} \in B$. Since $v_{2} v_{2 t-1} \in E, v_{2 t-1}=\hat{b}_{i} \in X_{b_{i}}$, thus implying that no pair in $\left\{a_{i}, b_{i}, c_{i}\right\}$ is fuzzy. But then $v_{2 t}=\hat{c}_{k} \in X_{c_{k}}$ with $k \neq i$ and $v_{2 t} v_{2 t-1} \in E$, a contradiction.

Thus $z_{0} \notin H$ and a vertex $\hat{c}_{i} \in H$ otherwise H would be partitioned into two cliques. Set $\hat{c}_{i}=v_{0}$ for some $i \in\{1, \ldots, n\}$ where n is defined as above. Then $v_{1} \in X_{a_{i}} \cup X_{b_{i}}$. Without loss of generality, let $v_{1}=\hat{a}_{i}$. Since \hat{a}_{i} is anticomplete to $B \backslash X_{b_{i}}, H \backslash\left\{v_{0}, v_{1}, v_{2}\right\}$ does not contain any node in $B \backslash X_{b_{i}}$.

If $v_{2} \in X_{c_{i}}$ then the pair $\left\{a_{i}, c_{i}\right\}$ is fuzzy and so, $X_{b_{i}}=\emptyset$. Thus $V(H) \subseteq A \cup C$, a contradiction. As a consequence, since $v_{2} \in N\left(\hat{c}_{i}\right) \backslash N\left(\hat{a}_{i}\right), v_{2}=\hat{b}_{j} \in X_{b_{j}}$ with $j \neq i$. Furthermore, $v_{2 t} \notin X_{a_{i}}$ since otherwise $v_{2 t} v_{2}$ would not be adjacent. Thus $v_{2 t}=\hat{b}_{i} \in X_{b_{i}}$, i.e., no pair in $\left\{a_{i}, b_{i}, c_{i}\right\}$ is fuzzy. As \hat{b}_{i} is anticomplete to $A \backslash X_{a_{i}}, H \backslash\left\{v_{2 t-1}, v_{2 t}, v_{0}, v_{1}\right\}$ does not contain any node in $A \backslash X_{a_{i}}$. Since $v_{2 t-1} \in N\left(\hat{c}_{i}\right) \backslash N\left(\hat{b}_{i}\right), v_{2 t-1}=\hat{a}_{k} \in X_{a_{k}}$ with $k \neq i$.

Thus $H \backslash\left\{v_{2 t-1}, v_{2 t}, v_{0}, v_{1}, v_{2}\right\}$ is contained in C and consists of at most one node, contradicting the hypothesis that H has length at least 7 .

It is easy to see that a closed fuzzy Z_{2}-strip G that is a thickening with $F=\emptyset$ is a nice three-cliqued graph and, with a little effort, it can also be proved that the thickening performed on any admissible set of fuzzy pairs does not increase the stability number of closed fuzzy Z_{2}-strips. Therefore, by Theorems 26 and 27 , the stable set polytopes of a closed fuzzy Z_{2}-strip and its contraction along the super simplicial edge $a_{0} b_{0}$ are described by: nonnegativity and clique-neighbourhood inequalities. In the remainder of this section, we provide details on the structure of these inequalities.

Theorem 30. Let $\left(G, a_{0} b_{0}\right)$ be a closed fuzzy Z_{2}-strip. Then every nontrivial inequality $\left(\beta, \beta_{0}\right)$ that is facet defining for $\operatorname{STAB}(G)\left(S T A B\left(G / a_{0} b_{0}\right)\right)$ is a rank or a lifted 5 -wheel inequality. Moreover, if $\beta_{a_{0}}=\beta_{b_{0}}>0\left(\beta_{z_{0}}>0\right.$, respectively), then $\left(\beta, \beta_{0}\right)$ is a rank inequality.

Proof. Since a closed fuzzy Z_{2}-strip is a nice three-cliqued graph, it follows, by Theorem 26 (Theorem 27), that every facet defining inequality for $\operatorname{STAB}(G)\left(S T A B\left(G / a_{0} b_{0}\right)\right.$, respectively) is either a nonnegativity or a clique-neighbourhood inequality.

Since $A \cap B=\emptyset$, the edge $a_{0} b_{0}$ is super simplicial in G and so, by Theorem 26, every facet defining clique-neighbourhood inequality of $\operatorname{STAB}(G)$ with coefficients $\{0,1,2\}$ has zero coefficients on a_{0} and b_{0}. Therefore, the supporting graph of every cliqueneighbourhood inequality of $S T A B(G)$ that is not a rank inequality is a subgraph G^{\prime} of $G \backslash\left\{a_{0}, b_{0}\right\}$ and so also of $G / a_{0} b_{0}$.

By Corollary 8, every nontrivial facet defining inequality of $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$ that is not a rank inequality is a clique-neighbourhood inequality generated by a nonempty clique $K \subset C$. Since z_{0} is C-anticomplete it follows that z_{0} has coefficient zero in every clique-neighbourhood inequality of $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$ with coefficients $\{0,1,2\}$.

To complete the proof we need to show that every clique-neighbourhood inequality $\left(\beta, \beta_{0}\right)$ that is facet defining for $\operatorname{STAB}(G)$ (and for $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$) and is not a rank inequality, is a lifted 5 -wheel inequality. By Lemma $29, G$ and $G / a_{0} b_{0}$ do not contain any $(2 t+1)$-antiwheel with $t \geqslant 3$. Thus, by Lemma 9 , it suffices to show that $\overline{G_{\beta}}[\tilde{N}(K)]$ is connected, where K is the clique that generates $\left(\beta, \beta_{0}\right)$.

Let $\hat{c}_{k} \in K$ and let $\left(\hat{a}_{i}, \hat{b}_{j}, \hat{c}_{j}, \hat{a}_{j}, \hat{b}_{r}\right)$ be a 5 -hole contained in $\overline{G_{\beta}}[\tilde{N}(K)]$ (it exists since G is claw-free, it does not contain a $(2 t+1)$-antiwheel with $t \geqslant 3$, and $\overline{G_{\beta}}[\tilde{N}(K)]$ is not bipartite) with $i \neq j \neq r$ and i, j, r different from k. Note that r might coincide with i in case G is fuzzy and $\left\{a_{i}, b_{i}\right\}$ is a fuzzy pair. Now, in \bar{G} each node $\hat{a}_{q} \in A \cap \tilde{N}_{G_{\beta}}(K)$, $q \neq i, j$ is adjacent to \hat{b}_{j} and each node $\hat{b}_{p} \in B \cap \tilde{N}_{G_{\beta}}(K), p \neq j, r$ is adjacent to \hat{a}_{j}. Moreover each node $\hat{c}_{t} \in C \cap \tilde{N}_{G_{\beta}}(K), t \neq j$, is adjacent in \bar{G} to at least one node in $(A \cup B) \cap \tilde{N}_{G_{\beta}}(K)$, otherwise \hat{c}_{t} is isolated in $\overline{G_{\beta}}[\tilde{N}(K)]$ and Theorem 6 would be contradicted. Hence, $\overline{G_{\beta}}[\tilde{N}(K)]$ is connected and the thesis follows.

Theorem 30 provides us the following useful information: when performing the 2-clique-bond composition of a closed fuzzy Z_{2}-strip G with another graph, cliqueneighbourhood inequalities of $\operatorname{STAB}(G)$ and $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$ with coefficients $\{0,1,2\}$ are never involved in even-odd combinations of inequalities. This because the only facet defining inequalities of $S T A B(G)$ that are even are rank inequalities and the only facet defining inequalities of $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$ that are odd are rank inequalities as well.

The closed fuzzy Z_{2}-strips are not the only three-cliqued graphs involved in the decomposition theorem of claw-free graphs. In particular two other types of three-cliqued graphs are needed to construct fuzzy antihat graphs: closed fuzzy Z_{3}-strips and closed fuzzy Z_{4}-strips. These three-cliqued graphs are not nice in general and for each of them we need specific proofs to yield the linear descriptions of their stable set polytope. This will be discussed in the next two sections.

7. Fuzzy Z_{3}-strips

In [3], fuzzy Z_{3}-strips are defined as follows:
Definition 31. Let H be a graph and let $\left(h_{1}, h_{2}, h_{3}, h_{4}, h_{5}\right)$ be a path in H such that h_{1} and h_{5} both have degree one in H and every other edge of H is incident with one of
h_{2}, h_{3}, h_{4}. The graph H^{\prime} obtained from the line graph of H by performing a thickening on the pair $\left\{h_{2} h_{3}, h_{3} h_{4}\right\}$ or by deleting the edge $\left\{h_{2} h_{3}, h_{3} h_{4}\right\}$ is a fuzzy Z_{3}-strip with simplicial nodes $\left\{h_{1} h_{2}, h_{4} h_{5}\right\}$.

An equivalent definition can be given directly without producing H^{\prime} as a thickening of the line graph of an original graph H.

Definition 32. Let G^{*} be a three-cliqued strip $\left(A^{*}, B^{*}, C^{*}, a_{0}, b_{0}\right)$ where the following conditions hold:

1) $A^{*}=\left\{z_{1}, a_{1}, a_{2}, \ldots, a_{n}\right\}, B^{*}=\left\{z_{2}, b_{1}, b_{2}, \ldots, b_{n}\right\}$, and $C^{*}=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ are three pairwise disjoint cliques;
2) for $1 \leqslant i, j \leqslant n, a_{i} b_{j}, a_{i} c_{j}, b_{i} c_{j} \in E\left(G^{*}\right)$ if and only if $i=j$;
3) z_{1} is $\left(A^{*} \cup\left\{a_{0}\right\} \cup C^{*}\right)$-complete and $\left(B^{*} \cup\left\{b_{0}\right\}\right)$-anticomplete; z_{2} is $\left(B^{*} \cup\left\{b_{0}\right\} \cup\right.$ $\left.C^{*}\right)$-complete and $\left(A^{*} \cup\left\{a_{0}\right\}\right)$-anticomplete; $z_{1} z_{2} \in E\left(G^{*}\right)$.

A fuzzy Z_{3}-strip $\left(A, B, C, a_{0}, b_{0}\right)$ is obtained from G^{*} by deleting a (possibly empty) set of nodes $Y \subseteq A^{*} \cup B^{*} \cup C^{*} \backslash\left\{z_{1}, z_{2}\right\}$ such that $A=A^{*} \backslash Y, B=B^{*} \backslash Y$, and $C=C^{*} \backslash Y$ and by performing a thickening on a set F containing the pair $\left\{z_{1}, z_{2}\right\}$ and possibly the following pairs:

- $\left\{a_{i}, c_{i}\right\}$, with $b_{i} \in Y$;
$-\left\{b_{i}, c_{i}\right\}$, with $a_{i} \in Y$;
- $\left\{a_{i}, b_{i}\right\}$, with either $c_{i} \in Y$ or $C=\left\{c_{i}\right\}$.

It can be verified that the fuzzy Z_{3}-strip as defined in Definition 32 is equivalent to the thickening of a Z_{3}-strip $\left(H, h_{1} h_{2}, h_{4} h_{5}\right)$ as defined in Definition 31 provided that the thickening of Chudnovsky and Seymour is modified as in Definition 21.

In the following, we say that a (closed/contracted closed) fuzzy Z_{3}-strip G contains an ab-pair $\left\{a_{i}, b_{i}\right\}$ if $a_{i}, b_{i} \in V(G)$ and $c_{i} \in Y$, an ac-pair $\left\{a_{i}, c_{i}\right\}$ if $a_{i}, c_{i} \in V(G)$ and $b_{i} \in Y$, a bc-pair $\left\{b_{i}, c_{i}\right\}$ if $b_{i}, c_{i} \in V(G)$ and $a_{i} \in Y$. Moreover, if $a_{i}, b_{i}, c_{i} \in V(G)$ for some index i, we say that G contains a complete triple, while, if $c_{i} \in V(G)$ and $a_{i}, b_{i} \in Y$, we say that G contains a c-singleton. According to Definition 20, each of the above pairs is fuzzy. In the following, when we say that G contains, say, an $a b$-pair $\left\{a_{i}, b_{i}\right\}$ for some i, we mean that G contains the thickening $\left(X_{a_{i}}, X_{b_{i}}\right)$ of that pair (if any). The same apply to $b c$-pairs, $a c$-pairs, and the complete triple $\left\{a_{i}, b_{i}, c_{i}\right\}$ when $C=\left\{c_{i}\right\}$ according to Definition 32.

In Fig. 4 we depict two examples of Z_{3}-strip: (a) shows a Z_{3}-strip with one complete triple, one $a b$-pair and a c-singleton; (b) shows a Z_{3}-strip with two complete triples. The dashed bold edges represent fuzzy pairs, while the grey areas emphasize the three cliques A, B, and C.

Fig. 4. Z_{3}-strips.

In the following we study the facet defining inequalities of $\operatorname{STAB}(G)$ and $S T A B(G /$ $a_{0} b_{0}$) where G is a closed fuzzy Z_{3}-strip with a super simplicial edge $a_{0} b_{0}$. A number of preliminary observations can be made to specify which subgraphs of a closed fuzzy Z_{3}-strip can support a nontrivial facet defining inequality.

Observation 33. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a closed fuzzy Z_{3}-strip and let Y be as in Definition 32. If Y contains a pair of nodes $\left\{b_{i}, c_{i}\right\}$ (or $\left\{a_{i}, c_{i}\right\}$), then the node a_{i} (b_{i} respectively) is simplicial in G, as it belongs only to the clique $A \cup\left\{a_{0}\right\}$ ($B \cup\left\{b_{0}\right\}$ respectively). By ii) of Corollary 14, the associated clique inequality is the only nontrivial facet defining inequality for $\operatorname{STAB}(G)$ with nonzero coefficient on $a_{i}\left(b_{i}\right)$. Analogous result holds for $G / a_{0} b_{0}$ with the cliques $A \cup\left\{z_{0}\right\}$ and $B \cup\left\{z_{0}\right\}$.

Based on the previous observation, we restrict our attention to nontrivial facet defining inequalities $\left(\beta, \beta_{0}\right)$ with the following property: if $a_{i} \in V\left(G_{\beta}\right)$ then $V\left(G_{\beta}\right) \cap\left\{b_{i}, c_{i}\right\} \neq \emptyset$ and if $b_{i} \in V\left(G_{\beta}\right)$ then $V\left(G_{\beta}\right) \cap\left\{a_{i}, c_{i}\right\} \neq \emptyset$.

Observation 34. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a closed fuzzy Z_{3}-strip. If c_{i} and c_{k} are c-singletons, then c_{i} and c_{k} are twins in G and in $G / a_{0} b_{0}$.

As twins always have the same coefficient in every facet defining inequality, hereafter we consider only nontrivial facet defining inequalities whose supporting graph contains at most one c-singleton.

Lemma 35. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a closed fuzzy Z_{3}-strip. If G does not contain any complete triple, then G and $G / a_{0} b_{0}$ are fuzzy line graphs.

Proof. Let $H=\left(A, B, C, x_{0}, y_{0}\right)$ denote the fuzzy Z_{3}-strip obtained from $G-a_{0} b_{0}$ by renaming the nodes a_{0} and b_{0} as x_{0} and y_{0}, respectively.

Consider now the fuzzy Z_{3}-strip $H^{\prime}=\left(A^{\prime}, B^{\prime}, C, x_{1}, x_{2}\right)$ obtained from H by removing the nodes of A and B that form $a b$-pairs and adding two nodes x_{1} and x_{2} that are twins of x_{0} and y_{0}, respectively.

[^4]

Fig. 5. The two strips H^{\prime} and $H^{\prime \prime}$ of the proof of Lemma 35.

We show that $\left(H^{\prime}, x_{1}, x_{2}\right)$ is a fuzzy linear interval strip. We partition the set C into three sets: C_{A}, C_{B} and C_{Z}, where C_{A} and C_{B} contains exactly the nodes of C that are adjacent to some nodes in $A^{\prime} \backslash X_{z_{1}}$ and $B^{\prime} \backslash X_{z_{2}}$, respectively, and $C_{Z}=C \backslash\left(C_{A} \cup C_{B}\right)$ (see Fig. 5).

Then consider the mapping ϕ from $V\left(H^{\prime}\right)$ to the points $l_{0}, l_{1}, \ldots, l_{10}$ of a line L (ordered from left to right) such that: $\phi^{-1}\left(l_{0}\right)=x_{1}, \phi^{-1}\left(l_{1}\right)=x_{0}, \phi^{-1}\left(l_{2}\right)=A^{\prime} \backslash X_{z_{1}}$, $\phi^{-1}\left(l_{3}\right)=X_{z_{1}}, \phi^{-1}\left(l_{4}\right)=C_{A}, \phi^{-1}\left(l_{5}\right)=C_{Z}, \phi^{-1}\left(l_{6}\right)=C_{B}, \phi^{-1}\left(l_{7}\right)=X_{z_{2}}, \phi^{-1}\left(l_{8}\right)=$ $B^{\prime} \backslash X_{z_{2}}, \phi^{-1}\left(l_{9}\right)=y_{0}, \phi^{-1}\left(l_{10}\right)=x_{2}$, and the intervals: $I_{1}=\left[l_{0}, l_{3}+\epsilon\right], I_{2}=\left[l_{2}, l_{4}\right]$, $I_{3}=\left[l_{3}, l_{7}\right], I_{4}=\left[l_{6}, l_{8}\right], I_{5}=\left[l_{7}-\epsilon, l_{10}\right]$, where ϵ is an opportunely small value and the intervals I_{2}, I_{3}, I_{4} are fuzzy (according to Definition 10).

To obtain H it suffices to perform a strip composition between $\left(H^{\prime}, x_{1}, x_{2}\right)$ and a fuzzy linear interval strip ($H^{\prime \prime}, y_{1}, y_{2}$) consisting of a unique fuzzy interval with endpoints $A \backslash A^{\prime}$ and $B \backslash B^{\prime}$ depicted in Fig. 5.

According to Observation 1, G and $G / a_{0} b_{0}$ are obtained as strip compositions of (H, x_{0}, y_{0}) with the 4-path $\left\{x_{0}^{\prime}, a_{0}, b_{0}, y_{0}^{\prime}\right\}$ and the 3 -path $\left\{x_{0}^{\prime}, z_{0}, y_{0}^{\prime}\right\}$, respectively. Thus, G and $G / a_{0} b_{0}$ are fuzzy line.

The next lemmas specify the structure of the supporting graph of nontrivial facet defining inequalities of $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$.

Lemma 36. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a closed fuzzy Z_{3}-strip. Let $\left(\beta, \beta_{0}\right)$ be a nontrivial facet defining inequality of $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$ that is not a rank inequality. If G_{β} does not contain twins, then one of the following cases occurs:

1. $G_{\beta} \backslash\left(X_{z_{1}} \cup X_{z_{2}} \cup\left\{z_{0}\right\}\right)$ consists of two complete triples, no pairs, and at most one c-singleton;
2. $G_{\beta} \backslash\left(X_{z_{1}} \cup X_{z_{2}} \cup\left\{z_{0}\right\}\right)$ consists of one complete triple, one pair, and at most one c-singleton;
3. $G_{\beta} \backslash\left(X_{z_{1}} \cup X_{z_{2}} \cup\left\{z_{0}\right\}\right)$ consists of one complete triple, no pairs, and at most one c-singleton;
4. $G_{\beta} \backslash\left(X_{z_{1}} \cup X_{z_{2}} \cup\left\{z_{0}\right\}\right)$ consists of one complete triple, one ac-pair, one bc-pair, no ab-pair, and at most one c-singleton.

Proof. Let $A_{\beta}=A \cap V\left(G_{\beta}\right)$ and $B_{\beta}=B \cap V\left(G_{\beta}\right)$. By Lemma 3, there exists a stable set S missing the clique $A_{\beta} \cup\left\{z_{0}\right\}$. Thus every node $a_{i} \in A_{\beta} \backslash X_{z_{1}}$ must be adjacent to at least one node in $S \cap\left\{b_{i}, c_{i}\right\}$ since otherwise $S \cup\left\{a_{i}\right\}$ would violate (β, β_{0}). As $B \cup C$ contains at most two nonadjacent nodes, it follows that $\left|V\left(G_{\beta}\right) \cap\left(A_{\beta} \backslash X_{z_{1}}\right)\right| \leqslant 2$.

By using a tight stable set S missing the clique $B_{\beta} \cup\left\{z_{0}\right\}$, it can be proved that $\left|V\left(G_{\beta}\right) \cap\left(B_{\beta} \backslash X_{z_{2}}\right)\right| \leqslant 2$. If G_{β} does not contain any complete triple, then, by Lemma 35 and Theorem 11, $\left(\beta, \beta_{0}\right)$ is a rank inequality, a contradiction. Hence, G_{β} contains at least one complete triple and, by Observation $34, G_{\beta}$ contains at most one c-singleton. Finally, by Observation 33, it follows that all feasible configurations are those listed in the thesis.

Lemma 37. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a closed fuzzy Z_{3}-strip. Then every nontrivial inequality $\left(\beta, \beta_{0}\right)$ that is facet defining for $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$ is either a rank or a lifted 5 -wheel inequality. Moreover, if $\beta_{z_{0}}>0$, then $\left(\beta, \beta_{0}\right)$ is a rank inequality.

Proof. We may assume that $\left(\beta, \beta_{0}\right)$ does not contain twins and every homogeneous pair in G_{β} is canonical. According to Lemma 36 we distinguish four cases.

Case 1: $G_{\beta} \backslash\left(X_{z_{1}} \cup X_{z_{2}} \cup\left\{z_{0}\right\}\right)$ consists of two complete triples $\left\{a_{i}, b_{i}, c_{i}\right\}, i=1,2$, no pairs, and at most one c-singleton c_{3}.

If $c_{3} \notin V\left(G_{\beta}\right)$, then consider the mapping $\phi: V\left(G_{\beta}\right) \rightarrow V\left(G_{\beta}^{\prime}\right)$ defined as follows:

- $V\left(G_{\beta}\right)=\left\{z_{0}, a_{1}, c_{1}, b_{1}, a_{2}, c_{2}, b_{2}, z_{1}, z_{2}\right\} ;$
- $V\left(G_{\beta}^{\prime}\right)=\left\{z_{0}^{\prime}, a_{1}^{\prime}, c_{2}^{\prime}, b_{1}^{\prime}, a_{2}^{\prime}, c_{1}^{\prime}, b_{2}^{\prime}, a_{3}^{\prime}, b_{3}^{\prime}\right\}$;
- $\phi\left(a_{i}\right)=a_{i}^{\prime}, \phi\left(b_{i}\right)=b_{i}^{\prime}$, for $i=1,2, \phi\left(z_{0}\right)=z_{0}^{\prime}, \phi\left(z_{1}\right)=a_{3}^{\prime}$, and $\phi\left(z_{2}\right)=b_{3}^{\prime}, \phi\left(c_{1}\right)=c_{2}^{\prime}$, $\phi\left(c_{2}\right)=c_{1}^{\prime}$.

Note that, since $c_{3}^{\prime} \notin V\left(G_{\beta}^{\prime}\right)$, the pair $\left\{a_{3}^{\prime}, b_{3}^{\prime}\right\}$ is fuzzy and a thickening of this pair can be always performed in G_{β}^{\prime} as well as on the pair $\left\{z_{1}, z_{2}\right\}$ in G_{β}. Thus G_{β} is isomorphic to a closed fuzzy Z_{2}-strip G_{β}^{\prime} and, by Theorem 30, we are done, as $\left(\beta, \beta_{0}\right)$ is either a rank or a lifted 5 -wheel inequality; moreover, in the latter case, $\beta_{z_{0}}=0$.

Suppose now that $c_{3} \in V\left(G_{\beta}\right)$ and that $\left(\beta, \beta_{0}\right)$ is not a rank inequality. First observe that $V\left(G_{\beta}\right) \cap X_{z_{i}} \neq \emptyset, i=1,2$, since otherwise c_{3} would be simplicial in G_{β} and $\left(\beta, \beta_{0}\right)$ would be a clique inequality by (ii) of Corollary 14, contradicting the hypothesis. Then, since $\alpha\left(G_{\beta} \backslash\left\{c_{3}\right\}\right)=2$, we consider the rank inequality $(\gamma, 2)$ defined as $\sum_{v \in V^{\prime}} x_{v} \leqslant 2$ where $V^{\prime}=V\left(G_{\beta}\right) \backslash\left\{c_{3}\right\}$. By Lemma 3, there exists a tight stable set S for $\left(\beta, \beta_{0}\right)$ that is not tight for $(\gamma, 2)$; then $S=\left\{c_{3}, z_{0}\right\}$, thus implying $\beta_{z_{0}}>\beta_{u}$ for any $u \in\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Now let S^{\prime} be a tight stable set of $\left(\beta, \beta_{0}\right)$ missing the clique $A \cup\left\{z_{0}\right\} ; S^{\prime} \cap\left\{b_{1}, b_{2}\right\}=\emptyset$
otherwise $S^{\prime} \backslash\left\{b_{1}, b_{2}\right\} \cup\left\{z_{0}\right\}$ would violate $\left(\beta, \beta_{0}\right)$. Hence, $z_{2}^{1} \in S^{\prime}$ and $S^{\prime} \cup\left\{a_{1}\right\}$ and $S^{\prime} \cup\left\{a_{2}\right\}$ are stable sets that violate $\left(\beta, \beta_{0}\right)$. A contradiction.

Case 2: $G_{\beta} \backslash\left(X_{z_{1}} \cup X_{z_{2}} \cup\left\{z_{0}\right\}\right)$ consists of one complete triple $\left\{a_{1}, b_{1}, c_{1}\right\}$, one pair, and at most one c-singleton c_{3}.

Suppose that $\left(\beta, \beta_{0}\right)$ is not a rank inequality. Then we distinguish two nonsymmetric subcases according with the type of pair contained in G_{β}.

Subcase 2a): G_{β} contains an ab-pair $\left\{a_{2}, b_{2}\right\}$.
Let $\left(X_{a_{2}}, X_{b_{2}}\right)$ be a canonical homogeneous pair of cliques contained in G_{β} with $X_{a_{2}}=\left\{a_{2}^{1}, \ldots, a_{2}^{n}\right\}$ and $X_{b_{2}}=\left\{b_{2}^{1}, \ldots, b_{2}^{m}\right\}$. Then $a_{2}^{n} b_{2}^{1} \in E\left(G_{\beta}\right)$, since otherwise no stable set tight for (β, β_{0}) would miss the clique inequality on $A \cup\left\{z_{0}\right\}$. Symmetrically, $a_{2}^{1} b_{2}^{m} \in E\left(G_{\beta}\right)$. Thus $n=m$ by Lemma 24 . Let $\left(X_{z_{1}}, X_{z_{2}}\right)$ be a canonical homogeneous pair of cliques contained in G_{β} and let S^{\prime} be a tight stable set missing the clique $A \cup\left\{z_{0}\right\}$. Then $S^{\prime}=\left\{b_{2}^{1}, c_{1}\right\}$ and so, $\beta_{c_{1}} \geqslant \beta_{z_{1}^{1}}$ and $\beta_{c_{1}} \geqslant \beta_{c_{3}}+\beta_{a_{1}}$.

Consider the set $U=\left\{a_{1}, b_{1}, c_{1}, z_{0}, b_{2}^{1}\right\} \cup X_{z_{1}} \cup X_{z_{2}} \cup X_{a_{2}}$ and observe that $\alpha(G[U])=2$. As a consequence, the rank inequality $(\gamma, 2)$, whose support is $G[U]$, is valid for $S T A B\left(G / a_{0} b_{0}\right)$. As $\left(\beta, \beta_{0}\right)$ is not a rank inequality, there exists a stable set S that is tight for $\left(\beta, \beta_{0}\right)$ and not for $(\gamma, 2)$, by Lemma 3. Then $S=\left\{c_{3}, z_{0}\right\}$ (if $m=n=1$) or $S \in\left\{\left\{c_{3}, z_{0}\right\},\left\{c_{3}, a_{2}^{i}, b_{2}^{j}\right\},\left\{c_{3}, a_{1}, b_{2}^{j}\right\},\left\{z_{1}^{1}, b_{2}^{j}\right\}\right\}$ for some $i, j>1$ with $a_{2}^{i} b_{2}^{j} \notin E(G)$ (if $m=n>1$). If $S \in\left\{\left\{c_{3}, z_{0}\right\},\left\{c_{3}, a_{2}^{i}, b_{2}^{j}\right\}\right\}$, then $S \backslash\left\{c_{3}\right\} \cup\left\{c_{1}\right\}$ violates $\left(\beta, \beta_{0}\right)$, contradiction. If $S \in\left\{\left\{c_{3}, a_{1}, b_{2}^{j}\right\},\left\{z_{1}^{1}, b_{2}^{j}\right\}\right\}$, then S can be augmented by first replacing $\left\{c_{3}, a_{1}\right\}$ or $\left\{z_{1}^{1}\right\}$ with c_{1} and then adding the node a_{2}^{n}, so violating (β, β_{0}), contradiction.

Subcase 2b): G_{β} contains an ac-pair $\left\{a_{2}, c_{2}\right\}$.
Let $\left(X_{a_{2}}, X_{c_{2}}\right)$ be a canonical homogeneous pair of cliques contained in G_{β} with $X_{a_{2}}=\left\{a_{2}^{1}, \ldots, a_{2}^{p}\right\}$ and $X_{c_{2}}=\left\{c_{2}^{1}, \ldots, c_{2}^{q}\right\}$. Consider a stable set S that is tight for $\left(\beta, \beta_{0}\right)$ and misses the clique $A \cup\left\{z_{0}\right\}$. Then $S=\left\{c_{2}^{1}, b_{1}\right\}$ and, consequently, $\beta_{b_{1}} \geqslant \beta_{z_{0}}, \beta_{a_{1}}$ and $\beta_{c_{2}^{1}} \geqslant \beta_{c_{3}}+\beta_{a_{2}^{1}}$. Moreover, $c_{2}^{1} a_{2}^{p} \in E(G)$ and therefore, if $c_{2}^{j} \in V\left(G_{\beta}\right)$ for some $1<j \leqslant q$, then there exists $a_{2}^{i} \in V\left(G_{\beta}\right)$ with $1 \leqslant i \leqslant p$ such that $a_{2}^{i} c_{2}^{j} \notin E(G)$ (otherwise c_{2}^{1} and c_{2}^{j} would be twins).

Consider the set $U=\left\{z_{0}, a_{1}, b_{1}, c_{1}, c_{2}^{1}\right\} \cup X_{z_{1}} \cup X_{z_{2}} \cup X_{a_{2}}$ and observe that $\alpha(G[U])=2$. As a consequence, the rank inequality $(\gamma, 2)$, whose support is $G[U]$, is valid for $S T A B\left(G / a_{0} b_{0}\right)$. As $\left(\beta, \beta_{0}\right)$ is not a rank inequality, there exists a stable set S^{\prime} that is tight for $\left(\beta, \beta_{0}\right)$ and not for $(\gamma, 2)$, by Lemma 3. Therefore, either $S^{\prime} \in\left\{\left\{c_{2}^{j}, a_{1}\right\},\left\{c_{2}^{j}, z_{0}\right\}\right\}$ (if $c_{3} \notin V\left(G_{\beta}\right)$) or $S^{\prime} \in\left\{\left\{c_{2}^{j}, a_{1}\right\},\left\{c_{2}^{j}, z_{0}\right\},\left\{c_{3}, z_{0}\right\},\left\{c_{3}, a_{1}\right\}\right\}$ (if $c_{3} \in V\left(G_{\beta}\right)$), for some $1<j \leqslant q$.

But then, either $S^{\prime} \backslash\left\{a_{1}, z_{0}\right\} \cup\left\{b_{1}, a_{2}^{i}\right\}$ with $1 \leqslant i \leqslant p$ or $S^{\prime} \backslash\left\{c_{3}\right\} \cup\left\{c_{2}^{1}\right\}$ (if $c_{3} \in S^{\prime}$) violates $\left(\beta, \beta_{0}\right)$, a contradiction.

Case 3: $G_{\beta} \backslash\left(X_{z_{1}} \cup X_{z_{2}} \cup\left\{z_{0}\right\}\right)$ consists of one complete triple $\left\{a_{1}, b_{1}, c_{1}\right\}$, no pairs, and at most one c-singleton c_{3}.

In this case, we can use the same mapping ϕ of Case 1 to show that G_{β} is isomorphic to a Z_{2}-strip G^{\prime} and, by Theorem 30, the thesis follows.

Case 4: $G_{\beta} \backslash\left(X_{z_{1}} \cup X_{z_{2}} \cup\left\{z_{0}\right\}\right)$ consists of one complete triple $\left\{a_{1}, b_{1}, c_{1}\right\}$, one ac-pair $\left\{a_{2}, c_{2}\right\}$, one bc-pair $\left\{b_{3}, c_{3}\right\}$, no ab-pair, and at most one c-singleton.

Since G_{β} is not a clique, there exists a stable set S missing the clique $A \cup\left\{z_{0}\right\}$; then $c_{2} \in S$, otherwise $S \cup\left\{a_{2}\right\}$ violates $\left(\beta, \beta_{0}\right)$, and $b_{1} \in S$, otherwise $S \cup\left\{a_{1}\right\}$ violates $\left(\beta, \beta_{0}\right)$. As $S \backslash\left\{b_{1}\right\} \cup\left\{a_{1}, b_{3}\right\}$ is a stable set, $\beta_{b_{1}}>\beta_{a_{1}}$. Symmetrically, let S^{\prime} be a tight stable set missing the clique $B \cup\left\{z_{0}\right\}$, then $c_{3} \in S^{\prime}$, otherwise $S^{\prime} \cup\left\{b_{3}\right\}$ violates $\left(\beta, \beta_{0}\right)$, and $a_{1} \in S^{\prime}$, otherwise $S^{\prime} \cup\left\{b_{1}\right\}$ violates $\left(\beta, \beta_{0}\right)$. As $S^{\prime} \backslash\left\{a_{1}\right\} \cup\left\{b_{1}, a_{2}\right\}$ is a stable set, $\beta_{a_{1}}>\beta_{b_{1}}$. A contradiction. It is not difficult to check that this proof still works if thickening operations are performed on the pairs $\left\{a_{2}, c_{2}\right\}$ and $\left\{b_{3}, c_{3}\right\}$.

We can now state the final result for closed fuzzy Z_{3}-strips.

Theorem 38. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a closed fuzzy Z_{3}-strip. Then every nontrivial inequality $\left(\beta, \beta_{0}\right)$ that is facet defining for $\operatorname{STAB}(G)\left(S T A B\left(G / a_{0} b_{0}\right)\right)$ is a rank or a lifted 5-wheel inequality. Moreover, if $\beta_{a_{0}}=\beta_{b_{0}}>0\left(\beta_{z_{0}}>0\right.$, respectively), then $\left(\beta, \beta_{0}\right)$ is a rank inequality.

Proof. As usual, we assume that G_{β} does not contain twins. By Lemma 35, we may assume that G_{β} contains at least one complete triple, say $\left\{a_{1}, b_{1}, c_{1}\right\}$, since otherwise G_{β} is fuzzy line and so, it supports a rank inequality by Theorem 11. The proof consists of three cases.

Case 1: $\left(\beta, \beta_{0}\right)$ is facet defining for $\operatorname{STAB}(G)$ and $\beta_{a_{0}}=\beta_{b_{0}}>0$.
Let S be a tight stable set for $\left(\beta, \beta_{0}\right)$ missing the clique $A \cup\left\{a_{0}\right\}$ (it must exists by Lemma 3). Then $b_{0} \in S$, otherwise $S \cup\left\{a_{0}\right\}$ violates $\left(\beta, \beta_{0}\right)$. Then $c_{1} \in S$ otherwise $S \cup\left\{a_{1}\right\}$ would violate $\left(\beta, \beta_{0}\right)$. If G_{β} contains a triple $\left\{a_{2}, b_{2}, c_{2}\right\}$, or an ab-pair $\left\{a_{3} b_{3}\right\}$, or an $a c$-pair $\left\{a_{4}, c_{4}\right\}$ then $S \cup\left\{a_{2}\right\}$, or $S \cup\left\{a_{3}\right\}$, or $S \cup\left\{a_{4}\right\}$, respectively, violates $\left(\beta, \beta_{0}\right)$. A contradiction.

Symmetric arguments prove that G_{β} contains no bc-pair. Since, by Observation 34, G_{β} contains at most one c-singleton, the same mapping used to prove Case 1 of Lemma 37 (with simply $\phi\left(z_{0}\right)=z_{0}^{\prime}$ replaced by $\phi\left(a_{0}\right)=a_{0}^{\prime}$ and $\phi\left(b_{0}\right)=b_{0}^{\prime}$) can be used to show that G_{β} is isomorphic to a closed fuzzy Z_{2}-strip. Thus the thesis follows by Theorem 30 .

Case 2: $\left(\beta, \beta_{0}\right)$ is facet defining for $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$.
The thesis follows from Lemma 37.
Case 3: $\left(\beta, \beta_{0}\right)$ is facet defining for $\operatorname{STAB}(G)$ and $\beta_{a_{0}}=\beta_{b_{0}}=0$.
The inequality $\left(\beta, \beta_{0}\right)$ is also facet defining for $\operatorname{STAB}\left(\left(G / a_{0} b_{0}\right) \backslash\left\{z_{0}\right\}\right)$. Hence, the inequality $\left(\beta^{\prime}, \beta_{0}\right)$ obtained from $\left(\beta, \beta_{0}\right)$ by lifting the node z_{0} is facet defining for $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$. By Lemma $37,\left(\beta^{\prime}, \beta_{0}\right)$ is either a lifted 5 -wheel inequality and $\beta_{z_{0}}=0$, or a rank inequality and $\beta_{z_{0}} \in\{0,1\}$. Hence $\left(\beta, \beta_{0}\right)$ satisfies the thesis.

8. Fuzzy Z_{4}-strips

The last three-cliqued strip to be considered in the decomposition of claw-free graphs with large stability number was named Z_{4}-strip in [3] and defined as follows:

Fig. 6. A Z_{4}-strip $\left(A, B, C, a_{0}, b_{0}\right)$. The dashed bold edges represent fuzzy pairs, while the grey areas emphasize the three cliques A, B, and C.

Definition 39. A three-cliqued strip $\left(A, B, C, a_{0}, b_{0}\right)$ is a Z_{4}-strip if adjacencies are as follows:

1) $A=\left\{a_{1}, a_{2}\right\}, B=\left\{b_{1}, b_{2}, b_{3}\right\}$ and $C=\left\{c_{1}, c_{2}\right\}$ are three pairwise disjoint cliques;
2) $\left\{a_{2}, c_{1}, c_{2}\right\},\left\{a_{1}, b_{1}, c_{2}\right\}$ are cliques; $b_{2} c_{1}, b_{2} c_{2}$, and $b_{3} c_{1}$ are edges.

A Z_{4}-strip is fuzzy if and only if a thickening has been performed on at least one of the following pairs: $\left\{b_{2}, c_{2}\right\}$ and $\left\{b_{3}, c_{1}\right\}$ (see Fig. 6).

As usual, we denote by z_{0} the node of $G / a_{0} b_{0}$ obtained by contracting $a_{0} b_{0}$.
Lemma 40. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a closed fuzzy Z_{4}-strip. If G does not contain an induced 5-wheel, then G is fuzzy line. The same holds for $G / a_{0} b_{0}$.

Proof. The 5 -wheels in G or $G / a_{0} b_{0}$ are all of type ($c_{2}^{i}: a_{1}, a_{2}, c_{1}^{h}, b_{2}^{j}, b_{1}$) where $i, j, h \geqslant 1$ and $c_{2}^{i} b_{2}^{j} \in E(G)$. So we consider all the cases when G and $G / a_{0} b_{0}$ contain none of the above 5 -wheels. Let us denote by $H=\left(A, B, C, x_{0}, y_{0}\right)$ the fuzzy Z_{4}-strip obtained from $G-a_{0} b_{0}$ by renaming the nodes a_{0} and b_{0} as x_{0} and y_{0}, respectively.

According to Observation 1, G and $G / a_{0} b_{0}$ are obtained as strip compositions of (H, x_{0}, y_{0}) with the 4 -path $\left\{x_{0}^{\prime}, a_{0}, b_{0}, y_{0}^{\prime}\right\}$ and the 3 -path $\left\{x_{0}^{\prime}, z_{0}, y_{0}^{\prime}\right\}$, respectively. Moreover, as $a_{0} b_{0}$ is super simplicial, $G\left(G / a_{0} b_{0}\right)$ contains a 5 -wheel if and only if H contains a 5 -wheel. Hence, it is sufficient to prove that if H does not contain a 5 -wheel, then H is fuzzy line.

If H does not contain a_{1} then H is a fuzzy linear interval strip. Indeed a map from $V(H)$ to the points $l_{0}, l_{1}, l_{2}, l_{3}, l_{4}$ of a line L (ordered from left to right) is the following: $\phi\left(x_{0}\right)=l_{0}, \phi\left(a_{2}\right)=l_{1}, \phi\left(X_{c_{1}}\right)=\phi\left(X_{c_{2}}\right)=l_{2}, \phi\left(b_{1}\right)=\phi\left(X_{b_{2}}\right)=\phi\left(X_{b_{3}}\right)=l_{3}, \phi\left(y_{0}\right)=l_{4}$, and the intervals are: $I_{1}=\left[l_{0}, l_{1}+\epsilon\right], I_{2}=\left[l_{1}, l_{2}+\epsilon\right], I_{3}=\left[l_{2}, l_{3}\right], I_{4}=\left[l_{3}-\epsilon, l_{4}\right]$, where ϵ is a suitably small value and the interval I_{3} is fuzzy (according to Definition 10).

Similar maps can be found when H does not contain any node in $X_{c_{1}}$ or H does not contain b_{1}.

If H does not contain a_{2} then it is obtained as a strip composition of the following strips: $\left(H_{1}, x_{1}, x_{2}\right)$ with node set $\left\{x_{0}, x_{1}, a_{1}, x_{2}, y_{0}\right\} \cup X_{c_{2}} \cup X_{b_{2}} \cup X_{c_{1}} \cup X_{b_{3}}$ depicted in Fig. 7 (a) and the strip consisting of the 3 -node path $\left\{y_{1}, b_{1}, y_{2}\right\}$.

Fig. 7. Fuzzy Z_{4}-strips without node a_{2} (a) or node c_{2} (b) are compositions of fuzzy linear interval strips.

Fig. 8. Fuzzy Z_{4}-strips without node b_{2} can be obtained by two subsequent strip compositions (a) and (b).
If H does not contain any node $x \in X_{c_{2}}$ then the strip composition is depicted in Fig. 7 (b).

If H does not contain any node $x \in X_{b_{2}}$ then H has the decomposition depicted in Fig. 8.

Finally, consider the case where $c_{2}^{i} b_{2}^{j} \notin E$ for any $c_{2}^{i} \in X_{c_{2}}$ and $b_{2}^{j} \in X_{b_{2}}$. Then a decomposition similar to the one depicted in Fig. 8 holds with b_{2} added and adjacent to c_{1}, b_{3} and y_{2}. This completes the proof.

Theorem 41. Let $G=\left(A, B, C, a_{0} b_{0}\right)$ be a closed fuzzy Z_{4}-strip. Then every nontrivial inequality $\left(\beta, \beta_{0}\right)$ that is facet defining for $\operatorname{STAB}(G)\left(S T A B\left(G / a_{0} b_{0}\right)\right)$ is a rank or a lifted 5-wheel inequality. Moreover, if $\beta_{a_{0}}=\beta_{b_{0}}>0\left(\beta_{z_{0}}>0\right.$, respectively), then $\left(\beta, \beta_{0}\right)$ is a rank inequality.

Proof. Suppose conversely that $\left(\beta, \beta_{0}\right)$ is neither a rank nor a lifted 5 -wheel inequality. As usual, we assume that G_{β} does not contain twins and every homogeneous pair in G_{β} is canonical.

If G_{β} does not contain a 5 -wheel then, by Lemma 40 and Theorem $11,\left(\beta, \beta_{0}\right)$ is a rank inequality, a contradiction. So, we may assume, without loss of generality, that $a_{1}, a_{2}, c_{1}^{1}, c_{2}^{1}, b_{1}, b_{2}^{1} \in V\left(G_{\beta}\right)$.

Observe that if $X_{b_{3}} \cap V\left(G_{\beta}\right)=\emptyset$ then G_{β} is isomorphic to a closed fuzzy Z_{2}-strip (it suffices to rename a_{2} as a_{3}) and the thesis follows from Theorem 30.

Hence, $X_{b_{3}} \cap V\left(G_{\beta}\right) \neq \emptyset$, i.e., $\left|X_{b_{3}} \cap V\left(G_{\beta}\right)\right|=m \geqslant 1$.
First observe that $b_{3}^{m} c_{1}^{1} \in E$ otherwise b_{3}^{m} would be simplicial in G_{β}, contradicting ii) of Corollary 14. Now, when $m=1, G_{\beta}$ is still isomorphic to a closed fuzzy Z_{2}-strip (it suffices to rename a_{2} as a_{3} and put b_{3}^{1} into $X_{b_{2}}$) and the thesis follows from Theorem 30. So, we assume that $m>1$.

To complete the proof we consider three cases for $\left(\beta, \beta_{0}\right)$ each of which yields a contradiction:

Case 1: $\left(\beta, \beta_{0}\right)$ is facet defining for $\operatorname{STAB}(G)$ and $\beta_{a_{0}}=\beta_{b_{0}}>0$.
Let S be a tight stable set of $\left(\beta, \beta_{0}\right)$ missing the clique $B \cup\left\{b_{0}\right\}$. Clearly $a_{0} \in S$ otherwise $S \cup\left\{b_{0}\right\}$ violates $\left(\beta, \beta_{0}\right)$. Then $S \cap C \neq \emptyset$. If $S \cap X_{c_{2}} \neq \emptyset$ then $S \cup\left\{b_{3}^{1}\right\}$ violates $\left(\beta, \beta_{0}\right)$, a contradiction. If $S \cap X_{c_{1}} \neq \emptyset$ then $S \cup\left\{b_{1}\right\}$ violates $\left(\beta, \beta_{0}\right)$, a contradiction.

Case 2: $\left(\beta, \beta_{0}\right)$ is facet defining for $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$.
By Lemma 24, the nodes of $X_{c_{1}}$ and $X_{b_{3}}$ can be ordered so that nodes with smaller index have more neighbours and, by Proposition 4, we have that: $\beta_{c_{1}^{1}} \geqslant \beta_{c_{1}^{2}} \geqslant \cdots \geqslant \beta_{c_{1}^{n}}$, and $\beta_{b_{3}^{1}} \geqslant \beta_{b_{3}^{2}} \geqslant \cdots \geqslant \beta_{b_{3}^{m}}$, where $|n-m| \leqslant 1$. An analogous assumption can be made for $X_{c_{2}}$ and $X_{b_{2}}$.

Consider the 5 -hole $H=\left(a_{1}, a_{2}, c_{1}^{1}, b_{2}^{1}, b_{1}\right)$ and the inequality $(\gamma, 2)$ supported by H plus the nodes $\left(X_{b_{2}} \backslash\left\{b_{2}^{1}\right\}\right) \cup X_{b_{3}} \cup X_{c_{2}} \cup\left\{z_{0}\right\}$ lifted according to the following order:

$$
\begin{equation*}
b_{2}^{2}, b_{2}^{3}, \ldots, b_{2}^{p}, \quad b_{3}^{1}, b_{3}^{2}, \ldots, b_{3}^{m}, \quad c_{2}^{1}, c_{2}^{2}, \ldots, c_{2}^{q}, \quad z_{0} \tag{4}
\end{equation*}
$$

where $p=\left|X_{b_{2}}\right|$ and $q=\left|X_{c_{2}}\right|$. All the above nodes receive lifting coefficient 1 according to formula (1). Indeed, when lifting nodes $u \in\left(X_{b_{2}} \backslash\left\{b_{2}^{1}\right\}\right) \cup X_{b_{3}}$, observe that $\left\{a_{1}\right\}$ is a maximum stable set of $G_{\gamma} \backslash N[u]$; when lifting nodes $v \in X_{c_{2}},\left\{b_{3}^{1}\right\}$ is a maximum stable set of $G_{\gamma} \backslash N[v]$; and when lifting the node $z_{0},\left\{c_{1}^{1}\right\}$ is a maximum stable set of $G_{\gamma} \backslash N\left[z_{0}\right]$. Lastly, the nodes $u \in X_{c_{1}} \backslash\left\{c_{1}^{1}\right\}$ are lifted with zero coefficient because $\left\{a_{1}, b_{3}^{m}\right\}$ is a maximum stable set of $G_{\gamma} \backslash N[u]$.

Let S^{\prime} be a stable set that is tight for $\left(\beta, \beta_{0}\right)$ and is not tight for $(\gamma, 2) . S^{\prime}$ is $\left\{c_{1}^{j}, b_{1}\right\}$ or $\left\{c_{1}^{j}, z_{0}\right\}$ for some $j>1$ (because $\left\{c_{1}^{j}, a_{1}\right\}$ is augmentable with b_{3}^{m}). Since both sets $S^{\prime} \backslash\left\{b_{1}\right\} \cup\left\{a_{1}, b_{3}^{m}\right\}$ and $S^{\prime} \backslash\left\{z_{0}\right\} \cup\left\{a_{1}, b_{3}^{m}\right\}$ are stable, $\beta_{b_{1}}>\beta_{a_{1}}$ or $\beta_{z_{0}}>\beta_{a_{1}}$.

Let $S^{\prime \prime}$ be a tight stable set of $\left(\beta, \beta_{0}\right)$ missing $B \cup\left\{z_{0}\right\}$. If $a_{2} \in S^{\prime \prime}$ then $S^{\prime \prime} \cup\{b\}$ violates $\left(\beta, \beta_{0}\right)$ for any $b \in B$, a contradiction. If $a_{1} \notin S^{\prime \prime}$ then $c_{2} \in S^{\prime \prime}$ and $S^{\prime \prime} \cup\left\{b_{3}^{1}\right\}$ violates $\left(\beta, \beta_{0}\right)$, contradiction. Then $a_{1} \in S^{\prime \prime}$ and $S^{\prime \prime}=\left\{a_{1}, c_{1}^{1}\right\}$. Since $S^{\prime \prime} \backslash\left\{a_{1}\right\} \cup\left\{b_{1}\right\}$ and $S^{\prime \prime} \backslash\left\{a_{1}\right\} \cup\left\{z_{0}\right\}$ are stable sets, $\beta_{a_{1}} \geqslant \beta_{b_{1}}$ and $\beta_{a_{1}} \geqslant \beta_{z_{0}}$, a contradiction.

Case 3: $\left(\beta, \beta_{0}\right)$ is facet defining for $\operatorname{STAB}(G)$ and $\beta_{a_{0}}=\beta_{b_{0}}=0$.
The inequality $\left(\beta, \beta_{0}\right)$ is also facet defining for $\operatorname{STAB}\left(\left(G / a_{0} b_{0}\right) \backslash\left\{z_{0}\right\}\right)$. Hence, the inequality $\left(\beta^{\prime}, \beta_{0}\right)$ obtained from $\left(\beta, \beta_{0}\right)$ by lifting the node z_{0} is facet defining for $\operatorname{STAB}\left(G / a_{0} b_{0}\right)$. By Case $2,\left(\beta^{\prime}, \beta_{0}\right)$ is either a lifted 5 -wheel inequality and $\beta_{z_{0}}=0$, or a rank inequality and $\beta_{z_{0}} \in\{0,1\}$. Hence $\left(\beta, \beta_{0}\right)$ satisfies the thesis.

9. The stable set polytope of fuzzy antihat graphs

The structure theorem for claw-free graphs of Chudnovsky and Seymour [3] states that a claw-free graph without 1-join and with stability number at least four is either a striped graph or a fuzzy circular interval graph.

The defining linear system of the stable set polytope of a graph G containing a cliquecutset is the union of the linear systems defining the stable set polytopes of the two graphs composing G (this follows from Theorem 13). Since in claw-free graphs a 1-join gives rise to a clique-cutset, the study of the linear description of the stable set polytope of claw-free graphs can be restricted to claw-free graphs that do not admit 1-joins. Thus, a complete linear description of the stable set polytope of claw-free graphs is available as soon as we know an explicit linear description of $\operatorname{STAB}(G)$ when G is striped, or fuzzy circular interval or G has stability number less than or equal to 3 . In this section, we study the facial structure of the stable set polytope of a large subclass of striped graphs: the fuzzy antihat graphs.

To maintain the analogy with the notation in [3], we denote by \mathcal{Z}_{i} the set of closed fuzzy Z_{i}-strips for $i=2,3,4$. Moreover, $a_{0} b_{0}$ will always indicate the super simplicial edge of a closed fuzzy Z_{i}-strip according to Definitions 28, 32, and 39 .

Definition 42. A fuzzy antihat graph is a graph obtained from a fuzzy line graph H by iteratively performing 2-clique-bond compositions of closed fuzzy strips T_{i} belonging to $\mathcal{Z}_{2} \cup \mathcal{Z}_{3} \cup \mathcal{Z}_{4}$ along pairs $\left(u_{i}, v_{i}\right)$ and $\left(a_{0}^{i}, b_{0}^{i}\right)$ such that: $\Gamma_{H}=\left\{e_{i}=u_{i} v_{i}, i=1, \ldots, k\right\}$ is a set of pairwise non-incident super simplicial edges of H and $f_{i}=a_{0}^{i} b_{0}^{i}$ is the super simplicial edge of T_{i} for $i=1, \ldots, k$.

We say that a graph is \mathcal{W}-perfect if its stable set polytope is described by: nonnegativity, rank, and lifted 5 -wheel inequalities. The next theorem shows that the 2-clique-bond composition preserves the \mathcal{W}-perfectness provided that the closed strips used in the composition belong to $\mathcal{Z}_{2} \cup \mathcal{Z}_{3} \cup \mathcal{Z}_{4}$.

Theorem 43. Let G be a graph obtained as the 2-clique-bond composition of a claw-free graph H and a closed fuzzy strip Z belonging to $\mathcal{Z}_{2} \cup \mathcal{Z}_{3} \cup \mathcal{Z}_{4}$, along pairs (u, v) and $\left(a_{0}, b_{0}\right)$ such that $f=u v$ is a super simplicial edge of H and $e=a_{0} b_{0}$ a super simplicial edge of Z.

If H and H / f are \mathcal{W}-perfect, then G is \mathcal{W}-perfect.

Proof. Let $z_{e}\left(z_{f}\right)$ denote the node resulting from the contraction of the edge $e(f$, respectively). By Theorem 18, $\operatorname{STAB}(G)$ is described by the following inequalities:
i) nonnegativity inequalities;
ii) clique inequalities;
iii) facet defining inequalities of $S T A B(H)$ with zero coefficients on the endnodes of f;
iv) facet defining inequalities of $S T A B(Z)$ with zero coefficients on the endnodes of e;
v) even-odd combinations of facet defining inequalities of $S T A B(H)$ and $S T A B(Z / e)$;
vi) even-odd combinations of facet defining inequalities of $S T A B(H / f)$ and $S T A B(Z)$.

By hypothesis, $S T A B(H)$ and $S T A B(H / f)$ are described by nonnegativity, rank, and lifted 5 -wheel inequalities. Since f is super simplicial and H is claw-free, it follows from Corollary 8 that the only inequalities of $\operatorname{STAB}(H)$ and $\operatorname{STAB}(H / f)$ having nonzero coefficients on the endnodes of f and on z_{f} (those involved into even-odd combinations) are rank inequalities.

By Theorems 30, 38, 41, $S T A B(Z)$ and $S T A B(Z / e)$ are described only by nonnegativity, rank, and lifted 5 -wheel inequalities. Moreover, only rank inequalities have nonzero coefficients on both endnodes of e in $\operatorname{STAB}(Z)$ and on the node z_{e} in $S T A B(Z / e)$. This implies, by Lemma 19, that the even-odd combinations v) and vi) resulting from the 2-clique-bond composition of H and Z are rank inequalities and the theorem follows.

We can now state the main result of this paper:

Theorem 44. Let G be a fuzzy antihat graph. Then $\operatorname{STAB}(G)$ is described by the following inequalities:

- nonnegativity inequalities,
- rank inequalities,
- lifted 5-wheel inequalities.

Proof. According to Definition 42, let H_{k} be a fuzzy antihat graph, i.e., a graph obtained from a fuzzy line graph H by k applications of the 2 -clique-bond composition with graphs $T_{i} \in \mathcal{Z}_{2} \cup \mathcal{Z}_{3} \cup \mathcal{Z}_{4}, i=1, \ldots, k$ along pairs $\left(a_{i}, b_{i}\right)$ and $\left(u_{i}, v_{i}\right)$ such that: $\Gamma_{H}=\left\{e_{i}=a_{i} b_{i}\right.$, $i=1, \ldots, k\}$ is a set of pairwise non-incident super simplicial edges of H and $f_{i}=u_{i} v_{i}$ is a super simplicial edge of T_{i} for $i=1, \ldots, k$.

First observe that the class of fuzzy line graphs is closed under contraction of super simplicial edges; indeed, H / e is obtained by composing the fuzzy line strip ($H-e, v_{1}, v_{2}$) with the strip $\left(P, a_{0}, b_{0}\right)$ where P is the path $\left(a_{0}, z_{0}, b_{0}\right)$. Thus, H / F is fuzzy line for any set $F \subseteq \Gamma_{H}$.

The proof is by induction on k.
If $k=1$ then H_{1} is \mathcal{W}-perfect by Theorem 43. Then we assume that $k>1$ and H_{k} is the 2-clique-bond composition of H_{k-1} and T_{k} along $\left(a_{k}, b_{k}\right)$ and $\left(u_{k}, v_{k}\right)$.

By Theorem 43, in order to prove that H_{k} is \mathcal{W}-perfect it suffices to show that H_{k-1} and H_{k-1} / e_{k} are \mathcal{W}-perfect. Since H_{k-1} is \mathcal{W}-perfect by inductive hypothesis, it remains to show that H_{k-1} / e_{k} is \mathcal{W}-perfect.

As the edges $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ are pairwise non-incident, the edges $\left\{e_{1}, e_{2}, \ldots, e_{k-1}\right\}$ are super simplicial in H / e_{k}. This implies that the graph H_{k-1} / e_{k} can be obtained from

[^5]the graph H / e_{k} by $k-1$ iterated 2-clique-bond compositions of $T_{1}, T_{2}, \ldots, T_{k-1}$ along the pairs $\left(a_{1}, b_{1}\right), \ldots,\left(a_{k-1}, b_{k-1}\right)$.

Since H / e_{k} is fuzzy line, it follows that H_{k-1} / e_{k} is a fuzzy antihat graph obtained with $k-1$ iterations of the 2 -clique-bond composition and, by induction, it is \mathcal{W}-perfect. Thus the theorem follows.

The above theorem together with the characterization of rank facet defining inequalities in [13] provides the minimal defining linear system for the stable set polytope of fuzzy antihat graphs. Since the polytope $S T A B(G)$ is full dimensional, this linear system is unique.

As explained at the beginning of this section, a complete linear description of the stable set polytope of claw-free graphs will be available as soon as we know the explicit linear description of $\operatorname{STAB}(G)$ when G is striped, or fuzzy circular interval or G has stability number less than or equal to 3 . Now the only strip that is missed to complete the construction of striped graphs is the so-called Z_{5}-strip. This strip differs from the other Z_{i}-strips, $i=1,2,3,4$, because it is not three-cliqued. Moreover, the Z_{5}-strip gives rise to a class of more complicated facet defining inequalities for $\operatorname{STAB}(G)$ that have coefficients $\{0,1,2\}$ and that are different from the lifted 5 -wheel inequalities (see $[9,10]$ for details). We consider this case in a subsequent paper [12] where we complete the study of the stable set polytope of striped graphs.

If G is fuzzy circular interval, a linear description of $\operatorname{STAB}(G)$ has been provided in [7]. Therefore, to have a complete linear description of $\operatorname{STAB}(G)$ when G is claw-free, it remains to consider the case $\alpha(G)=3$. This case seems to be difficult because the defining linear system of $S T A B(G)$, when G has stability number three, contains inequalities with arbitrarily many different coefficients $[26,18]$.

Acknowledgment

We are deeply indebted to an anonymous referee whose valuable suggestions allowed us to considerably improve the quality of this paper.

References

[1] M. Chudnovsky, P. Seymour, The structure of claw-free graphs, in: Surveys in Combinatorics, in: London Math. Soc. Lecture Notes, vol. 327, 2005.
[2] M. Chudnovsky, P. Seymour, Claw-free graphs IV: Decomposition theorem, J. Combin. Theory Ser. B 98 (5) (2008) 839-938.
[3] M. Chudnovsky, P. Seymour, Claw-free graphs V: Global structure, J. Combin. Theory Ser. B 98 (2008) 1373-1410.
[4] V. Chvátal, On certain polytopes associated with graphs, J. Combin. Theory Ser. B 18 (1975) 138-154.
[5] V. Chvátal, N. Sbihi, Bull-free Berge graphs are perfect, Graphs Combin. 3 (1987) 127-139.
[6] J. Edmonds, Maximum matching and a polyhedron with 0,1 vertices, J. Res. Natl. Bur. Stand., B 69 (1965) 125-130.
[7] F. Eisenbrand, G. Oriolo, G. Stauffer, P. Ventura, The stable set polytope of quasi-line graphs, Combinatorica 28 (1) (2008) 45-67.
[8] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Program. 1 (1971) 168-194.
[9] A. Galluccio, C. Gentile, P. Ventura, Gear composition and the stable set polytope, Oper. Res. Lett. 36 (2008) 419-423.
[10] A. Galluccio, C. Gentile, P. Ventura, Gear composition of stable set polytopes and \mathcal{G}-perfection, Math. Oper. Res. 34 (2009) 813-836.
[11] A. Galluccio, C. Gentile, P. Ventura, 2-clique-bond of stable set polyhedra, Discrete Appl. Math. 161 (2013) 1988-2000.
[12] A. Galluccio, C. Gentile, P. Ventura, The stable set polytope of claw-free graphs with stability number at least four. II. Striped graphs are \mathcal{G}-perfect, J. Combin. Theory Ser. B (2014), http://dx. doi.org/10.1016/j.jctb.2014.02.009, in press.
[13] A. Galluccio, A. Sassano, The rank facets of the stable set polytope for claw-free graphs, J. Combin. Theory Ser. B 69 (1997) 1-38.
[14] R. Giles, L.E. Trotter, On stable set polyhedra for $K_{1,3}$-free graphs, J. Combin. Theory Ser. B 31 (1981) 313-326.
[15] M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (2) (1981) 169-197.
[16] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer Verlag, Berlin, 1988.
[17] A. King, Claw-free graphs and two conjectures on omega, Delta, and chi, PhD thesis, School of Computer Science, McGill University, 2009.
[18] T.M. Liebling, G. Oriolo, B. Spille, G. Stauffer, On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs, Math. Methods Oper. Res. (2004).
[19] A.R. Mahjoub, On the stable set polytope of a series-parallel graph, Math. Program. 40 (1988) 53-57.
[20] G.J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory Ser. B 28 (1980) 284-304.
[21] D. Nakamura, A. Tamura, A revision of Minty's algorithm for finding a maximum weighted stable set of a claw-free graph, J. Soc. Japan 44 (2001) 194-204.
[22] G. Nemhauser, L.E. Trotter Jr., Properties of vertex packing and independence system polyhedra, Math. Program. 6 (1974) 48-61.
[23] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley \& Sons, Inc., 1988.
[24] G. Oriolo, Clique family inequalities for the stable set polytope for quasi-line graphs, Discrete Appl. Math. 132 (2003) 185-201.
[25] M.W. Padberg, On the facial structure of vertex packing polytope, Math. Program. 5 (1973) 199-215.
[26] A. Pêcher, P. Pesneau, A. Wagler, On facets of stable set polytope of claw-free graphs with maximum stable set size three, in: Sixth Czech-Slovak International Symposium on Combinatorics, Graph Theory, Algorithms and Applications, in: Electron. Notes Discrete Math., vol. 28, 2006, pp. 185-190.
[27] A. Schrijver, Combinatorial Optimization, Springer Verlag, Berlin, 2003.
[28] B. Shepherd, Near-perfect matrices, Math. Program. 64 (1994) 295-323.
[29] G. Stauffer, On the stable set polytope of claw-free graphs, PhD thesis, EPF Lausanne, 2005.

[^0]: E-mail addresses: galluccio@iasi.cnr.it (A. Galluccio), gentile@iasi.cnr.it (C. Gentile), ventura@iasi.cnr.it (P. Ventura).

[^1]: Please cite this article in press as: A. Galluccio et al., The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are \mathcal{W}-perfect, J. Combin. Theory Ser. B (2014), http://dx.doi.org/10.1016/j.jctb.2014.02.006

[^2]: Please cite this article in press as: A. Galluccio et al., The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are \mathcal{W}-perfect, J. Combin. Theory Ser. B (2014), http://dx.doi.org/10.1016/j.jctb.2014.02.006

[^3]: Please cite this article in press as: A. Galluccio et al., The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are \mathcal{W}-perfect, J. Combin. Theory Ser. B (2014), http://dx.doi.org/10.1016/j.jctb.2014.02.006

[^4]: Please cite this article in press as: A. Galluccio et al., The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are \mathcal{W}-perfect, J. Combin. Theory Ser. B (2014), http://dx.doi.org/10.1016/j.jctb.2014.02.006

[^5]: Please cite this article in press as: A. Galluccio et al., The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are \mathcal{W}-perfect, J. Combin. Theory Ser. B (2014), http://dx.doi.org/10.1016/j.jctb.2014.02.006

