3,267 research outputs found

    A Semismooth Newton Method for Tensor Eigenvalue Complementarity Problem

    Full text link
    In this paper, we consider the tensor eigenvalue complementarity problem which is closely related to the optimality conditions for polynomial optimization, as well as a class of differential inclusions with nonconvex processes. By introducing an NCP-function, we reformulate the tensor eigenvalue complementarity problem as a system of nonlinear equations. We show that this function is strongly semismooth but not differentiable, in which case the classical smoothing methods cannot apply. Furthermore, we propose a damped semismooth Newton method for tensor eigenvalue complementarity problem. A new procedure to evaluate an element of the generalized Jocobian is given, which turns out to be an element of the B-subdifferential under mild assumptions. As a result, the convergence of the damped semismooth Newton method is guaranteed by existing results. The numerical experiments also show that our method is efficient and promising

    Bilinearity rank of the cone of positive polynomials and related cones

    Get PDF
    For a proper cone K ⊂ Rn and its dual cone K the complementary slackness condition xT s = 0 defines an n-dimensional manifold C(K) in the space { (x, s) | x ∈ K, s ∈ K^* }. When K is a symmetric cone, this manifold can be described by a set of n bilinear equalities. When K is a symmetric cone, this fact translates to a set of n linearly independent bilinear identities (optimality conditions) satisfied by every (x, s) ∈ C(K). This proves to be very useful when optimizing over such cones, therefore it is natural to look for similar optimality conditions for non-symmetric cones. In this paper we define the bilinearity rank of a cone, which is the number of linearly independent bilinear identities valid for the cone, and describe a linear algebraic technique to bound this quantity. We examine several well-known cones, in particular the cone of positive polynomials P2n+1 and its dual, the closure of the moment cone M2n+1, and compute their bilinearity ranks. We show that there are exactly four linearly independent bilinear identities which hold for all (x,s) ∈ C(P2n+1), regardless of the dimension of the cones. For nonnegative polynomials over an interval or half-line there are only two linearly independent bilinear identities. These results are extended to trigonometric and exponential polynomials

    Strong Stationarity Conditions for Optimal Control of Hybrid Systems

    Full text link
    We present necessary and sufficient optimality conditions for finite time optimal control problems for a class of hybrid systems described by linear complementarity models. Although these optimal control problems are difficult in general due to the presence of complementarity constraints, we provide a set of structural assumptions ensuring that the tangent cone of the constraints possesses geometric regularity properties. These imply that the classical Karush-Kuhn-Tucker conditions of nonlinear programming theory are both necessary and sufficient for local optimality, which is not the case for general mathematical programs with complementarity constraints. We also present sufficient conditions for global optimality. We proceed to show that the dynamics of every continuous piecewise affine system can be written as the optimizer of a mathematical program which results in a linear complementarity model satisfying our structural assumptions. Hence, our stationarity results apply to a large class of hybrid systems with piecewise affine dynamics. We present simulation results showing the substantial benefits possible from using a nonlinear programming approach to the optimal control problem with complementarity constraints instead of a more traditional mixed-integer formulation.Comment: 30 pages, 4 figure

    Bilinearity rank of the cone of positive polynomials and related cones

    Get PDF
    For a proper cone K ⊂ Rn and its dual cone K the complementary slackness condition xT s = 0 defines an n-dimensional manifold C(K) in the space { (x, s) | x ∈ K, s ∈ K^* }. When K is a symmetric cone, this manifold can be described by a set of n bilinear equalities. When K is a symmetric cone, this fact translates to a set of n linearly independent bilinear identities (optimality conditions) satisfied by every (x, s) ∈ C(K). This proves to be very useful when optimizing over such cones, therefore it is natural to look for similar optimality conditions for non-symmetric cones. In this paper we define the bilinearity rank of a cone, which is the number of linearly independent bilinear identities valid for the cone, and describe a linear algebraic technique to bound this quantity. We examine several well-known cones, in particular the cone of positive polynomials P2n+1 and its dual, the closure of the moment cone M2n+1, and compute their bilinearity ranks. We show that there are exactly four linearly independent bilinear identities which hold for all (x,s) ∈ C(P2n+1), regardless of the dimension of the cones. For nonnegative polynomials over an interval or half-line there are only two linearly independent bilinear identities. These results are extended to trigonometric and exponential polynomials

    Switched networks and complementarity

    Get PDF
    A modeling framework is proposed for circuits that are subject both to externally induced switches (time events) and to state events. The framework applies to switched networks with linear and piecewise-linear elements, including diodes. We show that the linear complementarity formulation, which already has proved effective for piecewise-linear networks, can be extended in a natural way to also cover switching circuits. To achieve this, we use a generalization of the linear complementarity problem known as the cone-complementarity problem. We show that the proposed framework is sound in the sense that existence and uniqueness of solutions is guaranteed under a passivity assumption. We prove that only first-order impulses occur and characterize all situations that give rise to a state jump; moreover, we provide rules that determine the jump. Finally, we show that within our framework, energy cannot increase as a result of a jump, and we derive a stability result from this

    A sequential semidefinite programming method and an application in passive reduced-order modeling

    Full text link
    We consider the solution of nonlinear programs with nonlinear semidefiniteness constraints. The need for an efficient exploitation of the cone of positive semidefinite matrices makes the solution of such nonlinear semidefinite programs more complicated than the solution of standard nonlinear programs. In particular, a suitable symmetrization procedure needs to be chosen for the linearization of the complementarity condition. The choice of the symmetrization procedure can be shifted in a very natural way to certain linear semidefinite subproblems, and can thus be reduced to a well-studied problem. The resulting sequential semidefinite programming (SSP) method is a generalization of the well-known SQP method for standard nonlinear programs. We present a sensitivity result for nonlinear semidefinite programs, and then based on this result, we give a self-contained proof of local quadratic convergence of the SSP method. We also describe a class of nonlinear semidefinite programs that arise in passive reduced-order modeling, and we report results of some numerical experiments with the SSP method applied to problems in that class
    • 

    corecore