994 research outputs found

    On the correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations

    Get PDF
    The relationship between Koopman mode decomposition, resolvent mode decomposition and exact invariant solutions of the Navier-Stokes equations is clarified. The correspondence rests upon the invariance of the system operators under symmetry operations such as spatial translation. The usual interpretation of the Koopman operator is generalised to permit combinations of such operations, in addition to translation in time. This invariance is related to the spectrum of a spatio-temporal Koopman operator, which has a travelling wave interpretation. The relationship leads to a generalisation of dynamic mode decomposition, in which symmetry operations are applied to restrict the dynamic modes to span a subspace subject to those symmetries. The resolvent is interpreted as the mapping between the Koopman modes of the Reynolds stress divergence and the velocity field. It is shown that the singular vectors of the resolvent (the resolvent modes) are the optimal basis in which to express the velocity field Koopman modes where the latter are not a priori known

    A Continuous/Discontinuous FE Method for the 3D Incompressible Flow Equations

    Get PDF
    A projection scheme for the numerical solution of the incompressible Navier-Strokes equation is presented. Finite element discontinuous Galerkin (dG) discretization for the velocity in the momentum equations is employed. The incompressibility constraint is enforced by numerically solving the Poisson equation for pressure using a continuous Galerkin (cG) discretization. The main advantage of the method is that is does not require the velocity and pressure approximation spaces to satisfy the usual inf-sup condition, thus equal order finite element approximations for both velocity and pressure can be used. Furthermore, by using cG discretization for the Poisson equation, no auxiliary equations are needed as it is required for dG approximations of second order derivatives. In order to enable large time steps for time marching to steady-state and time evolving problems, implicit scheme is used in connection with high order implicit RK methods. Numerical tests demonstrate that the overall scheme is accurate and computationally efficient

    H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes

    Get PDF
    A finite element cochain complex on Cartesian meshes of any dimension based on the H1-inner product is introduced. It yields H1-conforming finite element spaces with exterior derivatives in H1. We use a tensor product construction to obtain L2-stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order

    Efficient upwind algorithms for solution of the Euler and Navier-stokes equations

    Get PDF
    An efficient three-dimensionasl tructured solver for the Euler and Navier-Stokese quations is developed based on a finite volume upwind algorithm using Roe fluxes. Multigrid and optimal smoothing multi-stage time stepping accelerate convergence. The accuracy of the new solver is demonstrated for inviscid flows in the range 0.675 :5M :5 25. A comparative grid convergence study for transonic turbulent flow about a wing is conducted with the present solver and a scalar dissipation central difference industrial design solver. The upwind solver demonstrates faster grid convergence than the central scheme, producing more consistent estimates of lift, drag and boundary layer parameters. In transonic viscous computations, the upwind scheme with convergence acceleration is over 20 times more efficient than without it. The ability of the upwind solver to compute viscous flows of comparable accuracy to scalar dissipation central schemes on grids of one-quarter the density make it a more accurate, cost effective alternative. In addition, an original convergencea cceleration method termed shock acceleration is proposed. The method is designed to reduce the errors caused by the shock wave singularity M -+ 1, based on a localized treatment of discontinuities. Acceleration models are formulated for an inhomogeneous PDE in one variable. Results for the Roe and Engquist-Osher schemes demonstrate an order of magnitude improvement in the rate of convergence. One of the acceleration models is extended to the quasi one-dimensiona Euler equations for duct flow. Results for this case d monstrate a marked increase in convergence with negligible loss in accuracy when the acceleration procedure is applied after the shock has settled in its final cell. Typically, the method saves up to 60% in computational expense. Significantly, the performance gain is entirely at the expense of the error modes associated with discrete shock structure. In view of the success achieved, further development of the method is proposed

    Potential-based Formulations of the Navier-Stokes Equations and their Application

    Get PDF
    Based on a Clebsch-like velocity representation and a combination of classical variational principles for the special cases of ideal and Stokes flow a novel discontinuous Lagrangian is constructed; it bypasses the known problems associated with non-physical solutions and recovers the classical Navier-Stokes equations together with the balance of inner energy in the limit when an emerging characteristic frequency parameter tends to infinity. Additionally, a generalized Clebsch transformation for viscous flow is established for the first time. Next, an exact first integral of the unsteady, three-dimensional, incompressible Navier-Stokes equations is derived; following which gauge freedoms are explored leading to favourable reductions in the complexity of the equation set and number of unknowns, enabling a self-adjoint variational principle for steady viscous flow to be constructed. Concurrently, appropriate commonly occurring physical and auxiliary boundary conditions are prescribed, including establishment of a first integral for the dynamic boundary condition at a free surface. Starting from this new formulation, three classical flow problems are considered, the results obtained being in total agreement with solutions in the open literature. A new least-squares finite element method based on the first integral of the steady two-dimensional, incompressible, Navier-Stokes equations is developed, with optimal convergence rates established theoretically. The method is analysed comprehensively, thoroughly validated and shown to be competitive when compared to a corresponding, standard, primitive-variable, finite element formulation. Implementation details are provided, and the well-known problem of mass conservation addressed and resolved via selective weighting. The attractive positive definiteness of the resulting linear systems enables employment of a customized scalable algebraic multigrid method for efficient error reduction. The solution of several engineering related problems from the fields of lubrication and film flow demonstrate the flexibility and efficiency of the proposed method, including the case of unsteady flow, while revealing new physical insights of interest in their own right

    A compendium of computational fluid dynamics at the Langley Research Center

    Get PDF
    Through numerous summary examples, the scope and general nature of the computational fluid dynamics (CFD) effort at Langley is identified. These summaries will help inform researchers in CFD and line management at Langley of the overall effort. In addition to the inhouse efforts, out of house CFD work supported by Langley through industrial contracts and university grants are included. Researchers were encouraged to include summaries of work in preliminary and tentative states of development as well as current research approaching definitive results
    corecore