The development of cooperative vehicle safety (CVS) applications, such as
collision warnings, turning assistants, and speed advisories, etc., has
received great attention in the past few years. Accurate vehicular localization
is essential to enable these applications. In this study, motivated by the
proliferation of the Global Positioning System (GPS) devices, and the
increasing sophistication of wireless communication technologies in vehicular
networks, we propose a distributed location estimate algorithm to improve the
positioning accuracy via cooperative inter-vehicle distance measurement. In
particular, we compute the inter-vehicle distance based on raw GPS pseudorange
measurements, instead of depending on traditional radio-based ranging
techniques, which usually either suffer from high hardware cost or have
inadequate positioning accuracy. In addition, we improve the estimation of the
vehicles' locations only based on the inaccurate GPS fixes, without using any
anchors with known exact locations. The algorithm is decentralized, which
enhances its practicability in highly dynamic vehicular networks. We have
developed a simulation model to evaluate the performance of the proposed
algorithm, and the results demonstrate that the algorithm can significantly
improve the positioning accuracy.Comment: To appear in Proc. of the 15th International IEEE Conference on
Intelligent Transportation Systems (IEEE ITSC'12