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Abstract

The number of students enrolled in universities at standard and online pro-
gramming courses is huge. This calls for automated evaluation of students
assignments and for automated support for learning.

We aim at developing methods and tools for objective and reliable au-
tomated grading that can also provide substantial and comprehensible feed-
back. The benefits should be twofold — reducing the workload for teachers
and providing high quality feedback to students in the process of learning.

We introduce software verification and control flow graph similarity mea-
surement in automated evaluation of students’ programs. Our new grad-
ing framework merges outcomes obtained by combination of these two ap-
proaches with outcomes obtained by automated testing. We present our
corresponding tools that are publicly available and open source. The tools
are based on a low-level intermediate code representation which enables that
they can be applied to a number of programming languages.

Experimental evaluation of the proposed grading framework is performed
on a corpus of university students’ programs written in programming lan-
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guage C. Results of the experiments show that the synergy of proposed ap-
proaches leads to improved quality and precision of automated grading and
that automatically generated grades are highly correlated with manually de-
termined grades. Also, the results show that our approach can be trained to
adapt to teacher’s grading style.

In this paper we integrate several techniques for evaluation of student’s
assignments. Obtained experimental results suggest that the presented tools
can find real-world applications in studying and grading.

Keywords: automated grading, software verification, graph similarity,
computer supported education

1. Introduction

Automated evaluation of programs is beneficial for both teachers and
students [1]. For teachers, automated evaluation is helpful in grading as-
signments and it leaves more time for other activities with students. For
students, it provides immediate feedback which is very important in process
of studying, especially in computer science where students take a challenge of
making the computer follow their intentions [2]. Immediate feedback is par-
ticularly helpful at first programming courses where students have frequent
and deep misconceptions [3].

Benefits of automated evaluation of programs are even more significant
in the context of online learning. A number of world’s leading universities
offer numerous online courses. The number of students taking such courses is
measured in millions and quickly growing [4]. In online courses, the teaching
process is carried out on the computer, the contact with teacher is already
minimal and hence the fast and substantial automatic feedback is especially
desirable. Therefore, automation of evaluation tasks in online learning is
very important.

Most of the tools for automated evaluation of students’ code are based
on automated testing [5]. Testing is used for checking functional correctness
of student’s solution, i.e., whether the student’s program exhibits the desired
behavior on selected inputs. Testing can also be used for detecting bugs. We
consider bugs to be runtime errors and exclude errors that only compromise
functional correctness (for example, in programming language C, some im-
portant bugs are buffer overflow, null pointer dereferencing and division by
zero). Although there is a variety of software verification tools that could
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enhance automated bug finding in students’ programs (by analyzing the code
without executing it), these tools are usually too complex to use and cannot
be easily adapted for educational purposes.

In addition to checking functional correctness, an evaluation tool may
also analyze program efficiency and/or complexity by profiling. Relevant
aspects of program quality are also it’s design and modularity (adequate
decomposition of code to functions). These issues are addressed by checking
similarity to a teacher provided solution. In order to check similarity, aspects
that can be analyzed are: frequencies of keywords, number of lines of code,
number of variables etc. Recently, a more sophisticated approach of grading
students’ programs by measuring the similarity of related graphs has been
proposed [6, 7]. Recent surveys of related approaches are given elsewhere
[8, 9].

In this paper, we propose a new grading framework for automated eval-
uation of students’ programs aiming primarily at introductory programming
courses. The framework is based on merging information from three different
evaluation methods: it merges results obtained by software verification (au-
tomated bug finding) and control flow graph (CFG) similarity measurement
with results obtained by automated testing. The synergy between automated
testing, verification, and similarity measurement improves the quality and
precision of automated grading and overcoming the individual weaknesses of
these approaches. Our experimental results show that our framework can
lead to a grading model that highly correlates to manual grading and there-
fore gives promises for real-world applicability in education.

We also briefly discuss tools for software verification [10] and CFG simi-
larity [11], that we use for assignment evaluation. These tools, based on novel
methods, are publicly available and open source.1 Both tools use the low-level
intermediate code representation LLVM. Therefore, they could be applied to
a number of programming languages and could be complemented with other
existing LLVM based tools (e.g., tools for automated test generation). Also,
the tools are enhanced with support for meaningful and comprehensible feed-
back to students, so they can be used both in the process of studying and in
the process of grading assignments.

Overview of the paper. Necessary background information is given in Section
2. Motivating examples for the synergy of the three proposed approaches are

1http://argo.matf.bg.ac.rs/?content=lav
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given in Section 3. The grading setting and the corpus used for evaluation
are described in Section 4. The role of the verification techniques in auto-
mated evaluation is discussed in Section 5 and the role of structural similarity
measurement is discussed in Section 6. An experimental evaluation of the
proposed framework for automated grading is presented in Section 7. Sec-
tion 8 contains information about related work. Conclusions and outlines of
possible directions of future work are given in Section 9.

2. Background

This section provides an overview of intermediate languages, the LLVM
tool, software verification, the LAV tool, control flow graphs and graph sim-
ilarity measurement.

Intermediate languages and LLVM. An intermediate language separates con-
cepts and semantics of a high level programming language from low level
issues relevant for a specific machine. Examples of intermediate languages
include the ones used in LLVM and .NET framework. LLVM2 is an open
source, widely used, rich compiler framework, well suited for developing new
mid-level language-independent analyses and optimizations of all sorts [12].
LLVM intermediate language is assembly-like language with simple RISC-like
instructions. It provides easy construction of control flow graphs of program
functions and of entire programs. There is a number of tools using LLVM
for various purposes, including software verification. LLVM has front-ends
for C, C++, Ada and Fortran, while there are external projects for translat-
ing a number of other languages to LLVM intermediate representation (e.g.,
Python, Ruby, Haskell, Java, D, PHP, Pure, and Lua).

Software verification and LAV. Verification of software and automated bug
finding are some of the greatest challenges in computer science. Software
bugs cost the world economy billions of dollars annually [13]. Software veri-
fication tools aim at automatically checking correctness properties. Different
approaches to automated checking of software properties exist, such as sym-
bolic execution [14], model checking [15] and abstract interpretation [16].
Software verification tools usually use automated theorem provers.

2http://llvm.org/
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LAV [10] is an open-source tool for statically verifying program asser-
tions and locating bugs such as buffer overflows, pointer errors and division
by zero. LAV uses popular LLVM infrastructure. As a result, it supports
several programming languages that compile into LLVM, and benefits from
the robust LLVM front ends. LAV is primarily aimed at programs in the C
programming language, in which the opportunities for errors are abundant.
For each safety critical command, LAV generates a first order logic formula
that represents its correctness condition. This formula is checked by one of
the several SMT solvers [17] used by LAV. If a command cannot be proved
to be safe, LAV translates a potential counterexample from the solver into
a program trace that exhibits this error. It also extracts the values of rele-
vant program variables along this trace. LAV was already used, to a limited
extent, for automated bug finding in students’ assignments [10].

Control flow graph. A control flow graph (CFG) is a graph-based represen-
tation of all paths that might be traversed through a program during its
execution. Each node of CFG represents a sequence of commands containing
only one path of execution (there are no jumps, loops, conditional statements,
etc.). The control flow graphs can be produced by various tools, including
LLVM. A control flow graph clearly separates the structure of the program
and its contents. Therefore, it is a suitable representation for structural
comparison of programs.

Graph similarity and neighbor matching method. There are many similarity
measures for graphs and their nodes [18, 19, 20, 11]. These measures have
been successfully applied in several practical domains like ranking of query
results, synonym extraction, database structure matching, construction of
phylogenetic trees, analysis of social networks, etc. A short overview of
similarity measures for graphs can be found in the literature [11].

A specific similarity measure for graph nodes called neighbor matching,
possesses properties relevant for our purpose that other similar measures
lack [11]. It allows similarity measure for graphs to be defined based on
similarity scores of their nodes. The notion of similarity of nodes is based on
the intuition that two nodes i and j of graphs A and B are considered to be
similar if neighbor nodes of i can be matched to similar neighbor nodes of j.
More detailed definitions follow.

In the neighbor matching method, if a graph contains an edge (i, j), the
node i is called an in-neighbor of node j in the graph and the node j is called
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an out-neighbor of the node i in the graph. An in-degree id(i) of the node i
is the number of in-neighbors of i, and an out-degree od(i) of the node i is
the number of out-neighbors of i.

If A and B are two finite sets of arbitrary elements, a matching of elements
of sets A and B is a set of pairs M = {(i, j)|i ∈ A, j ∈ B} such that
no element of one set is paired with more than one element of the other
set. For the matching M , enumeration functions f : {1, 2, . . . k} → A and
g : {1, 2, . . . k} → B are defined such that M = {(f(l), g(l))|l = 1, 2, . . . , k}
where k = |M |. If w(a, b) is a function assigning weights to pairs of elements
a ∈ A and b ∈ B, the weight of a matching is the sum of weights assigned to
the pairs of elements from the matching. The goal of the assignment problem
is to find a matching of elements of A and B of the highest weight (if two
sets are of different cardinalities, some elements of the larger set will not
have corresponding elements in the smaller set). The assignment problem is
usually solved by the well-known Hungarian algorithm of complexity O(mn2)
where m = max(|A|, |B|) and n = min(|A|, |B|) [21], but there are also more
efficient algorithms.

The calculation of similarity of nodes i and j, denoted xij, is based on
iterative procedure given by the following equations:

xk+1
ij ← sk+1

in (i, j) + sk+1
out (i, j)

2

where

sk+1
in (i, j)← 1

min

nin∑
l=1

xkf in
ij (l)ginij (l)

sk+1
out (i, j)← 1

mout

nout∑
l=1

xkfout
ij (l)goutij (l) (1)

min = max(id(i), id(j)) mout = max(od(i), od(j))

nin = min(id(i), id(j)) nout = min(od(i), od(j))

where functions f in
ij and ginij are the enumeration functions of the optimal

matching of in-neighbors for nodes i and j with weight function w(a, b) = xkab,
and analogously for f out

ij and goutij . In Equations 1, 0
0

is defined to be 1 (used in
case when min = nin = 0 or mout = nout = 0). Initial similarity values x0ij are

set to 1 for each i and j. The termination condition is maxij |xkij − xk−1ij | < ε
for some chosen precision ε and the iterative algorithm is proved to converge
[11].

The similarity matrix [xij] reflects the similarities of nodes of two graphs
A and B. The similarity of the graphs can be defined as the weight of the
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optimal matching of nodes from A and B divided by the number of matched
nodes [11].

3. The Need for Synergy of Testing, Verification, and Similarity
Measurement

Automated testing of programs is a very important part of the evaluation
process. Unfortunately, the grading system is directly influenced by the
choice of test cases. Also, no matter whether the test cases are automatically
generated or manually designed, testing cannot guarantee neither functional
correctness of a program nor the absence of bugs.

For checking functional correctness, combination of random testing with
evaluator-supplied test cases is a common choice [22]. However, randomly
generated test cases are not likely to hit a bug if it exists [23], while manually
choosing all important test cases is not a trivial job and can be time con-
suming. It is not sufficient that test cases cover all important paths through
the program. It is also important to carefully choose values of the variables
for each path — for some values along the same path a bug can be detected
while for some other values the bug can stay undetected.

Also, manually generated test cases are designed according to the ex-
pected solutions, while the evaluator cannot predict all the important paths
through the student’s solution. Even running a test case that hits a certain
bug (for example, a buffer overflow bug in a C program) does not necessarily
lead to any visible undesired behavior if the running is done in a normal
(or sandbox) environment. Finally, if one manages to hit a bug by a test
case, if the bug produces the Segmentation fault message, it is not a feedback
that student can easily understand and use for debugging the program. In
the context of automated grading, this feedback cannot be easily used since
it may have different causes. In contrast to program testing, software ver-
ification tools like Pex [24], Klee [25], S2E [26], CBMC [27], ESBMC [28],
LLBMC [29], and LAV [10] can give much better explanations (e.g., the kind
of bug and the program trace that introduces an error).

The example function shown at Figure 1 is extracted from a student’s
code written on an exam. It calculates the maximum value of each row of
a matrix and writes these values into an array. This function is used in a
context where the memory for the matrix is statically allocated and numbers
of rows and columns are less or equal to the allocated sizes of the matrix.
However, in the line 11, there is a possible buffer overflow bug, since i + 1
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0: #define max_size 50

1: void matrix_maximum(int a[][max_size], int rows, int columns, int b[])

2: {

3: int i, j, max=a[0][0]; int i, j, max;

4: for(i=0; i<rows; i++) for(i=0; i<rows; i++)

5: { {

6: max = a[i][0];

7: for(j=0; j<columns; j++) for(j=0; j<columns; j++)

8: if(max < a[i][j]) if(max < a[i][j])

9: max = a[i][j]; max = a[i][j];

10: b[i] = max; b[i] = max;

11: max=a[i+1][0];

12: } }

13: return; return;

14: }

Figure 1: Buffer overflow in the code on left-hand side cannot be discovered by simple
testing. Functionally equivalent solution without a bug is given on right-hand side.

can exceed the allocated number of rows for the matrix. It is possible that
this kind of a bug does not affect the output of the program or destroy any
data, but in a slightly different context it can be harmful, so students should
be warned and penalized for making such errors. The bugs like this one can
be missed in testing but are easily discovered by verification tools like LAV.

Functional correctness and absence of bugs are not the only important
aspects of students’ programs. The programs are often supposed to meet
certain requirements concerning the structure of the program, such as its
modularity (adequate decomposition of code to functions) or simplicity. Fig-
ure 2 shows two solutions of different modularity or structural simplicity for
two problems. Neither testing, nor software verification can be used to assess
these aspects of the programs. This problem can be addressed by checking
the similarity of student’s solution with a teacher provided solution, i.e., by
analyzing the similarity of their related graphs (e.g. CFGs) [6, 7, 11].3

Finally, using similarity only (like in [6, 7]) or even with support of a
bug finding tool, would miss to penalize incorrectness of program’s behavior.
Figure 3 gives a simple example program, extracted from a real student’s so-

3In Figure 2, the second example could also be distinguished by profiling for large
inputs, because it is quadratic in one case and linear in the other. However, profiling
cannot be used to assess structural properties in general.
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Problem First solution Second solution

if(a<b) n = a; n = min(a, b);

else n = b;

1. if(c<d) m = c; m = min(c, d);

else m = d;

for(i=0; i<n; i++) for(i=0; i<n; i++)

for(j=0; j<n; j++) m[i][i] = 1;

2. if(i==j)

m[i][j] = 1;

Figure 2: Examples extracted from two students’ solutions of the same problem

lution, that is very similar to the expected solution and without verification
errors. However, this program is not functionally correct. Therefore, we con-
clude that the synergy of these three approaches is needed for sophisticated
evaluation of students’ assignments.

max = 0; max = a[0];

for(i=0; i<n; i++) for(i=1; i<n; i++)

if(a[i] > max) if(a[i] > max)

max = a[i]; max = a[i];

Figure 3: Code extracted from student’s solution (left-hand side) and expected solution
(right-hand side). In the student’s solution there are no verification bugs, it is very similar
to the expected solution but it does not perform the desired behavior (in the case when
all elements of the array a are negative integers).

4. Grading Setting

There may be different grading settings depending on aims of the course
and goals of teachers. The setting used at an introductory course of pro-
gramming in C (at University of Belgrade) is rather standard: taking exams
on computers and expecting from students to write working programs. In
order to help students achieve this goal, each assignment is provided with
several test cases which illustrate desired behavior of the solution. Students
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are also provided with sufficient (but limited) time for developing and test-
ing programs. If a student fails to provide a working program that gives
correct results for given test cases, his/her solution is not further examined.
Otherwise, the program is tested by additional test cases (unknown to stu-
dents) and a certain amount of points is given corresponding to the test cases
successfully passed. Only if all these test cases are successfully passed, the
program is further manually examined and may obtain additional points with
respect to other features of the program (efficiency, modularity, simplicity,
absence of bugs, etc).

All experiments described in this paper were preformed on a corpus of
programs written by students on the exams, following the described grading
setting. The corpus consists of 266 solutions to 15 different problems. These
problems include numerical calculations, manipulations with arrays and ma-
trices, manipulations with strings, and manipulations with data structures.
Only programs that passed all test cases were included in this corpus. These
programs are the main target of our automated evaluation technique since
the manual grading was applied only in this case and we want to explore
potentials for completely eliminating manual grading. These programs ob-
tained 80% of the maximal score (as they passed all test cases) and additional
potential 20% were given by manual inspection. The grades are expressed at
the scale from 0 to 10. The corpus together with problem descriptions and
the final marks are publicly available.4

The methods we propose are not designed only for this setting, but are
more general and widely applicable.

5. Assignment Evaluation and Software Verification

In this section we show benefits of using software verification tool in
assignment evaluation, e.g., generating useful feedback for students and pro-
viding improved assignment evaluation for teachers.

5.1. Software verification for assignment evaluation

No software verification tool can report all the bugs in a program without
introducing false alarms (due to the undecidability of the halting problem).
False alarms (i.e., reported ”bugs” that are not real bugs) arise as a conse-
quence of approximations that are necessary in modeling of programs.

4http://argo.matf.bg.ac.rs/?content=lav
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The most important approximation is concerned with dealing with loops.
Different verification approaches use various techniques for dealing with loops.
These techniques range from under-approximations of loops to over-approxima-
tions of loops. Under-approximation of loops, as in bounded model checking
techniques [15], uses a fixed number n for loop unwinding. In this case, if the
code is verified successfully, it means that the original code has no bugs for
n or less passes through the loop. However, it may happen that some bug
remains undiscovered if the unwinding is performed an insufficient number
of times. Over-approximation of loops can be done by simulation of first n
and last m passes through the loop [10] or by using abstract interpretation
techniques [16]. If there are no bugs detected in the over-approximated code,
then the original code has no bugs too. However, in this case, a false alarm
can appear after or inside a loop. On the other hand, precise dealing with
loops, like in symbolic execution techniques, can be non terminating.

False alarms are highly unwelcome in software development, but still are
not critical — the developer can fix the problem or confirm that the reported
problem is not really a bug (and both of these are situations that the de-
veloper can expect and understand). However, false alarms in assignment
evaluation are rather critical and have to be eliminated. For teachers, there
should be no false alarms, because the evaluation process should be as auto-
matic and reliable as possible. For students, there should be no false alarms
because they would be confused if told that something is a bug when it is not.
In order to eliminate false alarms, a system may be non-terminating or may
miss to report some real bugs. In assignment evaluation, the second choice is
more reasonable — the tool has to be terminating, must not introduce false
alarms, even if the price is missing some real bugs. These requirements make
applications of software verification in education rather specific, and special
care has to be taken when these techniques are applied.

5.2. LAV for assignment evaluation

LAV is a general purpose verification tool and has a number of options
that can adapt its behavior to the desired context. When running LAV in
the assignment evaluation context, most of these options can be fixed.

The most important choice for the user is the choice of the way in which
LAV deals with loops. LAV has support for both over-approximation of
loops and for fixed number of unwinding of loops (under-approximation),
two common techniques for dealing with loops. Setting up the upper loop
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1: unsigned i, n;

2: unsigned *arr;

3: scanf("%u", &n);

4: array = malloc(n*sizeof(unsigned));

5: if(array == NULL)

6: {

7: fprintf(stderr, "Unsuccessful allocation\n");

8: exit(EXIT_FAILURE);

9: }

10: for(i=0; i<n; i++)

11: array[i] = i;

Figure 4: Buffer overflow in this code is a verification error, but the teacher may decide
not to consider this kind of bugs.

bound (if under-approximation is used), is problem dependent and should be
done by the teacher for each assignment.

We use LAV in the following way. LAV is first invoked with its default pa-
rameters — over-approximation of loops. Since this technique can introduce
false alarms, if a potential bug is found after or inside a loop, the verification
is invoked again but this time with fixed unwinding parameter. If the bug is
still present, then it is reported. Otherwise, the previously detected potential
bug is considered to be a false alarm and it is not reported.

In software verification, each detected bug is important and should be
reported. However, some bugs can confuse novice programmers, like the one
shown in Figure 4. In this code, at the line 11, there is a possible buffer
overflow. For instance, for n = 0x80000001 only 4 bytes will be allocated
for the pointer array, because of an integer overflow. This is a verification
error, but a teacher may decide not to consider this kind of bugs. For this
purpose, LAV can be invoked in mode for students (so the bugs like this one
are not reported).

To a limited extent, LAV was already used on students’ assignments at
an introductory programming course [10]. In these experiments, most of the
programs from the corpus were not functionally correct. It was shown that
the vast majority of bugs, produced by students, follow wrong expectations
— for instance, expectations that input parameters of their programs will
meet certain constraints and that memory allocation will always succeed. It
is also noticed that most of the reported bugs are consequence of only few
oversights. In many cases, omission of a necessary check produces several
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bugs in the rest of the program. Therefore, the number of bugs, as reported
by a verification tool, is not a reliable indicator of program quality. This
property will be taken into account in automated grading.

5.3. Experimental evaluation

As discussed in Section 3, programs that successfully pass a testing phase
can still contain bugs. To show that this problem is practically important,
we used LAV to analyze programs from the corpus described in Section 4.

For each problem, LAV was ran with its default parameters, and pro-
grams with potential bugs were checked with under-approximation of loops,
as described in Section 5.2.5 The results are shown in Table 1. The time
that LAV spent in analyzing the programs was typically negligible.6 LAV
discovered bugs in 35 solutions that successfully passed the testing. There
was one bug missed by manual inspection and detected by LAV and one
bug missed by LAV and detected by manual inspection. The bug missed by
manual inspection was the one described in Section 3 and given in Figure 1.
The bug missed by LAV was a consequence of the problem formulation which
was too general to allow a precise unique upper loop unwinding parameter
value for all possible solutions. There were just two false alarms produced
by LAV when the default parameters were used. These false alarms were
eliminated when the tool was invoked for the second time with a specified
loop unwinding parameter, and hence there were no false alarms in the final
outputs. In summary, the presented results show that a verification tool like
LAV can be used as a complement to automated testing that improves the
evaluation process.

5When analyzing the solutions of problems 3, 5 and 8, only under-approximation of
loops was used. This was the consequence of the formulation of the problems given to
the students. Namely, the formulation of these problems contained some assumptions on
input parameters. These assumptions implied that some potential bugs should not be
considered (because these are not bugs when these additional assumptions are taken into
account).

6Generally, in this context, a time limit can be given to the verification tool and if
it was exceeded no bug will be reported (in order to avoid reporting false alarms) or a
program can be checked using the same parameters but with another underlying solver (if
applicable for the tool).
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problem # solutions # programs # programs # bug-free # false
with bugs with bugs programs alarms with
by manual by LAV by LAV def./custom
inspection def./custom parameters

1. 44 0 0 44/- 0/-
2. 32 11 11 20/1 1/0
3. 7 2 2 -/5 -/0
4. 5 0 1 3/1 1/0
5. 12 3 2 -/10 -/0
6. 7 0 0 6/1 1/0
7. 33 0 0 33/- 0/-
8. 31 11 11 -/20 -/0
9. 10 6 6 4/0 0/0
10. 14 2 2 12/0 0/0
11. 31 0 0 31/- 0/-
12. 18 0 0 18/- 0/-
13. 3 0 0 3/- 0/-
14. 7 0 0 7/- 0/-
15. 12 0 0 12/- 0/-

total 266 35 35 193/38 2/0

Table 1: Summary of bugs in the corpus: the second column represents the number of
students’ solutions to the given problem; the third and the fourth column represents the
number of solutions with bugs detected by manual inspection and by LAV; the fifth column
gives the number of programs shown to be bug-free by LAV (over/under approximation);
the sixth column gives the number of false alarms made by LAV invoked with default
parameters and, if applicable, with under-approximation.

5.4. Feedback for students and teachers

LAV can be used to provide a meaningful and comprehensible feedback
to students while writing their programs. Information like the line number,
the kind of the error, program trace that introduces the error and values of
the variables along this trace, can help student improve the solution. It can
also remind the student to add an appropriate check that is missing. The
example given in Figure 5, extracted from a student’s code written on an
exam, shows the error detected by LAV and the generated hint.

From the software verification support, a teacher can obtain the infor-
mation if the student’s program contains a bug. The teacher can use this
information in grading assignments by himself. Alternatively, this informa-
tion can be taken into account within the wider integrated framework for
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verification failed:

1: #include<stdio.h> line 7: UNSAFE

2: #include<stdlib.h>

3: int get_digit(int n, int d); function: main

4: int main(int argc, char** argv) error: buffer_overflow

5: { in line 7: counterexample:

6: int n, d; argc == 1, argv == 1

7: n = atoi(argv[1]);

8: d = atoi(argv[2]); HINT:

9: printf("%d\n", get_digit(n, d)); A buffer overflow error occurs when

10: return 0; trying to read or write outside the

11: } reserved memory for a buffer/array.

Check the boundaries of the array!

Figure 5: Listing extracted from student’s code written on an exam (left-hand side) and
LAV’s output (right-hand side)

obtaining automatically proposed final grade, as discussed in Section 7.

6. Assignment Evaluation and Structural Similarity of Programs

In this section we propose a similarity measure for programs based on
their control flow graphs, perform its experimental evaluation, and point to
ways it can be used to provide feedback for students and teachers.

6.1. Similarity of CFGs for assignment evaluation

To evaluate structural properties of programs, we take the approach of
comparing students’ programs to solutions provided by the teacher. Student’s
program is considered to be good if it is similar to some of the programs
provided by the teacher [6]. In order to perform a comparison, a suitable
program representation and a similarity measure are needed. As already
noticed in Section 2, there is a control flow graph (CFG) corresponding to
each program. The CFG reflects the structure of the program. Also, there
is a linear code sequence attributed to each node of the CFG which we call
the node content. We assume that the code is in the intermediate LLVM
language. In order to measure the similarity of programs, both the similarity
of graphs’ structures and the similarity of node contents should be considered.
We take the approach of combining the similarity of node contents with
topological similarity of graph nodes described in Section 2.
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Similarity of node contents. The node content is a sequence of LLVM in-
structions. A simple way of measuring the similarity of two sequences of
instructions s1 and s2 is using the edit distance between them d(s1, s2) —
the minimal number of insertion, deletion and substitution operations over
the elements of the sequence by which one sequence can be transformed into
another [30]. In order for edit distance to be computed, the cost of each
insertion, deletion and substitution operation has to be defined. We define
the cost of insertion and deletion of an instruction to be 1. Next, we define
the cost of substitution of instruction i1 by instruction i2. Let opcode be a
function that maps an instruction to its opcode (a part of instruction that
specifies the operation to be performed). Let opcode(i1) and opcode(i2) be
function calls. Then, the cost of substitution is 1 if i1 and i2 call different
functions, and 0 if they call the same function. If opcode(i1) or opcode(i2) is
not a function call, the cost of substitution is 1 if opcode(i1) 6= opcode(i2),
and 0 otherwise. Let n1 = |s1|, n2 = |s2|, and let M be the maximal edit
distance over two sequences of length n1 and n2. Then, the similarity of
sequences s1 and s2 is defined as 1− d(s1, s2)/M .

Although it could be argued that the proposed similarity measure is rough
since it does not account for differences of instruction arguments, it is simple,
easily implemented, and intuitive.

Full similarity of nodes and similarity of CFGs. The topological similarity
of nodes can be computed by the method described in Section 2. However,
purely topological similarity does not account for differences of the node con-
tent. Hence, we modify the computation of topological similarity to include
the apriori similarity of nodes. The modified update rule is:

xk+1
ij ←

√
yij ·

sk+1
in (i, j) + sk+1

out (i, j)

2

where yij are the similarities of contents of nodes i and j and sk+1
in (i, j) and

sk+1
out (i, j) are defined by Equations 1. Also, we set x0ij = yij. This way,

both content similarity and topological similarity of nodes are taken into
consideration. The similarity of CFGs can be defined based on the node
similarity matrix as described in Section 2. Note that both the similarity of
nodes and the similarity of CFGs take values in the interval [0, 1].

It should be noted that our approach provides both the similarity measure
for CFGs and the similarity measure for their nodes (xij). In addition to
evaluating similarity of programs, this approach enables matching of related
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parts of the programs by matching the most similar nodes of CFGs. This
could serve as a basis of a method for suggesting which parts of the student’s
program could be further improved.

6.2. Experimental evaluation

In order to show that the proposed program similarity measure corre-
sponds to some intuitive notion of program similarity, we performed the
following experiment. For each program from the corpus already described
in Section 4, we found the most similar program from the rest of the cor-
pus and counted how often these programs are the solutions for the same
problem. That was the case for 90% of all programs. This shows that our
similarity measure performs well since with high probability, for each pro-
gram, the program that is the most similar to it, corresponds to the same
problem. The inspection suggests that in most cases, where the programs do
not correspond to the same problem, student took an original approach to
solving the problem.

The CFGs of the programs from the corpus are rather small. The average
size of CFGs is 15 nodes. The time spent to compute the similarity of two
programs is negligible. However, out of the educational context where CFGs
could have thousands of nodes, the scalability might be an issue.

6.3. Feedback for students and teachers

The students can benefit from program similarity evaluation while learn-
ing and exercising, assuming that the teacher provided a valid solution or set
of solutions to the evaluation system. In introductory programming courses,
most often a student’s solution can be considered as better if it is more similar
to one of the teacher’s solutions [6]. In Section 7 we show that the similarity
measure can be used for automatic calculation of a grade (a feedback that
students easily understand). Moreover, we show that there is a significant
linear dependence of the grade on the similarity value. Due to that linearity,
the similarity value can be considered as an intuitive feedback, but also it
can be translated into descriptive estimate. For example, the feedback could
be that the solution is dissimilar (0-0.5), roughly similar (0.5-0.7), similar
(0.7-0.9) or very similar (0.9-1) to one of the desired solutions.

The teachers can use the similarity information in automated grading, as
discussed in Section 7.
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7. Automated Grading

We believe that automated grading can be performed by calculating a
linear combination of different scores measured for the student’s solution.
We propose a linear model for prediction of the teacher-provided grade of
the following form:

ŷ = α1 · x1 + α2 · x2 + α3 · x3
where

• ŷ is the automatically predicted grade,

• x1 is a result obtained by automated testing expressed in the interval
[0, 1],

• x2 is 1 if in the student’s solution is correct as reported by the software
verification tool, and 0 otherwise,

• x3 is the maximal value of similarity between the student’s solution
and each of the teacher provided solutions (its range is [0, 1]).

It should be noted that we do not use bug count as a parameter, as discussed
in Section 5.2. Different choices for the coefficients αi, for i = 1, 2, 3 could be
proposed. In our case, one simple way could be α1 = 8, α2 = 1, and α3 = 1
since all programs in our training set won 80% of the full grade due to the
success in testing. However, it is not always clear how the teacher’s intuitive
grading criterion can be factored to automatically measurable quantities.
Teachers need not have the intuitive feeling for all the variables involved in
the grading. For instance, the behavior of any of the proposed similarity
measures including ours [6, 7, 11] is not clear from their definitions only.
So, it may be unclear how to choose weights for different variables when
combining them in the final grade or if some of the variables should be
nonlinearly transformed in order to be useful for grading. A natural solution
is to try to tune the coefficients αi, for i = 1, 2, 3 so that the behavior of
the predictive model corresponds to the teacher’s grading style. For that
purpose, coefficients can be determined automatically using least squares
linear regression [31] if a manually graded corpus of students’ programs is
provided by the teacher.

In our evaluation the corpus of programs was split into a training and
a test set where the training set consisted of two thirds of the corpus and
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the test set consisted of one third of the corpus. The training set contained
solutions of eight different problems and the test set contained solutions of
remaining seven problems.

Due to the nature of the corpus, for all the instances it holds x1 = 1.
Therefore, while it is clear that the number of test cases the program passed
(x1) is useful in automated grading, this variable can not be analyzed based
on this corpus.

The optimal values of coefficients αi, i = 1, 2, 3, with respect to the
training corpus, are determined using least squares linear regression. The
obtained equation is

ŷ = 6.058 · x1 + 1.014 · x2 + 2.919 · x3

The formula for ŷ may seem counterintuitive. Since the minimal grade in the
corpus is 8 and x1 = 1 for all instances, one would expect that it holds α1 ≈ 8.
The discrepancy is due to the fact that for the solutions in the corpus, the
minimal value for x3 is 0.68 — since the solutions are good (they all passed
the testing) there are no programs with low similarity value. Taking this into
consideration, one can rewrite the formula for ŷ as

ŷ = 8.043 · x1 + 1.014 · x2 + 0.934 · x′3

where x′3 = x3−0.68
1−0.68 so the variable x′3 takes values from the interval [0, 1].

This means that when the range of variability of both x2 and x3 is scaled to
the interval [0, 1], their contribution to the mark is rather similar.

Table 2 shows the comparison between the model ŷ and three other mod-
els. Model ŷ1 = 8 · x1 + x2 + x3 has predetermined parameters, model ŷ2
is trained just with verification information x2 (without similarity measure),
and model ŷ3 is trained only with similarity measure x3 (without verification
information). Results show that the performance of model ŷ on the test set
(consisting of problems not appearing in the training set) is outstanding —
the correlation is 0.842 and the model accounts for 71% of the variability
of teacher provided grade. These results indicate a strong and reliable de-
pendence between teacher provided grade and the variables xi, meaning that
a grade can be reliably predicted by ŷ. Also, ŷ is much better than other
models. This shows that the approach using both verification information
and graph similarity information is superior to approaches using only one
source of information, and also that automated tuning of coefficients of the
model provides better prediction than giving them in advance.
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r r2 · 100% Rel. error
ŷ 0.842 71% 10.1%
ŷ1 0.730 53.3% 12.8%
ŷ2 0.620 38.4% 16.7%
ŷ3 0.457 20.9% 17.7%

Table 2: The performance of the predictive model on the training and test set. We provide
correlation coefficient (r), the fraction of variance of y accounted by the model (100 · r2),
and relative error — average error divided by the length of the range in which the grades
vary (which is 8 to 10 in the case of this particular corpus).

Inspection of solutions that yielded the biggest error in prediction suggests
that the greatest source of discrepancy of automatically provided and teacher
provided grades are the original solutions given by students and the solutions
that the teacher did not predict in advance. However, we cannot exclude
other factors apart form presence of bugs and similarity to model solutions,
that govern human grading process.

8. Related work

Automated testing is the most common way of evaluating students’ pro-
grams [5]. Test cases are usually supplied by a teacher and/or randomly
generated [22]. A lot of systems use this approach, for example, PSGE [32],
Kassandra [33], BOSS [34], WebToTeach [35], Schemerobe [36], TRY [37],
HoGG [38], BAGS [39], on-line Judge [40], JEWL [41], Quiver [42], and
JUnit [43].

Software verification techniques are not commonly used in automated
evaluation of programs. There are limited experiments on using Java PathFinder
model checker for automated test case generation [44]. Tools with integrated
support for automated testing and verification, e.g. Ceasar [45], are usu-
ally too complex and not aimed for educational purposes. To the authors’
knowledge, there is no other software verification tool deployed in process of
automated bug finding as a complement to automated testing of students’
programs. The tool LAV was already used, to a limited extent, for finding
bugs in students’ programs [10]. In that work, a different sort of corpus was
used, as discussed in Section 5.2. Also, that application did not aim at au-
tomated grading, and instead was made in the wider context of design and
development of LAV as a general-purpose SMT-based error finding platform.
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Wang et al. proposed a grading approach for assignments in C based
only on program similarity [6]. It relies on dependence graphs [46] as pro-
gram representation. They perform various code transformations in order to
standardize the representation of the program. In this approach, the similar-
ity is calculated based on comparison of structure, statement, and size which
are weighted by some predetermined coefficients. Their approach is evalu-
ated on 10 problems, 200 solutions each, and obtain good results compared
to manual grading. Manual grading was performed strictly according to the
criterion that indicates how the scores are awarded for structure, statements
used, and size. However, it is not quite obvious that human grading is always
expressed strictly in terms of these three factors. An advantage of our ap-
proach compared to this one is automated tuning of weights corresponding to
different variables used in grading, instead of using the predetermined ones.
Since teachers do not need to have an intuitive feeling for different similarity
measures, it may be unclear how the corresponding weights should be chosen.
Also, we avoid language dependent transformations by using LLVM which
makes our approach applicable to large variety of programming languages.
Very similar approach to the one of Wang et al. was presented by Li et al.
[47].

Another approach to grading assignments based only on graph similarity
measure is proposed by Naudé et al. [7]. They represent programs as depen-
dence graphs and propose directed acyclic graph (DAG) similarity measure.
In their approach, for each solution to be graded, several similar solutions
in the training set are found and the grade is formed by combining grades
of these solutions with respect to matched portions of the similar solutions.
The approach was evaluated on one assignment problem and the correla-
tion between human and machine provided grades is the same as ours. For
appropriate grading they recommend at least 20 manually graded solutions
of various qualities for each problem to be automatically graded. In the
case of automatic grading of high quality solutions (as is the case with our
corpus), using 20 manually graded solutions, their approach achieves 16.7%
relative error, while with 90 manually graded solutions it achieves around
10%. The improvement that our approach provides is reflected through sev-
eral indicators. We used a heterogeneous corpus of 15 problems instead of
one. Our approach uses 1 to 3 model solutions for each problem to be graded
and a training set for weight estimation which does not need to contain the
solutions for the program to be graded. So, after the initial training has
been performed, for each new problem only few model solutions should be
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provided. Using 1 to 3 model solutions, we achieve 10% relative error (see
Table 2). Due to the use of the LLVM platform, we do not use language
dependent transformations, so our approach is applicable to large number
of programming languages. The similarity measure we use, called neighbor
matching, is similar to the one of Naudé et al., but for our measure, impor-
tant theoretical properties (e.g. convergence) are proven [11]. The neighbor
matching method was already applied to several problems but in all these
applications its use was limited to ordinary graphs with nodes without any
internal specifics. In order to be applied to CFGs, the method was modi-
fied to include node content similarity which was independently defined as
described in Section 6.1.

Finally, as a distinctive feature of our system, we are not aware of open
source implementations of the similarity based approaches. A drawback in
the comparison of our approach to previously described ones is that our
corpus consists of high quality solutions due to the grading setting at the
course.

9. Conclusions and Further Work

We presented two techniques that can be used for improving automated
evaluation of students’ programs. First one is based on software verification
and second one on CFG similarity measurement. Both techniques can be
used for providing useful and helpful feedback to students and for improving
automated grading for teachers. In our evaluation, we show that synergy of
these techniques offers more information useful for automated grading than
any of them independently. Also, we obtained good results in prediction of
the grades for a new set of assignments. This shows that our approach can
be trained to adapt to teacher’s grading style on several teacher graded prob-
lems and then be used on different problems using only few model solutions
per problem. An important advantage of our approach is independence of
specific programming language since LLVM platform (which we use to pro-
duce intermediate code) supports large number of programming languages.
We also provide the corresponding open source tools.

In our future work we are planning to make an integrated web-based
system with support for the mentioned techniques along with compiling, au-
tomated testing, profiling and detection of plagiarism of students’ programs.
Also, we intend to improve feedback to students by indicating missing or
redundant parts of code compared to the teacher’s solution. This feature
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would rely on the fact that our similarity measure provides the similarity
values for nodes of CFGs, and hence enables matching the parts of code be-
tween two solutions. If some parts of the solutions cannot be matched or are
matched with very low similarity, this can be reported to the student. On
the other hand, the similarity of the CFG with itself could reveal the repe-
titions of parts of the code and suggest that refactoring could be performed.
We are planning to integrate LLVM-based open source tool KLEE [25] for
automated test case generation and also to add support for teacher supplied
test cases.

We are also planning to explore potential for using software verification
tools for proving functional correctness of students’ programs. This task
would pose new challenges. Testing, profiling, bug finding and similarity
measurement are used on original students’ programs, which makes the au-
tomation easy. For verification of functional correctness, the teacher would
have to define correctness conditions (possibly in terms of implemented func-
tions) and insert corresponding assertions in appropriate places in students’
programs which should be possible to automate in some cases, but it is not
trivial in general. In addition, for some programs it is not easy to formulate
correctness conditions (for example, for programs that are expected only to
print some messages on standard output).
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