4,054 research outputs found

    An Efficient Approach towards Network Routing using Genetic Algorithm

    Get PDF
    The network field has been very popular in recent times and has aroused much of the attention of researchers. The network must keep working with the varying infrastructure and must adapt to rapid topology changes. Graphical representation of the networks with a series of edges varying over time can help in analysis and study. This paper presents a novel adaptive and dynamic network routing algorithm based on a Regenerate Genetic Algorithm (RGA) with the analysis of network delays. With the help of RGA at least a very good path, if not the shortest one, can be found starting from the origin and leading to a destination. Many algorithms are devised to solve the shortest path (SP) problem for example Dijkstra algorithm which can solve polynomial SP problems. These are equally effective in wired as well as wireless networks with fixed infrastructure. But the same algorithms offer exponential computational complexity in dealing with the real-time communication for rapidly changing network topologies. The proposed genetic algorithm (GA) provides more efficient and dynamic solutions despite changes in network topology, network change, link or node deletion from the network, and the network volume (with numerous routes)

    A bi-objective genetic algorithm approach to risk mitigation in project scheduling

    Get PDF
    A problem of risk mitigation in project scheduling is formulated as a bi-objective optimization problem, where the expected makespan and the expected total cost are both to be minimized. The expected total cost is the sum of four cost components: overhead cost, activity execution cost, cost of reducing risks and penalty cost for tardiness. Risks for activities are predefined. For each risk at an activity, various levels are defined, which correspond to the results of different preventive measures. Only those risks with a probable impact on the duration of the related activity are considered here. Impacts of risks are not only accounted for through the expected makespan but are also translated into cost and thus have an impact on the expected total cost. An MIP model and a heuristic solution approach based on genetic algorithms (GAs) is proposed. The experiments conducted indicate that GAs provide a fast and effective solution approach to the problem. For smaller problems, the results obtained by the GA are very good. For larger problems, there is room for improvement

    An efficient genetic algorithm for large-scale transmit power control of dense and robust wireless networks in harsh industrial environments

    Get PDF
    The industrial wireless local area network (IWLAN) is increasingly dense, due to not only the penetration of wireless applications to shop floors and warehouses, but also the rising need of redundancy for robust wireless coverage. Instead of simply powering on all access points (APs), there is an unavoidable need to dynamically control the transmit power of APs on a large scale, in order to minimize interference and adapt the coverage to the latest shadowing effects of dominant obstacles in an industrial indoor environment. To fulfill this need, this paper formulates a transmit power control (TPC) model that enables both powering on/off APs and transmit power calibration of each AP that is powered on. This TPC model uses an empirical one-slope path loss model considering three-dimensional obstacle shadowing effects, to enable accurate yet simple coverage prediction. An efficient genetic algorithm (GA), named GATPC, is designed to solve this TPC model even on a large scale. To this end, it leverages repair mechanism-based population initialization, crossover and mutation, parallelism as well as dedicated speedup measures. The GATPC was experimentally validated in a small-scale IWLAN that is deployed a real industrial indoor environment. It was further numerically demonstrated and benchmarked on both small- and large-scales, regarding the effectiveness and the scalability of TPC. Moreover, sensitivity analysis was performed to reveal the produced interference and the qualification rate of GATPC in function of varying target coverage percentage as well as number and placement direction of dominant obstacles. (C) 2018 Elsevier B.V. All rights reserved
    corecore