31 research outputs found

    Current and future roles of artificial intelligence in retinopathy of prematurity

    Full text link
    Retinopathy of prematurity (ROP) is a severe condition affecting premature infants, leading to abnormal retinal blood vessel growth, retinal detachment, and potential blindness. While semi-automated systems have been used in the past to diagnose ROP-related plus disease by quantifying retinal vessel features, traditional machine learning (ML) models face challenges like accuracy and overfitting. Recent advancements in deep learning (DL), especially convolutional neural networks (CNNs), have significantly improved ROP detection and classification. The i-ROP deep learning (i-ROP-DL) system also shows promise in detecting plus disease, offering reliable ROP diagnosis potential. This research comprehensively examines the contemporary progress and challenges associated with using retinal imaging and artificial intelligence (AI) to detect ROP, offering valuable insights that can guide further investigation in this domain. Based on 89 original studies in this field (out of 1487 studies that were comprehensively reviewed), we concluded that traditional methods for ROP diagnosis suffer from subjectivity and manual analysis, leading to inconsistent clinical decisions. AI holds great promise for improving ROP management. This review explores AI's potential in ROP detection, classification, diagnosis, and prognosis.Comment: 28 pages, 8 figures, 2 tables, 235 references, 1 supplementary tabl

    Deep learning in ophthalmology: The technical and clinical considerations

    Get PDF
    The advent of computer graphic processing units, improvement in mathematical models and availability of big data has allowed artificial intelligence (AI) using machine learning (ML) and deep learning (DL) techniques to achieve robust performance for broad applications in social-media, the internet of things, the automotive industry and healthcare. DL systems in particular provide improved capability in image, speech and motion recognition as well as in natural language processing. In medicine, significant progress of AI and DL systems has been demonstrated in image-centric specialties such as radiology, dermatology, pathology and ophthalmology. New studies, including pre-registered prospective clinical trials, have shown DL systems are accurate and effective in detecting diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), retinopathy of prematurity, refractive error and in identifying cardiovascular risk factors and diseases, from digital fundus photographs. There is also increasing attention on the use of AI and DL systems in identifying disease features, progression and treatment response for retinal diseases such as neovascular AMD and diabetic macular edema using optical coherence tomography (OCT). Additionally, the application of ML to visual fields may be useful in detecting glaucoma progression. There are limited studies that incorporate clinical data including electronic health records, in AL and DL algorithms, and no prospective studies to demonstrate that AI and DL algorithms can predict the development of clinical eye disease. This article describes global eye disease burden, unmet needs and common conditions of public health importance for which AI and DL systems may be applicable. Technical and clinical aspects to build a DL system to address those needs, and the potential challenges for clinical adoption are discussed. AI, ML and DL will likely play a crucial role in clinical ophthalmology practice, with implications for screening, diagnosis and follow up of the major causes of vision impairment in the setting of ageing populations globally

    Automated classification of retinopathy of prematurity in newborns

    Get PDF
    La Retinopatia de l'Prematur (ROP) és una malaltia que afecta els nadons prematurs mostrant-se com un subdesenvolupament dels vasos retinians. El diagnòstic precoç d'aquesta malaltia és un tot un repte ja que requereix de professionals altament qualificats amb coneixements molt específics. Actualment a Espanya, només uns pocs hospitals compten amb els equipaments especialitzats per al tractament i diagnòstic d'aquesta patologia. Aquest projecte final de màster, té com a objectiu final desenvolupar una eina preliminar per a la classificació de l'extensió aquesta malaltia. Aquesta applicació, ha estat disenyada per a ser integrada en una plataforma de suport a la diagnosi de la Retinopatia i poder evaluar la malaltia, proporcionant informació detallada sobre les imatge analitzades. Aquest projecte, també estableix les bases per a la comparació entre l'enfocament clínic, que utilitzen els metges, i la naturalesa "Black-Box" natural de la Xarxa Neuronal Artificial per classificar l'extensió de la malaltia. L'algoritme desenvolupat és capaç de: segmentar els vasos oculars utilitzant una xarxa neuronal convolucional U-Net; extreure les característiques representatives de la malaltia a partir de la segmentació; i classificar aquestes característiques en casos ROP i casos ROP Plus, mitjançant l'ús d'una gamma de classificadors. Les principals característiques analitzades són la tortuositat i el gruix dels vasos, indicadors de la malaltia emprats pels patolegs experts. La xarxa de segmentació ha obtingut una precisió global de l'96,15%. Els resultats dels diferents classificadors indiquen un trade-off entre la precisió i el volum d'imatges analitzades. S'ha obtingut una precisió de l'100% emprant un classificador de doble threshold en el analisis de l'12,5% de les imatges. En canvi, mitjançant l'ús d'un classificador "decision tree", s'ha obtingut una precisió del 70,8% analitzant el 100% de les imatges.La Retinopatía del Prematuro (ROP) es una enfermedad que afecta a los bebés prematuros mostrándose como el subdesarrollo de los vasos retinianos. El diagnóstico precoz de dicha enfermedad es un desafío ya que requiere de profesionales altamente capacitados con conocimientos muy específicos. Actualmente en España, solo unos pocos hospitales están dotados con los equipamientos especializados para el tratamiento y diagnóstico de esta patología Este proyecto final de master, tiene como objetivo final desarrollar una herramienta preliminar para la clasificación de la extensión dicha enfermedad. Esta aplicación, ha sido diseñada para ser integrada en una plataforma de soporte al diagnóstico de la Retinopatía y evaluar la enfermedad, proporcionando información detallada sobre las imágenes analizadas. Este proyecto también sienta las bases para la comparación entre el enfoque clínico, que utilizan los médicos, y la naturaleza "Black-Box" natural de la Red Neuronal Artificial para clasificar la extensión de la enfermedad. El algoritmo desarrollado es capaz de: segmentar los vasos oculares utilizando una red neuronal convolucional U-Net; extraer las características representativas de la enfermedad a partir de la segmentación; y clasificar estas características en casos ROP y casos ROP Plus, mediante el empleo de una gama de clasificadores. Las principales características analizadas son la tortuosidad y el grosor de los vasos, indicadores cauterizantes de la enfermedad empleados por los patólogos expertos. La red de segmentación ha logrado una precisión global del 96,15%. Los resultados de los diferentes clasificadores indican un trade-off entre la precisión y el volumen de imágenes analizadas. Se ha obtenido una precisión del 100% empleando un clasificador de doble threshold en el análisis del 12,5% de las imágenes. En cambio, mediante el uso de un clasificador “decision tree”, se ha obtenido una precisión del 70,8% analizando el 100% de las imágenes.Retinopathy of Prematurity (ROP) is a disease in preterm babies with underdevelopment in retinal vessels. Early diagnosis of the disease is challenging and requires skilled professionals with very specific knowledge. Currently, in Spain, only a few hospitals have departments specialized in this pathology and, therefore, are able to diagnose and treat it accordingly. This master project aims to develop the first preliminary instrument for the classification of the extent of Retinopathy disease. This tool has been built to be integrated into a diagnostic support platform to detect the presence of retinopathy and evaluate the sickness, providing insightful information regarding the specific image. This project also lays the base for the comparison between the clinical approach that the doctors use and the “black box” approach the Artificial Neural Network uses to predict the extent of the disease. The developed algorithm is able to: segment ocular vessels using a U-Net Convolutional Neural Network; extract the critical features from the segmentation; and classify those features into ROP cases and ROP Plus cases by employing a range of different classifiers. The main features analyzed by the related specialists and thus selected are tortuosity and thickness of the vessels. The segmentation Network achieved a global accuracy of 96.15%. The results of the different classifiers indicate a trade-off between accuracy and the volume of computed images. An accuracy of 100% was achieved with a Double Threshold classifier on 12.5% of the images. Instead, by using a Decision tree classifier, an accuracy of 70.8% was achieved when computing 100% of the images

    Graph Theory and Dynamic Programming Framework for Automated Segmentation of Ophthalmic Imaging Biomarkers

    Get PDF
    <p>Accurate quantification of anatomical and pathological structures in the eye is crucial for the study and diagnosis of potentially blinding diseases. Earlier and faster detection of ophthalmic imaging biomarkers also leads to optimal treatment and improved vision recovery. While modern optical imaging technologies such as optical coherence tomography (OCT) and adaptive optics (AO) have facilitated in vivo visualization of the eye at the cellular scale, the massive influx of data generated by these systems is often too large to be fully analyzed by ophthalmic experts without extensive time or resources. Furthermore, manual evaluation of images is inherently subjective and prone to human error.</p><p>This dissertation describes the development and validation of a framework called graph theory and dynamic programming (GTDP) to automatically detect and quantify ophthalmic imaging biomarkers. The GTDP framework was validated as an accurate technique for segmenting retinal layers on OCT images. The framework was then extended through the development of the quasi-polar transform to segment closed-contour structures including photoreceptors on AO scanning laser ophthalmoscopy images and retinal pigment epithelial cells on confocal microscopy images. </p><p>The GTDP framework was next applied in a clinical setting with pathologic images that are often lower in quality. Algorithms were developed to delineate morphological structures on OCT indicative of diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME). The AMD algorithm was shown to be robust to poor image quality and was capable of segmenting both drusen and geographic atrophy. To account for the complex manifestations of DME, a novel kernel regression-based classification framework was developed to identify retinal layers and fluid-filled regions as a guide for GTDP segmentation.</p><p>The development of fast and accurate segmentation algorithms based on the GTDP framework has significantly reduced the time and resources necessary to conduct large-scale, multi-center clinical trials. This is one step closer towards the long-term goal of improving vision outcomes for ocular disease patients through personalized therapy.</p>Dissertatio

    Deep learning for corneal and retinal image analysis:AI for your eye

    Get PDF

    Deep learning for corneal and retinal image analysis:AI for your eye

    Get PDF

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Characterising pattern asymmetry in pigmented skin lesions

    Get PDF
    Abstract. In clinical diagnosis of pigmented skin lesions asymmetric pigmentation is often indicative of melanoma. This paper describes a method and measures for characterizing lesion symmetry. The estimate of mirror symmetry is computed first for a number of axes at different degrees of rotation with respect to the lesion centre. The statistics of these estimates are the used to assess the overall symmetry. The method is applied to three different lesion representations showing the overall pigmentation, the pigmentation pattern, and the pattern of dermal melanin. The best measure is a 100% sensitive and 96% specific indicator of melanoma on a test set of 33 lesions, with a separate training set consisting of 66 lesions
    corecore