613 research outputs found

    Source localization and denoising: a perspective from the TDOA space

    Full text link
    In this manuscript, we formulate the problem of denoising Time Differences of Arrival (TDOAs) in the TDOA space, i.e. the Euclidean space spanned by TDOA measurements. The method consists of pre-processing the TDOAs with the purpose of reducing the measurement noise. The complete set of TDOAs (i.e., TDOAs computed at all microphone pairs) is known to form a redundant set, which lies on a linear subspace in the TDOA space. Noise, however, prevents TDOAs from lying exactly on this subspace. We therefore show that TDOA denoising can be seen as a projection operation that suppresses the component of the noise that is orthogonal to that linear subspace. We then generalize the projection operator also to the cases where the set of TDOAs is incomplete. We analytically show that this operator improves the localization accuracy, and we further confirm that via simulation.Comment: 25 pages, 9 figure

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Geolocation of a Known Altitude Target Using TDOA and GROA in the Presence of Receiver Location Uncertainty

    Get PDF
    This paper considers the problem of geolocating a target on the Earth surface using the target signal time difference of arrival (TDOA) and gain ratio of arrival (GROA) measurements when the receiver positions are subject to random errors. The geolocation Cramer-Rao lower bound (CRLB) is derived and the performance improvement due to the use of target altitude information is quantified. An algebraic geolocation solution is developed and its approximate efficiency under small Gaussian noise is established analytically. Its sensitivity to the target altitude error is also studied. Simulations justify the validity of the theoretical developments and illustrate the good performance of the proposed geolocation method

    An Analysis of Radio-Frequency Geolocation Techniques for Satellite Systems Design

    Get PDF
    This research 1) evaluates the effectiveness of CubeSat radio-frequency geolocation and 2) analyzes the sensitivity of different RF algorithms to system parameters. A MATLAB simulation is developed to assess geolocation accuracy for variable system designs and techniques (AOA, TDOA, T/FDOA). An unconstrained maximum likelihood estimator (MLE) and three different digital elevation models (DEM) are utilized as the surface of the Earth constraint to improve geolocation accuracy. The results presented show the effectiveness of the MLE and DEM techniques, the sensitivity of AOA, TDOA, and T/FDOA algorithms, and the system level performance of a CubeSat geolocation cluster in a 500km circular orbit

    Wireless Emitter Location Estimation Based on Linear and Nonlinear Algorithms using TDOA Technique

    Get PDF
    Low-power devices such as cell phones, and wireless routers are commonly used to control Improvised Explosive Devices (IEDs) and as the communication nodes for the sake of command and control. Quickly locating the source of these signals is ambitious, specifically in a metropolitan environment where buildings and towers may cause intervention. This presents a geolocation system that compounds the attributes of several proven geolocation and error mitigation methods to locate an emitter of interest in an urban environment. The proposed geolocation system uses a Time Difference of Arrival (TDOA) approach to estimate the position of the emitter of interest. Using multiple sensors at known locations, TDOA estimates are achieved by the cross-correlation of the signal received at all the sensors. A Weighted Least Squares (WLS) solution, Linear least Square (LLS) method and maximum likelihood (ML) estimation is used to estimate the emitter's location. If the variance of this location estimate is too high, a sensor is detected and identified as possessing a Non-Line of Sight (NLOS) path from the emitter. This poorly located sensor is then removed from the geolocation system and a new position estimate is computed with the remaining sensor TDOA information. The performance of the TDOA system is determined through modeling and simulations. Test results confirm the feasibility of identifying a NLOS sensor, thereby improving the geolocation system's accurateness in a metropolitan environment

    Positioning Accuracy Improvement via Distributed Location Estimate in Cooperative Vehicular Networks

    Full text link
    The development of cooperative vehicle safety (CVS) applications, such as collision warnings, turning assistants, and speed advisories, etc., has received great attention in the past few years. Accurate vehicular localization is essential to enable these applications. In this study, motivated by the proliferation of the Global Positioning System (GPS) devices, and the increasing sophistication of wireless communication technologies in vehicular networks, we propose a distributed location estimate algorithm to improve the positioning accuracy via cooperative inter-vehicle distance measurement. In particular, we compute the inter-vehicle distance based on raw GPS pseudorange measurements, instead of depending on traditional radio-based ranging techniques, which usually either suffer from high hardware cost or have inadequate positioning accuracy. In addition, we improve the estimation of the vehicles' locations only based on the inaccurate GPS fixes, without using any anchors with known exact locations. The algorithm is decentralized, which enhances its practicability in highly dynamic vehicular networks. We have developed a simulation model to evaluate the performance of the proposed algorithm, and the results demonstrate that the algorithm can significantly improve the positioning accuracy.Comment: To appear in Proc. of the 15th International IEEE Conference on Intelligent Transportation Systems (IEEE ITSC'12

    The Complete Analytical Solution of the TDOA Localization Method

    Get PDF
    This article is focused on the analytical solution of a TDOA (Time Difference of Arrival) localization method, including analysis of accuracy and unambiguity of a target position estimation in 2D space. The method is processed under two conditions - sufficiently determined localization system and an overdetermined localization system. It is assumed that the TDOA localization system operates in a LOS (Line of Sight) situation and several time-synchronized sensors are placed arbitrarily across the area. The main contribution of the article is the complete description of the TDOA localization method in analytical form only. It means, this paper shows a geometric representation and an analytical solution of the TDOA localization technique model. In addition, analyses of unambiguity and solvability of the method algorithm are presented, together with accuracy analysis of this TDOA technique in analytical form. Finally, the description of this TDOA method is extended to an overdetermined TDOA system. This makes it possible to determine and subsequently optimize its computational complexity, for example increase its computational speed. It seems that such a description of the TDOA localization technique creates a simple and effective tool for technological implementation of this method into military localization systems
    • …
    corecore