5,748 research outputs found

    Denial-of-Service Resistance in Key Establishment

    Get PDF
    Denial of Service (DoS) attacks are an increasing problem for network connected systems. Key establishment protocols are applications that are particularly vulnerable to DoS attack as they are typically required to perform computationally expensive cryptographic operations in order to authenticate the protocol initiator and to generate the cryptographic keying material that will subsequently be used to secure the communications between initiator and responder. The goal of DoS resistance in key establishment protocols is to ensure that attackers cannot prevent a legitimate initiator and responder deriving cryptographic keys without expending resources beyond a responder-determined threshold. In this work we review the strategies and techniques used to improve resistance to DoS attacks. Three key establishment protocols implementing DoS resistance techniques are critically reviewed and the impact of misapplication of the techniques on DoS resistance is discussed. Recommendations on effectively applying resistance techniques to key establishment protocols are made

    Authentication under Constraints

    Get PDF
    Authentication has become a critical step to gain access to services such as on-line banking, e-commerce, transport systems and cars (contact-less keys). In several cases, however, the authentication process has to be performed under challenging conditions. This thesis is essentially a compendium of five papers which are the result of a two-year study on authentication in constrained settings. The two major constraints considered in this work are: (1) the noise and (2) the computational power. For what concerns authentication under noisy conditions, Paper A and Paper B ad- dress the case in which the noise is in the authentication credentials. More precisely, the aforementioned papers present attacks against biometric authentication systems, that exploit the inherent variant nature of biometric traits to gain information that should not be leaked by the system. Paper C and Paper D study proximity- based authentication, i.e., distance-bounding protocols. In this case, both of the constraints are present: the possible presence of noise in the channel (which affects communication and thus the authentication process), as well as resource constraints on the computational power and the storage space of the authenticating party (called the prover, e.g., an RFID tag). Finally, Paper E investigates how to achieve reliable verification of the authenticity of a digital signature, when the verifying party has limited computational power, and thus offloads part of the computations to an untrusted server. Throughout the presented research work, a special emphasis is given to privacy concerns risen by the constrained conditions

    Secure data storage and retrieval in cloud computing

    Get PDF
    Nowadays cloud computing has been widely recognised as one of the most inuential information technologies because of its unprecedented advantages. In spite of its widely recognised social and economic benefits, in cloud computing customers lose the direct control of their data and completely rely on the cloud to manage their data and computation, which raises significant security and privacy concerns and is one of the major barriers to the adoption of public cloud by many organisations and individuals. Therefore, it is desirable to apply practical security approaches to address the security risks for the wide adoption of cloud computing

    LiS: Lightweight Signature Schemes for continuous message authentication in cyber-physical systems

    Get PDF
    Agency for Science, Technology and Research (A*STAR) RIE 202

    Secure, Fast, and Energy-Efficient Outsourced Authentication for Smartphones

    Get PDF
    Common smartphone authentication mechanisms (e.g., PINs, graphical passwords, and fingerprint scans) are not designed to offer security post-login. Multi-modal continuous authentication addresses this issue by frequently and unobtrusively authenticating the user via behavioral biometric signals, such as touchscreen interaction and hand movements. Because smartphones can easily fall into the hands of the adversary, it is critical that the behavioral biometric information collected and processed on these devices is secured. This can be done by offloading encrypted template information to a remote server, and then performing authentication via privacy-preserving protocols. In this paper, we demonstrate that the energy overhead of current privacy-preserving protocols for continuous authentication is unsustainable on smartphones. To reduce energy consumption, we design a technique that leverages characteristics unique to the authentication setting in order to securely outsource computation to an untrusted Cloud. Our approach is secure against a colluding smartphone and Cloud, thus making it well suited for authentication. We performed extensive experimental evaluation. With our technique, the energy requirement for running an authentication instance that computes Manhattan distance is 0.2 mWh, which corresponds to a negligible fraction of the smartphone\u27s battery capacity. In addition, for Manhattan distance, our protocol runs in 0.72 and 2 s for 8 and 28 biometric features, respectively. We were also able to compute Hamming distance in 3.29 s, compared with 95.57 s achieved with the previous fastest outsourced computation protocol (Whitewash). These results demonstrate that ours is presently the only technique suitable for low-latency continuous authentication (e.g., with authentication scan windows of 60 s or shorter)

    Implementation of Deduplication on Encrypted Big-data using Signcryption for cloud storage applications

    Get PDF
    As Big Data Cloud storage servers are getting widespread the shortage of disc space within the cloud becomes a major concern. The elimination of duplicate or redundant data, particularly in computer data is named deduplication. Data deduplication is a method to regulate the explosive growth of information within the cloud storage, most of the storage providers are finding more secure and efficient methods for their sensitive method. Recently, a noteworthy technique referred to as signcryption has been proposed, in which both the properties of signature (ownership) and encryption are simultaneously implemented with better performance According to deduplication, we introduce a method that can eliminate redundant encrypted data owned by different users. Furthermore, we generate a tag which will be the key component of big data management. We propose a technique called digital signature for ownership verification. Convergent encryption also called for a content hash key cryptosystem. Convergent encryption is an encryption approach that supports deduplication. With this encryption technique, the encryption key is generated out of a hash of plain text. Therefore applying this technique, identical plaintexts would turn out the same ciphertext

    New Conditional Privacy-preserving Encryption Schemes in Communication Network

    Get PDF
    Nowadays the communication networks have acted as nearly the most important fundamental infrastructure in our human society. The basic service provided by the communication networks are like that provided by the ubiquitous public utilities. For example, the cable television network provides the distribution of information to its subscribers, which is much like the water or gas supply systems which distribute the commodities to citizens. The communication network also facilitates the development of many network-based applications such as industrial pipeline controlling in the industrial network, voice over long-term evolution (VoLTE) in the mobile network and mixture reality (MR) in the computer network, etc. Since the communication network plays such a vital role in almost every aspect of our life, undoubtedly, the information transmitted over it should be guarded properly. Roughly, such information can be categorized into either the communicated message or the sensitive information related to the users. Since we already got cryptographical tools, such as encryption schemes, to ensure the confidentiality of communicated messages, it is the sensitive personal information which should be paid special attentions to. Moreover, for the benefit of reducing the network burden in some instances, it may require that only communication information among legitimated users, such as streaming media service subscribers, can be stored and then relayed in the network. In this case, the network should be empowered with the capability to verify whether the transmitted message is exchanged between legitimated users without leaking the privacy of those users. Meanwhile, the intended receiver of a transmitted message should be able to identify the exact message sender for future communication. In order to cater to those requirements, we re-define a notion named conditional user privacy preservation. In this thesis, we investigate the problem how to preserve user conditional privacy in pubic key encryption schemes, which are used to secure the transmitted information in the communication networks. In fact, even the term conditional privacy preservation has appeared in existing works before, there still have great differences between our conditional privacy preservation definition and the one proposed before. For example, in our definition, we do not need a trusted third party (TTP) to help tracing the sender of a message. Besides, the verification of a given encrypted message can be done without any secret. In this thesis, we also introduce more desirable features to our redefined notion user conditional privacy preservation. In our second work, we consider not only the conditional privacy of the message sender but also that of the intended message receiver. This work presents a new encryption scheme which can be implemented in communication networks where there exists a blacklist containing a list of blocked communication channels, and each of them is established by a pair of sender and receiver. With this encryption scheme, a verifier can confirm whether one ciphertext is belonging to a legitimated communication channel without knowing the exact sender and receiver of that ciphertext. With our two previous works, for a given ciphertext, we ensure that no one except its intended receiver can identify the sender. However, the receiver of one message may behave dishonest when it tries to retrieve the real message sender, which incurs the problem that the receiver of a message might manipulate the origin of the message successfully for its own benefit. To tackle this problem, we present a novel encryption scheme in our third work. Apart from preserving user conditional privacy, this work also enforces the receiver to give a publicly verifiable proof so as to convince others that it is honest during the process of identifying the actual message sender. In our forth work, we show our special interest in the access control encryption, or ACE for short, and find this primitive can inherently achieve user conditional privacy preservation to some extent. we present a newly constructed ACE scheme in this work, and our scheme has advantages over existing ACE schemes in two aspects. Firstly, our ACE scheme is more reliable than existing ones since we utilize a distributed sanitizing algorithm and thus avoid the so called single point failure happened in ACE systems with only one sanitizer. Then, since the ciphertext and key size of our scheme is more compact than that of the existing ACE schemes, our scheme enjoys better scalability
    • …
    corecore