18,170 research outputs found

    Some aspects of grading Java code submissions in MOOCs

    Get PDF
    Recently, massive open online courses (MOOCs) have been offering a new online approach in the field of distance learning and online education. A typical MOOC course consists of video lectures, reading material and easily accessible tests for students. For a computer programming course, it is important to provide interactive, dynamic, online coding exercises and more complex programming assignments for learners. It is expedient for the students to receive prompt feedback on their coding submissions. Although MOOC automated programme evaluation subsystem is capable of assessing source programme files that are in learning management systems, in MOOC systems there is a grader that is responsible for evaluating students’ assignments with the result that course staff would be required to assess thousands of programmes submitted by the participants of the course without the benefit of an automatic grader. This paper presents a new concept for grading programming submissions of students and improved techniques based on the Java unit testing framework that enables automatic grading of code chunks. Some examples are also given such as the creation of unique exercises by dynamically generating the parameters of the assignment in a MOOC programming course combined with the kind of coding style recognition to teach coding standards

    Software Verification and Graph Similarity for Automated Evaluation of Students' Assignments

    Get PDF
    In this paper we promote introducing software verification and control flow graph similarity measurement in automated evaluation of students' programs. We present a new grading framework that merges results obtained by combination of these two approaches with results obtained by automated testing, leading to improved quality and precision of automated grading. These two approaches are also useful in providing a comprehensible feedback that can help students to improve the quality of their programs We also present our corresponding tools that are publicly available and open source. The tools are based on LLVM low-level intermediate code representation, so they could be applied to a number of programming languages. Experimental evaluation of the proposed grading framework is performed on a corpus of university students' programs written in programming language C. Results of the experiments show that automatically generated grades are highly correlated with manually determined grades suggesting that the presented tools can find real-world applications in studying and grading

    Semi Automated Partial Credit Grading of Programming Assignments

    Get PDF
    The grading of student programs is a time consuming process. As class sizes continue to grow, especially in entry level courses, manually grading student programs has become an even more daunting challenge. Increasing the difficulty of grading is the needs of graphical and interactive programs such as those used as part of the UNH Computer Science curriculum (and various textbooks). There are existing tools that support the grading of introductory programming assignments (TAME and Web-CAT). There are also frameworks that can be used to test student code (JUnit, Tester, and TestNG). While these programs and frameworks are helpful, they have little or no no support for programs that use real data structures or that have interactive or graphical features. In addition, the automated tests in all these tools provide only “all or nothing” evaluation. This is a significant limitation in many circumstances. Moreover, there is little or no support for dynamic alteration of grading criteria, which means that refactoring of test classes after deployment is not easily done. Our goal is to create a framework that can address these weaknesses. This framework needs to: 1. Support assignments that have interactive and graphical components. 2. Handle data structures in student programs such as lists, stacks, trees, and hash tables. 3. Be able to assign partial credit automatically when the instructor can predict errors in advance. 4. Provide additional answer clustering information to help graders identify and assign consistent partial credit for incorrect output that was not predefined. Most importantly, these tools, collectively called RPM (short for Rapid Program Management), should interface effectively with our current grading support framework without requiring large amounts of rewriting or refactoring of test code

    Automata Tutor v3

    Full text link
    Computer science class enrollments have rapidly risen in the past decade. With current class sizes, standard approaches to grading and providing personalized feedback are no longer possible and new techniques become both feasible and necessary. In this paper, we present the third version of Automata Tutor, a tool for helping teachers and students in large courses on automata and formal languages. The second version of Automata Tutor supported automatic grading and feedback for finite-automata constructions and has already been used by thousands of users in dozens of countries. This new version of Automata Tutor supports automated grading and feedback generation for a greatly extended variety of new problems, including problems that ask students to create regular expressions, context-free grammars, pushdown automata and Turing machines corresponding to a given description, and problems about converting between equivalent models - e.g., from regular expressions to nondeterministic finite automata. Moreover, for several problems, this new version also enables teachers and students to automatically generate new problem instances. We also present the results of a survey run on a class of 950 students, which shows very positive results about the usability and usefulness of the tool

    First Year Computer Science Projects at Coventry University:Activity-led integrative team projects with continuous assessment.

    Get PDF
    We describe the group projects undertaken by first year undergraduate Computer Science students at Coventry University. These are integrative course projects: designed to bring together the topics from the various modules students take, to apply them as a coherent whole. They follow an activity-led approach, with students given a loose brief and a lot of freedom in how to develop their project. We outline the new regulations at Coventry University which eases the use of such integrative projects. We then describe our continuous assessment approach: where students earn a weekly mark by demonstrating progress to a teacher as an open presentation to the class. It involves a degree of self and peer assessment and allows for an assessment of group work that is both fair, and seen to be fair. It builds attendance, self-study / continuous engagement habits, public speaking / presentation skills, and rewards group members for making meaningful individual contributions.Comment: 4 pages. Accepted for presentation at CEP2
    • …
    corecore