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Foreward 
 
This is the seventh in a series of annual scientific and technical meetings designed to provide a UK forum for 
discussion and dissemination of research in medical image understanding and analysis.  The meeting has been 
sponsored by three professional organisations representing the disciplines active in this area, namely the British 
Machine Vision Association (BMVA), the British Institute of Radiology  (BIR) and the Institute of Physics and 
Engineering in Medicine (IPEM).  We are grateful for their support, which contributes significantly to the 
success of MIUA. 
 
The use of mathematical techniques and computers to help in the interpretation and quantification of medical 
images has a history which spans several decades.   Computer processing of images is usually time consuming 
and until fairly recently this represented a limit on what processing could be done in a clinically useful time.   
With the increased computational power now available this restriction is being relaxed.  In addition, the 
determination of the Department of Health to introduce full electronic management of patient data through the 
Integrated Care Record, and the fact that a key component of this will be digital image management, means that 
digital medical images will rapidly become widespread throughout healthcare, raising hopes and expectations 
that software tools for aiding in diagnosis and therapy will become available as digital imaging technology 
comes on-line.  The scientific and engineering community seeks to develop such tools, the clinical community 
seeks to use them clinically.  An important aim of MIUA is to bring these communities together to encourage 
and facilitate the use of medical image understanding and analysis.   If effective progress is to be made each 
community needs to understand the limits and constraints under which the other is working, and how these are 
best circumvented, as well as together working towards the benefits that medical image analysis can bring to 
patients. 
 
The range and quality of submissions continues to be high.  Each paper submitted to MIUA2003 was reviewed 
by three members of the programme committee and feedback was provided to the authors.   Most reviewers 
reviewed 10 papers and ranked them.  The results of this ranking were used to compute a robust average rank 
and these values were used by the Programme Committee to select 24 papers for oral submission and 28 for 
poster presentation.  These proceedings contain all 52 accepted papers.  The submission, reviewing and selection 
processes were facilitated by the CAWS conference management software package developed and operated by 
Imaging Science and Biomedical Engineering (ISBE) at the University of Manchester.  This system has proved 
invaluable for conference administration and special thanks are due to Mike Rogers at ISBE for providing help 
and technical support in the use of CAWS for MIUA2003. 
 
Although MIUA frequently has contributions from outside the UK it continues primarily to be a forum for 
distributing research results generated within the UK.  It is a particularly friendly forum for students or young 
researcher making their first presentations and MIUA2003 is no exception to this.  Producing proceedings prior 
to a meeting poses some difficulties, but I believe it is useful to be able to refer to papers both before and after 
their presentation.  I am grateful to all authors for getting their camera ready copy to me on time, for preparing 
their papers in the correct format and for keeping to length.  This has made my task much easier than it might 
have been.   
 
I am grateful to my colleagues in Sheffield for the help they have given to organising MIUA2003 and to the staff 
of the University of Sheffield for facilitating the conference.  I am especially grateful to the help Margaret 
Beckett has given in administering the conference. 
 
 
David Barber 
July 2003 
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A Statistical Model of Texture for Medical Image Synthesis and
Analysis

C. J. Rose∗ and C. J. Taylor

Imaging Science and Biomedical Engineering,
University of Manchester, UK

Abstract. We address the problem of building generative statistical models of the appearance of highly variable
medical images, in particular mammograms. We treat appearance as a texture that can vary over the image
plane. We present a model motivated by one of the most successful algorithms in the texture synthesis literature.
Our approach has significant advantages over existing methods: it can learn from very large data sets, does not
need to assume spatial ergodicity and can be used for synthesis and analysis. We present early results in the
form of synthetic images.

1 Introduction

We are interested in building generative statistical models of the appearance of highly variable medical images,
for use in model-based interpretation. In particular, we are interested in digitised x-ray mammograms and the
detection of abnormal features which can indicate cancer. Breast cancer is a significant health issue in the western
world. In the period 2001-2002, 39,000 British women were diagnosed with breast cancer [1]; a national breast
screening programme has been running for several years. Due to the nature of the imaging process and anatomical
differences between women, mammograms exhibit high variability, both between and within patients. Manual
placement of the breast by the radiographer results in variation in image content. There is significant variation
in anatomy: the number of ducts in one woman’s breast may differ from another. Because of the large scale and
limited effectiveness of x-ray mammography [2] there has been considerable interest in Computer Aided Detection
(CADe). Conventionally, mammography has been treated as a pattern recognition task, where a classifier is trained
on examples of normal and abnormal descriptors extracted from training images [3]. Conventional approaches to
CADe do not attempt to explain image content, choosing instead to use ad hoc descriptors that seem to capture
various characteristics of abnormal signs in mammograms. Most significantly, although breast cancer is a major
cause of death in women, cancers are extremely rare in screening mammography. Therefore, detecting signs of
abnormality should ideally be treated as a novelty detection, rather than classification, task [4].

Statistical model-based approaches such as [5] have been applied successfully to many image interpretation tasks.
Such methods rely on establishing correspondences across a set of training images. Due to the variability in
mammograms described above, establishing such correspondences is extremely difficult, if not impossible. We
propose an alternative approach, considering mammographic appearance to be a spatially variable texture – i.e.
local appearance is treated as a texture, which can vary over the image plane. A statistical model-based approach
enables us to explain and account for variation in a principled way, regardless of its origin. We aim to build
generative models of pathology-free mammograms and approach image interpretation as a novelty detection task.
We have developed a generative statistical model of texture which we describe in this paper. We present early
results in the form of synthetic images.

2 Background

In [6], Efros and Leung describe a novel non-parametric method of synthesising new textures from a sample
image, motivated by [7] (which is closely related to [8]). Their method assumes that an empty image is seeded
with a section taken from a sample image; they call this the seed image. They select a pixel which neighbours the
boundary of the seed in order to fill it with an appropriate value. A square window is extracted around this pixel.
Some of the extracted window elements contain pixels from the seed and the remaining elements contain blank
pixels. The authors define a similarity measure which allows them to compare the extracted window with all such
windows in the sample image, taking account of the blank (missing) elements in the extracted window. Using the
similarity measure, a small set of candidate windows is selected from the sample image. One of these windows
is chosen at random, and its centre pixel is placed into the seed image to fill the selected pixel. This process is
repeated until all pixels in the seed image are filled. Although the algorithm is simple, it produces some of the
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best results in the literature. The method has been applied to simple textures, natural images and images of text
with convincing results. In [9], Efros and Freeman address one of the main problems of [6]: synthesis is slow
because for each pixel synthesised, a comparison has to be made between the extracted window and all windows
in the sample image. They address this problem by synthesising the texture in a patch-by-patch process rather than
pixel-by-pixel: they partially overlap whole windows with the growing texture and merge the edges of the window
to fit the image being synthesised. This results in much faster synthesis at a little cost in the quality of the synthetic
textures. Other methods, for example those presented in [10–12] use wavelets to accomplish texture synthesis and
modelling; in particular, the methods in [10, 11] are among the best in the literature.

Most methods in the literature rely on the assumption of spatial ergodicity (i.e. invariance of texture statistics
across the image plane). The methods presented in [7, 8, 11, 12] consider learning from training sets, but none of
them consider learning from very large data sets. Our approach, presented in the next section, was motivated by
the work of Efros and Leung [6], and can be considered as an extension to [7] and [8]. It can also be viewed as a
unification of [6] and [9] within a statistical framework. Our contribution is to unify two state-of-the-art algorithms
for texture synthesis within a principled statistical framework that enables image analysis. We have addressed the
problem of learning from large training sets. Furthermore, we have developed a model which does not need to
assume spatial ergodicity, as do most methods in the literature

3 Method

We assume a training set of digitised images. For each image in the training set, we extract a square window of
pixel values around each pixel (the centre pixel), and treat each window as a vector, as in [6]. We want to model
the distribution of points in this vector space. For all but the most powerful computers, directly modelling this
distribution is computationally difficult due to the dimensionality of the data and the size of the training set.

3.1 Modelling the Data

The first step in our approach is to build a parametric model of the data. We have chosen to use the k-means
clustering algorithm [13] (also described in [14]) to build a Gaussian mixture model (GMM) of the distribution;
the parameter k is the number of components in the mixture. Automatic selection of the number of components
needed to best model a distribution is an open research question, and so we choose k based upon experience using
the model. To deal with very large training sets, we adopt a ‘divide and conquer’ approach to clustering [15] (also
described in [14]). We divide the training data randomly into subsets, each of which can be clustered in memory.
We perform clustering on each of these subsets using the k-means algorithm. Each clustering then contributes
a representative set of data points from each cluster to form a central pool of data. The number of data points
contributed from a particular cluster is proportional to the probability of that cluster and is such that the final data
set can be clustered in available memory. The final model of patch pdf is:

p(x) =

k
∑

i=1

p(i)p(x|i) . (1)

where x is a point in our vector space, i indexes the model components, k is the number of components in our
model and p(x|i) ∼ N(µi, Σi), where µi is the mean vector for the i-th component and Σi is the covariance
matrix for the i-th component. Given this model, we can perform image synthesis and, ultimately, analysis.

3.2 Image Synthesis

We assume a model of texture built as described above. As in [6], we form a seed image and extract a window
around a pixel neighbouring the seed. We treat the window as a vector, x, where some elements are known (i.e.
they contain pixel values sampled from the seed) and some elements are unknown (i.e. they contain blank pixels
from the seed). We want to be able to sample a pixel value from our model that is consistent with what we have
observed. To do this we first marginalise the model over the dimensions of x that are unknown (except the centre
pixel). For a multivariate Gaussian this is achieved by ‘crossing out’ the rows and columns of the covariance matrix
that correspond to the dimensions we are marginalising over, doing likewise with the mean vector. We perform this
process on each component of the model. We then condition the marginal distribution on the dimensions of x we
know. For a multivariate Gaussian, this can be achieved by computing a new mean vector and covariance matrix.



Let us partition x as [x1 x2]
T where x1 corresponds to the dimensions that we do not know and x2 corresponds to

the dimensions we do know. (We want to determine the distribution of the centre pixel values given measurements
for some elements in the sampled window. After marginalisation, x1 corresponds to the centre pixel.) We partition
the mean vector and covariance matrix of each component as:

µ =

[

µ
1

µ
2

]

, Σ =

[

Σ11Σ12

Σ21Σ22

]

. (2)

where µ
1

corresponds to the unknown dimensions and µ
2

corresponds to the known dimensions; similarly for the
partitioned covariance matrix. The conditioned mean vector and covariance matrix are computed by [16]:

µ
′ = µ

1
+ Σ12Σ

−1

22
(x2 − µ

2
), Σ

′ = Σ11 − Σ12Σ
−1

22
Σ21 . (3)

We perform this process on each component of the model. To complete the computation of the conditional distri-
bution, we need to update the the mixing proportions. This is easily achieved using Bayes’ theorem:

p(i|x2) =
p(x2|i)p(i)

p(x2)
∝ p(x2|i)p(i) . (4)

where the p(x2|i) is computed by marginalising each component over the known dimensions, as described above.
(The distribution of the centre pixel values is a univariate distribution and not a multivariate distribution as the
notation in (3) implies, but we present the general method for completeness.) The model of the distribution of
possible centre pixel values is:

p(x1) =

k
∑

i=1

p(i|x2)p(x1|i) (5)

where x1 is the centre pixel and p(x1|i) ∼ N(µ′

i
, Σ′

i
) (a univariate distribution). Once we have computed (5), we

sample from it, setting the pixel being considered to the sampled value. Sampling from (5) is achieved by choosing
one of the clusters using p(i|x2) and then sampling from the p(x1|i) corresponding to the chosen component. After
sampling the pixel value for the current pixel, we move on to another pixel neighbouring the (growing) seed and
repeat the process of marginalisation, conditioning and sampling until the entire seed image has been populated.
The approach to synthesis described above is analogous to the non-parametric approach of [6]. By skipping the
marginalisation step (sampling all remaining pixels in the window), our approach can be considered analogous to
the non-parametric approach of [9]. Most methods in the literature rely on the assumption of spatial ergodicity (i.e.
invariance of texture statistics across the image plane); our model makes no such assumption. We can explicitly
include spatial information in the training vectors to build a texture model that captures textural variability over the
image plane. We can then condition the model on such information during synthesis and analysis.

4 Results

We have evaluated our approach by producing synthetic textures and making qualitative judgements. Quantitative
evaluation of results is notably absent from the texture synthesis and modelling literature; quantifying the generality
and specificity of our models will form part of our future research. Figure 1 shows training and synthetic images
from two of our models. The first model was built from 10 patches taken from pathology-free mammograms in
the DDSM [17]. The second model was built from the four Asphalt images in the MeasTex database. No spatial
information was included in the models. Qualitatively, our results are comparable to those produced by the best
methods in the literature, such as [6] for the image classes being considered. It is difficult to make comparisons
between our results and those of other methods in the literature because our method allows us to use a large training
set while others [6,9,11] are limited to a single sample image. While [7,8,10] could be trained using data extracted
from more than one image, the results they present are generated from a limited training set, most likely a single
image. Although [12] presents a sophisticated model which is trained using a reasonably large data set, we argue
that our synthetic images are more convincing.



(a) (b) (c) (d)

Figure 1. Mammographic textures: A training patch (a) and a synthetic patch (b). MeasTex Asphalt textures: A
training patch (c) and a synthetic patch (d).

5 Conclusions

We have described an approach to texture modelling for synthesis and analysis of digitised mammograms and other
classes of medical image. We have unified two state of the art algorithms for texture synthesis within a principled
statistical framework that enables image analysis. We have also addressed the problem of learning from large
training sets. Furthermore, we have developed a model which does not need to assume spatial ergodicity, unlike
most methods in the literature. Our results indicate that this approach is successful at modelling such textures.
Current work focuses on the use of dimensionality reduction techniques such as PCA [18] to improve clustering
accuracy and increase synthesis speed. Our ultimate aim is to model entire, pathology-free mammograms in order
to perform abnormality detection as a novelty detection task.
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Improving Appearance Model Matching Using Local Structure

I.M. Scott∗, T.F. Cootes, C.J. Taylor
Imaging Science and Biomedical Engineering, University of Manchester.

Abstract. We show how non-linear representations of local image structure can be used to improve the perfor-
mance of model matching algorithms in medical image analysis tasks. Rather than represent image structure
using intensity values, we use measures that indicate the reliability of a set of local image feature detector out-
puts. These features are image edges, corners, and gradients. Detector outputs in flat, noisy regions tend to be
ignored whereas those near strong structure are favoured. We demonstrate that combinations of these features
give more reliable matching between models and new images than modelling image intensity alone. We also
show that the approach is robust to non-linear changes in contrast, such as those found in multi-modal imaging.

1 Introduction

This paper builds on Cootes’set al. [1] work on constructing statistical appearance models and matching them to
new images using the Active Appearance Model (AAM) search algorithm. We want to use a representation of
image structure that discriminates in favour of a reliable comparison between image and model, and is invariant to
the sorts of global transformation that may occur. For example, statistical appearance models commonly represent
image texture by a vector of pixel intensities, linearly normalised so as to be invariant to global contrast and
brightness. Nevertheless, such models tend to be sensitive to imaging parameters, biological variability, etc.

An obvious alternative to modelling the intensity values directly is to record the local image gradient in each
direction at each pixel. Although this yields more information at each pixel, and at first glance might seem to
favour informative edge regions over flatter, less informative regions, it is only a linear transformation of the
original intensity data. Since building our models involves applying a linear Principal Component Analysis (PCA)
to the samples, the resulting model will be almost identical to one built from raw intensities.

In this paper, we use non-linear measures of local struc-

c1 = −3, 0, 3 c2 = −3, 0, +3

Figure 1. Effect of varying first two parameters of a
spinal X-ray appearance model, by±3 standard devi-
ations from the mean.

ture — gradient orientation (which was first discussed in a
previous paper [2],) corner and edge strength. We demon-
strate that using all of these measures in a texture prepro-
cessor gives significantly improved AAM matching ac-
curacy and reliability when compared to intensity texture
AAMs alone. We also show that the new approach can
deal with image data with strong non-linear contrast in-
variants, as found in multi-modal imaging.

This work is related to previous work on statistical mod-
els of shape and local feature response [3, 4]. In those
approaches there is no dense model of texture, and the
feature detector location, and effect on the shape model, has been set by humans rather than learnt. Moghaddam
and Pentland [5] have built eigen-faces models of smoothed canny edges. That approach does not model shape
variation, and much edge information is discarded through non-maximal suppression.

2 Active Appearance Models

Given a training set of correspondingly marked images, we can generate statistical models of shape and texture
variation using the AAM method developed by Cooteset al. [1]. The shape of an object can be represented as a
vectors of the positions of the landmarks and the texture (grey-levels or colour values) as a vectort. This texture
is sampled after the image has been warped to the mean shape. The texture preprocessing described in this paper
also takes place after the texture has been warped to the mean shape. The appearance model has parameters,c,
controlling the shape and texture according tos = s̄ + Qsc andt = t̄ + Qtc wheres̄ is the mean shape,t̄ the
mean texture andQs,Qt are matrices describing the modes of variation derived from the training set. An example
images can be synthesised for a givenc (see figure 1.) Such a model can be matched to a new image, given an
initial approximation to the position, using the AAM algorithm [1]. This uses a fast linear update scheme to modify
the model parameters so as to minimise the difference between a synthesised image and the target image.
∗ian.m.scott@stud.man.ac.uk
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Figure 2. How α andβ relate
to cornerness and edgeness.

αααα

ββββ

θ
edgeness e

cornerness  c

2θ

Figure 3. Making cornerness independent of edgeness
by doubling angle from axis.

In this paper, rather than just recording the intensities at each pixel, we record a local structure tuple. It is useful
to think about the rest of this work as usingtexture preprocessorswhich take an input image, and non-linearly
produce an image of tuples representing various aspects of local structure. When sampling the image to produce
a texture vector for a model, instead of samplingn image intensity values from the original image, we sample all
the values from eachm-tuple atn sample locations, to produce a texture vector of lengthnm.

3 Local Structure Detectors

As noted earlier, the texture preprocessor needs to be non-linear to make a significant difference to a linear PCA-
based model. If we restrict the choice of preprocessor to those whose magnitude reflects the strength of response
of a local feature detector, then it would be useful to transform this magnitudem into a reliability measure. We
have chosen to use sigmoid function for this non-linear transformf(x) = m

m+m wherem is the mean of the feature
response magnitudesm over all samples. This function has the effect of limiting very large responses, preventing
them from dominating the image. Any response significantly above the mean gives similar output. Also, any
response significantly below the mean gives approximately zero output. This output behaves like the probability
of there being a real local structure feature at that location.

The first local structure descriptor with which we have experimented is gradient orientation. Early work on non-
linear gradient orientation is described in [2]. We calculate the image gradientg = (gx gy)T at each point giving
a 2-tuple texture image for 2-d input images. The magnitude|g| can be transformed using the sigmoid function,
while preserving the direction. This is followed by the non-linear normalisation step to give(gx gy)T /(|g|+ |g|)

We had observed that image corners were sometimes badly matched by gradient and intensity AAMs. Corners
are well known as reliable features for corresponding multiple images, and in applications such as morphometry
accurate corner location is important in diagnosis.

Harris and Stephens [6] describe how to build a corner detector. They construct a local texture descriptor by
calculating the Euclidean distance, or sum of square differences between a patch (of an imageI,) and itself as one
is scanned over the other. This local image difference energyE is zero at the patch origin, and rises faster for
stronger textures. To enforce locality and the consideration of only small shifts, they added a Gaussian window
w(u, v),and then made a first order approximation;

E(x, y) =
∑
u,v

w(u, v)
[
x ∂I

∂u (x, y) + y ∂I
∂v (x, y) + O(x2, y2)

]2 ≈ Ax2 + 2Cxy + By2 = (x y)M(x y)T

wherew(u, v) = exp−(u2 − v2)/2σ2, A(x, y) =
[

∂I
∂u

]2 ⊗ w, etc. The eigenvaluesα,β of M = ( A C
C B )

characterise the rate of change of the sum of squared differences function as its moves from the patch origin. Since
α andβ are the principle rates of change, they are invariant to rotation. Without loss of generality, the eigenvalues
can be rearranged so thatα >= β. The local texture at each point in the image can be described by these two
values. As shown in figure 2, low values ofα andβ imply a flat image region. A high value ofα and low value of
β imply an edge. High values of bothα andβ imply a corner.

At this point Harris and Stephens identified individual image corners by looking for local maxima indetM −
k[trM]2. We leave their approach here, except to note that useful measures derived fromα andβ can be found
without actually performing an eigenvector decomposition, e.g.det(M) = AB−C2. For our purposes, it would be
useful to have independent descriptors of edgeness and cornerness. To forceα andβ into an independent form, we



take the vector(α β)T and double the angle from theα axis, as in figure 3. It is possible to calculate the cornerness,
r, and edgeness,e, defined this way, without explicitly having to calculate an eigenvector decomposition. Note
thate is independent of edge direction unlike the gradient measure, and so may describe additional structure.

r = 2AB − 2C2 e = (A + B)
√

(A−B)2 + 4C2

These values are then normalised using the sigmoid transform, and combined to produce a texture preprocessor.

4 Experiments

We took a previously described [7] data set of low-dose Dual
X-ray Absorptiometry (DXA) lateral scans of the spines of 47
normal women. The vertebrae from T7 to L4 were marked up
under the supervision of an experienced radiologist — figure 4
shows an example. The images are 8-bit greyscale and roughly
140×400 pixels in size. To investigate their behaviour we tested
both the original “intensity” AAM and several texture prepro-
cessors made from “sigmoidally normalised” combinations of
“gradient”g, “edge”e, and “corner”r.

Since we did not have a large data set, we performed leave-1-

Figure 4. A spinal DXA image with markup,
and after multi-modal simulation.

out experiments, by repeatedly training an AAM on 46 of the
images and testing it on the remaining image. For each test
image we performed 9 AAM searches starting with the mean
shape learned during training, displaced by all combinations of
[−10, 0, +10] pixels in x and y. After the AAM search had con-
verged we measured the distance from each control point on the
AAM to the nearest point on the curve through the equivalent
marked-up points. We calculated the mean of these absolute
errors for each AAM search.

In another experiment, to simulate performance in the presence of the hiding and inversion of contrast gradients
that are typical of multi-modal images, roughly half of the set of images were transformed by a bitonic pixel-value
transfer function — see figure 4 for an example. The two groups were then merged, to give a set of 47 images. A
leave-1-out experiment, similar to the above, was then performed.

4.1 Results

The distribution of mean absolute errors for the47×9 =

0 2 4 6 8 10 12 14
0

50

100

150

200

250

Fr
eq

ue
nc

y

Mean abs error for a single search result / pixels

Intensity                      
Sigmoidal undirected edge      
Sigm. corner, edge and gradient

Figure 5. Comparing the distribution of errors between
spinal AAM control points and the marked-up curves.

423 searches of the normal data set for three of the pre-
processors is shown in figure 5. Figure 6 summarises
the results for all of the preprocessors. The results from
the simulated multi-modal data set for the original “In-
tensity” and the “Sigmoidal corner, edge and gradient”
AAMs are summarised in figure 7.

For statistical analysis, we have classified each search re-
sult as a success if the mean point to curve error was less
than 2 pixels. (The estimated repeatability of expert an-
notation is 1 to 1.5 pixels on this data.) We would expect
the number of successes for a given texture preprocessor
to be a binomially distributed random variable. We can then calculate the probability of the null hypothesis that the
two experimental results came from the same underlying distribution, given the result of the first experiment, and
over all underlying binomial distributions. Figure 6 gives thep-values for each texture preprocessor, given a null
hypothesis that a poorer performing experiment could have produced that result. Because the 9 search tests per
image can not be considered independent of each other, we based the significance calculation on a valuen = 47.

We can see that the large improvements between the “intensity” AAM and the various texture preprocessor AAMs
are certainly significant. With the exception of the “sigmoidal gradient” preprocessor, the differences between the



Figure 6. Comparing the point-to-curve errors (in pixels) for different spinal AAM texture preprocessors, including
the probabilities (p-values) that an experiment could be a random result of a worse performing spinal experiment.

Texture Preprocessor Point-Curve error Searches − log10 p-value given base result
mean std 90%-ile <2 pixels 35% 40% 75% 80% 81% 82% 85%

Intensity 5.4 3.8 11.0 35%

Sigmoidal gradient 5.1 4.0 10.8 40% 0.5

Sigmoidal corner 2.6 2.7 7.5 75% 4.7 3.9

Sigmoidal corner and gradient 2.1 2.2 1.2 80% 5.6 4.8 0.6

Sigmoidal corner and edge† 2.2 2.6 4.8 81% 6.1 5.3 0.8 0.5

Sigmoidal edge† 2.4 3.1 6.5 82% 6.1 5.3 0.8 0.5 0.4

Sigmoidal edge and gradient 1.9 2.1 4.6 85% 6.7 5.8 0.9 0.6 0.5 0.5

Sigm. corner, edge, and gradient 1.5 1.4 1.8 92% 9.5 8.5 2.2 1.7 1.4 1.4 1.2
† Note that the fraction of successful results is rounded down to the next lowest multiple of1/n for p-value calculation, causing
two rows with slightly dissimilar success rates to have identicalp-values.

various texture preprocessors are not significant at theα = 0.01 level.

5 Discussion and Conclusion

We have shown that using descriptions of local struc-

Figure 7. Comparing the point-to-curve errors (in pixels)
for simulated multi-modal spinal images

Texture Preprocessor Point-Curve error Searches
mean std 90%-ile <2 pixels

Intensity 9.5 6.1 16.0 7%

Sigm. corner, edge,
and gradient

3.4 3.8 9.3 60%

ture for the texture model of an AAM significantly
improves the accuracy and reliability of AAM search.
Furthermore, the local structure descriptors are less
dependent on global or sub-global contrast effects
caused by differing imaging parameters. The simu-
lated multi-modal spinal image experiment shows that the “intensity” AAM needs to devote so much variance to
it’s texture model to cope, that it fails to learn any useful information about the images. Comparing the results for
the “Sigmoidal corner, edge and gradient” preprocessor in figures 6 and 7 shows that the severe image corruption
has a relatively small effect on a local structure AAM.

Using all the sigmoidally-normalised local structure descriptors gives the best results. This suggests that it may be
advantageous to add more local structure descriptors, including parameterised families of descriptors, e.g. differ-
ential Gaussian invariants or complex wavelets.

We can see from figure 6 that the “sigmoidal edge” local structure descriptor is responsible for the majority of the
improvement, while the “sigmoidal gradient” detector shows no significant improvement. In experiments on facial
AAMs [2], the “sigmoidal gradient” detector shows large improvements over the ordinary “intensity” AAM. In
this paper we have shown that providing the AAM training algorithm with all of the local structure descriptors, it
can learn which descriptors are most useful, and adjust the importance of each descriptor on a pixel by pixel basis
to get optimum performance.
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Multi-resolution transportation for the detection of 
mammographic asymmetry 
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Abstract. We are developing a method of comparing left-breast and right-breast mammographic images 
with the aim of identifying asymmetries caused by malignancy. Our approach uses a novel multi-resolution 
transportation algorithm to measure image similarity. This efficient algorithm permits the processing of high 
resolution images for which a standard linear programming solution to the transportation algorithm would 
be infeasible. Initial results are presented which demonstrate the potential of the method to aid the detection 
of abnormal asymmetry. 

1  Introduction 

Computer aided detection (CAD) systems have been developed to aid radiologists searching for abnormalities 
in digitised mammograms. In these systems, computer vision algorithms detect potentially abnormal areas in 
the images. The attention of the radiologist is drawn to the most suspicious areas of the original films by 
prompts presented as markers superimposed on low resolution versions of the images. There is evidence that, 
provided the prompts are sufficiently accurate, this approach can improve human detection performance. 

One technique used by radiologists when reading mammograms is to compare anatomically similar regions in 
the left and right mammogram images to look for differences that may be due to abnormalities. The automatic 
detection of asymmetry is a technically challenging problem because of the wide variation in normal 
mammographic appearance, and because not all asymmetry is indicative of an abnormality. Such an approach 
could, however, be used both for the detection of focal masses (in addition to methods targeted at local 
increases in density), and also for the more difficult to detect diffuse asymmetric densities. Figure 1 shows two 
example pairs of mammograms, one normal and one in which an expert breast radiologist has identified 
abnormal asymmetry. Note that the difference between normal and abnormal variation in symmetry is very 
subtle. Glandular tissue appears brighter than the grey fatty background, and the small white blobs in the 
abnormal image pair are calcifications. 

   

       (a)         (b) 

Figure 1. Examples of (a) normal and (b) asymmetric cranio-caudal mammogram  images. The left and right 
breast images are displayed ‘back-to-back’ to facilitate comparison. 

Bilateral subtraction, in which one breast image is reversed and subtracted from the other, is an obvious 
starting point for the detection of asymmetry [1,2]. In order to achieve sufficient sensitivity, registration is 
required. Mammograms, however, are difficult to register accurately, since there are few points of 
correspondence [3,4]. It is also possible that distortions in the tissue due to warping in the registration process 
may produce artificial asymmetries. 
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The approach described by Miller [5] differs from other published methods in that no registration took place 
and the comparison was made on the basis of measuring the cost of transporting the grey level values in one 
breast image to the other. With this approach, any slight misalignment of the images or difference in size 
between the breasts resulted in a pattern of movement that was easily distinguished from patterns generated by 
more sinister differences in breast density.  One of the main limitations of Miller’s technique is that, for 
practical reasons, it was applied only to very low resolution images (regions of approximately 20 by 30 pixels). 
At such a low resolution small or subtle abnormalities may be overlooked. The technique classified cases as 
normal or abnormal but did not result in the output of a precise location of any suspected abnormality. It was 
suggested that this could be achieved by searching for clusters of long journeys in the transportation results. 

The aim of the work described in this paper is to build on Miller’s work, which produced promising early 
results (despite the low resolution it gave a sensitivity of 74%), and to develop an efficient method of 
comparing bilateral mammograms. Ultimately, the objective of our research is to produce a prompting 
algorithm for asymmetries which will be sensitive, specific and efficient. 

2 The transportation algorithm 

The transportation problem is the problem of distributing goods from warehouses to markets at minimum cost 
[6]. The problem can be solved using linear programming to give the optimal set of journeys and a total 
minimum cost. The transportation algorithm is commonly applied to logistics and telecommunications, and 
more recently it has found use in image-based applications. Applied to images, the transportation takes place 
from a source to a destination image. We treat the source image as a map of warehouse locations in which the 
pixel intensities represent the goods. The destination image is our image of markets; the cost of moving a unit 
of intensity is the distance it must travel to satisfy the demand. Thus the total cost of efficiently distributing the 
pixel intensities from the source image to the destination image gives us some measure of the similarity 
between the two images. In mammographic imaging, the transportation algorithm has previously been used to 
compare image signatures [7] as a means of detecting asymmetry between left and right breasts [5], and to 
evaluate the efficacy of prompting algorithms [8]. 

To solve the transportation problem it is formulated as a linear programming problem, and it is most commonly 
solved by use of a simplex solver [9]. More recently, interior points methods have been applied and these may 
be more efficient, especially in the case of large scale problems [10]. Using a simplex algorithm from the 
Numerical Algorithms Group (NAG) [11], the problem scales badly with increasing image size. Figure 2 shows 
the time to compare two images plotted against the number of constraints applied, which is equal to the total 
number of non-zero pixels in both images.  
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Figure 2. Time to solve transportation problem using the NAG simplex algorithm vs the number of constraints 

3 Multi-resolution transportation  

In mammographic imaging many of the features of interest are small or subtle, and digital images used for 
analysis are often processed at high spatial resolution (typically 50 microns per pixel). For the transportation 
algorithm to be applied to images at a resolution where all the detail required is present, a more efficient 
transportation method is required. One approach to reducing the size of the problem is to place restrictions on 
the transportation, so that not all of the possible journeys are permitted. If each pixel in the source image is 
only allowed to transport its intensity to a sub-set of pixels in the destination image, this can drastically reduce 



both the size of the problem and the time taken to solve it. The pixels should be restricted to move only to 
‘likely’ destinations – considering every pixel in the destination image is unnecessary and computationally 
costly. 

To define these restrictions one could permit only journeys made to a local neighbourhood, but in some cases 
longer journeys are necessary and this restriction would render the problem insoluble, or not allow a natural 
solution. Our solution is to apply a multi-resolution approach. A gaussian image pyramid [12] is formed and 
the unrestricted transportation algorithm is applied to the lowest resolution image pair. From the results of this, 
the transportations allowed at the next highest resolution are defined. Pixels in the equivalent source location at 
the next higher resolution are permitted to travel to the pixels at the equivalent destination from the solution at 
the lower resolution. The constraints upon movement are also relaxed to allow travel to both the destination 
and its local neighbourhood. This makes it less likely that the problem will be rendered infeasible and also does 
not bind the solution to that produced at the lowest resolution. This process is illustrated diagrammatically in 
Figure 3. The method was developed using synthetic images to ensure correct and consistent behaviour, output 
was compared with conventional transportation at low resolution. 

 

 

 

 

 

Figure 3. Diagram of multi-resolution restricted transportation. A pixel’s journey at the previous lower 
resolution restricts its movement in the equivalent location at the next level of the pyramid. 

4 Detection of asymmetry 

An evaluation on a test set of 10 normal and 10 abnormal pairs of screening mammograms is underway. The 
data comprise image pairs from the Greater Manchester Breast Screening Service, digitised to a resolution of 
50 microns per pixel at 8 bits per pixel greyscale on a Kodak LS85 digitiser. The expected pattern of movement 
for a normal case involves mainly straightforward shifting and scaling to compensate for alignment and 
compression differences. Shifts result in a pattern of transportation characterised by many parallel journeys, 
whereas scaling results in largely isotropic movement around the border of the breast image. For abnormal 
cases, the pattern of movement is dependent on the location of the asymmetric tissue, with many long journeys 
to a particular destination. Examples of the patterns of movement in the normal case and asymmetric (cancer) 
case shown previously in Figure 1 are shown in Figure 4(a) and Figure 4(b). A further pattern of movement 
from a case where the abnormality is a mass is shown in Figure 4(c). To simplify display of movement, only the 
most significant journeys in terms of both length and quantity are shown. It can be seen that the transportation 
for the normal mammogram pair is essentially a set of parallel journeys diagonally across the image, indicating 
a systematic difference between left and right breasts. The transportation pattern for the abnormal image pairs 
show movement to a focus within the breast, which correspond in each case to a region indicated by the expert 
radiologist who reviewed the cases. 

   

    (a)       (b)         (c) 

Figure 4. Density transportation between pixels in normal (a) and abnormal (b), (c) mammograms 



 

5 Discussion and further work 

We have described a novel, efficient transportation-based technique for the bilateral comparison of 
mammograms. The initial results are promising, and an evaluation based on clinical data is currently in 
progress. Results show significant computational improvement with timings for a given step up to 30 times 
faster than conventional methods, allowing higher resolution images to be processed than previously.  

Miller segmented the glandular tissue from the mammograms before comparing image pairs, having showed 
that the shape differences in glandular discs allowed classification by radiologists. Hence segmenting or 
enhancing the glandular disc may improve results further. Segmentation also has the advantage of reducing the 
size of the images to be processed, thus further reducing computational expense. 

Our work will now proceed with statistical analysis of journey clusters to form a prompting system based on 
focal regions within the breast to which significant transportations are made. Regions which contribute most to 
the overall transportation cost of the image pair can be considered as candidate abnormalities. Further work 
will examine the extent of normal variability to improve specificity. Ultimately, the algorithm could be included 
in a prompting system, as asymmetry is one of the most subjective signs which radiologists are required to 
detect.  

This technique may have other applications, both in mammography and in other medical imaging modalities in 
which bilateral or temporal differences are important. For example, multi-resolution transportation could be 
used to look for changes over time in slow growing lesions, or to investigate changes in clusters of 
calcifications with a view to identifying potential malignancy. 
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 Abstract. An attempt is made to produce a normal rCBF SPECT atlas, using images obtained from normal 
control subjects at two centres. Several registration methods are first tested using images from one centre and 
it is shown that a non-linear approach is necessary. On this basis, non-linear SPM registration is adopted and 
applied to the images from both centres, using one of the images as a reference. The resulting images are 
normalised to total counts and the mean and SD images, together with the first ten eigenimages, are extracted. 
The composite atlas provides good ‘nearest normal’ fits to images in the data set from both centres and to an 
abnormal image obtained at one of the centres. The results are comparable with those obtained using the 
corresponding local atlas and much better than those obtained using the corresponding remote atlas. 

1 Introduction 
With a growing requirement for standardisation in healthcare for image acquisition and processing techniques, it 
is entirely possible that national or international computerised normal atlases can be developed for different 
imaging procedures. The use of normal atlases in medical imaging, particularly with regards to brain imaging in 
SPECT and PET, has, so far, generally been restricted to a single site using a single imaging device. A problem 
that persists is whether normal image sets obtained under different conditions at different centres are in any way 
transportable and whether they can somehow be combined in a single normal atlas. At present, this problem is 
compounded by the fact that image acquisition and processing techniques are inconsistent from site to site. This 
paper attempts to create a single normal atlas for regional cerebral blood flow (rCBF) SPECT images obtained from 
normal subjects at two centres – Royal Hospital Haslar and Southampton General Hospital. 

Several methods have been suggested for using information from a set of normal images to analyse images of 
patients, including statistical parametric mapping (SPM) [1] and the use of normal eigenimages to create ‘nearest 
normal’ fits to new images [2,3]. For the purposes of this  paper, the latter approach will be adopted, although an 
alternative approach using SPM is currently under investigation. The use of eigenimages, highlighting major 
variations within the image set, allows us to examine whether or not images obtained from different centres can 
realistically be combined in this way 

2 Materials and Methods  
Fifty rCBF SPECT images were obtained from normal volunteers at the Royal Hospital Haslar and a further 24 
images were obtained from normal volunteers at Southampton General Hospital. Exclusion criteria at both sites 
included previous head injury with loss of consciousness; history of neurological or psychiatric disease; 
participation or past participation in boxing and undersea diving; and pregnancy. 

Of the 50 normal subjects imaged at Haslar, 25 were male and 25 female with an overall age range of 18-79. The 
mean age and SD were 38 and 16 in the male group and 38 and 15 in the female group. Of the 24 normal subjects 
imaged at Southampton, 11 were male and 13 female with an overall age range of 40-96. The mean age and SD were 
68 and 17 in the male group and 67 and 12 in the female group. Clearly, as well as procedural differences between 
the groups in the acquisition and processing of the images, there is also an obvious age mismatch. 

The image acquisition procedure at Haslar was as follows. Patients are injected, while lying down, with 500MBq 
99mTc-HMPAO in a room with subdued lighting. The acquisition is performed within 30 minutes of the injection 
on an ADAC Vertex dual-headed gamma camera, using LEHR collimators. The camera heads are rotated through 
180° using a circular orbit at a radius of 20 cm that is consistent among subjects and 64 planar images of 45 
seconds each are acquired within a 128x128 matrix. The zoom is set at 2.19 giving a pixel size of 1.42mm. The 
reconstruction is performed on a Pegasys workstation and uses Pegasys filtered back-projection with a 
Butterworth filter (order: 10; cut-off: 0.17). Attenuation correction of 0.12 cm-1 is achieved using the iterative 
Chang method with an ellipse outline set for a typical slice. The resultant images, which were 128 transaxial slices 
of 128 x 128 matrix size, are not reoriented prior to analysis. 
 



The image acquisition procedure at Southampton was as follows. Patients are injected, while lying down, with 
500MBq 99mTc-HMPAO in a room with subdued lighting. The acquisition is performed within 30 minutes of the 
injection on a GE-SMV DTX dual-headed gamma camera, using LEUH collimators. The camera heads are rotated 
through 180o using an elliptical orbit that varies between 13-18 cm among subjects and 128 planar images of 25 
seconds each are acquired within a 128x128 matrix. The zoom is set at 1.33 giving a pixel size of 3.38mm. The 
reconstruction is performed on a Vision workstation and uses automatic full back projection with a ramp filter. The 
planar images are first decay corrected but no pre-filter is used. Attenuation correction of 0.112cm-1 is achieved 
using the iterative Chang method with an ellipse outline set for each slice. The resultant images, which were 128 
transaxial slices of 128 x 128 matrix size, are not reoriented prior to analysis. 
 
As a precursor to combining the image sets, the effects of registration errors obtained using different registration 
algorithms were examined. A normal atlas for rCBF SPECT was constructed using images for the 50 normal 
subjects in the Haslar data set. The images were registered, with one of the images as reference, using five 
different algorithms: (a) optic flow affine [4,5]; (b) SPM affine [6]; (c) AIR affine [7]; and (d) SPM non-linear 
normalisation (parameters as in next paragraph) [6]; and (e) AIR non-linear second-degree polynomial [7]. 
Following registration, they were normalised to total counts in each case. Mean and SD images were obtained for 
128 transaxial slices in each case. It became apparent that, in all cases, 40 slices above the head contained no 
information, while 24 slices at the base were unreliable due to the edge of the camera being at different relative 
locations. These slices were omitted post-registration, reducing the number of transaxial slices to 64. For each 
registration method, the set of 64-slice images were again normalized to total counts and mean and SD images 
plus the first ten eigenimages were obtained in each case. 
 
Registration problems were apparent near the edge of the brain on the transaxial slices of the SD image and first 
eigenimage for SPM and AIR affine and at the top of the brain for optic flow affine. Problems at the edge of the 
brain were also apparent for the non-linear fits but were less pronounced. Figure 1 shows single corresponding 
transaxial slices of the first eigenimage obtained using registration methods (a), (b), (c) and (d). The first 
eigenvalue accounted for (a) 30.6%; (b) 32.0%; (c) 29.1%; (d) 15.0% and (e) 13.5% of the total variance in the 
registered brain set. It would appear that the large values found for methods (a) to (c) are due to registration 
errors and that a linear transformation is inappropriate for the construction of normal atlases of this type.  
 
It was therefore decided to use one of the non-linear methods to register the combined image set for the two 
centres. From inspection, it was decided that the SPM non-linear normalisation (method (d)) performed best on 
the Haslar image set and this method was adopted. All 74 images were registered to one normal control image 
from Haslar, which was stored as a template image. Therefore, the registered images will not be registered in 
Talairach atlas space. No masking is made of the images prior to SPM registration and, since the template image is 
also one of the image set, the neurological convention (R is R) was selected. Registration involved twelve non-
linear iterations with 4x5x4 non-linear basis functions and medium regularization. The parameters for re-slicing 
were 1.5mm x 1.5mm x 1.5 mm voxels (the template image was 1.42mm x 1.42mm x 1.42mm) with a bounding box of [-
95, 96] in all three dimensions (ensuring an output matrix of 128 x 128 x 128). Bi-linear interpolation was used. A 12 
mm Gaussian smooth is applied to the Southampton images after registration. No smooth is applied to the Haslar 
images. The images were then reduced to 64 transaxial slices, as previously described, and normalized to total 
counts. Mean, SD and the first ten eigenimages were obtained. 
 
Two atlases, constructed using registration method (d), were now available: a Haslar atlas based on 50 normal 
subjects and a combined atlas based on all 74 normal subjects. A third normal atlas, based on the 24 normal 
subjects from Southampton, was produced in the same way. Each atlas had a mean image, an SD image and ten 
eigenimages, all with 64 transaxial slices of matrix size 128 x 128. 
 
To test the atlases, we selected one image from each of the Haslar (female aged 51) and Southampton (male aged 
50) normal image sets and also an image of an 87-year-old patient with a large CVA, obtained from archive at 
Haslar and acquired and processed according to the procedure described previously for Haslar. All three images 
had first been registered, count normalized and reduced to 64 transaxial slices using the same procedure as was 
used for the three atlases. 
 

3 Results 
The mean images for the combined, Haslar and Southampton atlases are displayed in Figures 2a, 2c and 2d 
respectively, while the first eigenimage for the combined atlas is shown in Figure 2b. This eigenimage will 



represent the greatest normal variation in the image set and should contain mainly differences between the two 
image sets. 
 
The eigenvalues corresponding to the first ten eigenimages for the three atlases are shown in Table 1. 

Eigenvalues Atlas No. of 
studies  

1 2 3 4 5 6 7 8 9 10 

Combined 74 0.280 0.092 0.051 0.037 0.028 0.025 0.021 0.021 0.018 0.018 
Haslar 50 0.150 0.073 0.053 0.041 0.034 0.030 0.029 0.028 0.025 0.023 
Southampton 24 0.184 0.142 0.094 0.085 0.054 0.053 0.047 0.038 0.034 0.032 
 

It became apparent that, in all cases, the eigenvalues tend to level out after the fourth eigenvalue. For this reason 
four eigenimages were used in the construction of ‘nearest normal’ images in each case. Coefficients of the 
eigenimages were constrained to be within ±3 times the SD for corresponding coefficients in the normal image set, 
thus constraining the effect of the eigenimages. 

In Figure 3, single corresponding transaxial slices are shown for the selected Haslar normal control and ‘nearest 
normal’ fits obtained from the combined atlas, the Haslar atlas and the Southampton atlas. Figures 4 and 5 show 
similar configurations for the selected Southampton normal control and the abnormal Haslar patient respectively. 
 

4 Discussion and Conclusion 
From Figures 3, 4 and 5 it is seen that good ‘nearest normal’ fits are obtained from the combined and local normal 
atlases but not from the normal atlas obtained at the remote site. It is also apparent from Table 1 that combining 
normal image sets from different centres does not necessarily involve the use of an increased number of 
eigenimages. This suggests that the construction of composite normal atlases from a number of centres is viable. 
In this case, the images obtained from the two centres were quite different with the Southampton images 
appearing much smoother than the Haslar images. It should be stated that Southampton use this smooth image 
for statistical analysis only and a different image for viewing, while Haslar use the same image for both purposes. 
 
Future work will involve using SPM and Talairach atlas space to compare images from the two centres. It is also 
planned to include a third centre in future analyses. 
 

References 

1. K.J. Friston, A.P. Holmes, K.J. Worsley, J-B. Poline, C.D. Frith & R.S.J. Frackowiak “Statistical parametric maps in 
functional imaging: a general linear approach”, Human Brain Mapping 1, pp 214-220, 1994. 

2. A.S. Houston, P.M. Kemp & M.A. Macleod “A method for assessing the significance of abnormalities in HMPAO 
brain SPECT images”, J Nucl Med 35, pp 239-244, 1994. 

3. A.S. Houston, P.M. Kemp, M.A. Macleod, J.R. Francis, H.A. Colohan & H.P. Matthews “Use of the significance image 
to determine patterns of cortical blood flow abnormality in pathological and at-risk groups”, J Nucl Med 39, pp 425-430, 
1998. 

4. D.C. Barber “Registration of low resolution images”, Phys Med Biol 37, pp 1485-1498, 1992. 
5. D.C. Barber, W.B. Tindale, E Hunt, A. Mayes & H.J. Sagar “Automatic registration of SPECT images as an alternative 

to immobilization in neuroactivation studies”, Phys Med Biol 40, pp 449-463, 1995. 
6. J. Ashburner & K.J. Friston “Spatial transformation of images” In SPM short course notes , chapter2, Wellcome 

Department of Cognitive Neurology, 1997. 
7. R.P. Woods, S.R. Cherry & J.C. Mazziotta “Rapid automated algorithm for aligning and reslicing PET images” J Comput 

Assist Tomogr 16, 620-633, 1992. 



 

Figure 1. Corresponding transaxial slices are shown from the first eigenimage obtained using, from left to right, 
(a) optic flow affine registration; (b) SPM affine registration; (c) AIR affine registration; and (d) SPM non-linear 
normalization. 
 

 
 
Figure 2. Corresponding transaxial slices are shown, from left to right, for (a) the mean image and (b) the first 
eigenimage of the combined atlas, (c) the mean image of the Haslar atlas and (d) the mean image of the 
Southampton atlas. 
 

 
 

Figure 3. Corresponding transaxial slices are shown, from left to right, for (a) the Haslar normal control; and 
‘nearest normal’ fits obtained from (b) the composite atlas, (c) the Haslar atlas and (d) the Southampton atlas. 

 

 
 
Figure 4. Corresponding transaxial slices are shown, from left to right, for (a) the Southampton normal control; 
and ‘nearest normal’ fits obtained from (b) the combined atlas, (c) the Haslar atlas and (d) the Southampton atlas. 
 

 
 
Figure 5. Corresponding transaxial slices are shown, from left to right, for (a) an abnormal Haslar patient; and 
‘nearest normal’ fits obtained from (b) the combined atlas, (c) the Haslar atlas and (d) the Southampton atlas. 
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Abstract.
Thispaperdescribesresearchexploring theproblemsassociatedwith interpretingregionalbloodflow measure-
mentsin thebrain. We investigatea methodfor separatingnormalsfrom thosewith cerebraldiseases,where
thediseaseis causedby, or hasresultedin, alteredcerebralhaemodynamics.Cerebralperfusionmapsaredi-
videdinto 10 vascularterritories.Thevariancescaledmeanvaluesfrom eachregion areusedto determine10
principle axesof the normaldata. We demonstratethat normalvariability in theseaxesis large,but that our
techniqueis capableof detectingmeasurableperturbationsin cerebralhaemodynamics.It is alsopossibleto
localisediseasegroupswith known vascularchangewithin a portionof thenormalspace.

1 Introduction

Measurementof cerebralbloodflow hasimportantactualandpotentialclinical utility, particularlyin diseasessuch
ascarotidstenosis,stroke andAlzheimer’s dementia.DynamicT2* susceptibilitycontrastenhancedMagnetic
ResonanceImaging (DSCE-MRI) can be usedto observe the passageof a bolus of Gd-DTPA contrastagent
throughthebrainvasculatureandhenceeffectively imagebloodflow. Fromthecontrastconcentrationtimecourse
of thefirst passof thebolusthroughthebrain,it is possibleto determinethevolumeandmeantime of arrival of
contrastagentin avoxel [1]. Conventionalapproachesto perfusionmeasurementbasedupondeconvolutionof the
signal from a voxel by somearterial input function (eg, [2] [3]) make too many invalid assumptionsto provide
meaningfulestimatesof blood flow [4]. We have previously shown [5], using the ideaof bolus tracking, that
parametricimagemapsof CerebralBlood Volume(CBV) andTime to Mean(TTM) canbeusedto calculatethe
NetCerebralBloodFlow (NCBF)acrossavoxel. Netflow is implicitly assumedto benegligible in methodologies
basedupondeconvolution,althoughwebelieveit to dominateatthemillimetreimagingscalesof MRI. Thesuccess
of our approachfundamentallyreliesupontheability to obtainnearisotropicvoxel dimensionsin orderthat the
velocitycomponentof flow canbecomputedfrom TTM mapsusingspatialdifferentiation.Thistechniqueprovides
a uniqueopportunityto determinedirectionalestimatesof blood flow at all locationsin brain tissue. Suchdata
providesgreatpotentialfor the analysisof blood flow in disease.Although this is a novel technique,in [1] we
demonstratethat normaldataagreeswith both a physiologicalmodelandflow valuesderived usingalternative
techniques.However, regardlessof thephysiologicalmeaningof thesemeasures,the truevalueof the technique
canonly befoundby testingits diagnosticpower.

Thispaperdescribesaninvestigationinto theutility of usingour measuresof bloodflow in separatingnormaland
diseasegroups. To demonstratesuchutility, we must fulfill two criteria. First, that we canquantify changein
normalsaboveandbeyondthatof normalvariationandmeasurementaccuracy. Secondly, thatnormalanddisease
groupswith known cerebralvascularabnormalitieswill separatein the measurementspace.If thesecriteria are
met,themethodcanbeappliedto datasetsin orderto confirmor disputehypothesesof vascularabnormality. The
approachwehavetakenis todividetheNCBFandTTM imagemapsintovascularterritories[6]. Wehaverestricted
ourselves to oneplaneof datathroughthe brain at an anatomicallevel at which it is relatively straightfoward
to identify vascularterritories. Correlationsbetweenthe flow valuesfor eachregion are identifiedby Principle
ComponentsAnalysis(PCA), giving us the major modesof variationof the data;a spacein which normaland
diseasegroupsareexpectedto separate.

2 Methods

Subject data: Table1 outlinesthegroupsof subjectdata,chosento illustratetheutility of our technique.As well
asthenormalgroups,we have a groupof patientswith carotidstenoses(all had

�
70%occlusionin at leastone

carotidartery),whowereimagedbeforeandafteracarotidendarterectomy(aproceduredesignedto improveblood
flow in arteries)in orderto investigatewhetherwe canquantifya changein flow dueto theintervention.Patients
with Alzheimer’s dementiatypically show hypoperfusionof partsof the temporalandparietallobes[7], so this
groupshouldseparatefrom thenormalgroups.Finally, we have a groupof patientswith amnesticmild cognitive



Table 1. Subjectsgroups,numbers,meanageandranges

SubjectGroup Number MeanAge Std.Dev Range
Normal 60 73.05 5.81 61-87

MemoryPoor 34 73.24 5.23 63-85
Alzheimer’s 9 61.56 6.15 54-72

CarotidStenosis 5 70.60 - 63-80

Figure 1. The vascularterritories overlaid on a T2* map. L/R =
Left/Right, A/M/PCAT = Anterior/Middle/PosteriorCerebralArterial
Territories,A/PWT = Anterior/PosteriorWatershedTerritories

RACATLACAT

RAWTLAWT

LPCAT RPCAT

RPWTLPWT

RMCATLMCAT

impairment[8] (“memorypoor”), apossibleprecursorto Alzheimer’s,for whichthereis atentativehypothesisthat
theremaybeanunderlyingvascularcause[9]. All subjectsunderwentaPRESTO [10] scan(TR=28ms,TE=20ms,
FA=10� , voxel size= 1.79� 1.79� 3.5mm).

Vascular Territories: As weareinterestedin detectinglocalisedvascularinbalancesin bloodflow, it is expedient
to divide the brain into vascularterritoriesbasedon the supply of blood to theseregions. We have devised a
methodfor separatingthebrain,at thelevel of theupperborderof thethird ventricleinto 10classicallydefined[6]
vascularterritories.Arterial regionsarethosedirectlyservedby theanterior, middleandposteriorcerebralarteries
(observersleft andright); the watershedregions(anteriorandposterior)arethosein between.An active shape
modeldefiningcontrolpointsis fitted to arepresentativeT2* imageusinga linearaffine transformandtheregions
aredefinedaccordingto thesepoints(fig. 1). The vascularterritoriesareoverlaid on the mapsof interest(the
log(NCBF)or TTM maps)andthemeanandstandarderrorof thepixel valuesin eachof the10regionscalculated.

Standardising the data: Thedistribution of NCBF valuesis highly skeweddueto the few high flow andmany
low flow vesselsin a slice. A logarithmictransformis thereforeappliedto the datain orderto make the distri-
bution conformmorecloselyto a Gaussiandistribution. TheTTM mapdistributionsdo approximatea Gaussian
distribution,andthenumbersagainareabsolutebut thedatahasnofixedorigin dueto variationsbetweensubjects
in injection time andboluspassage.In order to compareregionsbetweensubjects,we subtractthe meanpixel
valuefor thewholesliceso that thedistribution of valuesis centredaroundzero. Note thatwhenlooking at dis-
easegroups,globaldelaysaffecting thewholesliceequallywill not bedetected.For eachsubjectandmaptype
(ie, log(NCBF)or TTM), we have two 10D vectors;onecontainingthemeanvaluesfor the10 regions,theother
containingthestandarderroron themeanof eachregion. PCA requireshomogenousmeasurementerrorsacross
the input vectorspace,so in orderto comparethe meanpixel valuesof the differentregionsusingPCA, all the
regionalvaluesneedto have the samestatisticalscaling;ie, all the regionsshouldhave unit variance.To obtain
the scalefactors,we take theaverageof the regionalstandarderrorsover all of thenormaldata. Becauseof the
hemisphericsymmetryof thedata,we canaveragethescalefactorsfor theleft andright regionsandusethesame
weightsfor both left andright regions. Thereis no reasonto believe that thereshouldbe any differencein the
ability to accuratelymeasurethemeanbetweentheleft andright regionsof thebrain.Hereweuseonly thenormal
datato createthescalefactors.

To transformthe datainto a form suitablefor PCA, we producea Covariancematrix of the scaleddatafor the
Normalsubjects.TheCovariancematrix allows usto quantifythecorrelationsin flow betweenall of thevascular

Table 2. CorrelationMatrix for weightedNormalNCBFdata.Bold indicatesvaluesreferencedin text
Regions RACAT RAWT RMCAT RPWT RPCAT LPCAT LPWT LMCAT LAWT LACAT
RACAT 1.0 - - - - - - - - -
RAWT 0.72 1.0 - - - - - - - -
RMCAT 0.53 0.59 1.0 - - - - - - -
RPWT 0.23 0.57 0.50 1.0 - - - - - -
RPCAT 0.46 0.57 0.63 0.42 1.0 - - - - -
LPCAT 0.48 0.57 0.71 0.54 0.69 1.0 - - - -
LPWT 0.33 0.39 0.44 0.61 0.49 0.63 1.0 - - -
LMCAT 0.60 0.61 0.78 0.61 0.65 0.70 0.54 1.0 - -
LAWT 0.60 0.88 0.63 0.62 0.63 0.62 0.37 0.75 1.0 -
LACAT 0.56 0.76 0.62 0.46 0.56 0.49 0.28 0.66 0.77 1.0
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Figure 2. Plot of datain 1stand2ndeigenvectorspacefor log(NCBF)andTTM data,� = normals,� = carotid
stenosis,linesindicatedirectionof movementafterwideningof arteries,thick endof line indicatespost-operative,

�
= Alzheimer’s,+ = memorypoor

regions(seetable2). Thegreatestcorrelationsareseenbetweentheleft andright anteriorwatershedterritoriesand
the left andright middlecerebralarterialterritories. The fact that thereis goodagreementbetweensymmetrical
regionsis acorollaryof thefactthatthephysiologicalprocessesinvolvedin NCBFformationaresymmetric.There
is alsoa high correlationbetweenthe left anteriorwatershedterritory andbothadjacentregions(the left anterior
and middle cerebralarterial territories). This may be due to the fact that both of the left middle and anterior
cerebralarteries(indirectly) feedthewatershedregion, but mayalsobedueto a misplacementof theboundaries
betweentheseregions.With 10 regions,thereis a reasonablechancethatany oneregionwill behighly correlated
with another. However, the fact that the greatestcorrelationsoccurbetweensymmetricalterritories,wherethere
is no confoundingboundarybetweenthem, and that thesecorrelationsare an averageover the whole training
setsuggeststhat the correlationsrepresentthe true physiology. SingularValueDecomposition(SVD) is usedto
performPCAon theCovariancematrixandgivesus10 eigenvectorsandcorrespondingeigenvalues.

3 Results

We transformall of the datainto the eigenvectorspace.The first two principle axes(eigenvectors)accountfor
thegreatestvariationin thenormaldata.Resultsfor thelog(NCBF)andTTM datain thetransformedeigenvector
spacefor all subjectgroupsareshown in figures2aand2b.

For thecarotidstenosispatients(linkedby linespre-andpost-operatively in thefigures)therearesignificantmea-
surablechangespost-operatively in bothlog(NCBF)andTTM for mostpatients,bearingin mind theeigenvector
axes representthe standarderror space. The directionof changeis unimportanthere,the main point is that a
perturbationin thecerebralbloodsupplyhasproduceda measurablechange.We would not necessarilyexpectall
patientsto respondin the samemanner, particularlyafter sucha major operation.Examinationof the normals,
memorypoorandAlzheimer’s subjectsin thefirst two componentsof eigenvectorspacefor both the log(NCBF)
andTTM shows that thedatais dominatedby normalvariation,andthat thereis no clearseparationbetweenany
of thegroups.Distributionsof datain theremainingcomponentsof eigenvectorspacearesimilarandnot reported
here.Despitethelackof separation,theAlzheimer’spatientsdo form adistinctclusterat theedgeof theboundary
of thenormalsubjectsin the log(NCBF)caseandhave a significantlydifferentmean(at thep=0.05significance
level) from thenormalsin the1steigenvectorspace(p=0.014).Alzheimer’sdementiaappearsto haveasystematic
vascularcomponent.TheAlzheimer’s groupis youngerthantheothergroupsbut thereis no evidenceto suggest
thatwhatwe areseeingis purelyanage-relatedeffect, asthey do not directly correlatewith similar age-matched
normals.Thereappearsto beno differencebetweenthenormalsandmemorypoorsubjects(p=0.84andp=0.58
for 1stand2ndeigenvectors).

The mechanismsof the diseasesalsoallows us to hypothesizeon the utility of the technique.Carotidstenosis
patientshave animpedimentto flow in oneor moreof themajorbrainfeedingarteries.We would expectregions



suppliedby thesearteriesto be fed slightly later than unimpededregions, either becausethe occlusionslows
the blood, or becausethe region is fed by collateralflow. An occlusionwould thereforecausea large change
in the TTM acrossthe brain. Wideningof the arterieswould result in a returnto normalTTM values. This is
indeedshown in fig. 1(b). By contrast,in termsof vasculardisease,Alzheimer’sdementiais at themicrovascular
level [11], wherewe expectto seelocalisedchangesin flow, ratherthana consistentalterationin TTM. Again,
this is seenin 1(a);thereis a consistenttrendin thelog(NCBF)caseandtheAlzheimer’spatientsshow nochange
from normalityin theTTM case(p=0.13andp=0.55for 1stand2ndeigenvectors).

4 Conclusions

Thispaperdescribesapreliminarystudyin theanalysisof regionalnetflow variablesfrom dynamicsusceptibility
contrastenhancedMRI. Having takenappropriateaccountof statisticalvariability in ourdata,theresultsfrom the
normalsandcarotidstenosispatientssuggestthat therearesignificant,measurabledifferenceswithin thenormal
group.Subjectswith Alzheimer’sdementiahavegrouplevel variationswhichcauseasystematicshift in thegroup
distribution with respectto thenormalgroupbut do not causechangesoutsidethenormalobservablerange.This
is an importantfinding as it suggeststhat it might not be physiologicallypossibleto exist outsidenormalflow
boundariesand thereforewe would never expect to seea clearseparationin the log(NCBF) eigenvectorspace
betweennormalanddiseasegroups.This techniqueasit standsis unableto separatediseasegroupsfrom anormal
group. However, we have successfullylocalisedthe Alzheimer’s patientsto a portion of the normalspace. In
termsof thememorypoorindividuals,they overlapthenormalgroupwell anddo not localisein thesamemanner
asthe Alzheimer’s patients,so we cannotconfirm the role of a vascularcomponentin this disorder. The utility
of thedifferentflow maps(log(NCBF)or TTM) is dependentuponthediseaseunderinvestigation.TTM image
mapsaremorelikely to beusefulwhenlooking at macrovasculardisease,log(NCBF) mapswill be moreuseful
for small-vesseldisease.Althoughregionalmeasurementsof netflow show promisetherearemany areaswhich
still requireattention.In particular, thelargedegreeof variability of flow patternsin normalscouldbein partdue
to aninability to enforceanequivalentphysiologicalstatebetweenindividualswhenscanning.In futurework we
intendto investigatemorerigorouscontrolstrategiesbeforeandduringacquisition.In addition,althoughthiswork
setsabenchmarkfor whatwecancurrentlyachieve,thereis still muchto bedonewith regardto analysisof whole
volumesof dataandalsoalternative analysistechniques(including non-linearmethods)for the identificationof
correlatedchangesbetweengroups.Bothof theseissuesarenow areasof ongoingresearch.

5 Acknowledgements

Work onthispaperwassupportedby agrantfrom theWellcomeTrust.Thanksto Dr. G.Riding,Dr. R.C.Baldwin,
Prof. A. JacksonandProf P. Rabbittfor useof thesubjectdata.

References

1. N. A. Thacker, M. L. J.Scott& A. Jackson.“Can dynamicsusceptibilitycontrastmagneticresonanceimagingperfusion
databeanalyzedusinga modelbasedon directionalflow?” J. Magn. Reson. Imaging 17(2), pp.241–255,February2003.

2. L. Ostergaard,R. M. Weisskoff, D. A. Chesleret al. “High resolutionmeasurementof cerebralbloodflow usingintravas-
culartracerboluspassages.partI: Mathematicalapproachandstatisticalanalysis.” Magn. Reson. Med. 36(5), pp.715–725,
Nov 1996.

3. K. A. Rempp,G. Brix, F. Wenzet al. “Quantificationof regionalcerebralbloodflow andvolumewith dynamicsuscepti-
bility contrast-enhancedMR imaging.” Radiology 193(3), pp.637–641,Dec1994.

4. N. A. Thacker, X. P. Zhu, M. Nazarpooret al. “A new approachfor the estimationof MTT in boluspassageperfusion
techniques.” In Proc. MIUA. BMVA, London,July2000.

5. N. A. Thacker, M. L. J.Scott,D. L. Buckley et al. “A new methodfor thequantitative calculationof netbloodflow using
T2* susceptibilityimaging.” In Proc. ISMRM. Hawaii, 2002.

6. T. B. Moller & E. Reif. Pocket Atlas of Cross-Sectional Anatomy CT and MRI, volume1; Head,Neck,SpineandJoints.
Theime,1994.

7. K. Lobotesis,J. D. Fenwick,A. Phippset al. “Occipital hypoperfusionon SPECTin dementiawith lewy bodiesbut not
AD.” Neurol. 56, pp.643–649,2001.

8. R.C. Petersen,G. E. Smith,S.C.Waringetal. “Mild cognitive impairment- clinical characterizationandoutcome.” Arch.
Neurol. 56, pp.303–308,March1999.

9. J.H. Naish,R.C.Baldwin,S.Jeffriesetal. “Analysisof cerebralflow in patientswith latelife depression.” In Proc. MIUA,
volume6, pp.41–44.BMVA, 2001.

10. G. Liu, G. Sobering,J. Duyn et al. “A functionalMRI techniquecombiningprinciplesof echo-shiftingwith a train of
observations(PRESTO).” Magn. Reson. Med. 30, pp.764–768,1993.

11. E. Farkas& P. G. M. Luiten. “Cerebralmicrovascularpathologyin agingandalzheimer’s disease.” Prog. Neurobiol. 64,
pp.575–611,2001.



Classificationof White Matt er Tract Shapesfr om DTI Without
Registration

P. G. Batchelor, F. Calamante,D. Atkinson, , D. Tournier, D. L. G. Hill, R. Blyth, A. Connelly,
�

philipp.batchelor@kcl.ac.uk

1 Intr oduction

Currentlythefinal output of DiffusionTensorMRI is thecalculationof fibretracts( [1,2]). Thetractsaresupposed
to bea fair representationof axonalconnectionsin thebrain. Here,we usethephrase’final output’ in thesense
thatnothingfurther is extractedoutof thefibres,andthey areusuallysimplydisplayed, leadingto thecriticismthat
their clinical useis limited. Clinically, theanisotropiesof thetensorscanbedisplayedusinga colour scheme,but
this informationis justat thevoxel level, andnotabouthow voxelsareconnected[3]. Weproposehereaparticular
useof mathematicaltools from thegeometry of curves. Theseallow statementsto bemadeabout theshapesof
curves thatareindependent of theirspatialposition, thusby definition, about theshapespaceof thecurves. Future
applications might include thequantification of normal andabnormal shapes,the classificationof differentfibre
tracts,the characterisationof tractsthat passcloseto eachotherandidentificationof functionally similar brain
regions by examining the endpointsof tractswith similar shapes.We candefinea norm on the setof shapes
of curves,andthuswe have the necessaryingredientsfor statistics.We notethat Basserhasalreadymentioned
usingcurve invariantsin [4], andthey have beenusedimplicitly to stopfibreswhenthey became abnormal [2].
Furthermore,Ding et al. have recentlyproposeda method to groupfibresby bundles,andreport curvatureand
torsionvalues [5]. Here,however, we make a more systematicuseof theseinvariants. We propose that using
the fundamentaltheoremof thegeometry of spacecurvesis a more rigorousway to classifycurves into bundles
of similar shapes.By factoring out irrelevant parameterssuchasspatiallocationandglobal scale,we areable
to definea shapespacefor fibre tracts. Thesetoolswill allow intersubject comparisonof individual curves. We
alsoextend thegeometryto therelativespatialconfigurationsof curves,describingfor example how spatialcurves
wind aroundeachother, usingquantititieslike theLink, andtheWritheof apairof curves.Someof thetechniques
areinspiredfrom DNA andpolymer folding analyses[6–8]. We construct simulationsdemonstratingthemethod,
andapplythis method to in vivo datasets.

2 Method

MR diffusiondataon two healthyvolunteerswereacquiredusinga 1.5TSiemensVision systemon two separate
occasions. Thescansconsistedof a multi-slice (60 contiguousslices)diffusion-weightedsequencewith 20 uni-
formly distributeddirections(numberof averages=1)and3 nondiffusion-weightedimages( [9]). Theacquisition
wasperformedtwice on onevolunteer, resultingin threedatasets,labeleda1anda2for thesamevolunteer, andb
for theothervolunteer.

Fibertracking wasperformedusingastreamlinesalgorithm( [1,10]). Fibretractsaremathematically describedas
non-closedspatialcurves,written ����� ���
	���
���� where	 is thelength of thecurve. If thecurve is reparametrised
by arc-length � , thenthe derivative with respectto � , ���� ����� ����� ��� is a constant‘speed’ with � ��� ����� �"! . From
this it follows that the acceleration, # � ���%$ � ��� � �'&��� ��� is perpendicular to the speedvector. In this parametri-
sation,the magnitude of the accelerationis the curvature # � ��� and its direction is $ � ��� . The binormal vector( � ���)� ��� ����*+$ � ��� completes a right handed trihedron, the Frenetframe[11]. The variationof this frameis
entirelydescribedby thecurvature,andanother quantity, the torsion , ��- � of thecurve. As eachof � , $ ,

(
are

normal, theirderivative is perpendicularto theirown direction, for example as
( � � *.$ , �( � � * �$ is always

perpendicularto � , thusparallelto $ , andthecoefficient �(�/ $0� � , is thetorsion.Thecurvature describes how
mucha curve turns inside the planeof its speedandacceleration, the torsionthe speedat which it getsout of
this plane. The curvatureandtorsioncanbeshown to be independentof theparametrisations, i.e. depend only
on the shapeof the curve. The fundamentaltheoremof spacecurvestheoryis that the reciprocal holds: given
particular curvatureandtorsionfunctions,thereis, upto rigid motion,only onecurvewith thesamecurvatureand
torsion.Thiscurvecanbereconstructedby integrationof theFrenet-Serret equations[11]. This theoremprovides
uswith a complete tool to classifyshapesof fibre tracts. We definetheshapeof a curve asanequivalenceclass
of curvesunder theequivalenceof rigid body motions,anddenote theshapeof curve � by � �1� . The fundamental2
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tool to classifyobjectsis to haveadistancefunction ontheseobjects,andthetheoremallowsusto doexactly that:
any distanceon a pair of functions will generatea distanceon shapes.The simplest,andmoststraightforward

is the 	65 norm 7 �%� �98:���;� � 5 � � � �=<9> 8? � � # 8���- �A@B# 5 ��- �C� 5ED � , 8F��- �A@+, 5 ��- �C� 5 �G7 -;H 8%I 5 where the curvesarescaledto

unit length. Having a distancefunctionon shapes,we candefinethemeanshapeof a set � � 81�KJCJ�J�� �MLN� astheone
minimisingthesumof squareddistancesto the �KO s (oneof thepossibledefinitionsof themean). Doingthisweget
ameancurvatureandtorsion, whichwecanintegrateto getarepresentationof themeanshape.For asetof curves��8P�CJCJ�JC�
�ML we definethemeanshapeastheonecorresponding to Q#R�TS"# OVU9W�� Q,X�YS O , OVUPW where # O and , O are
thecurvaturesof the �PO (scaledto a unit length,using �FOVU � O ). Thischoiceof meanis somewhatarbitrary, but using
it consistentlyis sufficient for our application. In this way, we obtainstatisticson the setof shapeswithout the
difficulty of registration, andfor example, cananalyseandcomparecorresponding fibresacrossindividuals,(see
theexamplesin Fig. 1). Wecouldthenfor examplegroup curvestogetherby thresholding ontheirshapedistance.
Bundlesof CurvesAnother aspectof interestfor mutliple fibres,is how theirgeometry interacts.In threedimen-
sions,thegeometricalinteraction betweencurvesis relatively complicated,asonecurvecantwist, or wraparound
another. We proposeheretools for thequantification of sucha relation. For two curves � 8 and � 5 , we consider
configurations,i.e. pairs � � 8 �
� 5 � equivalentunderrigid body motion. TheLink of apair is definedas

	[Z\�%� � 8 �
� 5 � � � � !]K^R_�`ba\_�`Vc ���Md 8 ��- ��* �Md5 �fe �g� h �;8P��- �A@ � 5 �fe �� � 8 ��- ��@ � 5 �fe ��� � 7 - � � _G`bai_G`Vc 	 loc
�f� 8 ��- � �
� 5 ��e �%�G7 - 7 e 7 e

(theprime meansderivative with respectto theparameter - , which is not requiredhereto bearc-length) andthe
Writhe of a curve shapeis definedas jlk �%� �1� �m� 	EZ\�g� �P�
�1� � . Theseareusedin molecularbiology to studyDNA
ribbonsandpolymershape[6–8,12]. Thesequantitiesareagainrigid bodyinvariants.
Computation In practice,thecomputationis done by fitting cubicsplinesandresamplingat 1000 (which makes
comparisonsmorepractical)pointsthroughevery setof curve points. Thederivativesarecomputedby symbolic
differentiationof thesplinecurves. Thetorsioninvolvesthird derivatives,andFig. 1 suggeststhat for example a
medianfiltering of the torsionimprove robustness(although thereconstructedcurve doesnot seemto have been
affected). Theintegration is straightforwardsummation.

3 Results

As afirst example,we illustratehow wecanreconstruct ameanshapewithoutregistration. Westartwith thecurve
in Fig. 1 a),with curvature ! Dongprqs�ft � for t in � ���
u ^ � , andconstant torsion.We construct artificial perturbationsby
creating50 copiesof thecurve,by randomrigid bodytransformationandadditionof a perturbation, seeFig. 1 b).
Fromthese,we computetheaveragecurvatureandtorsion(Figs.1c,e)andusingthesewe canreconstruct a curve
similar to theoriginal (Fig. 1 f) by integrationof theFrenet-Serret equations.

Curve Classification We thusdefinea shapespaceof curves,andclassifycurve shapesusingthis spacewith
its metric. Shapesof interestcouldbe,among others,—straightlines( #v� �w� ,v� � ), —circular lines(#v� const,,x� � , —helicoidallines( # and , const),—’U’-shapedcurves( # piecewiseconstant,,x� � ). Seefor example the
tractsin [13], asexamplesof shapesof clinical tracts.

Thecorticospinalfibre tracts(CST)werecomputed for eachdatasetusinga streamlinesalgorithm startingfrom
similar seedregions (a1: 53 tracks,a2: 15 tracks,b: 10 tracks). Note that no registrationwas required, and
that thenumberof tractsin eachbundle weredifferent. Thecomputedshapedistancesbetweenmean shapesare7 �fy ! �1z �6�{!9| J }K� !�~ , 7 ��y�u��
z �E�Y!9� J ]F]N� | , 7 �fyGuG�
y !9�6�{! �wJ | ] � � . SeeFig. 2 for plotsof thecurvaturesandtorsions
of themeanshapes.

We alsotracked the cross-pontinefibres(CPF),andcomputed the link betweena pair of fibresin the CST, and
betweenonefibre in the CST andonein the CPF(see2 c) andd)). TheCST-CST link was-0.0378,while the
CST-CPFonewas0.5013.

4 Discussion

We have demonstratedtechniquesthatmight beusedfor theclassificationandcomparisonof fibre shapes,or in
summary, ashapespaceof fibretracks.With thesetoolsonecan,for example,usecurvatureandtorsionto quantify
fibre geometry. We havealsointroduceda method to studytherelativeshapesof multiple fibres,andin particular
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Figure 1. Constructionof meancurve andtorsionwithout registration. a) Original curve, b) the original curve
spatially transformedandperturbed,c) the original curvature (with meancurvatureoverlaid) d) the curvatures
of the curvesin b), e) the original torsion,with meantorsionoverlaid f) the curve reconstructedfrom the mean
curvatureandtorsionby integrationof theFrenetequations. Horizontal axisnormalisedfor curvatureandtorsion
plots.Notethatthejumpin theestimatedtorsionis likely to bedueto finite differenceestimationsof derivatives.

to quantify their spatialrelationship usingthelink. Oneperhapsunexpecteduseof thesetechniquesis to go in the
reversedirection: givena fibre � 8 in brain1 andthe“closest”fibre � 5 in brain2, we candefinea correspondence
betweenthe end-points, and this is without registration. This correspondence is basedon anatomical features.
Theadvantageovera registrationbasedtechniqueis thatwith registration, wecanfor example matchtwo starting
points,but thenthe fibresstartingat thesepoints areunlikely to endin correspondence. The integration of the
Frenet-Serret equationsseemsa particularly natural wayof normalisingshapes(seethatusedin [5]).

Brain fibre tractsareclinically tangible objects,andany statementabout their shapeis directlyclinically relevant.
All themeasureswearecalculatingcanbeusedasaquantitativemeasureto decide if something is similar to other
case,or differentfrom anormal, or comparetwo groups (patients with agivenpathology andcontrols),or classify
varioustracks,etc.Currently, mostof thestudiesdoit by looking atthegeneratedfibresanddeciding if they ”look”
normal orabnormal. Onecouldusethesemeasurestodefinewhatis normal, andthentestif something is abnormal.
Furthermore,onecouldspeculateanotherpotential clinical use:for agiven pathology onecouldseeif any of these
measuresis a good marker or predictor of theseverity of theabnormality. For example, in an idealsituation,the
Link of two fibrebundlescouldbehighly relatedto theseverity or outcomeof anabnormalityassociatedwith those
fibres,or to a given neuropsychological test(IQ, language, etc)of a function associatedwith thosefibres. In that
(ideal)case,onecouldusetheLink for patientmanagement.For example, therearea numberof epilepsystudies
thathavedemonstratedfocalabnormalitiesin eitherADC(av) or FA in individualsvs. controls,andin many cases
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Figure 2. a) Curvatures,b) Torsionof thecorticospinal tractsfor thedatasetsa1,a2,andb. c) oneof thesetracts
shown relativley to theFA mapd) thecorticospinaltracts(CST),“link ed” with thecross-pontinefibres(CPF).The
colormapcorrespondsto thecurvatureof thefibres.

theseabnormalitieswerenot detectable by visual assessment.Also, a number of neuropsychology studieshave
beenundertaken,andhaveshown correlationsbetweenFA ande.g.indicators of languagefunction in regions that
appearnormal visually. If any equivalentanalyseswereto beundertakenwith respectto tractorientationrather
thanthedegreeof anisotropy, wewouldrequire someparameterthatcharacterisesthespatialpropertiesof thefibre
(particularly sinceexcept in grosscases,it would behighly unlikely thatany changesin tractpathways would be
discernible visually). Arguably that requirementwould be fulfilled by the methodology that we have proposed,
andwithout theneedfor thespatialnormalisationrequiredfor theFA studies.
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Abstract. This paper describes a system to automatically register temporal retinal images. The aim was to
register two retinal images of the same region at different times in order to to measure changes potentially
associated with diabetic retinopathy (DR). The method used landmarks automatically detected from the blood
vessel structure. The curvature of the retina was taken into account by applying thin-plate splines algorithm to
the images. Subtraction of the two registered images reveals changes between them. Results of the application
of the system to a set of pairs selected from a diabetic retinopathy screening program are presented. Evaluation
of the system was achieved using visual inspection by an experienced clinician and by the error measured
against manually selected anatomical landmarks.

1 Introduction

Registration of two images requires an interpolation function that maps one image into the other. Applied to
retinal images, the curvature of the retina generates a complexity in finding a good interpolation. Temporal retinal
registration would allow a direct comparison of pixels in order to detect pathological changes. Diabetic retinopathy
(DR) is the most common cause of blindness in the working age population of the developed world, treatment is
available if the condition is detected in the early stages [1]. The aim of screening is to detect pathological lesions
that appear on the retina during a pre-symptomatic stage of the disease. Temporal retinal registration would allow
to track the development of the disease. The aim was to evaluate the progression of diabetic retinopathy in the eye.

An algorithm for temporal registration or retinal images was proposed by Zana et al [2], using a Bayesian Hough
transform based on point correspondence. Can et al [3] presented a hierarchical algorithm to construct a mosaic
from images of the retina, comprising translation, affine and quadratic approximations and using landmarks be-
longing to the blood vessel structure. Matsopoulos et al [4] presented a method for automatic retinal registration,
using Genetic Algorithms with an affine or bilinear interpolation. Besl et al [5] proposed a method to register
3-D shapes based on the iterative closest point algorithm. Bookstein [6] developed a thin-plate spline algorithm
to model curved surfaces, using a non-linear function to interpolate two sets of point-correspondence landmarks
modelled by a warp surface. A method for mosaicing two retinal images has been reported previously [7]. The
method used two images of the same eye taken at a single examination, one macular and one nasal view, and
merged them. A linear interpolation method was followed by a non-linear interpolation algorithm. Manual selec-
tion of landmarks was required. The use of thin-plate splines [6] applied to model the deformity of the retina and
a final weighted average of the two combined images demonstrated accurate registrations.

This paper presents an automatic method for temporal retinal registration. The method is based on the mosaic
retinal images method previously presented [7] applied for temporal registration. In addition, the method automat-
ically detects a set of landmarks from both blood vessel structures of the image pair, with no previous knowledge of
any correspondence between them. The landmarks are initially detected from the bifurcations of the blood vessel
structure, and along all the vasculature structure after linear approximation. When the registration is complete, the
final registered images are then combined and subtracted. The importance of the subtracted result is to evaluate
the potential differences between the images taken at different times.

2 Method

The images used in this work comprised pairs of fundus images of the same region of the eye,
�����

macular centred
field of view, captured at different times. One image of the pair, the object image, is geometrically transformed to
map onto the other image, the reference image.
�
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The images were first pre-processed to equalise contrast and illumination levels [8]. The main elements of the
retina were detected, the optic disc [9] and the blood vessel structure [10], being significant features to be used for
the registration technique. The blood vessel structure was then thinned to a width of one pixel by a skeletonization
algorithm [11]. Landmark points belonging to the bifurcations of the blood vessels were automatically detected by
using the skeletonized vasculature structure and a set of rules was established to reduce the number to select valid
points, producing two sets of landmark points per image pair. The size of each of the two landmark points set per
pair may be different, as no prior knowledge of any existing correspondence between the landmarks was assumed.

The registration method consisted of a Euclidean interpolation followed by a non-linear interpolation. An affine
transformation may be decomposed into components of translation, rotation, magnification and shear. Previous
observations led to reducing the affine transformation to components of translation and rotation, as there was
no significant change in magnification or shear [7], yielding a Euclidean transformation. As translation may be
significant, this first transformation was necessary in order to achieve the next stage of corresponding points search.
A point-correspondence search was performed based on closest distance. A correlation was then applied to further
validate the correspondences between the two sets of landmark points.

In order to increase the number of corresponding landmark points a further search was performed through the
skeleton of the vasculature structure using cross-correlation applied to a small window around potential landmark
correspondences. A threshold correlation value and a parameter based on the distances between any existing
landmark points were used to select new corresponding points. Given these two larger corresponding landmark
sets, a non-linear algorithm, thin-plate splines [6], was used to interpolate the two landmark sets and then applied
to the object image. This algorithm was able to model the curvature of the retina, and thereby produce a good
registration result which minimises the error, the Euclidean distance between corresponding landmarks.

The different parameter sets used to refine the initial landmark points and to increase the number of corresponding
points in the registration method as described above produced four solutions per image pair. A performance
measure based on the maximum number of pixels in the overlapping area of the two blood vessel structures of the
registered images was used to select the optimum of the four solutions. The images were then combined in order to
visually assess the accuracy of the overlapping area. In addition, the images were subtracted to display and further
analyse potential changes between the two images.

3 Evaluation

The images used in this work were acquired using a Topcon TRC-NW5S non-mydriatic digital fundus camera,
producing RGB colour images of 570 x 570 pixels, covering a

��� �
centred macular field of view and saved in

JPEG format. Image pairs comprised the same region of the eye taken at different times. Nineteen pairs were
randomly selected for this experiment.

In order to assess the performance of the system, validation techniques suggested by Woods [12] were used.
The validation and evaluation of the system consisted of measuring the performance of the landmarks and the
final registered images. The registered images were evaluated by visual inspection [12] by an expert clinician.
The performance of the registration method was measured by evaluation against anatomical landmarks manually
selected by an experienced technician [12]. Visual inspection consisted of visually analysing the registered images,
concentrating on the accuracy of the matching of the vessel structure in the overlapping area. Each pair registered
was considered as approved or rejected. The evaluation against anatomically corresponding landmarks consisted
of measuring the error, the mean of all the Euclidean distances between the corresponding landmarks of each
pair of registered images. The error was calculated by initially selecting corresponding anatomical landmarks and
applying the previously calculated registration interpolation function to the corresponding landmarks. These two
error measures enabled us to assess the performance of the registration.

4 Results

The visual inspection undertaken on the overlapping area of the registered images resulted in seventeen out of
nineteen pairs being successfully registered and two presenting an unsuccessful registration, producing a 89.5%
success rate. One unsuccessful image pair was of a very poor quality and presented a very small area of blood
vessels due to cataract in the eye, therefore the small number of landmarks detected was not suficient for the
registration process. The other image pair presented a good registration over the entire image, except on the top



edge area, due to a small mismatch between the two vessel structures. This may be explained by the proximity to
the edge of the image. Consequently, the warping applied to the registered image presented an artifact due to an
erroneous deformation. Translation was considerable in some cases and minor in others, and rotation improved
the previous interpolation before warping by thin-plate splines. The number of the automatically detected land-
marks throughout the different stages of the process, the mean of the total calculated, is as follows. The initial
automatically detected number of landmarks was 105.9, ranging from 3 to 196. After pre-processing, the number
of landmarks was reduced to 45.2, ranging from 3 to 78. After the first linear approximation followed by the cor-
responding anatomical landmarks search, the number increased to 143.5, ranging from 36 to 193, these were used
for the final warping interpolation. One of the unsuccessful registration pairs, that with a very small area of blood
vessels, was the only case with the minimum number of landmarks detected. The other cases followed a normal
distribution.

Results of the evaluation against anatomical landmarks manually selected by an expert technician are as follows.
The error of the manually selected anatomical corresponding landmarks measured before and after registration
interpolation are shown in Table 1, where the results are the mean of all distances per pair. The number of corre-
sponding landmarks selected manually was 15 per image pair. The mean of the initial error was 31.2 pixels and
the median was 9.4 pixels, with a minimum of 2.5 pixels and a maximum of 103.5 pixels. This was due to a big
initial translation between the image pair, even though the area and field had been set by the photographer to be
the same. After the interpolation results were calculated for the corresponding anatomical landmarks: the mean of
the error measured was 1.7 pixels and the median 1.3 pixels, with a minimum of 0.87 pixels and a maximum of
7.6 pixels. Four pairs had an error lower than one pixel, thirteen pairs had an error lower than two pixels, and the
two highest errors of 7.6 and 3.6 pixels correspond to the two cases where the registration was visually classified
as being unsuccessful. Therefore, we considered a good registration to be those cases with an error under 2 pixels,
obtaining a success rate of 89.5%. Subsequently, both methods of evaluation, visual inspection by a clinician and
evaluation of landmarks chosen by an expert technician, led to the same success rate of 89.5%. Figure 1(a)-1(f)
shows an example of temporal registration. The final overlapping area and image after subtraction are also shown.

Image pair 1 2 3 4 5 6 7 8 9 10

Error Initial 2.57 10.3 103.54 7.71 8.9 9.26 48.35 87.9 95.06 10.27
measure Final 1.44 0.98 1.52 1.34 1.9 1.64 7.65 1.31 1.35 1.02

Image pair 11 12 13 14 15 16 17 18 19

Error Initial 4.82 8.87 13.19 7.94 5.78 7.0 9.43 76.02 75.76
measure Final 0.94 1.26 3.68 1.13 1.19 0.92 1.25 0.87 1.37

Table 1. Error measured using anatomical manually selected corresponding landmarks: Initially detected, Final
(after the application of registration)

5 Discussion

An automatic system to accurately register temporal retinal images has been presented. The method was tested
with a data set from an existing diabetic retinopathy screening program, resulting in a successful registration
rate of 89.5%. The method consisted of a Euclidean interpolation followed by a non-linear approximation. The
method is landmark-dependent. Landmark points are automatically detected throughout the different stages of
the process. The first Euclidean interpolation was necessary in order to obtain corresponding landmarks for a
non-linear approximation.

The evaluation of the method was undertaken by visual inspection by an experienced clinician and against corre-
sponding anatomical landmarks manually selected by an experienced technician. The use of the iterative closest
point algorithm [5] could be effective on the application on retinal images. Further experiments on a larger data
set should increase the consistency of the system. Further analysis on the subtracted images would quantify the
changes potentially associated with diabetic retinopathy, and therefore assist in the early detection of significant
pathology.
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(a) original first visit image (b) original second visit image (c) combined registered images

(d) pre-processed first visit image (e) pre-processed second visit image (f) subtracted registered images

Figure 1. Example of temporal registration: (a) Original first visit, (b) Original second visit, (d) Pre-processed
first visit image, (e) Pre-processed second visit image, (c) Combined registered images, (f) Subtracted registered
images
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Abstract: Detection of the penetration of the prostate capsule by prostate cancer is an important step in 
staging and managing this disease.   Although the capsule cannot be directly visualised on 3D ultrasound 
images it is usually adjacent to a fat layer which becomes echolucent when penetrated by disease.  Automatic 
detection of such regions requires firstly that the prostate boundary is automatically delineated.  In this work 
this is done by defining a reference image and marking out the prostate boundary manually on this image.  
Patient images are then mapped to the reference and the inverse mapping used to map the reference boundary 
on to the patient image.  The accuracy of this approach is evaluated by comparing subsections of the 
automatically generated boundary with equivalent manually defined boundary subsets generated on a small 
set of patient data.  The median success factors, a measure of the overlap between automatic and manually 
defined boundaries, over 6 patients was 0.96 and the average linear displacement between the boundaries of 
the automatic and manual regions was 1.05 in units of pixel dimensions. 

 
1 Introduction 
Prostate cancer is a major public health issue.  It is the second leading cause of male cancer death both in the 
USA and in Europe.  Radical prostatectomy is a recognised and well-established treatment option for localised 
disease.  Accurate staging is critical to the management of patients with prostate cancer. While prostatectomy is 
an appropriate procedure for patients in whom the disease is contained completely within the prostate capsule, it 
is ineffective for patients where disease has penetrated the capsule. Identification of penetration is therefore 
critical for effective management of the patient..  Current methods used for local staging include digital rectal 
examination, serum prostate specific antigen (PSA), Trans-Rectal Ultrasound (TRUS) with image guided biopsy, 
and endorectal magnetic resonance imaging (MRI).  Trans-rectal ultrasound imaging is currently a standard 
procedure within the urology clinic.  As part of this investigation biopsy samples are taken at various sites within 
the prostate, either guided by the visual observation of disease in the images, or systematically at selected sites 
within the prostate.  Unless there is obvious disease external to the capsule prostate patients with disease 
confirmed by biopsy are referred for surgery and the prostate is removed.  Conventional TRUS uses 2-D imaging 
to visualise a 3-D anatomy and disease process and has had limited success in staging prostate cancer.  The 
introduction of 3-D TRUS offers a potentially improved way of visualising the prostate.  3D ultrasound imaging 
is a new imaging modality with potential still being explored.  Volume images can be produced which are 
appropriate for post-imaging interpretation and manipulation through the use of appropriate image processing 
and analysis techniques.  3D data collection is currently in the form of a sequence of 2D image planes.  The 
positions of these planes in space relative to each other needs to be determined.  Methods of doing this include 
mechanical scanning and magnetic and optical position sensors.  Mechanical scanning currently represents the 
most reliable form of data collection and using such a system good volume data sets can be obtained reliably and 
quickly within the Urology clinic.    
 
A recent study by Garg et al [1] showed the benefits of 3-D imaging. Thirty-six patients with newly diagnosed 
clinically localised prostate cancer were studied.  All patients underwent conventional trans-rectal 
ultrasonography (TRUS) with 3-D reconstruction.  Images were interpreted blindly, and the findings were 
compared with histopathological staging following radical prostatectomy.  Pathological staging of the specimens 
revealed 15 sites of extra-capsular extension in 10 patients, 8 of whom had positive margins.  3-D imaging 
identified 12 sites of extra -capsular extension in 9 patients with a positive predictive value of 90%.    
 
A key requirement in staging prostate cancer is to identify if disease has penetrated the prostate capsule.  The 
capsule itself cannot be visualised but is usually bordered by a layer of fat which shows up on the US image.  If 
disease penetrates this fat layer it becomes locally echolucent.  Accurate identification of such echolucent 
regions along the prostate boundary could help to stage disease more accurately and prevent ineffective surgery.   
 
The proposed method of detecting echolucent regions is to identify the boundary of the prostate on the 3-D 
TRUS image and then render local values of image intensity onto this surface.  Statistical or other methods can 



be used to identify regions of abnormal intensity.  To do this numerically the boundary of the prostate needs to 
be delineated.  Manual identification and delineation of the prostate boundary is not feasible for routine clinical 
work.  This paper describes a method being developed to locate the 3D prostate boundary automatically using 
image registration.  Houston et al [2] proposed the use of 3D registration to delineate the boundary of 3D 
radionuclide cardiac studies.  In their work the mapping function was an affine function, based on a previously 
published approach by Barber et al [3] for 3D image registration of brain radionuclide data.  In both these cases 
the affine transform was adequate.   However, registration of 3D-TRUS images of the prostate requires a non-
linear mapping.  Non-linear methods have been proposed using global basis functions (Friston et al  [4], Barber  
[5]) but there are significant computational and other advantages in using local basis functions (Vemuri et al, 
[6]).  Image registration has not been widely applied to ultrasound images because of the limited availability of  
3D image data but Shields [7] investigated its use in removing motion effects when imaging the carotid artery 
though the cardiac cycle. 
 
2 Methods 
Six patients with proven prostate cancer without evidence of extra-capsular involvement were imaged using a 
Brüel and Kjæ 2102 ultrasound scanner with 3D imaging capability.   Image data was transferred to a 
workstation for analysis.   The data consisted of an angular sequence of 2D images, typically of dimensions 55 x 
30 mm (pixel dimensions 0.13 x 0.13 mm) over an angle which could be selected by the user but was typically 
125o.  The angular spacing between images was 0.3o.  Scanning took 20 seconds per data set.  Data was stored 
for analysis in raw form without conversion from angular to Cartesian co-ordinates, but could be converted to 
Cartesian form for display purposes.  Data was analysed in raw form.  For the purpose of image registration data 
at high resolution is not required and so the image data in raw form is packed by summing 4 x 4 x 4 voxels to 
form a single voxel.  The voxel dimensions are then 0.52 x 0.52 mm by 1.2o.  Once the mappings have been 
determined they can be applied to images of the original resolution, although this was not done here. 
 

 
 
Figure 1a shows a cross section through a 3-D scan of a prostate.  Figure 1b shows the image data in raw form.  
The image is noisy and in many images the prostate border is poorly defined.  The method used to identify the 
prostate boundary is to first construct a reference image, define a 3-D boundary on this image and then use 
image registration to map the boundary image to the patient image.  A 3-D image registration algorithm (see 
Appendix for brief details) is first used to construct the reference image.  A suitable patient image is chosen as a 
reference and the images from the remaining subjects registered to this reference image.  The mean of the 
registered images is then computed and this is used as the reference image.  A third cycle can be run if required 

but this usually produces few further changes.  Figure 2a shows the reference image generated in this way from 6 

  
Figure 1. (a) Data in Cartesian form.                              (b) Data in raw form 

  

Figure 2 (a) The reference image                             (b) The reference boundary 



subjects.  A 3D reference boundary is then drawn on the reference image by hand.  This can be a time consuming 
and potentially subjective process but only needs to be done once.  Figure 2b shows a section of this boundary 
superimposed on the image of Figure 2a. 
 
To define the boundary on a patient image the patient image is mapped to the reference image and the inverse 
mapping then used to map the reference boundary (defined as a binary image) back to the patient image.  The 
boundary is mapped in this way for two reasons.  The first is that in the algorithm used here (see appendix) the 
registration is driven by intensity gradients derived from the relatively low noise reference image rather than the 
noisy patient image.  The second reason is that if the boundary is defined as a surface mesh then this mapping is 
in fact the correct mapping to map this mesh back to the patient image.  In the present work the boundary image 
is a binary volume image and the inverse mapping needs to be calculated and used.   Figure 3 shows a patient 
image with the mapped reference boundary (solid line) superimposed on the image. 
 
The ‘gold standard’ is a manually generated boundary.  Drawing full boundaries on a patient image is a time 
consuming process.  For this preliminary study we have confined ourselves to manually delineating a subset of 6 
sections through each set of patient data.  These were drawn for all 6 subjects without reference to the automatic 
boundary.  Figure 3 shows the manual boundary (dotted line) superimposed on the patient image along with the 
automatic boundary. 
 
Two indices are used to define the accuracy of the 
segmentation.  The first is the success factor (SF) 
proposed by Houston et al [2].  This is the area of the 
intersections of the corresponding regions divided by 
the average area of the two regions.  The second, and 
for this project more appropriate, index is the average 
linear displacement (ALD) defined as the area of the 
differences between the two regions (the area of the 
exclusive or of the two regions) divided by the average 
of the perimeter lengths of the two regions.  This is a 
value, in units of pixel dimensions, which can be 
interpreted as the average distance between the two 
boundaries.  As manual boundaries have only been 
defined for a limited set of images in each data set 
these indices are calculated for each of these slices and 
the values averaged.  A fully 3D version of the ALD 
would be to divide the volume of the difference by the 
average of the surfaces of the boundaries. 
 
3 Results 
The average SF taken over the six subjects was 0.96.  The average ALD was 1.05.  Computation time to map the 
full 3D boundary was just over a minute on a 2GHz PC. 
 
4 Discussion 
The aim of this preliminary project was to see if image registration could be used to delineate the 3D boundary 
of the prostate in a 3D TRUS image.  Only a limited set of patient data has been analysed to date, but 
preliminary results suggest that delineation to the accuracy required should be achievable.  In the present work 
only a limited amount of data was available and so the results must be interpreted with caution.  In particular the 
reference image will reflect the characteristics of the small data set used.  As more data is used to define the 
reference image this image will become more robust.  It should also be possible to delineate the reference 
boundary more reliably.   In this work the reference boundary has been defined manually on the reference image.  
Even on this image visual delineation of the boundary is not always clear.  A better approach, though more 
labour intensive, is to delineate boundaries on a set of patient images, map these images, and hence the manual 
boundaries, to the reference image, and then take an average of these mapped boundaries.  In this way, 
uncertainties in boundary delineation on individual subject may average out over a sufficiently large set of data.  
As with all image registration methods the image data need to be reasonably aligned to ensure correct 
convergence of the registration.  It is simple to do this manually and in most images examine so far this does not 
have to be done too accurately, but fully automating initial alignment is a subject for further research. 
 
5 Conclusion 

 

Figure 3  A subject image with manual (dotted) 
and automatic (solid) boundary superimposed 



Automatic delineation of the prostate boundary on 3D TRUS images seems feasible and could become a useful 
tool in the staging of prostate cancer.   The method proposed is fully generic in that the domain specific 
knowledge required, the reference image and reference boundary, is independent of the computational algorithm 
used, and therefore the method should be applicable to other situations where 3D object boundaries are required. 
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Appendix 

 
The aim of registration is to map an image m(x,y,z), the moved image, to an image f(x,y,z), the fixed image.  We assume that 
such a mapping is possible in that there is a one-to-one mapping which converts m(x,y,z to f(x,y,z) such that the intensity 
values completely match (in the absence of noise).  Then the moved and fixed images can be related by  

 
where ∆x(x,y,z), ∆y(x,y,z)  and ∆z(x,y,z) together constitute the mapping function.    
 
We modify the above equation by adding an extra term  
 

  
which deals with the residual differences between the two images.  In this form, the mapping function (including the 
∆s(x,y,z) term) is clearly non-unique.  However, if smoothness constraints are imposed on the mapping functions unique 
solutions are possible.  One such constraint is to expand the mapping functions in terms of a set of basis functions φi(x,y).  
We can show that, for images close together 
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and by expanding the components of the mapping function in terms of basis functions φi(x,y,z) 
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which can be solved for the parameters a.  Additional smoothing constraints in terms of minimising the magnitude of the 
Laplacian of the mapping function can also be added.  The basis functions used in this work are local bilinear functions. 
 
Inclusion of the ∆s(x,y,z) without constraint results in a trivial solution in that ∆s(x,y,z) can be set to f – m.  However, 
consider equation 1.  The difference between f and m is made up of contributions from four terms.  If each of these terms 
contributes equal amounts to the differences between f and m then since the gradients are relatively non-smooth functions ∆x 
and ∆y will be smoother than ∆s.  The smoothest way of accounting for the difference between f and m is as far as possible to 
utilise the first two terms and then evoke ∆s when all else fails.  This is what appears to happen in practice.  The Laplacian 
smoothness constraint is not shown in the above analysis but is added in the context of solving the a in the usual way.  The 
mapping functions are computed using image data within a registration region around the prostate. 
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Abstract. This paper presents a new pq-space based 2D/3D registration method for camera pose estimation in 
tracking endoscope images. The proposed technique involves the extraction of surface normals for each pixel 
of the video images by using a linear shape-from-shading algorithm that is derived from the unique 
camera/lighting constrains of the endoscopes. We show how to use the derived pq-space distribution to match 
to that of the 3D tomographic model, and demonstrate the accuracy of the proposed method by using an 
electro-magnetic tracker and a specially constructed airway phantom. Comparison to existing intensity-based 
techniques has also been made, which highlights the major strength of the proposed method in its robustness 
against illumination and tissue deformation. 

1 Methods  

The basic process of the proposed technique is based on the following major steps: the extraction of surface 
normals for each pixel of the video images by using a linear local shape-from-shading algorithm derived from the 
unique camera/lighting constrains of the endoscopes; extraction of the p-q components of the 3D tomographic 
model by direct z-buffer differentiation; and the construction of a similarity measure based on angular deviations 
of the p-q vectors derived from 2D and 3D data sets. For this study, a p-q vector is defined as 
( ) ( )yzxzqp ∂∂∂∂= ,,  which represents the rate of change in depth along the x and y directions. 

1.1 Shape From Shading for Endoscope Images 

Shape from shading is a classical problem in computer vision that has been well established by the pioneering 
work of Horn [12-14]. It addresses the problem of extracting both surface and relative depth information from a 
single image. However, his main analysis is based on the assumption that the angle between the viewing vector 
V̂ and the Z-axis, α , is negligible when the object size is small compared to its distance from the camera. In the 
case of endoscope images, both the camera and the light source are close to the object and the direction of the 
illuminating light coincides with the axis of the camera, thus no assumption can be made on α being negligible 
and lighting being uniform. Furthermore, the intensity of the image is also affected from the distance between the 
surface point and the light source. Rashid in [15] modelled this dependency by adding one more factor, which 
was a monotonically decreasing function ( )rf  between the surface point and the light source. Therefore, the 

image irradiance, E ,can be formulated as: 

( ) ( ) ( ) ( )rfiyxsyx ⋅⋅⋅=Ε cos,, 0 ρ  
(1) 

where 0s is a constant related to the camera, ρ  is the surface albedo and ( )icos  is the angle between the incident 

light ray and the surface normal [ ]1,, −= qpn . Within the context of this study, our main interest is focused on 
estimating the normal vectors but not to reconstruct the whole surface. Therefore, the above technique was 
adapted because it can approximate well the gradient vectors p-q by using a linear local shape-from-shading 
algorithm. It has been proved that under the assumptions of light source being close to the viewer and surface 
being smooth and Lambertian, the following two linear equations with unknown p, q components can be written 
as: 

                                                                 
 {fd301,ajchung,gzy}@doc.ic.ac.uk  







=+⋅+⋅
=+⋅+⋅

0
0

20202

10101

CqBpA
CqBpA

where

( ) ( )
( )

( )
( )

( ) ( )
( )















⋅+++⋅=
⋅−++⋅+⋅−=
⋅⋅−⋅++⋅−=

⋅+++⋅=
⋅⋅−⋅++⋅−=
⋅−++⋅+⋅−=

0
2

0
2

02

2
0

2
0

2
002

000
2

0
2

02

0
2

0
2

01

000
2

0
2

01

2
0

2
0

2
001

31
313

31
31
31

313

yyxRC
yyxRyB
yxxyxRA

xyxRC
yxyyxRB
xyxRxA

y

y

y

x

x

x

 (2) 

In the above equation, EER xx =  and EER yy = are the normalized partial derivatives of the image intensities, 

E  is the intensity of the pixel under consideration and 0x and 0y  are the normalized image plane coordinates.  

1.2 Extraction of p-q components from the 3D model 

The extraction of the p-q components from the 3D model is relatively straightforward as for tomographic images 
the exact surface representation is known. Since xzp ∂∂=  and yzq ∂∂= , differentiation of the z-buffer for the 

rendered 3D surface will result in the required p-q distribution, which also elegantly avoids the tasks of occlusion 
detection. The effect of perspective projection has been taken into account during the rendering stage. The 
perspective projection parameters have been defined in order to match those of the video camera.  

1.3 Similarity Measure  

One would expect to use the angle between the surface normals extracted from shape-from-shading and those 
from the 3D model for constructing a minimization problem for 2D/3D registration. This, however, is not possible 
because the p-q vectors in the shape-from-shading algorithm have been scaled. The similarity measure used in 
this paper depends on the p-q components alone and the cross correlation between the two p-q distribution are 
used.    

Analytically, for each pixel of the video frame, a p-q vector corresponding to ( ) [ ]Tjijiimg qpjin ,, ,, =  was 

calculated by using the linear shade-from-shading algorithm shown above. Similarly, for the current pose of the 

rendered 3D model, the corresponding p-q vectors ( ) [ ]TjijiD qpjin ,,3 ,, ′′=  for all rendered pixels were also 

extracted by differentiating the z-buffer. The similarity of the two images was determined by evaluating the dot 
product of corresponding p-q vectors:  
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By applying a weighting factor that is proportional to the norm of Dn3 , the above equation can be reduced to  
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By incorporating the mean angular difference and the associated standard deviations (σ) of wϕ , the following 

similarity function can be derived  
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By minimizing Equation (5), the optimum pose of the camera for the video image can be determined. The reason 
for introducing a weighting factor for Equation (3) is due to the fact that p-q estimation from the 3D model is more 
accurate than that of the shape-from-shading algorithm, as it is not affected factors such as surface texture, 
illumination, or surface reflective properties. The weighting factor therefore reduces the potentia l impact of 
erroneous p-q values from the shape-from-shading algorithm and improves the overall robustness of the 
registration process. 

 



2 Results  

In order to assess the accuracy of the proposed algorithm, an airway phantom made of silicon rubber and painted 
with acrylics was constructed. The inner face of the phantom was coated with silicon-rubber mixed with acrylic to 
give it realistic colour and texture. It was left to cure in the open air and gave the surface a specular finish that 
looked similar to the surface of the lumen. A real-time, six degrees-of-freedom Electro-Magnetic (EM) motion 
tracker (FASTRAK, Polhemus) was used to validate the 3D camera position and orientation. The EM-tracker has 
an accuracy of  0.762 mm RMS. The tomographic model of the phantom was scanned with a Siemens Somaton 
Volume Zoom four-channel multi-detector CT scanner with a slice thickness of 3 mm and in-plane resolution of 1 
mm. 

a) b) 
Fig. 1. a) A sample bronchoscope video frame from the phantom used to reproduce the airway structures.  b) The p-q vector 
distribution derived from the linear shape-from-shading algorithm by exploiting the unique camera/lighting constraints. 
 
Fig 1(a) demonstrates an example video frame of the bronchoscope phantom used to validate the proposed 
algorithm. The derived p-q vector distribution by using the linear shape-from-shading algorithm is shown in Fig 
1(b). The p-q vectors have been superimposed on the sample bronchoscope video frame of Fig 1(a). To assess 
the accuracy of the proposed algorithm in tracking camera poses in 3D, Figs (2) and (3) compare the relative 
performance of the traditional intensity based technique and EM tracked poses against those from the new 
method. Since the tracked pose has six degrees-of-freedom, we used the distance between the first and 
subsequent camera positions and inter-frame angular difference as a means of error assessment. As expected, the 
intensity-based technique is highly sensitive to lighting condition changes, and with manual intensity 
adjustments, the convergence of this method is improved, as evident from the much-reduced angular errors for all 
the image frames tested. The proposed pq-space registration, however, has much more consistent results which 
were very close to those measured by the EM tracker.  

3 Discussion 

In this paper, we have proposed a new pq-space based 2D/3D registration method for matching camera poses of 
bronchoscope videos. The results indicate that by using the proposed pq-space approach, reliable bronchoscope 
tracking can be achieved. The main advantages of the method are that it is not affected by illumination conditions 
and does not require the extraction of feature vectors. The intrinsic robustness of the proposed technique is 
dependent upon the performance of the shape-from-shading method used, and the use of camera/lighting 
constraints of the bronchoscope greatly simplifies the 3D pose estimation of the camera. There are, however, a 
number improvements can be introduced for enhancing the accuracy of the proposed framework. For example, the 
effect of mutual illumination, inter-reflectance and the specular components was not explicitly considered in this 
study. Further investigation is needed to assess their relative impact to the accuracy of the algorithm.  
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Fig. 2. Euclidean distance between the first and subsequent camera positions as measured by four different tracking 
techniques corresponding to the conventional intensity based 2D/3D registration with or without manual lighting adjustment, 
the EM tracker and the proposed pq space registration technique. 
 

 
Fig. 3. Inter-frame angular difference at different time of the video sequence, as measured by the four techniques 
described in Fig. 2. 
 



A new method for Validation of Non-Rigid Registration

Paul P. Wyatta�and J. Alison Noblea
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Abstract. Validating non-rigid registration is difficult as the techniques which work for rigid registration,
for example methods based on fiducial markers, utilise only a small set of correspondences; providing little
information on the deformation elsewhere. A new method for validating registration, based on the alignment of
segmented contours and the registered images’ intrinsic properties is described. It is modality independent and
does not require special image acquisition. Registration of echocardiographs is used to illustrate the approach.

1 Introduction

In medical imaging the validation of segmentation and registration methods is hard, primarily as it is difficult to
establish ground truth [1]. Although metrics can be devised that compare two entities, any comparison metric must
either obtain an exact ground truth, or be able to assess and allow for the inherent errors. Validation of non-rigid
registration is more difficult than rigid registration. The small number of parameters involved in rigid registration
ensure that a comparison with fiducial markers will provide reasonable confidence in a method’s accuracy. The
situation is not clear cut for non-rigid registration. Landmark based validation via fiducial markers [2] provides
an indication of accuracy at certain, hopefully key, points but has no information on the general correctness of
the field. Although it is often assumed that the deformation field will be smooth, this is not correct where objects
are of varying elasticity. Indeed, this difference is being used in new methods of tissue imaging [3, 4]. The
numerous parameters involved in a non-rigid registration also imply the existence of multiple, potentially plausible,
solutions. Tagged-MRI allows a larger section of the field to be followed, but still suffers from the aperture
problem and it is difficult to use this method in validating other applications (i.e. cardiac ultrasound). The result
is that many applications lack a reasonable method of validating non-rigid registration. Previously, validating non-
rigid registration has been attempted through visual inspection of the difference between images before and after
registration. It is assumed the remainder should be an unstructured noise field. Such a comparison fails to address
variation in contrast and changes in imaging parameters. Validation of registration must analyse two things. Firstly
the accuracy with which important geometric features in the images have been aligned and, secondly, whether the
transformation is consistent with the imaged objects’ known properties. We define a method for examining feature
alignment using the principle that it is expected that segmentations from two images will align once the images
are registered. The transform itself is examined using statistics of the image strain. This method is modality and
application independent. An example is given, for cardiac ultrasound, using popular methods of registration [5,6].

2 Probabilistic Accuracy of Segmentation Maps

Segmentation, manual or automatic, is prone to error. For instance, the effect of partial voluming in MRI and an-
gular loss of resolution with distance from the probe in ultrasound are errors induced by a finite spatial resolution.
These lead to boundaries being delocalised from their precise positions even discounting other factors. Addition-
ally, validation to a ‘gold-standard’ clinician segmentation poses problems, as there exists significant variation
between the clinicians themselves. A recent approach addressing these limitations has been proposed by Warfield
et al [7]. This estimates the most probable segmentation given a number of expert segmentations using an Ex-
pectation Maximization (EM) algorithm. In this paper the concept is applied to contours, to estimate the optimal
border position and the varying degree of uncertainty present. With modalities such as contrast agent ultrasound
imaging, data varies considerably in quality through the image. Where the data is good experts vary less than
where it is poor. In comparing an algorithm’s estimate of a contour to an optimal contour it is desirable to weight
the algorithm’s estimate against the experts’ by some measure of how significantly experts themselves vary. In
order to estimate the optimal contour, we begin with a number of expert results; D 1;D2; � � � ;DR, each containing
a set of points 1 � j � J . We assume that there exists a small finite error associated with these contours, resulting
from finite pixel size, image noise and differing opinions, which we model as a Gaussian with equal initial variance
�
2
i = 1. This simulates a likely error in the range�3 pixels. This variance is measured orthogonal to the tangent to

the contour. Note that it is not necessary to make the probability functions Gaussian. If experts can be persuaded
to specify a confidence boundary on their own results then this can be used to fit more appropriate, assymetric,
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non-infinite extent, probability functions. Defining the image I as the set of pixels i 2 N the probability of a
particular pixel being the edge location for some structure or line,P(L) is calculated;

8i 2 N Pi(L) =
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An EM algorithm iteratively estimates the expert variability, as encapsulated in the model parameters. From
the converged estimates an optimal contour position can be calculated. Figure 1 shows an example on a sam-
ple echocardiogram. The weights measuring the relative belief in each expert, ! d, and the standard deviations

(a) (Overlayed) contours (b) Converged EM probability field (c) EM estimated optimal contour
Figure 1. Example optimal contour estimation results overlayed on cardiac ultrasound image.

perpendicular to the curve at each point of each expert contour, � j
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where
P

i?D
j

d

is the sum in the direction perpendicular to the contour’s tangent. The optimal contour can be
obtained from the probability field generated from the converged EM parameters using a modified watershed
algorithm [8]. The converged EM probability map consists of a set of discrete probabilities P ; 0 � p � 1.which
will be closed contours. The subset ofP , Pmin = P(p < T ), where T is a threshold, provides the initial seedpoints.
These points are assigned labels such that all which are contiguous have the same label. These labels represent the
wells from which the watershed is then grown. Then 8p; T � p � 1 at each step the subset P(p = p i) is obtained.
Each point is assigned to the nearest well assessed as the Euclidean distance to a well’s boundary at the previous
step. The maximal probability contour is defined by the wells’ edges when the watershed transform is complete.

3 Localization of Region Boundaries

To assess a registration field’s validity two properties must be checked. Firstly, mathematical correctness; the
edges between the classes in the two images must align perfectly under transformation by the registration field.
Secondly, transform plausibility; the field must be consistent with the material properties of the region it provides
flow information for. The first criteria can be examined using the alignment of segmentation maps or contours
after one has been projected into the other’s reference frame. Using the estimated optimal contour, described in
section 2, distances between the contours can include a measure of local deviation. The localization of borders
indicates the registration accuracy. Two measures which have proved useful in assessing the accuracy of curve
matching are the Least Squares Error(LSE) and Hausdorff Distance [1]. These are modified to use the estimate
of local differences in expert agreement. The point-by-point error is weighted using the standard deviation of the
optimal contour; Wi = (�opt

i )�1. This reflects the belief that error is more important where experts are in close
agreement than where they differ significantly. Mathematically, if two sets of points correspond to two curves
P = fp1; p2; � � � ; png and Q = fq1; q2; � � � ; qng then the �-weighted Hausdorff distance EH and �-weighted LSE
are1;

EH = ArgMax
i

�WiArgMin
j k Pi �Qj k
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�
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4 Comparing Image Strain

The second criterion to evaluate in order to determine the accuracy of registration is the plausibility of the transform
field. In addition to aligning image structure, it is reasonable to expect that the registration should conform to the

1The variance in both of these measures can also be calculated and other modified measures can be defined using uncertainty in ground
truth.



properties of the materials whose deformation it represents. In practise such conformity is difficult to measure.
Properties of biological structures exhibit significant variation with age, health and sex of an individual as well as
tissue orientation within a structure, even though in-vitro values may be reasonably well known from biopsies [4].
Solutions estimated from Finite Element Methods [3] vary according to the boundary conditions and element shape
used. Therefore, although we would like to be able to validate the transform field directly it is currently impractical
to do so. Instead, the registered images can be used. In principle, Iff the transform is correct then there will be no
strain between the reference image and an image registered to it. The caveat is that the imaging modalities must
be capable of responding to the same structural information; i.e. bone, muscle, skin etc... The plausibility can be
assessed using a hypothesis test to compare an estimate of the distribution of image strain to the predicted strain
distribution. Strain, @x

@t
, is closely related to the local change in phase, 4�, ( @x

@t
= 4�

2�
); it is this observation

which underlies strain imaging [9]. Image phase is a strong indicator of structure and may be estimated using the
Monogenic Signal [10]. Using this representation, an image I may be analysed using a bandpass filter,f BP , and
generalized Hilbert transform iu

juj
. Theoretically, any centre frequency may be specified for fBP , though as the

registered image has been obtained using bicubic spline interpolation on the intensity, it is sensible to restrict the
filter to frequencies below half the image width/height owing to the low-pass effect of this. Applying the Riesz
transform and denoting the two orthogonal filtered components obtained by A x + nx; Ay + ny, where nx(y) is
noise, the phase is obtained;

tan� =

�
Ay + ny

Ax + nx

�
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 I � fBP � u2
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I � fBP � u1
juj

!
(4)

In addition to estimating the strain in the images, from phase information, it is necessary to predict the strain
distribution that would result for an accurate registration. If all structure is correctly aligned (the goal) then strain
will take a distribution solely dependent upon the noise properties of the imaging modality and tissues being
imaged. Consider the case of isotropic Gaussian noise, with variance � 2

n. The signal componentsAx+nx; Ay+ny

will form a 2D Gaussian distribution with mean � = [Ax; Ay]. The phase can be shown to be the following pdf;
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� 3�� the integral evaluates to
p
2���. The phase pdf is then a Gaussian, with

variance (A2
x + A

2
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n . The slight difficulty is that the variance is not constant, but depends upon A x; Ay which

we can only estimate. Note that, as Ax; Ay ! 0 the distribution tends to white noise and the phase is dependent
solely on the noise. As such, validation of plausibility through strain is restricted to points with significant energy.
The noise variance (�2n) can be estimated as the local variance of the difference between the reference image
and itself after median filtering. The phase difference can then be normalized using estimates of A x; Ay and �n;
yielding the test distributionN (0; 1).

Using the estimates of image phase and the predicted strain distribution from the noise analysis, plausibility is ex-
amined through a one tailed hypothesis test using the �2 statistic [11]. Accepting the hypothesis that the estimated
distribution agrees with the theoretic indicates an acceptable level of plausibility for the transform. The Random
Variable x is assumed to be N (�; �). Under hypothesisH0 : � = �0 the test statistic q will be �2(n), where n is
the number of data points. To accept H0 at confidence level (1� �) the inequality of equation 5 must be true. For
a confidence level of 95%, z0:05 = 1:645."
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5 Results

The proposed method was applied to the validation of ultrasound registration fields. Two registration criteria
were used, the Correlation Ratio [5] and Normalized Mutual Information [6]. A set of candidate matches were
regularized using MAP estimation with an isotropic prior. A dense field was fitted using a standard isotropic cubic
B-spline. Intensity interpolation was also performed using a cubic B-spline. Segmentation of the endocardium
for 2 long and 1 short axis cardiac ultrasound sequence(s) (� 60 images) was performed by 3 experts and 1
individual familiar with cardiac imaging. These 4 contours were amalgamated into a single optimal estimate for
the endocardium as described in section 2. Experts opinions were given, arbitrarily, 3 times the weighting of a



non-expert. These segmentations are transformed using the registration fields and the proposed metrics calculated.
For the �2 test on strain between the reference and registered images, a Gaussian rotationally invariant bandpass
filter was used with three different frequencies (f0=fmax) and constant relative bandwidth of 2 octaves. Table
1 shows the comparison. At higher frequencies the localization is poorer and the transform less believable as
indicated by the greater failure rate of the �2 test. The �-weighted metrics show that the transforms are generally
consistent with the expert variance being within�3�. As expected the correlation ratio slightly outperforms NMI.
The �-weight also copes with differences in data quality. Lower dataset quality increases inter-expert variation.

Correlation Ratio � (��) Normalized MI � (��)
LSE in Boundary (pixels) 2.6(1.06) 2.71(0.94)

Variance in Boundary (pixels2) 2.31(0.86) 2.40(0.88)
Hausdorff Distance (pixels) 8.24(2.93) 9.52(2.64)

� weighted Boundary LSE (stnd:dev) 1.44(0.43) 1.33(0.44)
� weighted Boundary Variance (stnd:dev)2 0.98(0.37) 1.02(0.53)
� weighted Hausdorff Distance (stnd:dev) 4.65(2.10) 3.86(1.18)

Fraction of H0 Accepted Fraction of H0 Accepted
�
2(n)0:95 (f0=fmax

= 0:12) 0.983 0.983
�
2(n)0:95 (f0=fmax

= 0:20) 0.850 0.666
�
2(n)0:95 (f0=fmax

= 0:40) 0.600 0.467
Table 1. Error metrics for registration using two popular criterion.

6 Conclusion

A method has been proposed to provide an automated quantitative analysis of the performance of non-rigid reg-
istration algorithms. It validates registration using localization of region boundaries and plausibility of the image
strain between the registered and reference images. The proposed metrics weight error according to the local ex-
pected expert error and appear more sensitive to local deviation than current alternatives. Improvements could be
made by cascading the hypothesis tests and improving the strain model for non-Gaussian noise.
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Skin Lesion Classification Using Curvature of Skin Pattern

Zhishun She a and P.J.Fish b
aASC Technology and Computer Science, NEWI, Wrexham, LL11 2AW, U.K.

b School of Informatics, University of Wales, Dean Street, Bangor, LL57 1UT, U.K.

Abstract: A new feature extracted from curvature of skin pattern is developed. The difference
in skin pattern curvature over the skin and lesion areas is identified as a measure of skin
pattern disruption caused by the lesion. Test results show that the skin pattern curvature
combined with skin line direction is promising for distinguishing malignant melanoma from
benign lesions.

1 Introduction
Since detection of malignant melanoma at an early stage considerably reduces its morbidity and mortality,
computer automatic diagnosis (CAD) of skin lesions using early symptoms would be particularly useful as
an aid in primary care. In order to implement this, a feature set enabling accurate differentiation between
benign and malignant skin lesions is required. One of these features may be derived from a consideration of
skin pattern.

Most areas of the human skin surface are covered with a network of segmented skin lines (glyphic pattern)
[1]. This skin pattern is clearly disrupted when a malignant melanoma disturbs the structure of the dermis [2].
This suggests that a measure of skin pattern disruption can be used as part of a feature set to distinguish
malignant from benign skin lesions [3]. In a previously published procedure [4] the skin pattern was
extracted from normal white light clinical (WLC) images by high-pass filtering and the profile of local line
strength at different angles was used for lesion classification. However the computational complexity of this
process was high and the number of skin line features for lesion classification is large. In order to simplify
the classification algorithm, skin line direction was suggested for lesion discrimination and a method for
generating a skin line vector field was developed [5]. Potential classifiers using first-order differentials of
skin pattern, namely rotation and divergence were investigated [6]. However second-order differentiation of
skin pattern has not been utilized yet.

In the work described in this paper skin pattern curvature is computed from the second differentials of the
skin pattern vector field. The disturbance of this curvature in a lesion area is chosen for lesion classification
and the result of a classification test on a set of clinical skin lesions including 8 malignant and 14 benign
lesions is encouraging.

2 Curvature of Skin Pattern
Skin pattern can be produced by high-pass filtering [4]. Firstly the skin image is smoothed by convolving
with a 9×9 window with a value of 1/81 and then this smoothed image is subtracted from the original. The
result is further enhanced by histogram equalization and finally the output is inverted so that the skin lines
are seen as high intensity.

The skin pattern image is a flow-like pattern that can be locally represented by a skin line vector [5]. There
are three steps to estimate this vector: (1) a line-strength vector is formed from the local line direction and
the local line coherence which is determined over a sub-image with a size of 16×16; (2) the small-scale
variation is reduced by smoothing the line-strength vectors over a 3×3 window; (3) the smoothed skin line
vector field is normalized to a magnitude of unity giving the final skin vector field ),( jiV .

In differential geometry theory )],(,,[ jiVji  is known as a Monge patch surface in three-dimensional

space. At each point P with co-ordinate ),( ji  two principal curvatures exist. They are the largest curvature



),(max jiK  and the smallest curvature ),(min jiK . One curvature measure is often used because of its

useful invariant property. It is the Gaussian curvature ),(),(),( maxmin jiKjiKjiK = . For a Monge

patch surface representation, the Gaussian curvature is given by [7]
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where ),( jiVi , ),( jiV j , ),( jiVii , ),( jiVij  and ),( jiV jj are the partial derivatives of ),( jiV .

Figure 1 shows, from top to bottom, the original image, skin pattern, and skin vector image with lesion
boundary. The left image is that of a benign naevus. The right image is that of a malignant melanoma. It
indicates the disruption of skin pattern by a malignant rather than a benign lesion.

3 Feature Extraction
The skin pattern curvature represents the variation of skin line direction and the disruption of skin pattern
should be apparent from the change of skin pattern curvature. We therefore take the difference of the
average skin pattern curvature in the skin and lesion areas as a straightforward measure of skin pattern
disruption produced by the lesion. A snake-based edge detection technique is used to determine the lesion
boundary [8]. The detected boundary segments the image into skin area sA and lesion area lA . The

average skin pattern curvatures in the skin and lesion areas are calculated by
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respectively, where sN  and lN  are the number of sub-images in the skin and lesion areas. The absolute

difference between sm  and lm  is used for lesion differentiation. Table 1 shows the mean of skin pattern

curvature over skin and lesion areas and their difference for the two examples of skin lesion as shown in
figure 1, suggesting that the difference in skin pattern curvature between skin and lesion might well be a
useful classifier.

4 Classification Results
The image set used in the experimental test of this technique contains 8 melanomas and 14 compound or
junctional naevi. The original images were in 24-bit full colour digital format and were converted to grey-
level to produce 230×350 pixel source images.

The means of skin pattern curvature for skin and lesion areas and their difference were calculated and the
distribution of the skin pattern curvature difference is shown in figure 2. As expected, there is a tendency to
a greater skin pattern curvature deviation in the maliganant melanoma images compared to that in the benign
lesion images leading to the conclusion that this could be a useful addition to a diagnostic feature set.

Feature of skin pattern curvature is combined with that of skin line direction [5] to enhance the classification
accuracy. The scatter-plot of 22 skin lesions in the two-dimensional feature (skin line direction and skin
pattern curvature) space is given in figure 3 which demonstrates that malignant lesions usually have greater
disturbances in skin line direction and skin pattern curvature and thus they can be discriminated from
benign lesions. A receiver operating characteristic (ROC) curve using skin pattern direction and curvature
was shown in figure 4 where the area under the curve is approximately 0.92, indicating an encouraging
classification result.



5 Conclusions
A new skin pattern characterisation, skin pattern curvature, has been developed and suggested as a means
of measuring the disruption of skin pattern caused by a lesion. It makes use of the first and second
differentials of skin pattern. Results comparing average skin pattern curvature within a lesion to that of the
surrounding skin indicate that the skin pattern curvature tends to be disrupted significantly by malignant
lesions but not by benign lesions suggesting that this is a promising feature for lesion classification. Future
work is to find out the histological explanation of skin pattern curvature.
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Figure 1 Top to bottom: original, skin pattern, and skin vector image. Left, benign naevus and right,

malignant melanoma

      Table 1 Means of skin pattern curvature in
skin and lesion areas and their differences

ml ms |ml-ms|
Benign 0.0006 0.0075 0.0069
Malignant 0.0088 0.0589 0.0501

Figure 2 Differences between skin curvature
within lesion and surrounding skin.

  
         Figure 3 Scatter plot of skin lesions                      Figure 4 ROC curve for lesion classification
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Abstract

A system to acquire 3D ultrasound datasets of a patient’s breast is under development. Sets
of in vivo images have been acquired by capturing images from radial planes as a
conventional transducer is mechanically rotated about a cone encapsulating the breast
tissue. Each set corresponds to rotating the transducer at a different, fixed, distance from
the apex of the cone, chosen so that the volume of tissue imaged at one position overlaps
slightly with the next, to allow for subsequent image registration. This paper addresses the
problem of registering pairs of these datasets, accounting for tissue motion during the
acquisition.
The technique developed is applied to the acquired data at reduced resolution. The dataset
from closer to the apex of the cone is divided into non-overlapping subsets. Each subset is
composed of narrow image strips perpendicular to the skin surface, taken from several
adjacent images. The normalized cross-correlation between each of these subsets,
displaced to possible positions in the dataset further from the apex, is calculated.
Correlation information for each subset is combined with knowledge of the relative locations
of the subsets, within an iterative Bayesian framework, to estimate the most likely
displacement of each subset. In the region of overlap, all the subsets from one location
across the width of the original images are selected. The displacement of each subset in
this line is used to define the seam between the two datasets, and this information is used to
join the two sets together, without overlap, at full resolution.

1. Method

Present 2D ultrasound imaging technology generates cross sectional images of limited area. In
order to build extended 3D datasets from such 2D images accurate registration techniques based
upon the image content will, in general, be required. This work addresses this problem in a
specific anatomical and geometrical context, but the techniques developed are applicable to the
general problem of reconstructing 3D ultrasound datasets. The advantage of a 3D dataset of the
complete patient’s breast is increased tissue interaction and localisation information. Automation
reduces operator dependence and increases repeatability. It is crucial that the imaging system
achieves high quality images, and also important that the breast tissue is not significantly
distorted from its natural shape as this would disguise tissue architecture changes which can
discriminate different disease states. These reasons underpin our choice of a conical scanning
geometry, with the transducer held parallel to the skin surface.

A mechanical system has been designed and
built to allow automated acquisition of
ultrasound images of a patient's breast1 (fig.
1). The system requires the patient to lie
prone, and a cone is fitted around the breast,
to stabilise the mobile tissue. The cone is
positioned to hold the nipple at the apex, with
the breast walls pushed gently against the
sides, and a coupling medium preventing any
air gaps. The cone contains a cling film
window running from the apex to the rim. A
conventional ultrasound linear array is held at a fixed position along this window, its scan plane
in the radial direction. The entire mechanism, including cone and transducer is rotated by a

Figure 1. Image acquisition system



Figure 3. Volume subsets

Figure 2. Image plane locations

stepper motor about the cone's central axis. In order to investigate the whole of the breast using
ultrasound, several sets of images are acquired from complete revolutions, with the transducer

held at a different height for each revolution. Two
adjacent heights are chosen so that a small volume of
tissue is imaged both times, allowing for subsequent
image registration.

The number of images in a complete revolution is used
to provide a first estimate of the geometrical origin of
each image, using which the data may be reconstructed
into the 3D conical volume. The same angular speed is
used, whatever the height of the transducer, so the

angular separation of the planes is constant (fig. 2). When the image sets from the two heights
are combined, movements of the tissue that occurred during the acquisition result in visible
discrepancies between the two sets of images. Visual inspection indicates the tissue movement
is primarily parallel to the surface of the cone (directions r and φ), with only small movements
normal to this (direction h). Therefore registration between the two datasets is required, allowing
for movements in these directions, and this must the performed prior to reconstruction into the
conical volume, as this step involves the non-reversible process of averaging, when converting
to a Cartesian dataset, in the denser regions of data towards the central axis.

Firstly the tearing artefact present in the ultrasound images, caused by the lack of
synchronization between the images and the video output, is reduced by selecting only alternate
lines comprising a single interlace field.

Cross-correlation techniques have been chosen for registering the data. This is because
ultrasound images are noisy and features are difficult to segment, having different characteristics
parallel and perpendicular to the beam direction. Evidence from the literature2 suggests that the
most successful techniques in ultrasound are those which use all of the pixel information
available. The normalized cross-correlation does this, and can either be used with the pixel
values, or the magnitude of 3D gradient vectors2, which have been used interchangeably in this
work.

Since the images have the same angular separation, those in the upper dataset represent more
widely separated planes than those in the lower dataset, hence a technique to match the lower
dataset to the upper dataset was chosen. Initial attempts to register large image areas from the
top and bottom datasets were unsuccessful in identifying a well defined peak in the correlation.
This is likely to be due to different tissue deformations at the two acquisition times preventing a
good fit across a large area. Therefore the data is subdivided into smaller subsets for analysis.

The resolution of the data is reduced by median filtering within the image plane and between
consecutive images, (to reduce effects of speckle noise), and then subsampling from 5x5 pixel
patches across five consecutive images. The lower dataset, now consisting of 1/5 as many low
resolution images, is divided into non-overlapping subsets. Each subset is composed of narrow
image strips, perpendicular to the skin surface, taken from several adjacent images, cropped to
remove the very top and bottom rows of the strips (fig. 3).

Each subset is then translated to possible positions in the
reduced resolution upper dataset, and the normalized cross-
correlation calculated, using either pixel or gradient values.
The allowed translations of the subset are displacements
parallel to the surface of the cone, (direction r and φ), and
small displacements normal to the cone surface (direction
h), to match the observed errors. This 3D displacement (r,
φ and h) correlation information is saved for each subset.



Figure 4.
Adjacent subsets

Figure 5. Seam

Figure 6. Registered images

The repeating nature of structures within the breast tissue result in small datasets fitting in
several different places. Therefore there is a need to incorporate the knowledge of the relative
positions of each of the subsets. This is done within a Bayesian framework, following the
example of Noble etal.3 and Hayton et al.4.

Firstly the rigid displacement between the two datasets is calculated, by averaging together the
correlation information from all the subsets. This is taken as the initial estimate for the
displacement of every subset.

The knowledge that a particular displacement is unlikely unless adjacent
subsets also show a fit at a similar position is incorporated. Therefore the r,
h and φ displacement correlation information for each subset is taken, and
modified according to the last estimates of the displacement in that subset
and in the four immediately adjacent subsets (fig. 4). Gaussian distributions
(r, h, and φ steps taken as unit steps for the Gaussian), centred at each of
these five current estimated fit positions, and weighted by the cross-
correlation at that position, are added together, along with a non zero
background probability. This summed probability is used to multiply the
central subset's 3D displacement correlation information. A new estimate of
the displacement for the central subset is taken as the most likely value in this modified
correlation information. This process of updating the correlation information according to the
current estimated displacements, and then updating the estimate, is iterated through until the
greatest change in the estimated displacement for any subset is less than a threshold value.

In the region of the overlap the subsets have well defined estimated
displacements. All the subsets from one location across the width of the
original images in this region are selected, i.e. a circle of subsets around the
cone. The displacement of these selected subsets are used to define the
seam between the two datasets (fig. 5). The pixels up to this seam from the
lower datasets are joined with the pixels in the upper dataset above this
seam. Interpolation is used to estimate the displacements for the full
resolution images and then the nearest radial plane selected.

2. Results

The algorithm has been run on a small sample of
patient datasets, and promising results obtained.

Figure 6 shows an example of the output of the
algorithm, showing the registered images on the left,
and just the upper image from an adjacent radial plane
on the right. It demonstrates that overall there is a
good fit, although small discrepancies are visible
along the fit line.

3. Discussion

The use of the iterative Bayesian approach has made a technique which is noise tolerant and
robust, and able to non-rigidly register the two sets of ultrasound data together.

Low resolution images have been used in this work. One aim of this is to reduce the effects of
speckle noise. The speckle is a high amplitude high frequency noise artefact, inherently present
in ultrasound imaging. The precise pattern is critically dependent on the path of the ultrasound
through the tissue, and so exactly the same pattern would not be expected when imaging the



same tissue region on the two separate occasions. Therefore we wish to decrease the effects of
speckle, but without losing sharpness. The approach taken uses a median filter and then
subsamples the data. An additional advantage of this is the reduction in the size of the datasets
and hence the computational requirements.

Further simplification has been added to limit the degrees of freedom of movement allowed
when fitting the data. Inspection of the datasets indicated that movement of tissue between the
two scanning times generally occurred parallel to the surface of the cone, with only small
movements perpendicular to this. Therefore the subsamples are allowed to move more widely in
the former plane, with separate datasets being defined every five pixels in the r and φ directions,
and only small movements in the latter direction, (h), with no division into separate datasets in
this direction.

The calculated displacements between the datasets are based on the low resolution images, and
so errors of the order of five pixels are expected. Therefore the two sets of data are cropped and
joined at a seam, to avoid the blurring effect which would be created if the data was overlapped
and averaged (compounded). This is an unusual approach to take in ultrasound where
compounding is popular due to its value in reducing noise and artefacts.

The next step will be to implement a similar technique on the higher resolution images, starting
from the fit position determined from the low resolution data. To remain robust against noise,
especially speckle noise, a similar iterative Bayesian technique will be appropriate. However,
when aiming for the higher level of accuracy, deformation in the h direction will become
significant. This could in principle be allowed for by extending the technique to subdivide the
data in the h direction, although this would increase the complexity significantly.

Currently the performance of the algorithm has to be assessed by visual inspection. However,
the correlation information measured during the processing will provide a good source of data
from which to determine how successful the registration has been. A quality factor could be
automatically derived from this data to indicate confidence in the processing for a specific pair of
image datasets. This will be available to the clinician, for whom it is crucial to know how much
they can rely on the accuracy of the data presented to them. This is especially the case in breast
disease, where if the registration has been performed incorrectly a small diseased region could
be entirely excluded from the image.

In the context of this project there are two remaining registration challenges. The first is to
register data from the start and end of the transducer revolution. The second is to correct for
refraction and depth errors, caused by sound speed variations, which result in a misalignment of
the images where they overlap each other around the central axis of the cone. The capability of
the registration technique described to resolve these discrepancies will be explored.
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Abstract. The development of a nationwide eye screening programme for the detection of diabetic retinopathy
has generated much interest in automated screening tools. Currently most such systems analyse only intensity
information — discarding colour information if it is present. Including colour information in the classifica-
tion process is not trivial; large natural variations in retinal pigmentation result in colour differences between
individuals which tend to mask the more subtle variation between the important lesion types. This study inves-
tigated the effectiveness of three colour normalisation algorithms for reducing the background colour variation
between subjects. The normalisation methods were tested using a set of colour retinal fundus camera images
containing four different lesions which are important in the screening context. Regions of interest were drawn
on each image to indicate the different lesion types. The distribution of chromaticity values for each lesion
type from each image was plotted, both without normalisation and following application of each of the three
normalisation techniques. Histogram specification of the separate colour channels was found to be the most
effective normalisation method, increasing the separation between lesion type clusters in chromaticity space
and making possible robust use of colour information in the classification process.

1 Introduction

Diabetic retinopathy is currently the major cause of blindness in the UK working-age population. The fact that
blindness can usually be delayed and often prevented, providing the disease is caught sufficiently early, has recently
prompted the establishment of a nationwide screening programme. Since approximately 2% of the population
are diabetic, and annual screening has been recommended, the screening programme will generate a very large
number of images for analysis. It is therefore not surprising that interest in automated screening techniques [1–3]
has increased rapidly in the last few years. However, despite high resolution colour cameras being the accepted
standard for screening programmes, automated software tends currently to base its analysis on intensity information
alone, either from ‘red-free images’ or using the green channel of RGB colour images. More than a decade ago
Goldbaum et al. (1990) [4] showed significant differences in the colour measurements of lesions in retinal images.
Since then little interest has been shown in colour classification of retinal images. In practice, while models exist
to identify abnormal coloured objects within the retinal image [5,6], without some form of colour normalisation or
adaptation for the background pigmentation the large variation in natural retinal pigmentation across the population
confounds discrimination of the relatively small variations between the different lesion types.

The human visual system is a poor spectral analyser; our perception of colour is based on the responses of only
three receptor types sensitive to three bands of wavelengths. The consequence of this is that widely differing
spectra produce the exactly the same colour perception. Colour cameras also use only three receptors, since this
is all that is required to match human perception of colour. Given the remitted spectrum it is possible to calculate
the red, green and blue colour channels values. However the inverse problem is hugely under-determined, hence
changes which may be deduced using a multi-channel spectrum analyser will not necessarily be detectable using
only three colour sensors. A feature of human vision is that it adapts automatically and subconsciously to relatively
large changes in the illuminating spectrum so that white objects are still perceived as being white. A similar effect
is seen, for instance, if an image is projected onto a screen which is cream coloured; white objects in the projected
image are still perceived as being white. This process is known as colour constancy. In contrast to human vision,
colour cameras do not adapt automatically to changes in illumination. The lesion colour measured by the camera
depends on:

1. Lesion composition: All the lesions are composed of different materials with different reflection, absorption,
and scattering properties.

2. Lesion density: All lesions vary in their size and thickness. The density of the lesion controls how much
light is transmitted/reflected by the lesion (i.e. the colour can vary from the pure lesion colour to almost the
retinal background colour).

∗Email: k.a.goatman@biomed.abdn.ac.uk



3. Scattered/reflected light: The colour and intensity of light scattered and/or reflected within the retina itself
(probably negligible in a healthy, bleached retina) and the orbit.

4. Lens colouration: The lens becomes increasingly yellow (absorbing blue wavelengths) with age above
around 30 years.

Note that all the lesions, except drusen, are positioned in front of all the pigmented retinal tissue (i.e. in front of
the RPE, choroid and photoreceptors). All the lesions are of a similar colour and occupy a relatively small area of
the complete colour space.

2 Method

Three colour normalisation algorithms originally intended for making colour images invariant with respect to the
colour of the illumination were investigated for their ability to make the retinal images invariant with respect to
background pigmentation variation between individuals. Colour normalisation does not aim to find the true object
colour, but to transform the colour so as to be invariant with respect to changes in the illumination — without
losing the ability to differentiate between the objects of interest. The three methods tested were:

1. Greyworld: The greyworld normalisation assumes that changes in the illuminating spectrum may be mod-
elled by three constant multiplicative factors applied to the red, green, and blue channels. Since the mean
values of the red, green, and blue channels will be multiplied by the same constants dividing each colour
channel by the respective mean value removes the dependence on the multiplicative constant. An itera-
tive variation of the greyworld normalisation [7] (which includes intensity normalisation) was not found to
perform significantly better.

2. Histogram equalisation: Histogram equalisation of the individual red, green, and blue channels represents
a more powerful normalisation transformation than the greyworld method [8]. It is based on the observation
that for each colour channel pixel rank order is maintained under different illuminants, i.e. if under one
illuminant the red values of two pixels are r1 and r2, where r1 < r2, then under another illuminant, although
the magnitudes of r1 and r2 may change, r1 should still be less than r2 (there are, however, some conditions
where this will not be true). Histogram equalisation is a non-linear transform which maintains pixel rank
and is capable of normalising for any monotonically increasing colour transform function. The proportion
of the different tissue types must be similar in all images to be normalised. Equalisation tends to exaggerate
the contribution of the blue channel (the normal retina reflects little blue light).

3. Histogram specification: Histogram specification [9] transforms the red, green, and blue histograms to
match the shapes of three specific histograms, rather than simply equalising them. This has the advantage of
producing more realistic looking images than those generated by equalisation, and it does not exaggerate the
contribution of the blue channel. For this study the reference histograms were taken from an arbitrary normal
image with good contrast and coloration. Histogram specification has been used before for normalising
retinal colour to aid the detection of hard exudates [10].

In order to compare the normalisation methods a dataset of 18 colour retinal fundus camera images was com-
piled, where each image was known to contain at least one of the following lesion types which are important for
retinopathy screening:

• Cotton wool spots (CWS): Swelling of the nerve fibre layer axoplasm in response to retinal ischaemia,
transforming it from transparent to highly reflective, appearing bright (slightly blue) white. They can be very
dense (for instance they may completely block fluorescence emanating from beneath them in an angiogram).
They have ill-defined edges (hence their name). They usually disappear spontaneously after around 8 weeks.

• Hard exudates (HE): Lipid deposits in the inner nuclear layer as a result of vascular leakage. They are
highly reflective and appear bright yellow, often with a distinctive spatial distribution.

• Blot haemorrhages (BH): Leakage of blood in the inner nuclear layer. They appear dark red.

• Drusen: Debris deposited below the retinal epithelium layer (RPE) and collected in Bruch’s membrane due
to the turnover of retinal receptor pigments. They appear yellow. Although not related to diabetic retinopathy
(they are more commonly associated with age related macular degeneration) they have a similar appearance
to HE and are therefore a confounding factor in the identification of HE.



The images were acquired using a Topcon fundus camera and recorded on 35 mm colour slide film. The images
were digitised (approx. 1000 dpi) using a Nikon Coolscan 4000ED slide scanner, producing RGB colour images
with 8 bits per colour channel. The retinal images are circular; masks were generated automatically by simple
thresholding of the green colour channel followed by 5 × 5 median filtering to exclude the dark background from
the colour normalisation calculations. Regions of interest were drawn around the different lesions for all the images
and masks produced with a specific greylevel value representing each lesion type. Five of the images contained
CWS, fourteen contained HE, and six contained BH. Only two of the images contained drusen. The same region
of interest masks were used to analyse the images before and after normalisation.

Colour may be represented independently of its intensity by dividing the red, green and blue channel values by the
sum of the three channels, i.e.

r = R/(R +G + B), g = G/(R +G + B), b = B/(R +G + B)

This reduces the three-dimensional RGB colour space cube to a two-dimensional triangular space (since the third
ordinate is always one minus the sum of the other two). The resulting intensity normalised coordinates are known
as chromaticity coordinates. For each image the average chromaticity coordinate for each lesion type present was
calculated. In the chromaticity space, a line between any two points passes through all the colours which may be
formed by mixing the colours represented by the end points. In this application the lesion colour may vary from
pure lesion almost to the background colour so the different lesion types are expected to radiate from the region of
the chromaticity space which represents the background colouration.

3 Results

Figure 1(a) plots the average lesion colours in each image without any normalisation. The ellipses shown are
centred on the mean position for each lesion type, with the major axis aligned with the direction of maximum
variance (found using the Hotelling transform). The radius of the major axis represents two standard deviations in
the direction of that axis. The minor axis length represents two standard deviations in the orthogonal direction. All
four lesion chromaticity values are seen to overlap. Figure 1(b) shows the effect of the greyworld normalisation,
which partially separates the lesion clusters, in particular differentiating the haemorrhages. Figure 1(c) shows the
result of equalisation, which also differentiates the haemorrhages, but appears to increase the overlap in the other
lesion types. Finally the result following histogram specification is shown in figure 1(d), which shows the clearest
separation of the lesion clusters.

4 Conclusions

Three normalisation techniques were tested on a set of retinal images. Histogram specification was found to be the
most effective normalisation method, improving the clustering of the different lesion types, removing at least some
of the variation due to retinal pigmentation differences between individuals. Colour classification is not intended
to replace existing intensity-based classification but to augment it and improve overall classification accuracy.

It was not anticipated that histogram specification should perform so much better than equalisation. One possible
explanation is the exaggerated contribution of the blue component following equalisation, which possibly loses
subtle but important differences in the blue values due to equalisation quantisation.

An important question is whether the differences in retinal background pigmentation are modelled acceptably as
a variation in the colour of the illumination. While this is a safe assumption for changes due to lens colouration
(since all the incident and remitted light are so filtered), it is less so for background pigmentation changes since
not all retinal tissues are equally affected (i.e. the only contribution for non-pigmented tissues such as the optic
disc and highly reflective lesions is from scattered and reflected light from pigmented tissue). Clearly the model
is inadequate for dealing with local pigmentation variations across an individual retina. However, despite these
reservations the results appear to show that an average correction is much better than applying no correction to the
images.

Variation in colour due to scattering in surrounding tissue and reflections within the orbit can be greatly reduced by
imaging using a confocal scanning laser ophthalmoscope (SLO) rather than a fundus camera. Early results using
our colour SLO [11] appear to show much less variation in lesion chromaticity, resulting in less overlap between
lesions even prior to normalisation.
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Figure 1. Chromaticity plots: (a) No normalisation, (b) Greyworld normalisation, (c) Histogram equalisation, (d)
Histogram specification.
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Abstract. The image quality of Digital Subtraction Angiograms (DSA) is limited by high image noise and poor
contrast of smaller vessels. In this paper we present a nonlinear data fusion system that combines the temporal
and spatial information contained within a set of consecutive DSA frames, to provide an output which displays
enhanced contrast between vessel and background regions of the vascular tree. Results are compared against
the mean and median averages of the set and the method is found to increase vessel contrast.

1 Introduction

Digital Subtraction Angiography (DSA) allows the visualisation of blood vessels via injection of contrast media.
Often it is desirable to obtain a reference image which displays the vascular tree morphology, e.g. for use during
image-guided catheter surgery. Images extracted from DSA sequences suffer from low signal-to-noise ratio and
small blood vessels may appear particularly faint. In this paper we present a nonlinear data fusion system that com-
bines information from a set of consecutive frames in a DSA sequence to provide an output frame with enhanced
contrast between vessel and background regions. This provides a better reference image and can also be used as a
precursor to subsequent segmentation.

Put simply, data fusion is the process of combining multiple sources of data. A good example of a data fusion
architecture is provided by the brain. Data from several physical sensors (eyes, ears, haptic sensors etc.) are
combined with abstract information such as past experience, and processed to create a description of the local
environment. Much research on data fusion has been carried out, e.g. for autonomous control for robots [1]
[2], automobiles [3] and other vehicles [4]. Data fusion is also being used for geoscience & remote sensing
applications [5] and medical imaging applications [6]. Image data for this work was obtained from a Philips
Integris fluoroscopy system, recorded onto DVCPRO format digital video tape via sampling of the video signal
input to the fluoroscopy system monitor. Our data “sources” are a set of frames ( �������
	���� pixel, 8-bit) taken
from a DSA sequence showing the injection of contrast media into the bloodstream. The information extracted
represents the distribution of X-ray transmission over the 2D imaging plane.

The methodology behind this fusion approach is based on the nonlinear fusion system proposed by Steinhage and
associates [7] [8] [9] [10]. The basis of the system is to represent physical measurements of the system (i.e. sensor
readings) as local stable points or “attractors” of a dynamic system [7]. The dynamics are solved iteratively using
the Euler method to yield a representation (or “estimate”) of the physical state of the system. Prior to computation,
we simplify the system by converting each 2D image into a one dimensional sequence using a Hilbert [11] scan
path.

2 Methodology

Nonlinear dynamics uses the principle of “attractors” [7], a local stable point in the derivative of the state variable

with respect to position � . An attractor has ������

� � and negative gradient �
�
���� ��� � such that if an attractor is

pushed slightly along the � axis, the negative gradient will push the system back towards the stable point, correcting
for the slight perturbation. Conversely, a point with a positive gradient �

�
���� �
� � is called a “repellor”, an unstable

point where a small perturbation will cause the state variable to move in the direction of the displacement.
� 

� �

����� �! 
#" ��$&%�')(+* ,�-�.0/214365
��87 � (1)

where ������ defines the attractor for a sensor which takes a measurement � (pixel intensity value) of the system at
position � . 
9" ��$ is the state variable for which the derivative is being calculated, the X-ray transmission. � is
:
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the position along the one dimensional sequence, thus

#" ��$ is a function that describes how the pixel intensity

fluctuates along the 1D sequence. � is a weighting factor which can be assumed to be unity. � is the “width” of the
attractor and determines the size of the basin of attraction created by the stable point. Because the width is finite,
attractors have a finite region of influence, hence the term “local” stable point.

Computation uses a sliding window of � ��� � frames, taken from the DSA injection sequence. Each 2D frame
is converted into a one dimensional sequence using a Hilbert scan path [11]. This path maximises the time spent
in local neighbourhoods within the image and so preserves spatial information more so than, for example, raster
scanning. Each position, � , along the sequence records the value of X-ray transmission (via the grey-level intensity)
at a certain location

"����	� $ and time.

As the 1D sequences are traversed, a potential well function ������ is computed at each pixel location. ������ tells us
how quickly the value of


�

will move away from


�

( 
 if � changes by ��� away from � 
 ( 
 . This is formed on

the basis of sensor data (over the time period of � frames) and also a priori knowledge. From initialisation with
#" ����$ � Median � � " ����$ 
 � � " ����$�� ������� � " ��� $�� % , the Euler method is used to solve the dynamics and yield an estimate
for



at each location within the frame.
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 control the relative strengths of sensor and a priori knowledge contributions. The ratio *��,+-*
between these two terms was empirically found to provide the best image contrast. We now discuss the formation
of
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 ! � 
 terms, the contributions from sensor readings and a priori knowledge.

2.1 Sensor contributions

The sensor contribution term (
" ��� � ��! � ) in equation 2 takes the same form as equation 1," ��� � ��! � " � 
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 � � � � " � 
 $ �  
 " � 
 ( 
 $8%10325476  � � " � 
 $��  
#" � 
 ( 
 $&% �8 ��� � 9 (3)

where � " � 
 $�� is the reading of sensor : at position � 
 . 
#" � 
 ( 
 $ is the nonlinear estimate for the state at the previous
position, � 
 ( 
 . ��� is the width of the attractor for sensor : and � � is its individual weighting. Given � frames, we
have � measurements at each position � 
 , with an attractor representing its grey-level intensity. These are summed
to produce a potential at each pixel that is determined by the distribution of grey-level intensities at that location
in each frame. The summation process generally reduces the number of local stable points in the system. Which
of these points is selected at each iteration depends upon the previous estimate for the system. Thus the weakest
attractor could be selected if it had the same location as the attractor from the previous step. However, if other
sensors continued to add together to form a stronger attractor, this would soon influence the output more forcibly.

2.2 A priori knowledge contribution

The fusion scheme can be thought of as a weighted election, each frame effectively “voting” for a certain intensity
value at each pixel. Given a set of frames in which contrast agent is flowing, pixels can have a range of values.
High intensities correspond to background regions, low intensities may represent the presence of contrast agent
- i.e. blood vessel. For a certain pixel location, if all frames record similar intensity values, the output will be
a similarly valued estimate. However, consider the case where contrast agent reaches a pixel location within the
time period of interest. The set of � frames will therefore have a mixed population of intensities. To enhance the
visibility of vessels we must favour low over high intensity values. This is achieved by using an a priori knowledge
term that favours intensity values that are lower than the median," %'& � 
 ! � 
 " � 
 $ � �. ��/ 
<; � � " � 
 $��  >= " � 
 $&%?+ � " � 
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� + otherwise
(4)

� " � 
 $ � is the grey-level intensity value for pixel position � 
 and frame : . = " � 
 $ is the median pixel intensity at
position � 
 , = " � 
 $ � Median � � " � 
 $ 
 � � " � 
 $ � ������� � " � 
 $ � % .
The � " � 
 $�� � = " � 
 $ condition is required to avoid favouring intensities higher than the median and consequently
failing to trace vessels where the majority of the frames contain contrast agent. The term provides a sliding scale



of emphasis, the greater the distance from the median, the greater the influence. However, the system does not
jump from one low intensity outlier to the next due to the calculation strategy which relies upon the past history of
the system to help make decisions.

2.3 Results and Discussion

The right hand column of figure 1 shows the nonlinear output results produced from running the system with� � � � , � � � � ��! � � * � � , � � & � 
 ! � 
 � � � * , widths � � � 	�� and normalised weights, increasing towards the end of the

set. These parameter values were found to provide the best image contrast defined by
� � � � �����	�
�	�
� ( � � � �
���������

1
�	����� �� � � ����� ����� .

We compare these results with the mean and median averages, displayed in the left and centre columns of the
figure. Figure 2 plots vessel contrast (defined as against frame number. To produce this contrast measure, pixels

Mean Median Nonlinear

frame
10

frame
25

frame
40

Figure 1. Mean, Median and nonlinear output frames for a set of � � � � frames, starting at frames 10, 25 and 40.
For display purposes, only a centrally placed *�	�� �>*�	�� pixel window is shown. All images are displayed using
the same colourscale.

are classified as either vessel or background by a manually segmented mask. Figure 2 shows that for starting
frames � � � � � , the nonlinear method produces increased vessel contrast by enhancing each vessel as soon as it
appears. The mean and median averages only increase the contrast significantly once the majority of frames in
the set record a high concentration of contrast media. Beyond ��� � � � , contrast within the nonlinear output falls
below that of the averages due to the contrast agent bolus moving out of the main vessel segments - see the lower
right image of figure 1.



Figure 2. Contrast measure versus frame number for nonlinear ( � ), median ( � ) and mean ( � ) frames.

3 Conclusions

In this paper we have presented a nonlinear fusion system designed to enhance the contrast of vessels in DSA
images. Results presented are contrasted against the mean and median averages. The method is found to enhance
the visibility of blood vessels during the infusion of contrast agent.
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Abstract. In clinical diagnosis of pigmented skin lesions asymmetric pigmentation is often indicative of 
melanoma. This paper describes a method and measures for characterizing lesion symmetry. The estimate of 
mirror symmetry is computed first for a number of axes at different degrees of rotation with respect to the 
lesion centre. The statistics of these estimates are the used to assess the overall symmetry. The method is 
applied to three different lesion representations showing the overall pigmentation, the pigmentation pattern, 
and the pattern of dermal melanin. The best measure is a 100% sensitive and 96% specific indicator of 
melanoma on a test set of 33 lesions, with a separate training set consisting of 66 lesions. 

1. Introduction 

In clinical diagnosis of pigmented skin lesions a lack of symmetry in the pattern of pigmentation deems the 
lesion suspicious. This association between asymmetry and malignancy is reflected in a number of scoring 
schemes in dermatology, such as the Seven-Point Checklist [1] and the American ABCDE list. In dermatoscopy 
clinicians are instructed to look out for asymmetry in the pattern of pigmentation and to distinguish it from 
asymmetry in lesion shape which is supposed to have little diagnostic value in this technique [2]. Most existing 
computer methods (e.g. [3]), however, concentrate on shape symmetry measures. 

Human observers are known to be able to detect symmetric patterns with great ease, but are not so good at fine 
grading of the asymmetry [4]. They also tend to respond more to symmetry of shape than to symmetry of a co-
existing pattern [4]. Our earlier study has shown that both the inter-observer and intra-observer repeatability are 
moderate (both around 65%) when assessing the symmetry of skin lesions [5]. These facts have motivated us to 
develop objective symmetry measures for pigmented skin lesions and to evaluate how well they correlate with 
histological diagnosis of a lesion as malignant melanoma and also with clinical assessment.  

2. Methods and measures 

Image analysis research has produced a number of methods for finding either the best or all axes of symmetry in 
images of potentially symmetric objects and patterns [6]. Many of these algorithms incorporate a means of 
comparing the degree of symmetry amongst a number of putative symmetry axes in order to select the best one. 
In this work we do not reject those inferior axes, but instead compute statistics related to all the putative axes. 
These statistics are then used as an indicator of the degree of symmetry. The hypothesis is that normal lesions 
would show the higher degree of symmetry than abnormal ones. 

2.1 Finding the best symmetry axis 

A measure by which the best symmetry axis can be found is based on the Smith & Jenkinson’s symmetry score 
[6]. Their algorithm also provides a method for finding and evaluating a number of  putative symmetry axes. 

For all possible orientations ϕi of the reflective symmetry axis, A(ϕi) 
 For all lines B(r) perpendicular to the A(ϕi), placed at a distance r from the start of the axis A(ϕi) 
  Compute symmetry scores, s(x), for each point x along B(r) 
  Find the best centre of symmetry on B(r), i.e. point xp which has the best symmetry score, sr(xp) 
  Add the best symmetry score (sr(xp)) to the total score S(ϕi,*) for axis A(ϕi),  
   i.e. S(ϕi, xp) = S(ϕi, xp) + sr (xp) 
 Find the maximum of all the scores in S(ϕi,*);  
 The angle ϕi  for which Si = maxi(S(ϕi,*) is the best axis of symmetry. 

The symmetry score is computed using the following formula: 

 s(x) = 
∑abs(Ix+i + Ix-i)  - ∑abs(Ix+i - Ix-i)  * 

∑abs(Ix+i + Ix-i)  + ∑abs(Ix+i - Ix-i)  + g
 (1) 

where Ix is the image value at position x along B(r). Parameters g and  are derived from global and local 
contrast respectively and their role is to compensate for otherwise excessively high values of s(x) in uniform 



areas of the image. Symmetry measures S(ϕi,*) are computed for 16 discrete orientations, i.e. i = 1, …, 16. 

The original algorithm is designed to find the best axis of symmetry. In this work we are interested in estimating 
the degree of symmetry for the lesion. Therefore, in addition to choosing the axis with the largest score to be the 
symmetry axis, all the scores Si are retained, their features extracted and combined into a number of measures 
which characterise the lesion symmetry. 

2.2 Symmetry scores and their properties 

A useful analysis of the symmetry scores is carried out in the original article (figure 2 in [6]). The following 
features are associated with a good symmetry axis (see Figure 1, left): 
(1) the plot of the scores is unimodal, i.e. there is a single major peak in S(∗, x) 
(2) the higher the peak the better the underlying symmetry 
(3) the smaller the spread of the peak the better the underlying symmetry 
(4) the less skewed the peak, the better the underlying symmetry. 

  
 (a) (b) 

Figure 1. (a) Two plots of S(∗, x) exemplifying poor and good symmetry scores; (b) The plot of one of the 
global symmetry indicators, d(ϕ) = stdev( S(ϕ, x) ). 

Quantitative indicators corresponding to the above characteristics can be computed as follows: 
(1) u = | medianx( S(ϕ, x) ) - averagex( S(ϕ, x) ) | 
(2) m = maxx( S(ϕ, x) ) 
(3) d = stdevx( S(ϕ, x) ) (computed as though S(*,x) were a probability distribution) 
(4) k = | skew( S(ϕ, x) ) | (computed as though S(*,x) were a probability distribution) 

In the above expressions, the perfect symmetry will yield u = 0, m = 1, d = 0 and k = 0. 

2.3 Global symmetry measures 

In the design of global symmetry measures the maximum score is assigned to a pattern showing “the repetition 
of exactly similar parts facing a centre” [The Concise Oxford Dictionary], i.e. a pattern with perfect rotational 
symmetry. In terms of the quantitative indicators u, m, d and k computed for each angle ϕ, i.e. u(ϕ), m(ϕ), d(ϕ) 
and k(ϕ), such pattern will attain the perfect symmetry scores for all the angles ϕ. Departures from symmetry 
will decrease the scores, thus the more symmetric the image, the more angles will show high scores. Based on 
this reasoning, the following global symmetry measures have been defined as follows: 

av_m = averageϕ(  m ) the higher av_m, the higher is the average symmetry score across all the angles, the better the 
overall symmetry 

sd_m = sdϕ( m ) the higher sd_m the more variability in symmetry for different angles, the worse the overall 
symmetry 

max_m = maxϕ(  m ) the higher max_m the better the single mirror symmetry 

av_d = averageϕ( d ) the higher av_d the greater the average spread of S(*,x), the less symmetric the pattern 

min_d = minϕ( d ) the higher min_d the less symmetry shown by the best symmetry axis and thus by the pattern as 
a whole 

max_d = maxϕ( d ) the higher max_d the less symmetry shown by the worst symmetry axis; low value indicates the 
overall good symmetry. 

sd_d = sdϕ( d ) the higher sd_d the more variability in spread of S(ϕ,x) across different angles ϕ; this may 
indicate a highly asymmetric pattern if sd_m is high or max_m is low; or a pattern with at least 
one good mirror symmetry if max_m is high. 



3. Experiments 

Images of the lesions were acquired at Addenbrooke’s and Norwich hospitals using a SIAscope [7]. This 
dedicated imaging device takes a number of images of the same area of the skin at different wavelengths. In 
addition to this “raw” data, a number of  parametric maps are computed showing the distribution and levels of 
melanin, haemoglobin and collagen [8]. The data set comprises 99 pigmented lesions which include 15  
histologically confirmed melanomas and a variety of other non-malignant cases. 51 lesions show the presence of 
dermal melanin – a highly sensitive (96%) but not so specific (57%) sign of melanoma [5]. Image resolution is 
40 microns per pixel. All the symmetry computations are restricted to the body of the lesion, ignoring the 
surrounding skin. In this study the lesions were delineated by a clinical expert (JP). 

The performance of the global symmetry measures was tested for three classes of lesion images. The symmetry 
of lesion pigmentation was assessed on 99 images representing the “raw” blue band (Fig.2, Left). In this part of 
the spectrum there is strong absorption by both melanin and blood and these images represent best the overall 
lesion pigmentation. The symmetry of pigmentation pattern was assessed on 99 images (Fig.2, Right) in which 
the underlying low-frequency changes (Fig. 2, Centre) were subtracted from the lesion image in the blue band. 
This was to remove variations associated with typical pigment distribution where lesion is thickest at the centre 
and thins out towards periphery. These underlying trends were found by modelling of radial lesion profiles using 
the edge model defined by the equation y( r, A, T, s ) = B + A / (1 + s (r – T) ), where B is the skin tone, A 
corresponds to amplitude, s – to edge sharpness and T is the mid-point edge location [9]. The symmetry of 
dermal melanin pattern was assessed on 51 images showing dermal melanin and computed by a method 
described in [10]. In these images pixel values are related to depth at which dermal melanin is found. 

   

Figure 2. Left: original image; Centre: reconstructed underlying pigmentation; Right: pigmentation pattern. 

For each image class all the symmetry measures listed in 2.3 were computed and preliminary ROC analysis was 
carried out to establish the best performing measures. The lesions were then divided into the training and test sets 
at ratio 2:1 and the ROC analysis was performed for the three best performing measures. Using a standard 
procedure, ROC curve was computed on a training set for a number of different threshold values, each yielding a 
given sensitivity and specificity. The best threshold value was deemed to be the one with the minimum distance 
to the ideal classification point (sensitivity and specificity both at 1.0). This threshold was then applied to the test 
set and values for sensitivity and specificity recorded. 

4. Results and discussion 

The initial ROC analysis has identified av_d, sd_d and min_d as the best melanoma indicators. All these 
measures are related to the shape of distribution of the symmetry scores S(*,x). The measures derived from the 
magnitudes of the symmetry scores were similarly specific but much less sensitive. 

4.1 Correlation with diagnosis 

Table 1 lists the results showing how well the three selected measures served as the indicators of melanoma. It 
can be seen that all the measures listed above are fairly good melanoma predictors. Many show a very good 
balance between sensitivity and specificity and as such are good candidates for subsequent lesion classification. 
The best melanoma predictor is min_d derived for the overall lesion pigmentation. In fact, all the measures 
performed best on this image data. The measures derived for the pigmentation pattern data do not show the  
improvement hoped for over the results for the overall pigmentation. 

4.2 Correlation with clinical assessment 

An expert clinician visually assessed the symmetry of distribution of dermal melanin. ROC analysis showed a 
very good correlation between this assessment and melanoma (sensitivity 0.92, specificity 1.00). It was 
interesting to investigate how well the computed measures of symmetry correspond to this visual assessment. 
Table 2 shows the results and it can be seen that the correspondence is very good. Further detailed analysis 



indicated that all the patterns considered highly asymmetric were also judged as such by the clinician. The same 
was the case for the least asymmetric patterns. In the “grey” area in between, computer measures tended to grade 
patterns as being more symmetric than the clinician did. This needs to be investigated further, for example to 
reject the possibility that the clinician would subconsciously assess the pattern less symmetric if there was other 
evidence indicating melanoma. 

 av_d  sd_d  min_d  
Symmetry of lesion pigmentation as melanoma predictor 

 Sens. Spec. Sens. Spec. Sens. Spec. 
training 0.70 0.78 0.60 0.71 0.80 0.80 

test 0.80 0.75 0.80 0.75 1.00 0.96 
all 0.73 0.78 0.67 0.71 0.80 0.82 

Symmetry of the pigmentation pattern as melanoma predictor 
 Sens. Spec. Sens. Spec. Sens. Spec. 

training 0.80 0.79 0.70 0.78 1.00 0.73 
test 0.80 0.71 1.00 0.61 0.80 0.67 
all 0.87 0.76 0.80 0.71 0.93 0.69 

Symmetry of dermal melanin as melanoma predictor 
 Sens. Spec. Sens. Spec. Sens. Spec. 

training 0.67 0.68 0.56 0.92 0.67 0.80 
test 0.75 0.61 0.75 0.77 0.52 0.70 
all 0.69 0.66 0.62 0.89 0.62 0.76 

Table 1. Sensitivity and specificity of various measures as melanoma predictor for three types of image data. 

Symmetry of dermal melanin  
 av_d  sd_d  min_d  
 Sens. Spec. Sens. Spec. Sens. Spec. 

training 0.79 0.80 0.88 0.90 0.67 0.80 
test 0.91 0.67 0.82 0.83 0.50 0.70 
all 0.80 0.75 0.86 0.88 0.62 0.76 

Table 2. The degree of correspondence between the clinical and the computer assessment of symmetry. 

5. Conclusions 

The measures designed to evaluate the overall symmetry of the lesion have been shown to perform well as 
melanoma indicators. They were also shown to correlate well with the clinical assessment of asymmetry of 
dermal melanin. Work is in progress to incorporate these measures into a classification scheme for 
differentiating between melanoma and other pigmented skin lesions. 
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Abstract. Proteomics research relies heavily on electrophoresis gels, which are complex images containing
many protein ‘spots’. The identification and quantification of these spots is a bottleneck in the proteomics
workflow. We describe a statistical model of protein spot appearance that is both general enough to represent
unusual spots, and specific enough to introduce constraints on the interpretation of complex images. We propose
a robust method of automatic model construction that is used to circumvent manual model construction which
is subjective and time-consuming. We show that the statistical model of spot appearance is able to fit to image
data more closely than the commonly used spot parameterisations which are based solely on Gaussian and
diffusion formulations.

1 Introduction

Proteomics is the study of the complete set of proteins in a cell or organism throughout the entire life-cycle. It is hoped that
this research will enhance understanding of cell function in general and, more specifically, it will also identify proteins that
can be used as drug targets and disease markers. The main barrier to proteomics research is complexity. It is estimated that
total number of proteins in a human cell could be as large as 500,000. Key to any analysis are separation and detection
technologies. A well-established and widely used technology is 2-Dimensional Electrophoresis (2-DE). This process
separates protein mixtures by iso-electric point (pI) and molecular weight (MW). Separation results from two separate
diffusion processes which are driven along orthogonal axes in a polyacrimide gel, resulting in a grid of protein strains.
The separated proteins are visualised by pre or post staining, yielding an image, containing protein ‘spots’. A segment
from such a 2-DE gel image is shown in figure 1. In practice, 3,000-4,000 spots can be visualised on a single gel image,
each representing an individual protein strain. The analysis of these complex gel images is a significant bottleneck in the
proteomics research workflow [1].

Image analysis of 2-DE gels requires the identification of a large number of individual spots. These must be characterised
for further analysis of the sample. One of the first steps in any spot detection algorithm is the segmentation of individual
spots from the background. After the segmentation step, spots are quantified and represented as a list of parameters over
which further analysis can be carried out. Commonly, protein spot models are used to aid quantification by imposing
constraints, which in turn improves the robustness of the solution. The most commonly used spot model is a Gaussian
function [2]. Figure 1(a) shows an example of a typical protein spot with a Gaussian profile. This model is assumed to
provide a good representation of most spots present in most gel images. However, it has been shown that Gaussian models
produce an inadequate fit to some protein spots, most notably large volume, saturated spots [3]. Figure 1(b) shows an
example of a high volume protein spot exhibiting a saturated, ‘flat-top’ shape. Bettens [3] addressed this shortcoming by
proposing a model based on the physics of the spot formation. Protein spots are formed by a diffusion process, which is
only adequately represented by a Gaussian when the initial concentration distribution occupied by the sample has a small
area. Bettens’ diffusion model more adequately represents spots in the gel when this assumption is not met.

Both the Gaussian and diffusion models assume perfect diffusion across the gel medium. Spots created by a perfect
diffusion process will be regular and symmetric. In practice, the diffusion process is not perfect and spots can be formed
with unpredictable, unusual shapes. An example of such a spot is shown in Figure 1(c). To represent more adequately the
full range of observed spot shape, we have developed a new protein spot model that is both flexible enough to represent
irregular shape variation and specific enough to retain usable constraints on the interpretation of gel images. The physical
process by which irregular spots are formed is extremely complex. It would be daunting task to directly estimate all the
physical variables affecting spot formation. Instead, we have used a Point Distribution Model (PDM) [4] to represent
observed variation in spot shape. Gaussian convolution simulates the diffusion process and forms a full model of spot
appearance. In section 2 we describe the model, together with an automatic method for model construction. Results of an
evaluation of the model and a discussion are presented in sections 3 and 4.
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(a)

(b)

(c)

Figure 1. A segment from a silver stained 2-DE gel image. Each visible ‘spot’ is an individual protein strain. Examples
of individual protein spots are shown with contour lines and as a 3D surface. (a) Gaussian, (b) ‘Flat-top’, (c) Irregular.

Figure 2. Spot model formation. A flat shape is convolved with a bi-variate Gaussian kernel, which is equivalent to a
diffusion process.
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Figure 3. Robust model construction. (a) The first 3 of 10 modes (±2 std.dev.) of a PDM built using a standard PCA. (b)
The first 3 of 6 modes of a PDM built using Robust PCA. Both models were trained with the same data. (c) Four examples
of boundary shapes that were down-weighted to 0 by the robust PCA.
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Figure 4. (a) Mean residual after model fitting to 403 spots in the silver image and 573 spots in the fluorescent image. (b)
and (c) mean residual̄r of model fit plotted by increasing spot volume for each model. Spot volume group 1 contains the
smallest 10% of spots by volume, rising to group 10 which contains the largest 10% of spots by volume.



2 Modelling Protein Spot Shape and Appearance

To represent observed variation in protein spot shape we have used a PDM trained with a set of protein spot boundaries.
The PDM only represents shape, but we require a full model of spot appearance. Protein spot formation in 2-DE gels
is a diffusion process which is equivalent to convolution of an initial concentration distribution with a 2-D Gaussian
kernel. We have assumed the initial concentration distribution can be represented as a flat 2-D shape within the boundary
represented by the shape model. This flat shape is convolved with a bi-variate Gaussian kernel giving a full model of spot
appearance. Figure 2 shows an example of the full spot appearance model. We define our model using the parameter
vector~p = (B, I, x0, y0, σx, σy, s,~bs) , whereB is an additive background term,I is spot intensity,x0 andy0 control
location,σx andσy control the spread of the Gaussian along the two directions of diffusion,s is a scaling for the spot shape
(from the alignment procedure) and~bs is a vector of PDM shape parameters. This model is equivalent to the bi-variate
Gaussian whens = 0, and is equivalent to the diffusion model when the shape parameters,~bs , represent an elliptical
shape.

2.1 Automatic Spot Model Construction

Section 2 described the basis of the models we use. Here we address the practical issue of building the model: determining
the training shapes from spot images and calculating the distributions of parameter values. In many applications of PDMs,
manual marking of landmark points has been used. Due to the complexity of the images, and the number of spots required
to build a model, this is an impractical strategy in this case. We proceed by segmenting the spots in the training images,
smoothing the boundaries obtained using a general shape representation and making the landmark points evenly spaced
round the resulting boundary. As the boundaries are extracted from real image data, a number of overlapping spots will
be represented. These need to be detected and excluded from the training data, as their inclusion would bias the model
and result in reduced specificity.

2.1.1 Generating the Training Set

Raw spot boundaries are obtained by thresholding the Laplacian of Gaussian transform of the training gel images (Gaus-
sianσ = 5). The resulting boundaries are smoothed using a Fourier shape descriptor [5] resulting in a parametrisation
of the spot shape by the Fourier coefficients (5 harmonics). Spot appearance is modelled by convolving this smoothed
shape with a Gaussian kernel, in the same way described in section 2. The parameters of this spot appearance model are
then optimised to improve the fit to the original image data using a Levenberg Marquardt gradient descent algorithm. This
provides an adjusted parametrisation of the shape matched to the image data. In this way the shapes used to build our
statistical model are derived from our model of spot appearance, rather than the somewhat arbitrary data-driven segmen-
tation. Using a Fourier representation in this strategy does not impose any explicit shape constraints on the boundaries
extracted. The PDM landmark representation is obtained from the resulting spot shapes by placing 25 evenly spaced
points around the boundary.

2.1.2 Robust Model Building

Automatic generation of training shapes will include incorrect shapes in the model. These shapes are the result of un-
separated overlapping multi-spot groups. The Fourier shape representation imposes no explicit shape constraints, other
than smoothness, so it is not possible to filter these incorrect segmentations at that stage. We could filter the resulting
shapes by hand, but this would be a highly time consuming and subjective process. Rather, we have chosen to reduce the
influence of such shapes by using Robust Principal Component Analysis [6] in the model building. We expect the number
of incorrect shapes to be small and their shape to be unusual, and therefore they can only influence the model as outliers
in the shape distribution. Robust PCA iteratively reduces the influence of outliers on the resulting model. The effect of
the robust PCA can be seen in Figure 3. The figure shows two PDMs, one built using standard PCA (Figure 3(a)) and one
built using robust PCA (Figure 3(b)). The models were generated from the same training data. Both models represent
the spots by principal components that retain 99% of the observed variance, in the robust case this is 99% of the variance
remaining after the iterative weighting procedure. The standard model represents the retained variance in the training data
using 10 modes, whereas the robust model requires only 6 modes. The contribution of each mode to the total variance of
the training set is shown for each model. The first mode of the standard model represents a large variation in aspect ratio
with an apparent ’waist’ becoming visible at the extremes of the mode. This mode would allow the model to represent
multiple overlapping spots, which is undesirable. There is no mode in the robust model that allows shapes with ’waists’.
Figure 3(c) shows examples of shapes that have been treated as outliers by the robust analysis. They all represent highly
uncharacteristic shapes and several are clearly multiple spots.



3 Evaluation of Models

We have compared the results for fitting the statistical spot model to image data with those achieved using the Gaus-
sian and diffusion models. The experimental procedure was as follows: spot regions were detected in a test image
using a watershed algorithm. Each of the spot models was fitted to each spot region using a Levenberg-Marquardt
non-linear optimisation algorithm to determine the best model parameters, minimising the following residual:r =∑

x,y∈R

[
(S(x, y|~p)− I(x, y))2 /

(
nR(Imax

R − Imin
R )

)]
whereR is the region of the image over which fitting takes

place,x, y ∈ R are the coordinates of the pixels within the fitting region,I(x, y) are image values,S(x, y|~p) are the
model values given the parameter vectors,Imax

R , Imin
R are the maximum and minimum image values within the region,

andnR is the number of pixels within the region. This residual provides a measure of model fit error that is normalised
with respect to the intensity of the spot (which we have approximated asImax

R − Imin
R ) and the size of the fitting region

(the number of pixelsnR). This residual form allows direct comparisons of fit quality to be made between high and low
volume spots. The three models were fitted to 403 watershed delineated spots from a silver stained E.coli gel (375x228
pixels, 8 bit) and 573 spots from a gel stained with a fluorescent dye (2896x2485 pixels, 24 bit). The silver image is
low-resolution and contains many saturated and overlapping spots, whereas the fluorescent image is much higher quality
and contains fewer saturated or overlapping spots.

The mean residuals̄r for each model after fitting to all regions in both images are shown in Figure 4(a). In general the
fitting results for the fluorescent image are better due to the higher resolution of the image data. The statistical model
results in the smallest average residual after fitting for both images. Figure 4 also shows the mean residual for each spot
model and image, grouped by volume. Group one contains the smallest 10% of spots by volume, rising to group 10 which
contains the largest 10% of spots by volume. In both cases, the largest improvements in fit made by the statistical model
are associated with the largest spot volumes. We have assumed that high volume spots are more likely to produce unusual
spot shapes, which, we have argued, are the best represented by the statistical model. For the silver image, small and
medium volume spots (groups 1-6) give fits for the Gaussian, diffusion and statistical diffusion models that are almost
equivalent. However, the statistical model results in reductions in residual for all volume groups of the fluorescent image.
This suggests that in the fluorescent image all spot groups contain shape variation away from Gaussian assumptions, even
the smallest spots by volume. This trend is not visible in the silver image data and this may be due to the low-resolution
of the image preventing full convergence. For all spot volume groups the statistical model results in fits that are better
than or equivalent to the fits of the other two models. This is achieved in both images despite large visual and resolution
differences. These results demonstrate that the statistical model is able to fit well to a wide variety of gel image types.
This is to be expected, as the model has the most degrees of freedom. We have demonstrated elsewhere [7], that the model
achieves this increase in fit accuracy without an associated decrease in model specificity.

4 Concluding Remarks

In this paper, we have described a statistical model of protein spot appearance, together with a automatic construction
algorithm which takes into account the complexity of the image data. This model is both flexible and specific enough
to represent the true range of protein spot appearance found in complex 2-DE gel images without the need to develop a
sophisticated theoretical model of the physical processes driving irregular spot formation.
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Modelling an average planar shape
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Abstract. A new methodology for the generation of an average shape from images is presented. It aims to
represent standard shapes of internal organs. Most existing methods have used landmarks in describing a shape.
The new method does not rely on landmarks but accommodates global structure of a shape. It is based on
measure theory via a stochastic process. We consider 2D shape in this paper. The proposed shape model is for
a deformable object and uses a Gaussian distribution in the theory, which characterises the point distribution
over a continuum. A number of examples of synthetic and real data for average shape estimation are presented
to illustrate the approach.

1 Introduction

There is an important relationship between shape of a biological structure and its function. This paper focuses
on representing a standard shape of an internal organ such as a heart. The representation of a standard shape is
of importance; a standard shape of a normal subject (so-called atlas) can be used to assess a diseased subject.
Particularly, in this paper we are interested in deformable shapes.
In modelling a shape we consider three subproblems: identifying a shape, describing shape variations, and defin-
ing an average shape. The new methodology does not depend on landmarks but seeks a global description of a
feature-based model exhibiting local deformation.
In modelling a shape space, various methods have been proposed. Kendall’s approach [8] using the Procrustes
metric defines a shape is what remains when location, size, and rotational effects are filtered out by similarity
transformations. It forms a manifold with the Procrustean metric, where a shape is represented by a point on a
sphere. This model concerns only similarity transformations. Bookstein’s shape space [1] is also built on a dif-
ferential manifold. A triangular shape (characterised by three points) is represented by a point in the complex
plane and so on a sphere; but differs from Kendall’s method in the choice of metric. Those models are built on
a strong theoretical foundation but are not flexible enough to represent a biological object. Pennec et al’s [10]
view geometrical features as a combination of a feature (such as a point or curve) with a transformation. Both the
feature set and the transformation set constitute differential manifolds, respectively, with relevant invariant metrics.
In their model, transforming a feature in the Euclidean space is regarded as a pair. Hence, transforming can be
clearly formulated in the model. However, the transformations involved in this model can currently only explain
rigid body transformations. They adopt the Fréchet mean and have applied their model to data fusion [10].
Deformable models defined by an energy minimisation mechanism [7] [2] have been an active area of medical
imaging and shape analysis. Bookstein’s [2] decomposition of deformation, by affine and non-affine transforma-
tions, accelerated research of related topics. Bookstein expresses the displacement between two sets of landmarks
using the fundamental solution of a biharmonic equation. He adopts bending energy, a bit differently from [7] and
formulates a warp function. The whole warp of the displacement is visualised as a thin-plate spline. This method
has been widely applied in many areas. Cootes et al’s model [4], for an average shape, a Point Distribution Model
is efficient and easy to apply and test. In particular, shape variations are described by eigenstructure in a com-
prehensive manner. Their model called Active Shape Model is currently popular and widely adapted. However,
the intrinsic linearity of the model sometimes results in an average shape that deviates from a population where
samples have few clear landmarks. There were a number of methods trying to represent anatomical atlases, e.g.,
[5] [9]. However, these are not formal, theoretically sound models of a standard shape. The methods introduced
above mostly characterise a model in terms of landmarks. The manual landmarking process for these methods is
tedious and automated process often has limited accuracy.
We propose a new approach adopting measure theory (including probability) to account for a shape represented by
a point set in 2D. The point set is assumed to be dense and can be regarded as a continuous curve in its model. The
new methodology does not look for individual landmarks, but global structure of a shape accommodating various
types of deformation. The new method for modelling a shape space is introduced in the section 2 and the resulting
average shape of some examples generated from the methodology is presented in section 3. Section 4 presents a
discussion of the new methodology and conclusions of the current work.

∗jgkim@robots.ox.ac.uk.



2 A 2D shape space based on measure theory

Representation of a shape from uncertain medical images has its foundations upon partial knowledge about im-
ages. Probability theory is a proper tool for estimating whole from partial knowledge. Measure theory provides
a generalisation of the concepts of size to arbitrary sets and provides the basic framework for probability theory.
These are relevant, especially, for random features not composed of formulated shapes.
In this paper, a shape diffused in the plane is regarded as Brownian motion and the Wiener measure space is em-
ployed for generation of an average shape of samples and to account for their deformation. A deformation model
should be able to accommodate the range of variations found in the samples. The deformation is described by
cylinder sets in the Wiener space. The Wiener measure is a Gaussian probability distribution function (pdf). The
average value of curves at a point where a cylinder set is defined is evaluated using the Wiener measure.
A number of methods in shape analysis use a point distribution, mostly a uniform distribution. The distribution
may explain small deformations. These are relevant for models with clear landmarks. However, it does not explain
shape variation well where large deformation occurs and may produce an average deviated from populations for a
model having few or no clear landmarks. The new approach in this paper uses a point distribution of samples but
differs from conventional methods in that it accommodates a distribution of continuum simultaneously.
We consider a point-set as a sample, which in our case is data extracted from images. We assume that samples are
dense. In the model, a shape is identified by a continuous curve, more strictly, by a continuous and real-valued
function defined on a bounded interval. All samples are first aligned using affine transformations. For a shape
represented by a closed curve, the proposed method is restricted to the cases where curves and their interiors form
a simply connected set in 2D. The set may not be convex because the method can be applied to star shaped objects,
but it is not applicable to a shape of spirals or with self-intersection.

2.1 Wiener measure space

The Wiener measure space originates from Brownian motion. Some notations are indispensable in introducing the
new method. For a brief introduction of the Wiener measure space employed in the model, see [6]. We mostly
follow notations from [6] here.
Let C0[a, b] be the set of real-valued continuous functions on [a, b] with x(a) = 0. N. Wiener demonstrated the
existence of a countably additive probability measurem on C0[a, b] such that ifn is a natural number,a = t0 <
t1 < . . . < tn ≤ b andαj , βj are extended real numbers such that−∞ ≤ αj ≤ βj ≤ ∞(j = 1, 2 . . . , n), then

m({x ∈ C0[a, b] : αj < x(tj) ≤ βj , j = 1, 2, ..., n}) =
∫ βn

αn

· ·
∫ β1

α1

Wn(t, U)dU (1)

where

Wn(t, U) =
1√

(2π)n(t1 − t0) . . . (tn − tn−1)
e
−

∑n

j=1

(uj−uj−1)2

2(tj−tj−1) (2)

andt0 = a. The resulting measure formulated by equation (1) is called theWiener measure. SubsetsI of C0[a, b]
in the expression in equation (1) is calledcylinder setsand illustrated in Figure 1(a). The setC0[a, b] with the
Wiener measurem is called theWiener measure space(or Wiener space).
A stochastic process defined on the Wiener space is used in modelling a shape space. Astochastic processwith
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Figure 1. (a) An illustration of 3 cylinder sets (expressed by thick vertical bars) att1, t2, andt3 on continuous
curves (b) Synthetic data (curves) to be given in section 3.1 and cylinder sets (expressed by radial bars) on them

parameter setT and underlying probability spaceΩ is a functionX : T × Ω → R such thatX(t, ·) is a random
variable (i.e., a measurable function) for everyt andT is a linearly ordered set. We follow the notationXt for a
stochastic process rather thanX(t, ·) to distinguish the parametert from the variablex for integration.
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Figure 2. Synthetic data expressed by 5 curves (continuous lines) and theiraverageoverlaid as a dotted curve

2.2 Model description and an average shape

Let us assume we are given a set ofm curves (point-sets) representing data, sayx1, . . . , xm, wherex ∈ C0[a, b]
and choose a linearly ordered subset of(a, b], sayT = {t1, t2, . . . , tn}. A cylinder set at each pointtj ∈ (a, b] is
defined as follows. The boundaries,αj andβj , of cylinder sets are determined by the set{x1(tj), . . . , xm(tj)},
so that the deformation over allx’s at tj is quantified. The cylinder sets are represented by the setsIj = {x ∈
C0[a, b] : αj < x(tj) ≤ βj} for everytj ∈ T . The cylinder set in equation (1) at eachtj in the model is one-
dimensional. As the cylinder sets are defined at eachtj , all the curves included in the cylinder sets are represented
by a stochastic process defined on the Wiener space.
The stochastic process expressing the model is{Xtj : Xtj (x) = x(tj), tj ∈ T}. The distribution of eachXt is
a Gaussian,N(0, t − a) [12]. As eachXtj (x) in the stochastic process is a measurable function on the Wiener
space, we can evaluate an average value ofXtj (x) over allx’s, an average value of the measurable function (for
the definition, see [11]) as follows:

X̄tj =

βj∫
αj

1√
2π(tj−t0)

u e
−u2

2(tj−a) du

βj∫
αj

1√
2π(tj−t0)

e
−u2

2(tj−a) du

(3)

Both the numerator and denominator correspond to the case ofn = 1, t0 = a andu0 = 0 in equation (2). The
value notated bȳXtj , in equation (3) is the average of allx(tj) over the set of allx’s, the set of all curves involved
in defining the cylinderIj . The value is assigned attj and the point(tj , X̄tj ) is always located within the cylinder
set. Hence, it is always located within the scope of deformation in the sample. In the model based on the Wiener
measure space, an average value attj is evaluated with an independent distribution for each cylinder set and this is
done successively alongt. In the new methodology, we define a curve in the plane represented by discrete values
and notated by the set{(tj , X̄tj ), tj ∈ T} as the average curve over the samples. The average curve explains
deformation very well.

3 Results

3.1 Application to Synthetic data

An example of applying the approach to 2D synthetic data is shown in Figure 2. This example is to account for
how the model explains the variety of shapes in the case of dissimilar shapes because shapes acquired from medical
images of an internal organ are similar. Each of 5 curves (samples) consists of 100 points and represented by a
continuous curve. A series of global affine transformations is applied to the curves so that they are centred on
the origin and notated byx1, . . . , x5. Then cylinder sets are defined at equally spacedt on a bounded interval,
(0, 2π] in this example. The smallest and biggest values ofx(tj) at tj are then determined, definingαj andβj ,
respectively. In this example, they are determined on a neighbourhood oftj to accommodate all deformations
existing in the curves. These values represent the range of deformation which is depicted by radial bars in Figure
1(b). The average curve of the data evaluated from the formula (6) is illustrated in Figure 2(left). An average
calculated by a uniform distribution is in Figure 2(right) for comparison. The latter shows that its average tends to
follow the majority of a population but does not accept large deformations embedded in a population. On the other
hand, the former well explains large deformations as well as small deformations.
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3.2 Application to real data

A set of data was acquired using automated echocardiographic image tracking software, calledQuamusTM de-
veloped by Mirada Solutions Ltd1. Data is depicted in Figure 3 (left) as 4 curves; each curve consists of 300
points. The images used in the example are long axis 4-chamber images of 4 different subjects. These are for the
same point in the cardiac cycle, at the end of diastole. The aligned curves are drawn in Figure 3 (right) with their
average curve using formula (6) overlaid.

4 Discussion

We have presented a new methodology employing a stochastic process on the Wiener space. This methodology is
dealing with information about the distribution for points extracted from images. The set of curves are dealt with
by a stochastic process whose distribution is Gaussian. In particular, the model expresses deformation embedded
in samples regardless of the deformation being small or large. Current methods for extracting data from medical
images depend on landmarks (one notable exception is the work of Pennec). Even those bearing other forms can
be regarded as variants of landmarks; one fundamentally has to rely on distributed points over images in medical
image analysis. Considering this, the adaptation of Wiener measure fits the nature of our purpose because the
Wiener measure employed in the shape space provides a point distribution over a continuum. In the examples
presented in section 3, the positions of cylinder sets are chosen uniformly. However, an optimal way of the choice
of the positions, according to some intrinsic property of an object, must be involved to make the method robust.
The proposed model could be applied to the problem of registration and developed to a 3D model. It could be also
improved with a matching method for unlabelled point sets [3]. Theses topics are the subject of on-going work.
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Abstract.
Sub-millimetre changes in articular cartilage thickness over short time-scales are too small to be detected by
individual pairs of MR scans of the knee joint. This paper presents a method for corresponding and comparing
changes in a population of patients. Continuous surfaces are constricted from parallel slice segmentations of
the femoral bone and cartilage in knee in a set of patients at two time-points; 0 and 6 months. An optimised
Statistical Shape Model of the bone provides a set of corresponding locations across the set of bone surfaces
from which 3D measurements of the cartilage thickness can be taken. The method is illustrated by applying it to
a small set of patient whose corresponding cartilage thickness measurements can be aggregated and compared
between two time points. This approach could be employed to investigate and quantify the effect of debilitating
diseases such a osteoarthritis on articular cartilage.

1 Introduction

Osteoarthritis is a major cause of suffering and disability which causes degeneration of articular cartilage, although
characterising cartilage and bone changes during disease progression is still the subject of current research [10].
MR imagery of the knee can be used to monitor cartilage damage in vivo [2, 12]. Most studies suggest that total
cartilage volume and mean thickness are relatively insensitive to disease progression [7,3,14]. There is evidence to
suggest that osteoarthritis causes regional changes in cartilage structure with some regions exhibiting thinning or
loss of cartilage whilst swelling may occur elsewhere on the articular surface. For this reason, localised measures
of cartilage thickness are likely to provide a fuller picture of the changes in cartilage during the disease process.
In healthy subjects knee articular cartilage is, on average, only2mm thick [4, 6] and thickness changes over the
short time scale useful in drug development (6–12 months), are likely to be in the sub-millimetre region. It is
unlikely that such small changes will be detected in individual pairs of MR scans given practical scan resolutions
and segmentation accuracies. Previous work has shown that small but systematic changes in thickness between
two time points can be measured in a group of subjects by registering the set of cartilage segmentations and
computing mean change at each point of the cartilage surface [16]. These studies used elastic registration of
the segmented cartilage shapes in normal volunteers. This has two obvious problems: there is no guarantee that
anatomically equivalent regions of cartilage are corresponded, even in normal subjects, and the correspondences
become unpredictable when the cartilage shape changes during disease (particularly when there is loss from the
margins).

In this paper we propose using the underlying bone as an anatomical frame of reference for corresponding cartilage
thickness maps between subjects over time. This has the advantage that anatomically meaningful correspondences
can be established, that are stable over time because the disease does not cause significant changes in overall bone
shape. We find correspondences between anatomically equivalent points on the bone surface for different subjects
using the minimum description length method of Davies el al. [5] which finds the set of dense correspondences
between a group of surfaces that most simply account for the observed variability. This allows normals to be fired
from equivalent points on each bone surface, leading to directly comparable maps of cartilage thickness.

2 Method

MR images of the knee were obtained using T1 weighted fat-suppressed spoiled 3D gradient echo sequence to visu-
alise cartilage and a T2 weighted sequence to visualise the endosteal bone surface, both with0.625×0.615×1.6mm
resolution. Semi-automatic segmentations of the femoral cartilage and endosteal surface of the femur were per-
formed slice-by-slice using the EndPoint software package (Imorphics, Manchester, UK). These slice segmenta-
tions were used to build continuous 3D surfaces, an MDL model of the bone was constructed and standardised
thickness maps were generated as described in some detail below. The data used contained images of both left and
right knees. To simplify subsequent processing, all left knees were reflected about the medial axis of the femur so
they could be treated as equivalent to right knees.
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2.1 Surface Generation

Continuous surface representations of the bone and cartilage parallel slice segmentations are required in order to
allow 3D measurements to be taken at any point. To provide a common reference across all examples, each bone
segmentation was truncated to include a length of femoral shaft proportional to the width of the femoral head.
Where adjacent segmentations differed significantly, additional contour lines were inserted at the mid line of the
two segmentations. Surface construction from the cartilage segmentations proved challenging due to significant
variation between neighbouring slices and the thin, curved shape of the cartilage. Various documented approaches
proved unable to produce plausible surfaces [8, 13] so an alternative surface construction method specifically for
articular cartilage was developed. During cartilage surface constriction, regions of the segments were categorised
as eitherspans(connecting two segments) orridges (overhangs where the surface is closed and connected to
itself). Surface generation was performed by triangulation of these regions. Figure 1 illustrates the resultant bone
and cartilage surfaces for one patient.

2.2 Bone Statistical Shape Model

We adopted the method of Davies et al. [5] to find an optimal set of dense correspondences between the bone
surfaces. They were pre-processed to move their centroids to the origin and scaled so that the Root Mean Square of
the vertices’ distance from the centroid was unity. This initial scaling facilitated model optimisation by minimising
the effect of differences in the overall size of the examples on the shape model. Additional pose refinement is
incorporated in the optimisation process. Each bone surface was mapped onto a common reference; an unit sphere
is chosen since it possessed the same topology as the bone and provides a good basis for the manipulation of the
points by reducing the number of point parameters from the three Cartesian points of the shape vertices to two
spherical coordinates. The diffusion method of Brechbühler [1] was used to produce the spherical mappings .
A set of equally spaced points were defined on the surface of the unit sphere and mapped back onto each bone
surface by finding their position on the spherically mapped surfaces — the triangle on which they are incident
and their precise position on this triangle in barycentric coordinates — and computing the same location on the
corresponding triangle on the original surface. This provided a first approximation to a set of corresponding points
across the population of bone surfaces. At this stage there is, however, no reason to expect anatomical equivalence
between corresponding points

The automatic model optimisation method of Davies at al. [5] is based on finding the set of dense correspondences
over a set of shapes that produce the ‘simplest’ linear statistical shape model. A minimum description length
(MDL) objective function is used to measure model complexity, and optimised numerically with respect to the
correspondences. The basic idea is that ‘natural’ correspondences give rise to simple explanations of the variability
in the data. One shape example was chosen as a reference shape and the positions of its correspondence points
remained fixed throughout. The optimisation process involved perturbing the locations of the correspondence
points of each shape in turn optimising the MDL objective function. Two independent methods of modifying the
positions of the correspondence points were used: global pose and local Cauchy transform perturbations on the
unit sphere. Global pose optimisation involved finding the six parameters (x y z translation and rotation) applied
to the correspondence points of a shape that minimise the objective function. Reducing the sizes of the shapes
trivially reduces the MDL objective function so the scale of each shape was fixed throughout the optimisation.

Local perturbation of the correspondence points on the unit sphere, guaranteed to maintain shape integrity, is
achieved by using Cauchy kernels to locally re-parametrise the surface. Each kernel has the effect of attracting
points toward the point of application. The range of the effect depends on the size of the kernel. One step in the
optimisation involved choosing a shape at random, optimising the objective function with respect to the pose, place
a kernel of random width (from an interval) at random points on the unit sphere and finding the amplitude (size of
effect) that optimised the objective function. This was repeated until convergence.

2.3 Measuring Cartilage Thickness from the Bone

Different measures of cartilage thickness have been proposed, all taking their initial reference points from the
exosteal surface of the cartilage [4,9,11,15]. Our work differs in that the reference points for the measurements are
taken from the endosteal surface of the cortical bone along 3D normals to the bone surface at the correspondence
points determined as described above. On firing a normal out of the bone surface, the expected occurrence is to
either find no cartilage, as is the case around regions of the bone not covered by any articular cartilage, or intersect
with the cartilage surface at two points, on its inner and outer surfaces. The thickness of the cartilage is recorded as
the distance along the bone normal between its points of intersection with the inner and outer cartilage surface. By
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Figure 1. (colour) Bone and Cartilage surface constructed from parallel slice segmentations
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Figure 2. (colour) A sub-set of the correspondence points shown on 4 of the population of bone surfaces. The
objective is for the corresponding points to reside on the same anatomical regions of the bone across all the shapes.
These plots illustrate that the model has been able to provide good correspondence across the population of shapes.

(a) TP1 (0 months) and TP2 (6 months) (b) TP2-TP1 viewed from two different angles

Figure 3. (colour) Mean cartilage thickness from the time-point 1 and time-point 2 (0 and 6 months) segmentations
and the difference all represented as cartilage thickness mapped onto the average bone shape. Regions where
swelling of the cartilage occurs are coloured red while blue indicates thinning.

taking a cartilage thickness reading at each correspondence point a cartilage thickness map can be drawn onto the
bone surface. Sets of cartilage thickness readings taken at the corresponding points, defined by the MDL model,
can be combined for sets of patients and compared between different time-points.

3 Results

18 sets of bone segmentations for 6 at risk patients were processed. The data was equally divided between two
time-points (0 and 6 months). With this small set of data the intention was to demonstrate the feasibility of the
approach rather than deduce any characteristics of cartilage thickness change during arthritic disease progression.
Figure 2 shows a proportion of the resultant correspondence points projected onto a sub-set of the population. It
can be seen that the correspondences are anatomically plausible. Only a proportion of the bone correspondence
points reside on regions of the surface which are covered by cartilage. Typically, 950 of the 4098 corresponding
measurement points resulted in cartilage thickness readings. For a cartilage endosteal surface area of4727mm2

this represents coverage of0.201 thickness readings permm2 and an average separation of2.23mm between
readings; sufficient coverage and number of points to perform statistical analysis of the data. Figure 3 illustrates



how populations of results can be combined and compared. Mean thickness measurements for each corresponding
point are displayed as colour maps on the mean bone shape. The results for time points 0 and 6 months scans are
illustrated together with the difference between these aggregate maps. The difference map demonstrates thinning
of cartilage in the load-bearing regions such as the patellofemoral (middle left) and medial tibiofemoral (upper
right) compartments which is analogous to the finding reported in a diurnal study [16]. A larger study will be
required to draw firm conclusions.

4 Conclusions and Further work

We have demonstrated the feasibility of using the underlying bone as a reference for cartilage thickness measure-
ments. The bone provides a stable reference for examining surfaces built from segmentations of cartilage scans
taken at different time points. Inter-patient comparisons can be achieved by building and optimising a Statisti-
cal Shape Model of the femoral head. Cartilage thickness measurements are taken over all bone examples at the
resultant corresponding locations which allows for the aggregation of results from a population of patients and
comparisons between sets of patients.

The approach was illustrated by applying it to a small population of 18 bone segmentations divided between
two time-points. Two sets of measurements were combined to produce mean thickness maps which were then
compared to each other to illustrate a comparative cartilage thickness map illustrating regional cartilage thickness
changes. The immediate requirement is to complete larger scale experiments and extend the approach to the other
(tibial and patellal) articular surfaces of the knee joint. Further refinement of the surface construction and image
registration of the bone and cartilage scans could yield greater accuracy in cartilage thickness measurements.
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Abstract. Defective pelvic organ support due to injuries of the levator ani is a common problem in women 
and its intervention requires a thorough understanding of its morphology and function. To this end, accurate 
delineation of three-dimensional surfaces of the levator ani plays an important part. In this paper, we propose 
to build a statistical shape model (SSM) of the levator ani and describe a segmentation technique based on 
the optimised control point arrangement and the SSM. The SSM was derived by the use of harmonic shape 
embedding with the MDL objective function for parameter optimisation, whilst segmentation was performed 
by fitting the model to a user defined set of control points. The value of the technique was demonstrated with 
data acquired from a group of 11 asymptomatic subjects.  

1 Introduction 

Pain, urinary or faecal incontinence, or constipation can be the results of injuries to the levator ani due to 
childbirth [1]. Locating the injuries is of prime importance for the prescription of suitable treatment such as 
pelvic floor exercises or surgery. Due to its clear tissue contrast, conventional 2D MR imaging techniques have 
been used relatively extensively for the assessment of the levator ani [2], with diagnosis made on the position of 
the organs such as the rectum and bladder, with respect to structural landmarks. 3D representation of the levator 
ani is a recent approach [3-5] that has yielded findings that differentiate between symptomatic and asymptomatic 
patients. Visual comparison has shown a continuum in levator volume degradation, loss of sling integrity and 
laxity in the order of asymptomatic, genuine stress incontinence and prolapse. It has also been found that the lack 
of volume of the levator ani can be an indication of pelvic floor dysfunction [6, 7]. In both studies, the levator ani 
was manually segmented from a set of image slices which is a time consuming process. Reducing the amount of 
data required to segment the entire levator surface would significantly simplify the process.  

The purpose of this paper is to propose a method of segmenting the levator surface by using a user defined set of 
control points and a statistical shape model (SSM). Cootes et al [8] have investigated shape models and their use 
in automatic segmentation of images. Model based segmentation requires the entire set of control points to be 
deformed under the constraints of predefined heuristics describing the shape in the images. With SSM, a smaller 
set of points can be used to characterise the shape, therefore users can quickly determine landmarks associated 
with primary features of the surface. As the surface of the levator is topologically homeomorphic to a compact 
2D manifold with boundary (sheet topology), the statistical shape model was built by using a method by Horkaew 
and Yang [9].  

2 Methodology 

The image data for this study were acquired with a Siemens Sonata 1.5T scanner. Eleven nulliparous, female 
subjects (22.6±1.4 years of age) were recruited for the study with informed consent and all subjects were scanned 
in the supine position. A turbo spin echo not-zone selective sequence (TR=1500ms, TE=130ms, slice 
thickness=3mm) was used to acquire 32-36 T2-weighted, transverse images for each of the eleven subjects 
studied. The levator ani was manually segmented from each data set by using an in-house developed 3D Slicer 
that allows for interactive visualisation in any arbitrary plane. The control points (also selected in the 3D Slicer) 
selected for shape restoration were the two most anterior points and one most posterior point on the levator 
surface in 4 image planes. 

Triangulated surfaces (each forming a mesh M) were generated for the eleven levators and each was 
parameterised onto a unit quadrilateral base domain [10]. Each vertex was uniquely defined in the internal 
mapping by the minimisation of metric dispersion – a measure of the extent to which regions of small diameter 
are distorted when mapped. The harmonic map [11] corresponding to the minimisation of the total energy of the 
configuration of the points over the base domain was solved by computing its piecewise linear approximation 
[12],  
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A sparse linear system was solved for the values ( )iφ at the critical point to find the unique minimum of equation 
(1). A B-spline surface patch was constructed from each mesh by reparameterising the harmonic embedding over 
uniform knots. The approximate tensor product B-spline was calculated from a set of distinct points in the 
parameterised base domain. Given the minimal distortion map, the least squares approximation by B-spline with 
a thin-plane spline energy term bore well defined smooth surfaces. The uniform model was composed of these B-
spline surfaces. Correspondences in the training set of B-spline surfaces were found by reparameterising the 
surfaces over the unit base domain. This was defined by a Piecewise Bilinear Map (PBM), to which multi-
resolution decomposition can be applied. This resulted in a hierarchy representation of the parameterisation 
spaces.  

The Minimum Description Length (MDL) was used to select the parameterisation for building the optimal SSM 
similar to the work by Davies et al [13]. The MDL principle was designed to choose the model that provides the 
shortest description of both the data and model parameters. At each level of iteration in the algorithm, the 
parameterisations were refined and the PBM parameters optimised according to the MDL objective function. The 
sampling rate on each B-spline surface was also increased, resulting in a concurrent hierarchy on both the 
parameterisation domain and the shapes, thus leading to reliable convergence. Polak-Ribiere’s conjugate gradient 
optimisation [14] was employed. 

All but one of the levator ani surfaces were used in each training set (for a leave-one-out error analysis). Twelve 
control points were selected on the surface of each levator ani and each model was fitted to the set of points by 
minimising the distance from the model surface to the points. The error was calculated as the mean distance 
between corresponding control points in the fitted model and the original shape. The control points of the model 
were automatically manipulated until the error between the points was minimised.  Simulated annealing was used 
for defining the pose parameters of the model.  

3 Results 

Figure 1 shows a set of example magnetic resonance images of the pelvic floor with the levator ani indicated by 
the white arrow. From left to right, the images progress from the feet to head in direction. The statistical shape 
model was first built with all 11 levator ani surfaces. Figure 2(a) demonstrates the shape changes corresponding 
to the first three principal modes of variation. The first mode varies the height of the levator ani. The second 
mode corresponds mostly to the variation of the “hump”, caused by the presence of the anal canal/rectum. In the 
optimal model, the first three modes of variation provide 84.8% of the total variance whilst the equivalent value 
in the uniform model is 82.0%. A non-normalised graph of this quantitative comparison is shown in Figure 2(b).  

Figure 3(a) shows the position of the selected control points used to reconstruct the 3D surface from the SSM, 
overlaid onto the original surface. Figure 3(b) is the 3D representation of the two surfaces, one derived from the 
complete 3D data (blue) and the other from the user defined control points (yellow). It is evident that most of the 
error is at the edges and at the extremes of the original shape, where the control points were not located.  

 

 

Figure 1. Magnetic resonance images of the pelvic floor (with the levator ani 
indicated by the white arrow) 
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Figure 3. (a) Two views of the control points on the original surface. (b) Two views of the 
model segmented shape (yellow) overlaid on the original shape (blue). (c) Scatter plots for the 

control points on the original and model segmented shapes. 

Figure 2. (a) The first three modes of variation captured by the optimal statistical 
shape model. For each mode, the shape parameters have been varied by ±2σ. (b) A 

comparison of the compactness of each model. The results are not normalised. 
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For the assessment of these errors, Figure 3(c) is a scatter plot (original shape points versus fitted model points) 
of all the B-spline surface control points in 3D space for one shape during a leave-one-out exercise. The 
regression line has also been plotted (average regression ratio 0.86893). 

4 Discussion and Conclusion 

With this study, the number of control points used was limited to twelve and were placed within 4 image planes. 
These can be increased if time permits to allow additional features to be prominent. Overall, there are no 
limitations to the proposed technique with regard to number of control points and their positions on the surface. 
Our future work will be focussed on applying the modelling technique to the investigation on muscle dynamics, 
where spatial correspondence of optimal control points of the SSM will need to be established.  

In summary, we have proposed a segmentation method based on a statistical shape model. The statistical shape 
model was created with the use of harmonic shape embedding and an objective function based on MDL. 
Quantitative results from the 11 subjects demonstrate the potential of this method. We believe that statistical 
shape modelling is the way forward for studying the levator ani and that the proposed segmenting technique is an 
effective means of delineating its morphology from the anatomically complex pelvic floor region.  
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Abstract. Segmentation of the prenatal heart can be used to examine the cardiac function and to aid in the 
assessment of congenital heart disease.  This paper presents an active contour model to segment the ventricles 
of a temporal sequence of long-axis sliced foetal cardiac data.  The algorithm uses image energy in the form 
of a Generalised Gradient Vector Flow (GGVF) field to drive a contour initialised as a circle towards salient 
features in the first frame of the sequence.  The motion of the ventricular wall was modelled by rigid-body 
deformation between frames to enable the contours to remain within their respective chambers before the 
snake was allowed to capture the non-rigid deformation.  The algorithm was compared to manual tracings of 
the chambers by a foetal cardiologist.  Preliminary results from application to an eleven frame sequence 
spanning one cardiac cycle produced a correlation coefficient of 0.92 and 0.91 for the left and right ventricles 
respectively.  Root mean square errors of the perpendicular distances between the automatic contours and 
expert tracings vary between 1 and 4.5 pixels over the cardiac cycle.  Future work will involve moving 
towards a three dimensional (3D) approach to the snake to segment the chambers. 

1 Introduction 

Congenital heart disease occurs in 8 out of 1000 live births [1] and can be diagnosed in-utero by real-time 
echocardiography [2].  Segmentation of foetal cardiac chambers can be used to measure their size and shape as a 
function of time and serve as a diagnostic aid into the state of the myocardium when there are functional and or 
structural abnormalities present.  In the past few authors have addressed segmentation of foetal cardiac data.  
Interactive grey-level thresholding was applied to the entire dataset by Deng et al 2001 [3] to extract the cardiac 
chambers but can lead to dropout of structures below the user-defined threshold level.  Lassige et al 2000 [4] 
developed a snake to look for septal defects (pathological holes in the inter-atrial or inter-ventricular septum) 
using the level-set approach that allows the contour to occupy multiple foetal cardiac chambers simultaneously.  
An alternative approach to segmentation of the foetal cardiac chambers without deformable models can be found 
in a paper by Siqueira and co-workers [5], in which a cluster-based segmentation of temporal foetal slices was 
produced.  The algorithm was constructed around a self-organising map that analysed the probability density 
functions of patterns found in foetal heart images.  These maps were post-processed by k-means clustering and a 
neural network examined the mean and variance of randomly sampled areas in the image and identified the most 
significant regions.  Their method measured foetal cardiac structures which showed agreement with the manual 
measurements made by physicians. 

In recent years deformable model approaches to segment and track the motion of the cardiac walls in ultrasound 
data have been in the form of fitting elastic contours or a membrane to the structures.  Several cardiac contour 
finding algorithms involve the use of the previous contour as initialisation for the next frame as in Sánchez and 
co-workers [6].  This may involve a mesh or contour to be guided by predictions in the motion between frames as 
it follows the endocardium [7].  It is becoming increasingly common in snake models applied to cardiac datasets 
to use in addition to spatial shape constraints, some temporal continuity between frames [8, 9]. 

This paper presents an active contour model paradigm applied to a temporal sequence of long-axis slices of the 
foetal cardiac ventricles.  The segmentation results from the algorithm are then presented and compared with 
manually drawn curves by a foetal cardiologist.  Finally the results of the algorithm and future work are 
discussed. 

2 Materials and Methods 

2.1 Data acquisition 

The volumetric foetal heart dataset was acquired using paired Acuson scanners (Acuson Corporation, Mountain 
View, CA) with a phased-array transducer operating at a frequency range of 5-8MHz [10].  The image resolution 
was 256x256 pixels at 8-bit quantisation; with a pixel size of 0.26 millimetres (mm) in the fan beam plane and 
0.5mm between slices.  An automated online-triggering procedure developed by Deng et al 2001 [3] enabled the 
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datasets to be motion-gated online.  Long-axis slices of the heart were used since these were acquired between 
the intercostal spaces and so shadowing artefacts in the images were at a minimum. 

2.2 Classic snake formulation 

A snake is a deformable elastic curve capable of evolving from an initial shape to fit features in the image and is 
regularised by its internal forces.  The snake model was devised by Kass et al 1988 [11] and its energy is defined 
in parametric form by the following equation 

dssvEsvEsvEE conextsnake ∫ ++=
1

0
int ))(())(())((   (1) 

where Eint represents the internal energy of the snake and is a means of spatially regularising the contour due to 
local stretching and bending effects, Eext controls the interaction of the snake with salient features within the 
image and Econ arises from external constraint forces. 

Useful image features in an ultrasound data are the edges since boundary information is inherent in the ultrasound 
imaging process.  In our application Eext is an attractor towards edges between the blood pool and the 
myocardium and in the classic formulation is often defined as the gradient of a low pass filtered version of the 
image.  The main problems with this term are that it is only effective over short ranges and does not allow the 
snake to move into regions within the image that are encompassed by highly concave boundaries. 

2.3 Generalised Gradient Vector Flow snake 

We replace the Eext term in equation (1) with a GGVF (Generalised Gradient Vector Flow) force developed by 
Prince and Xu in 1998 [12] so that the snake would be drawn to the myocardium in the absence of local edges if 
initialised within or across a cardiac chamber.  This term is defined in equation (2) where ∇f is the gradient of the 
Gaussian filtered image and u is the vector field of a map that shows all the edges in the image (edgemap).  The 
vector field was created by applying the steady-state diffusion equation to the edgemap so that edge influence is 
propagated throughout the entire image and thus overcomes the two main problems with the classical Eext term.  
In the ultrasound images the myocardium appears brighter in intensity than the chambers therefore the edge 
polarity was used in combination to the edge magnitude to exploit the echogenic characteristics of both regions.  
In the absence of local edges the vector field drives the contour towards the edges in the pre-computed edgemap. 

( ) ( )( )fufhufgEGGVF ∇−∇−∇∇= 2    (2) 

The weighting functions for equation (2) are defined in (3) and serve to reduce the amount of smoothing on an 
edge that is in close proximity to another edge [12]. 
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Since we are mainly interested in the size of the chambers over time the search space of the snaxels was restricted 
to the path along the normal vectors of the contour in order to reduce the likelihood of clustering. 

The snake was initialised as a circle placed roughly centred on the chamber in the first frame (in diastole) of the 
slice since the endocardiac boundary information within this frame appeared relatively distinct when compared to 
the systolic phases over the cardiac cycle.  For each snaxel if the mean image intensity was brighter along the 
outer normal than along the inner the edge position was accepted as a possible edge candidate and rejected if 
otherwise. 

The GGVF snake can be used to track edges over time by initialising the snake Cn+1 in the current frame (n+1) 
with the snake Cn from the previous frame (n).  However, the four cardiac chambers are often separated by thin 
walls that are not always well resolved in echocardiography and so it was possible for a single contour to occupy 
multiple chambers during segmentation over the cardiac cycle.  In the images where a shadowed region appears 
beside a ventricle the contour is presented with an opportunity to leak out of its chamber.  To combat these 
effects each ventricular contour was constrained by allowed rigid-body transformations of the snake from the 



previous frame.  After the snake Cn segmented frame n the positions of the snaxels within the curve were stored 
as well as the grey-level profiles that run along the normals to the contour.  The Cn contour was then used to 
initialise Cn+1 and was iteratively scaled and translated to fit the chamber.  The absolute difference of the grey-
level profiles from the current curves in frames n+1 and n was used as a cost function to determine the optimum 
rigid-body transformation to apply to the initial Cn+1 contour.  After modelling this rigid-body motion, the snake 
was allowed to evolve and capture the non-rigid deformation of the chamber.  Although this approach computes 
the transformations solely based on the segmentation results of the first frame, we found that diastolic phases 
provided the most undemanding chambers for the GGVF snake to segment unaided.  Towards end-diastole the 
motion of the heart is at a minimum; captured frames around this cardiac time point within the dataset are more 
likely to appear similar and can be used to confirm the initial segmentation. 

3 Results and Discussions 

Manual drawing of contours on the images by a foetal cardiologist was used as a gold standard to assess the 
quality of the segmentation process.  The algorithm was applied to long-axis slices of the heart and a selection of 
the segmentation results for an eleven-frame sequence within one cardiac cycle is shown in figure 1 and overlaid 
manual curves in figure 2.  The endocardial surface of the foetal heart comprises a complex interwoven muscular 
structure and so is highly irregular in appearance [13] unlike the comparatively smooth epicardium.  It is clear 
that the automated contours appear less complex in shape when compared to the expert tracings.  This is due to 
the appearance of the fine surface structure of the endocardium as weak reflectors in the ultrasound images.  In 
this instance it is possible for Eint to overcome the Eext term and impose smoothing constraints on the contour.  
Future work will address this problem of unnecessary smoothing by incorporating a priori knowledge of the 
endocardium into the snake model.  Linear regression by least squares was calculated on the manual and 
automatic segmented areas and the Pearson correlation coefficient (R-value) was determined.  This showed that 
the computer-segmented areas are linearly correlated with the manually defined regions with coefficients of 0.92 
and 0.91 for the left and right ventricles respectively.  The slopes of these lines are 1.19 for the left and 1.15 for 
the right ventricle.  These values are greater than 1 and positive indicating that the algorithm over-segments the 
required area when compared to the manual curves.  This is confirmed in Bland-Altman plots in figure 3 where 
the bias is positive signifying over-segmentation for both left and right ventricles.  The spread is roughly centred 
about the mean and most if not all of the points fall within the 95% confidence interval.  These plots shows that 
by comparing areas defined by the manual and automatic curves, the algorithm produces less fluctuation and 
systematic bias in segmentation of the left ventricle when compared to the segmentation of the right (mean 26 
with standard deviation 15 and mean 84 with standard deviation 46 for the left and right ventricles respectively).  
Since comparison of areas is not an accurate assessment of shape matching, perpendicular distances that separate 
the automatic and manual curves were computed to obtain a measure of the error in segmentation of the 
ventricular boundaries.  The root mean square value of these perpendicular distances was found to vary between 
1 and 4.5 pixels over the cardiac cycle for both left and right ventricles. 

    

Figure 1 (a) Some results of endocardiac segmentation by the algorithm on a single long-axis slice showing the 
phases of one cardiac cycle in raster scan order starting from end-diastole.  In this four-chamber view the top 
cavities are the left and right atria and below these are the left and right ventricles. (b) The corresponding 
endocardiac segmentation by a foetal cardiologist. 

   

Figure 2 Some examples of segmentation of the ventricles by the algorithm with overlaid manual contours.  The 
automatic contours are in black and those drawn by the expert in grey. 



   

Figure 3 Bland-Altman plots of areas generated by the automatic segmentation compared with areas derived 
from manual segmentation for a temporal sequence of a single slice within the dataset.  Figure (a) corresponds to 
the left and (b) the right ventricles respectively.  For the left ventricle segmentation the bias is 26 with standard 
deviation of 15; and for the case of the right ventricle a bias of 84 and standard deviation of 46. 

4 Conclusions 

This paper presents a method to segment foetal heart ventricles by an active contour model.  The approach 
models the deformation in the cardiac cycle, by both rigid and non-rigid means and arrives at a segmentation that 
is correlated with manual tracings of the endocardium.  Although correlation coefficients in the literature for the 
adult heart may be superior to the results in this paper, direct comparisons may be difficult to make since the 
small size, rapid motion of the foetal heart and unpredictable movement of the foetus lead to a dataset with higher 
noise content.  Future work will involve the conversion of the algorithm into a true 3D environment and 
segmentation of the atria. 
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Automated assessment of digital fundus image quality using
detected vessel area.
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Abstract. An automated method for the assessment of digital fundus image quality is presented. The method
used an image quality metric based on the area of automatically detected blood vessels. Matched filtering cou-
pled with directional region growing was used to identify blood vessels within fundus images. The performance
of the metric was determined using the grading of

�����
images of � ��� patients by three clinicians. Average a-

greement between the system and the individual clinicians was equivalent to average inter-grader agreement.
For the detection of patients with at least one ungradable image the system was able to achieve 100% sensitivity
with specificity of 94%. When the performance of the system was compared to a single clinician using a larger
data set of �����	� images the system to clinician agreement remained relatively constant. It is proposed that
the system could be used to reject ungradable images within a screening environment or incorporated within
automated diagnostic methods.

1 Introduction

Diabetic retinopathy (DR) is a retinal vascular disorder affecting patients with diabetes. It is the most common
cause of blindness in individuals between the ages of 20 and 65 years. The Department of Health now include a
requirement DR screening in their set of minimum standards for diabetes care [1]. Screening for DR necessitates
regular examination of all patients with diabetes by fundus examination to detect sight-threatening disease, so that
early treatment can be instigated. The National Screening Committee (NSC) has recommended digital photography
as the preferred modality for any newly established DR screening program [2]. Although digital fundus cameras
operate to assured quality, inconsistencies still occur in image quality. Biological factors such as lens opacities or
poorly dilated pupils, and non-biological factors resulting from operator error, can combine to reduce contrast to a
level where grading of an image is unfeasible. It is important that patients with such images be identified and either
called for repeat screening or sent directly to an ophthalmologist for review. Recent research has aimed to develop
methods for the automated screening of patients with DR. It is essential that such systems identify ungradable
images and do not erroneously classify them as images without DR.

Image quality measures have long been studied but most methods are used to compare image processing techniques
using reference and processed images [3]. The case when an image quality measure is needed for a single image
poses difficult questions. Image quality is an abstract quantity, is highly subjective and strongly dependent on the
requirements of a given application. Perhaps as a consequence, only two papers are published that are devoted to
automatic measurements of fundus image quality. Both use models of a high quality image derived from a number
of examples. Lee et al. [4] compared the histogram of an image with that of the derived model, Lalonde et al. [5]
used the distribution of edge magnitudes and local intensity measerments. Manual techniques by definition rely
on subjective assessment. The NSC has recommended image clarity assessment using the visibility of small blood
vessels [2]. When small vessels across 90% of an image are clearly visible the image is defined to be of good
quality.

In this study an automated assessment of image quality based on the automatic detection of blood vessels was
evaluated. The aim was to discriminate between ‘gradable’ and ‘ungradable’ images. The selection of blood
vessels as an indicator of image quality was founded upon several factors. Firstly, blood vessels should be present
in every fundus whether diseased or normal. Secondly, the stereo-spatial geometry varies little on a macro scale
and major vessels have similar topographical distributions. Thirdly, regardless of ethnic origins the vessels are in
contrast with the background pigmentation of the fundus. Thus if significant proportions of vessels are missing and
can be shown to fall below a preset threshold value then this could form a useful measure for rejecting an image
as ungradable. To evaluate the system three clinicians were required to view images and decide whether they were
‘gradable’ or ‘ungradable’. The automated system was then measured against the clinician classifications.
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2 Methods

Digital retinal images of 2546 eyes from 1273 consecutive patients were obtained from a DR screening program.
The screening centre employed a Topcon TRC-NW5S non-mydriatic digital fundus camera and stored images in
JPEG format. All images were of ����� field and centred on the macula. Their resolution was �����	�
����� pixels
equating to a pixel width of ����
 m.

2.1 Automated detection of blood vessels

An automated method for the identification of blood vessels was applied to each of the images. This method has
been previously described in detail by Himaga et al. [6]. The method initially used the technique of matched
filtering. Two Gaussian-shaped kernels were applied to each image, one designed to match a small section of a
large vessel while the other was smaller and was designed to match sections of smaller blood vessels. The kernels
were applied rotated through 12 angles ranging from ��� to ������� , each at ����� intervals, in order to reflect the range
of orientations of blood vessels. A direction dependent recursive region growing algorithm was then applied to
extract the blood vessels using the results of the matched filtering. Finally an applied threshold classified pixels as
representing areas of vessels or otherwise. It has previously been shown that this method achieved a sensitivity of
81% and a specificity of 91% for the detection of blood vessels in a total of 20 digital fundus images [6].

The total count of pixels classified as ‘vessels’ within each image then became the image quality metric score, V. A
threshold, ��� , was then set such that images with blood vessels metric scores above ��� were classified as ‘gradable’,
while images with counts below ��� were classed as ‘ungradable’. Patients were identified as ungradable if the image
of either eye were classified ‘ungradable’. The metric was applied at various sensitivity levels by varying � � .

2.2 Validation

The automated classification results were then compared to two separate gold standards. The first was the collated
results from three clinicians, A, B and C, who classified the images of ����� patients, Gold standard 1 (GS1). A
majority decision was used to combine the results of the clinicians. The second gold standard was formed by
clinician A who classified the eyes of a further ����� patients, Gold standard 2 (GS2). The diagnostic performance
of the image quality metric was then measured using sensitivity (true positive rate) and specificity (1 - false positive
rate). Results recorded at each applied value of the threshold, ��� , were combined to produce a Receiver Operator
Characteristic (ROC) curve. Agreement between the clinicians and the proposed method was calculated using
kappa statistics, � , where values within the ranges of ��� ��� - ��� ��� , ��� ��� - ��� ��� , and ��� ��� - � correspond to moderate,
substantial, and almost perfect agreement respectively [7].

3 Results

The results of the first gold standard grading, (GS1), are shown in Table 1. Clinician A accepted the highest number
of images as ‘gradable’ while clinician C accepted the least. Calculated agreement between each of the clinicians
in terms of grading images can be seen in table 2.

Imageclassification Clinician A Clinician B Clinician C
‘ungradable’ 41 (5.1%) 51 (6.4%) 70 (8.8%)
‘gradable’ 759 (94.9%) 749 (93.6%) 730 (91.2%)

Table 1. Gold standard grading # 1 (GS1) between ‘gradable’ and ‘ungradable’ images.

Clinician B Clinician C
Clinician A 0.67 (0.55 - 0.79) 0.66 (0.54 - 0.78)
Clinician B - 0.63 (0.51 - 0.75)

Table 2. Inter-grader agreement between the three clinicians for the classification of images (GS1). Values shown
correspond to calculated � values with the corresponding 95% confindence interval in parentheses.

The average inter-grader agreement was �! "��� ��� (95% Confidence Interval: ��� ���$#%��� ��� ), demonstrating sub-
stantial agreement. Within the GS2, clinician A classified �����	&'��� ��(*) images as ‘ungradable’. Figure 1 shows
example results of the blood vessel detection method as applied to three primary images of varying quality. Image
A (Figure 1(a)) was classified as ‘gradable’ by all three clinicians. Image B (Figure 1(b)) shows a large region near



(a) Image A (b) Image B (c) Image C

(d) Blood vessel detection: A (e) Blood vessel detection: B (f) Blood vessel detection: C

Figure1. Examples of blood vessel detection results for three primary images of varying quality.

the centre of the image within which little detail can be seen, this image was rejected as ‘ungradable’ by all three
clinicians. Image C (Figure 1(c)) shows poor contrast over the entire image, however, only two of the clinicians
classified this image as ‘ungradable’. Binary images, corresponding to each primary image, within which pixels
classified as areas of blood vessels are shown in black can be seen in figures 1(d)-(f). In the case of primary image
A the automated method successfully identified the majority of the blood vessel network. The result corresponding
to primary image B shows that the system did not identify any blood vessels within the central area of poor con-
trast and within primary image C only incomplete sections of the largest vessels were identified. The blood vessel
metric scores calculated for each primary image were ��������� , � ������� and ������� , respectively. The mean vessel met-
ric scores calculated for ‘gradable’ and ‘ungradable’ images as defined within the majority gold standard grading
(GS1) were ��������� (95%CI: ��� ����� - ��������� ) and ��� � ��� (95%CI: ����� - � � ����� ) respectively.

The ROC curve as calculated using the applied range of � � for the automated detection of ‘ungradable’ images
measured against the majority diagnosis within GS1 is shown in figure 2. The classification results of the individual
clinicians measured against the majority diagnosis are also shown.

Figure2. ROC curve for the detection of ‘ungradable’ images, (GS1).



When the threshold was set to ��������� this achieved a 100% sensitivity for the detection of patients with any ungrad-
able images with a specificity of 94.0%. At the same setting sensitivity was 91.7% and specificity 95.5% for the
detection of ungradable images. The agreement between the system and the individual grading of each clinician
and the majority classification is shown in Table 3. It can be seen that, in terms of images, the automated system
demonstrated moderate agreement with clinician A and substantial agreement with clinicians B and C. With an
average agreement between the system and the individual clinicians of ��� ��� (95%CI: ��� ��� # ��� ��� ). This was equiv-
alent the corresponding � value calculated for the inter-grader agreement. Agreement in terms of the classification
of patients was higher in each case with an average value of �  ��� ��� (95%CI: ��� ����# ��� ��� ).

Clinician A Clinician B Clinician C Majority
System(Patients) 0.67 (0.53 - 0.81) 0.70 (0.58 - 0.82) 0.75 (0.65 - 0.85) 0.73 (0.61 - 0.85
System(Images) 0.59 (0.47 - 0.71) 0.66 (0.56 - 0.76) 0.70 (0.60 - 0.80) 0.67 (0.57 - 0.77

Table 3. Agreement between the automated system and each clinician and the majority diagnosis. Values shown
correspond to calculated � values with the corresponding 95% confindence intervals.

When the system was applied to all images within GS2 the mean metric scores for ‘gradable’ and ‘ungradable’
images were ��������� (95%CI: ��������� - ��������� ) and ��������� (95%CI: � - ��������� ) respectively. When the threshold, ��� ,
was set to ��������� , (the value giving 100% sensitivity for the identification of ‘ungradable’ patients derived using
GS1) a sensitivity of

� ��� ��( and specificity of
� ��� ��( was achieved for patients within GS2 with �  ��� ��� (95%CI:

��� ��� #
��� ��� ). In terms of images this corresponded to sensitivity and specificity levels of 84.3% and 95.0%, with
�! "��� ��� (95%CI: ��� ���$#%��� � �

). This � value was equivalent to the system to clinician A agreement measured
using GS1 (Table 3).

4 Discussion

The measured variation between the results of the clinicians demonstrated the subjective nature of their decisions.
Tolerance to poor quality images varied with clinician A willing to grade a higher proportion of images. The
differences between the mean blood vessel metric scores for ‘ungradable’ and ‘gradable’ images suggested a
high level of separation between the relative distributions. This translated to a good classification performance.
Comparison between the inter-grader agreement (Table 2) and the measured agreement between the clinicians and
the system (Table 3) suggested equivalent performance levels. The higher performance level of the clinicians when
compared with system as measured using the majority diagnosis (Figure 2) may be explained by the bias of the
majority grading towards the grading of the clinicians. When the derived threshold value of � � was applied to a
large set of unseen images (GS2) similar performance levels appear to be maintained as judged by the similar �
values. However, due to the risk of missing sight threatening DR, refinements to achieve near 100% sensitivity
may be needed. In conclusion, the system could be used as part of an automated diagnostic system if used as an
image quality filter. Additionally the blood vessel metric could be used as a prompt for repeat photography at the
point of image capture.
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3D Markov Random Field Binary Texture Model:
Preliminary Results
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Abstract. Texture analysis and synthesis is an important field in computer vision. Since the late sixties,
numerous techniques have been developed for the synthesis and analysis of texture in 2D images. However,
only a few models have been presented to synthesize 3D texture images and in most cases 2D texture mapping
is used to emulate this process. In addition, most of the techniques used for the analysis of texture in 3D medical
images, such as CT and MRI, are based on 2D models applied to each slice followed by reconstruction of the
volume. This approach does not use all available information contained in the data. A more robust solution
is given by solid texture modelling. The paper describes a novel approach to solid texture modelling based on
Markov random fields.

1 Introduction

Texture analysis and synthesis is an important field in computer vision. Since the late sixties, numerous tech-
niques have been developed for the synthesis and analysis of texture in 2D images. The synthesis and analysis
of 2D texture have always been closely related and many techniques like Markov random fields [1], grey-level
co-occurrence matrices [2], auto-regression modelling [3] and fractal modelling [4] can be applied in both do-
mains. Unfortunately, in 3D the relation between the two domains is less exploited (a short review on 3D texture
modelling can be found in [5]).

In medical imaging (see Fig. 1 for examples), the most common techniques to deal with volumetric images is to
slice the volume in 2D cross-sections and subsequently apply a 2D texture analysis model on each slice. Subse-
quently the volume is interpolated from the stack of analyzed slices. However, such an approach is less satisfactory
as most of the embodied information along the axial direction of the stack is not taken into account. Fig. 2 shows
two volumetric texture which can not be differentiate if seen from they axis. When the volume information is
taken into account the two textures are clearly different.

(a) (b) (c)

Figure 1. Examples of three volumetric image acquisition modalities which are slices of (a) a brain MRI, (b) a
chest CT and (c) a breast ultrasound.

The aim of this project is to develop a common model to synthesize and analyze volumetric texture. Our initial
approach to the problem is to synthesize texture based on an approach that can be used to analysis. Solid texture
modelling is the most suitable approach if we are concerned with the synthesis of complex textured objects or the
analysis of volumetric texture.

2 Texture Modelling

In this section we describe a solid texture model based on Markov random fields. We are interested in generating
texture based on a stochastic process to ensure micro-texture. The grey-level values of the voxels(x, y, z) are the
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(a) (b) (c)

Figure 2. Two texture volumes (top and bottom rows) decomposed into slices taken along (a) thex-axis, (b) the
y-axis, and (c) thez-axis. These grey-level images have been synthesized with the Markov random field model
described in this paper.

random variable and are notedξxyz. In our approach the grey-levelξxyz of a voxel is not independent of the grey-
level values of neighboring voxels. We aim at modelling the correlations between the set of grey-levels,{ξxyz}.
We first deal with the binary problem before extending the model to grey-level texture.

We need to define the notion of neighboring voxels. In our case two voxels are neighbor if they are connected. The
order of the Markov random field (MRF) is determined by the distance between two neighbors. Fig. 3 shows two
neighborhood configurations. Grey voxels form the first order neighborhood while white and grey voxels form the
second order (relative to the voxel in the center of the cube).

Figure 3. Neighbors of the pointξxyz. Grey represents
the first order neighborhood and white represents the
second order neighborhood.

Figure 4. Description ofC, the set of connected points.
The setC is composed of pair of points linked by a
straight line. In this figure seven elements ofC are
shown. The eighth element ofC is the set of all the
second order neighbors of the center point.

The probability of a voxel(x, y, z) having the grey-level valuek depends on its neighbors and is denotedP{ξxyz =
k|neighbors}. This probability is binomial with parameterθ(T ) = exp(T )

1+exp(T ) andG is the number of grey-levels.
When consideringG > 2 we have

P{ξxyz = k|neighbors} =
(

G− 1
k

)(
exp(T )

1 + exp(T )

)k(
1

1 + exp(T )

)G−1−k

k ∈ {0, 1, ..., G− 1}

For the binary model we have

P{ξxyz = k|neighbors} =
exp(T )

1 + exp(T )
k ∈ {0, 1}

whereT is neighborhood dependant.

2.1 First Order Texture Model

The texture properties are defined by the functionT given by

T (ξxyz) = b0 + bx(ξx−1,y,z + ξx+1,y,z) + by(ξx,y−1,z + ξx,y+1,z) + bz(ξx,y,z−1 + ξx,y,z+1)

where{b0, bx, by, bz} is the set of parameters of the model. The MRF is isotropic ifbx = by = bz, anisotropic
otherwise.



2.2 Second Order Texture Model

When considering first order MRF26 neighborhood configurations are possible compared to226 in the second
order case. For sampling reason we need to reduce the number of configurations. To each neighborhood configu-
ration we assign a potentialU(neighbors) given by

U
(
ξx1y1z1 , ξx2y2z2 , ..., ξxmymzm

)
=

i=|C|∑

i=1, ci∈ C
V (ci) 2i

andV (ci) = 0 if all voxels in ci have value0, 1 otherwise.

Fig. 4 shows the elementsci of the setC. C is composed of eight ordered elements (the order has no influence on
the model), seven elements are pairs of voxels and the eighth element contains all the neighbors of the center voxel.
In doing so we have reduced the number of configuration from226 to 28. The correlation between neighboring
voxels is expressed by

P{ξxyz = k|U(
ξx1y1z1 , ξx2y2z2 , ..., ξxmymzm

)
= q} =

exp(T )
1 + exp(T )

k ∈ {0, 1}, q ∈ {0, ..., 255}

Similarly to the first order, the parameters{bi} of the model are embodied in the functionT given by

T (ξx1y1z1 , ξx2y2z2 , ..., ξxmymzm) = b0 +
i=|C|∑

i=1, ci∈ C
bi V (ci)

3 Results

To synthesize the MRF texture we use the algorithm developed in [6] and used by Cross and Jain [1]. We start
from a uniform noise (see Fig. 5) and then iteratively swap two random voxels with different grey-level values
if the obtained texture has a higher probabilityP (Y ) than the original textureP (X) (P (X) andP (Y ) are the
product of the conditional probability of all voxels). We proceed until a stable state is reached. In pseudo-code this
is represented as:

while not stable do
choose two voxels v1 and v2 with ξv1 6= ξv2

if P (Y ) ≥ P (X) then switch v1 and v2

else
u=uniform random on [0, 1]
if

(
P (Y )/P (X)

)
> u then switch v1 and v2

end else
end while

Samples of synthetic binary textures are shown in Fig. 5. The textures are generated according to various settings
of the Markov random field. The volumes are representative of typical texture properties that can be obtained such
as isotropic textures (Fig. 5b,d), anisotropic textures (Fig. 5c,e,f) and strong directionality (Fig. 5f). We have not
tried to simulate realistic textures as the extraction of the MRF parameters will need the analysis of the real medical
data which is an area of future development .

4 Discussion and Conclusions

As shown a large variety of texture can be generated where 2D information is not sufficient to described their
properties. This demonstrates the limitation of approaches considering only textural features from 2D slices. This
emphasizes the necessity to develop novel approaches to the analysis of medical modalities such as CT or MRI.

A first attempt to the synthesis of grey-level solid texture shows good results (see Fig. 2 and 6). Unfortunately
the increased complexity prohibits its direct use to the analysis of such texture. One of the possible direction for
the analysis of grey-level texture is the thresholding of the image followed by the analysis of the obtained binary



(a) (b) (c) (d) (e) (f)

Figure 5. Sample of binary textures where (a) noise, (b-c) first order MRF and(d-f) second order MRF. From top to
bottom are display cross section slices taken along thex-axis,y-axis andz-axis respectively. For the second order
texture (d-f), the parameterb8 for the setc7 containing all neighbors of the current pixel is set to 0. The setting for
the texture synthesis are (b)b0 = −2, bx = bz = 0.5, by = 3 , (c) b0 = −2, bx = by = 1.25, bz = −1.25 , (d)
b0 = −2, (bi)i=1..7 = 1, (e)b0 = −2, (bi)i=1..6 = 1, b7 = 0 and (f)b0 = 4, (bi)i=1..5 = 1, (bi)i=1..5 = −2.

(a) (b) (c)

Figure 6. Example of an isotropic 16 grey-levels MRF texture volume whereb0 = −2 and(bi)i>0 = 1. The slices
are taken perpendicular to (a)x-axis, (b)y-axis and (c)z-axis.

texture. It is our belief that this is not a satisfactory solution and we are currently investigating new forms of the
potential functionU() to reduce the exponential complexity of grey-level solid textures.

In summary, we have presented a novel approach to volumetric binary texture synthesis. Our first experiment to
extend the model from binary to grey-level texture were not conclusive and need further investigation. However,
the model is promising and future work will be directed to the analysis of binary texture and the extension to
grey-level modelling.
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Abstract. We examine the ways that readers make sense of mammograms in context, showing how a 
consideration of the social aspects of this work might illuminate practice and suggest ways for the building of 
computer-based tools to support such work. We show how sense-making is a situated activity and raise some 
concerns as to the ways that technologies have been developed to support reading may impact negatively 
upon the very practice they were intended to support. We show how it is important to consider technologies 
in use and discuss how they might be developed to support real world use, as opposed to some idealised 
formulation of it. We conclude with some outline suggestions towards better user interfaces for computer-
aided detection systems, in particular, and for digital imaging systems in general. 

1  Introduction 

The practice of breast screening calls for readers to exercise a combination of perceptual skills to find what may 
be faint and small features in a complex visual environment, and interpretative skills to classify them 
appropriately – i.e., as benign or suspicious. Current UK NHS breast screening practice is for each mammogram 
to be ‘double read’, i.e., assessed independently by two readers [1]. Because of the growing shortage of trained 
readers, there is interest in using computer-aided detection (CADe) systems to replace double reading with a 
single reader using a CADe system. We report here ethnographic studies of readers using a CADe system which 
we conducted during clinical trials. 

2  Method 

As a complement to the quantitative emphasis of the conventional clinical trial, we used ethnographic 
investigative and evaluative techniques [7]. Ethnography argues for understanding the situatedness of individual 
activities and of the wider work setting, highlighting the interdependencies between activities, and stressing the 
‘practical participation’ of individuals in the collaborative achievement of work. For the purposes of designing 
and developing computer-based tools, the advantage of applying ethnographic methods lies in the ‘sensitising’ 
they promote to the real-world character of activities in context and, consequently, in the opportunity to help 
ensure that systems resonate with the circumstances of use. This is, we argue, particularly important to medical 
work, where the lack of attention to work practice has been responsible for many failures of IT systems. 

3  The Trial 

The CADe system being trialed was the R2 Imagechecker. In order to assess the system’s impact on reader 
performance, a conventional clinical trial design was used. Prompted and unprompted conditions were prepared 
using three sets of 60 historical cases [9]. In both conditions, readers were shown ‘current’ mammograms (but 
not previous mammograms, or any patient notes) for each case in turn, and asked to indicate areas of concern 
and to make a decision as to whether the case should be recalled for further investigation using a four point 
decision scale: 1. Recall; 2. Discuss but probably recall; 3. Discuss but probably no recall; 4. No Recall. In the 
prompted condition, readers additionally examined the prompts generated by the system before making their 
decision. Before the trial was run, each reader was given a brief explanation of how the CADe system worked, 
emphasising that it was intended to be used for detection rather than for diagnosis. Readers were told that the 
system ‘spotted’ masses and calcifications and about the appropriate prompts. They were also advised that the 
threshold of sensitivity of the system had been set such that there would inevitably be a lot of false prompts; and 
warned that since this was a trial set there would be more cancers than in a ‘normal’ reading session. 

4  Observations  

As part of the trial, readers were observed doing the various test sets and then asked about their experiences of 
using the prompts. Readers were also taken back to cases identified in the test set where they had appeared to 
have had difficulty or spent a long time making their decision and asked to talk through any problems or issues 



to do with the prompts and their decisions. Although there were variations in how readers approached the trial, 
the fieldwork extract below gives some idea of the process observed: 

Case 10: Looking at film – using a blank film to mask area outside that of immediate interest. Magnifying 
glass. Looking at booklet prompts - looking back at film. “This is a case where without the prompt I’d 
probably let it go ... but seeing the prompt I’ll probably recall ... it doesn’t look like a mass but she’s got 
quite difficult dense breasts ... I’d probably recall …” Marks decision. 

The main strengths of the CADE system in supporting this kind of work seemed to lay in picking up subtle signs 
– signs that some readers felt they might have missed – and stimulating interaction between reader and the 
available technology by motivating them to re-examine the mammogram. As one reader said: 

“Those micros that the computer picked up … I might have missed it if I was reading in a hurry … I’d 
certainly missed them on the oblique … This one here the computer certainly made me look again at the 
area. I thought they were very useful, they make me look more closely at the films … I make my own 
judgement ... but if the prompt is pointing things out I will go and look at it again.” 

There was also a perception that the CADE system was more consistent than readers might be:  

“... it’s just the fact that it’s more consistent than you are ... because it’s a machine.” 

Readers also frequently express the opinion that they are better at ‘spotting’ some cancers – as having skills or 
deficiencies in noticing particular types of object within films. This was another area where the CADe prompts 
were seen as useful, as both compensating in some (consistent) way for any individual weaknesses of the reader 
and as a reminder of ‘good practice’:  

“My approach tends to be to look for things that I know I’m not so good at ... there are certain things that 
you do have to prompt yourself to look at, one of them being the danger areas.” 

Amongst the weaknesses identified by readers was the distracting appearance of too many prompts: 

“This is quite distracting … there’s an obvious cancer there (pointing) but the computer’s picked up a lot of 
other things ... there’s so many prompts ... especially benign calcifications ... you’ve already looked and 
seen there are lots of benign calcs.”  

The CADe system was also seen to prompt the ‘wrong’ things – benign features or artefacts of the mammogram 
generation process: “... what the computer has picked up is benign ... it may even be talcum powder … I’m 
having trouble seeing the calc its picked up there … (pointing). I can only think its an artefact on the film.” 

At the same time, the CADe system was seen to be missing obvious prompts that raised wider issues to do with 
trusting and ‘understanding’ the system:  

“I’m surprised the computer didn’t pick that up ... my eye went to it straight away.” 

Our wider studies of breast screening show how reading mammograms is a thoroughgoingly social enterprise 
and is achieved in, and through, the making available of features that are relevant to the community of readers as 
opposed to some idealised individual cogniser [6]. It is for this reason that we turn to the work of Goodwin and, 
in particular, his notion of ‘professional vision’ [4], to explicate the social, intersubjectively available nature of 
doing reading. In mammography, a reader has to learn how to interpret the features on the mammogram and 
what they mean, as well as how to find them. We have described how readers ‘repertoires of manipulation’ 
make features visible [6]. Methods for doing this include using the magnifying glass and adopting particular 
search patterns: 

“Start at top at armpit … come down … look at strip of tissue in front of armpit … then look at bottom ... 
then behind each nipple ... the middle of the breast.” 

Readers also attempt to ‘get at’ a lesion by measuring with rulers, pens or hands from the nipple in order to find 
a feature in the arc; comparing in the opposite view; aligning scans; looking ‘behind’ the scans; ‘undressing 
lesions’ by tracing strands of fibrous tissues into and out of the lesion area and so on. A magnifying glass may 
be used to assess the shape, texture and arrangement of calcifications or, where the breast is dense, the 
mammogram may be removed and taken to a separate light box. These repertoires of manipulations are an 
integral part of the embodied practice of reading mammograms. Such features are not work arounds, but an 
integral part of the ecology of practice built up in and as a part of doing reading mammograms. 



The positioning of an object in a particular area of the breast renders it more suspicious than if it had been 
elsewhere. At the same time, certain areas within the mammogram are regarded as more difficult than others to 
interpret and readers particularly orient to them in their examinations. As one reader noted: 

“I do … I have areas where I know I’m weak at seeing … you know ones that you’ve missed ... one is over 
the muscle there ... its just because the muscle is there ... if you don’t make a conscious effort to look there 
you tend not to see that bit of breast and the other area is right down in the chest wall – breast and chest 
wall area ... because in older women the cancers tend to be in the upper outer quadrant so I look in that 
area very carefully ... it depends on the type of breast really.” 

We would also stress the self-reflective nature of readers’ behaviour. Readers know about their own strengths 
and weaknesses (in one centre, a reader is referred to as ‘the calcium king’ because of his ability to detect 
calcifications; a member of another centre is referred to as ‘Mrs Blobby’ because of her ability to detect lesions 
in dense areas). Readers are sensitive towards the set of criteria for correctness and what is required for the 
satisfaction of the maxims that constitute it. 

5  Discussion 

It is important to note that the CADe system should not be taken to make reading mammograms less uncertain – 
decisions still have to be made and these fall to the readers. Prompts are ‘docile’ in that their character is simply 
to draw the reader’s attention to candidate features as opposed to say what should be done with them. That a 
prompt occurs is a meaningful thing, but what to do about it is still a readers’ matter. In other words, the system 
still requires the professional vision of the reader to remedy prompts as what they accountably are. A reader 
makes what is seen or prompted accountable in, and through, the embodied practices of professional vision. That 
a mammogram feature or a prompt is there is not of itself constitutive of a lesion or other accountable thing, it 
must be worked up through these embodied practices and ratified in the professional domain of scrutiny. The 
CADe system knows – and can know – nothing of what it is to be a competent reader and what it is to look for 
features in a mammogram beyond its algorithms, and the reader must ‘repair’ what the system shows, making it 
accountable in, and through, their professional vision. This is, as we have argued, a thoroughgoingly social 
procedure and, as such, something that the CADe system cannot be a part of. Beyond its algorithms, the CADe 
system cannot account for what it has and has not prompted, and it cannot be queried as a colleague can. 

Readers used prompts to develop some understanding of the CADe system’s scope and function. However, they 
occasionally held incorrect notions about, e.g., the system prompting for asymmetry and were often baffled by 
the high level of false positive prompts. In part, this ability to make sense of how the system behaves also 
impacts on issues of dependability and trust in the system. We have argued elsewhere that how readers use 
prompts to inform their decision-making, and how they make sense of a CADe system’s behaviour, may be 
important for maximising effectiveness [5]. We find that readers rationalise false prompts by devising 
explanations or accounts of its behaviour that were grounded in the properties of the mammogram image. This 
points to general issues concerning trust – users’ perception of the reliability of the evidence generated by such 
tools – and how trust is influenced by users’ capacity for making sense of how the system behaves. The need to 
account for a prompt – even if it is dismissed – distracts the reader. In other words, its docile prompts often call 
attention to features that the readers have decided are not important enough to merit attention. 

The CADe system prompts features that are not cancers, as well as missing features that may be obviously 
cancers to the reader. For example, normal features in the breast such as calcified arteries or crossing linear 
tissues can be prompted as micro-calcifications, while other normal features such as ducts and tissue radiating 
from the nipple or inadvertent crossing of parenchymal tissue can produce a prompt for a cancerous mass. That 
the system prompts features other than the cancer is regarded as problematic but still in need of account. It might 
be said that the system works too well, providing not just too many prompts, but prompting features that a 
skilled reader would not accept as promptable. In part this is a feature of the technology that the readers (at least 
in this trial) effectively ‘forget’, but which might be incorporated into readers’ ‘biography’ of the system in time. 

How do readers construct, achieve or make sense of the system? Following Schutz, we might argue that readers 
render mammograms intelligible using a mosaic of ‘recipe knowledge’: “a kind of organisation by habits, rules 
and principles which we regularly apply with success.” [8]. While the common experiences and rules embodied 
in the ‘mosaic’ are always open to potential revision they are, nevertheless, generally relied upon for all practical 
purposes as furnishing criterion by which adequate sense may be assembled and practical activities – reading the 
mammogram – realised. Of course, in everyday interaction with colleagues any breakdown in sense is rapidly 
repaired and ‘what is going on’ readily understood. But, when the other participant in the interaction is a 
computer, difficulties can arise as readers (in this case) characteristically rush to premature and often mistaken 



conclusions about what has happened, what is happening, what the system ‘meant’, what the system is 
‘thinking’, and so on. The problem is, of course, that the CADe system is not capable of reciprocating the 
perspective of the skilled practitioner.  

It would therefore seem desirable to increase the scope for a CADe system to be ‘self-accounting’ [2] through 
the provision of richer and more sophisticated user interfaces. It is certainly possible to conceive of richer 
representations of a CADe system’s behaviour, but it is an open question as to whether such representations 
could be sufficiently contexted in a manner that would enable readers to use them easily and in any meaningful 
sense. It seems to us that such representations are not accounts in themselves, but resources for the realisation of 
accounts in context. We argue that even a series of representations from which readers could choose may not 
provide sufficient detail to answer all conceivable ‘why that now’ types of questions.  

6  Conclusions  

The current generation of CADe systems are designed with user interfaces that presume that all readers need to 
see is the bare and unadorned prompt. Our ethnographic investigations of the CADe system on trial show, 
however, that this presumption is false. Indeed, we would argue that as digital imaging systems, in this and other 
medical work domains, evolve from performing basic image rendering to incorporate increasingly sophisticated 
image processing, then users’ interactional requirements become more demanding. 

It is clear from our study that readers need an understanding of what the CADe system has prompted and why. 
The key problem we observe is that the system does not provide accounts of its behaviour. The docile nature of 
the prompts generated requires the reader to formulate ad hoc an explanation for their presence. Thus, there is a 
need for the reader to engage in some kind of retrospective search for what it is that the CADe system might 
have ‘meant’ or ‘intended’. Without the possibility of being able to assemble an account from the source, so to 
speak, the reader has to develop some notion of the potentialities of the system – which, as we have seen, may or 
may not be consistent with what the CADe system actually does. 

If readers are to ‘trust’ CADe systems, they need accounts of why prompts come – or come not – to be there. It 
is also important to consider how far accounts of prompts might be intrusive and thereby impact negatively on 
the work of readers. We therefore need to consider what these accounts would look like and for whom they 
would be intended. In other words, these accounts must be designed to relevant to readers’ concerns. We suggest 
that one way of moving towards assembling readers’ accounts is for CADe system developers to work with 
closely with readers as the latter become acquainted with the system’s performance characteristics over time. 
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Abstract. Automatic generation of kidney regions of interest for radionuclide renograms is possible by 
defining a reference image and reference regions, using a non-linear image registration algorithm to map a 
totalised image from a patient to the reference image and using the mapping produced to map the predefined 
reference regions back onto the patient image.  The accuracy of the automatically derived regions is evaluated 
by comparison with regions drawn independently by experienced operators.  The median success factors, a 
measure of the overlap between automatic and manual regions, over 49 kidneys was 0.95 and the average 
linear displacement between the boundaries of the automatic and manual regions was 0.43 in units of pixel 
dimensions. 

 
1 Introduction 
 
One of the principal uses of image segmentation, in terms of the number of patients involved, is the use of 
regions-of-interest (ROI) in Nuclear Medicine.  These are invariably drawn manually, although there is evidence 
that ROI drawn on the same subject can be quite operator dependent.  White et al [1] compared two operator 
drawn regions of interest using a success factor, defined as the area of the intersection of the regions divided by 
the average area of the regions and obtained intra-operator variability of 0.94 and inter-operator variability of 
0.93.   A reliable and automatic method of drawing ROI would be useful clinically and would help to standardise 
analysis between clinics.  In the analysis of radionuclide renograms an ROI is drawn around each kidney to 
allow the total activity in the kidney to be estimated as a function of time.  Background regions, often 
automatically derived from the kidney regions, are drawn to allow background subtraction.  In spite of the 
widespread use of ROI analysis in clinical practice in Nuclear Medicine there is still no general method of 
drawing ROI automatically.  The images are low resolution compared to many other modalities and are noisy, 
both of which makes identification and delineation of edges difficult.  Other approaches to renogram analysis 
using factor analysis have been explored.  The aim of this approach is to extract curves representing the variation 
in activity with time in various homogeneous structure in the study, such as the kidney and bladder, from a low 
dimensional factor space derived from the study.  Although extensively researched there is little evidence that 
these techniques have made much impact clinically.  Indeed Martel [2] showed that there was little gain over 
using optimal ROI.  Jose [3] has proposed a method for generation of ROI for kidneys which uses a combination 
of dynamic information, multi-level intensity segmentation, neural network identification of segments associated 
with the kidneys and morphological operations to generate kidney ROIs.  However, this approach is specific to 
kidneys and as far as we are aware has not been extended to other areas of the body.  Jose [3] reports median 
success factors of 0.9 for a 30 renogram clinical test set. 
 
In this paper we propose the use of image registration to generate reliable and robust ROI for radionuclide 
renograms.  Houston et al [4] described the use of image registration to generate automatic ROI for cardiac 
studies using an affine transform.  However, the affine transform is in general too restrictive and non-linear 
transforms are required. ROI generation using registration is generic, in the sense that the domain knowledge is 
completely separated from the algorithm and trainable, in the sense that exemplar data can be used to define how 
the ROI is drawn.   It does not rely on any assumptions about organ boundaries being defined by appropriate 
intensity levels or gradient values. 
 
2 Theory 
 
The aim of registration is to map an image m(x,y), the moved image, to an image f(x,y), the fixed image.  We 
assume that such a mapping is possible in that there is a one-to-one mapping which converts m(x,y) to f(x,y) 
such that the intensity values completely match (in the absence of noise).  Then the moved and fixed images can 
be related by  

 
where ∆x(x,y) and ∆y(x,y) together constitute the mapping function.    
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In the current work we modify equation (1) by adding an extra term  
 

)y,x(f)y,x(s))y,x(yy),y,x(xx(m =∆−∆+∆+             (1) 
 

which deals with the residual differences between the two images.  In this form, the mapping function (including 
the ∆s(x,y) term) is clearly non-unique.  However, if smoothness constraints are imposed on the mapping 
functions unique solutions are possible.  One such constraint is to expand the mapping functions in terms of a set 
of basis functions φi(x,y).  We can show that, for images close together 
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and if the mapping function is expanded in terms of the basis functions 
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where each of the summations is a component of the mapping function expanded in terms of the basis functions 
and this equation can be written in vector matrix form as  
 

Tamf =−  
 

where a is a vector of the coefficients of the basis function expansions of the mapping functions. Provided the 
number of pixels is greater than the number of elements in a, we have an over-determined set of equations and 
can solve for the elements of a and hence obtain the mapping.    
 
Simple linear basis functions define an affine mapping.  In the present work local (bilinear) basis functions are 
used.   In this case the elements of a represent the mapping values at points on a grid defined by the central 
points of the local basis functions.  We can sensibly apply additional smoothness constraints to the values in a.  
Computation of a is an iterative (gradient descent) process.  If an is the current estimate of a the next increment 
∆a is given by 
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where λ is a parameter controlling the overall force of the smoothing constraint, β is a separate and independent 
parameter controlling the relative importance of  the amplitude term compared to the spatial terms and L is a 
Laplacian operator. [TtT(β) + λLtL] is a sparse matrix and the above equation can be solved very efficiently 
using gradient descent methods.   
 
Inclusion of the ∆s(x,y) in equation 1 without constraint results in a trivial solution in that ∆s(x,y) can be set to f 
– m.  However, consider equation 2.  The difference between f and m is made up of contributions from three 
terms.  If each of these terms contributes equal amounts to the differences between f and m then since the 
gradients are relatively non-smooth functions ∆x and ∆y will be smoother than ∆s.  The smoothest way of 
accounting for the difference between f and m is as far as possible to utilise the first two terms and then evoke ∆s 
when all else fails.   The total smoothing value is given by 
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where β controls the relative importance of the smoothness of the spatial and intensity mappings. Values of λ 
and β can be found which minimise the condition number of [TtT(β) + λLtL] and these are the values used in this 
work. 
 
The mapping functions are computed using image data within a registration region around the kidneys. 
 
 



3 Methods 
 
A renogram consists of a sequence of gamma camera images which follow the passage of a radiotracer through 
the kidneys.  In our clinic the initial phase of the study 
consists of 20 images each of 2 seconds duration to 
capture the vascular phase of the investigation and then 
a second phase consisting of a further 70 or so images 
each of 20 seconds duration.  The ROI are generated 
using the first 10 images of the second component.  
These are summed together and (apart from the 
vascular phase) represent approximately the first three 
minutes of the study.  The activity in the kidney is 
normally increasing over this phase of the study and the 
totalised images show, when there is uptake, both 
kidneys.  A summed image from a normal study is 
taken as the starting point and a set of normal patient 
images registered to this image.  The average of these 
registered images is computed, and this becomes the 
temporary reference image.  The set of images is now 
registered to this temporary reference and the again the 
average of the registered images is computed.  This image forms the reference image.  The reference image used 
in this study is shown in Figure 1, along with the rectangular registration region used. 
 
Regions of interest around the kidney are drawn for each of the normal images.  The regions used in this study 
were those produced during routine clinical analysis and have been drawn by a variety of users.  The ROI can be 
in two forms.  The first is as a vector of boundary points and the second is as a binary image.  To generate a 
reference ROI each normal image is registered to the reference image and the same mapping is then applied to 
the corresponding ROI in binary form.  All the registered binary ROI are then averaged, the average converted to 
binary form using a 50% threshold and then converted to vector form using a contour following algorithm.   The 
resulting reference region is also shown in Figure 1. 
 
To generate an ROI automatically for a new patient the patient image is registered to the reference image, and 
then the mapping used to map the reference ROI back to the patient image.  In this work an initial registration of 
patient image to standard image was performed.  This was then followed by a registration of each kidney 
separately to the corresponding reference.  Computation time for generation of the automatic regions was under 
0.5 seconds per study. 

 

 

Figure 2.  Four studies from the set of 25.  See text for details. 

a b

c d

Figure 1.  The reference image, the reference 
regions and the registration region. 



The reference image and region were generated using data from 25 normal images.  The method was evaluated 
using an additional 25 subjects, which included a mixture of 6 subjects with visually normal patterns of uptake 
and 19 subjects with abnormal patterns of uptake (including one study with a non-visualised kidney).  The 
automatically generated regions were compared to the manual regions by dividing the area of the intersection of 
the two regions by the average area of the two regions. The ratio is the success factor (SF). If the regions 
completely overlap the value of this measure is 1, if they do not overlap at all the value of this measure is zero.  
A second measure of the overlap of the manual and automatic regions was obtained by dividing the area of the 
exclusive or of the two regions by the average of the perimeter of the regions.  This length, in units of pixels, is a 
measure of the average linear displacement (ALD) between the two boundaries. 
 
4 Results 
 
Figure 2 shows four studies from the 25.  The solid contours represent the automatically generated ROI, the 
dotted contours the manually generated contours.  Figure 2a has the largest success factor averaged over both 
kidneys (SF = 0.97).  Figures 2b and 2c show the worst cases from this data set.  Figure 2b has very poor 
function in the left kidney (SF = 0.84 for the left kidney), and Figure 2c shows a study with overall reduced 
function in both kidneys (SF = 0.86 and 0.87 for the left and right kidneys).  Figure 2d shows a study with a 
completely non-functioning kidney.  The median SF was 0.95 over all kidneys (excluding the non-visualised 
kidney.  The smallest value corresponds to the left kidney region in Figure 2d.   The next smallest value 
corresponds to the left kidney in Figure 2c.  The median ALD, again excluding the non-visualised kidney, was 
0.43 pixels.   
 
5 Discussion 
 
This method for generating automatic ROI required no manual intervention, which made it a fully automatic 
method.  Jose [3], using a combination of dynamic information, multi-level intensity segmentation, neural 
networks for segment identification and morphological operators, achieved a median SF of  0.9 over both 
kidneys (excluding dramatic failures).  In the present work the reference image and the reference ROI are 
generated by a process of training with exemplars.  In the present case the exemplars are the ROI generated by 
manual operation.  We do not know if these are the best that can be produced, but clearly if a better set of ROI 
can be produced they can form the basis of a training set.   
 
The cost function minimised is a sum-of-squares cost function, modified to include an amplitude term.  Use of 
this function is limited to registering images of the same modality.  Although less general than methods based on 
information theoretic measures the approach described in this paper does have the advantage of computational 
efficiency and robustness which means that it can be operated unsupervised in a clinical environment.  We have 
deliberately not used any dynamic information in this work, but clearly images could be produced which 
combined both spatial and dynamic information (for example parametric images of temporal gradient) and these 
may produce even better results.  However, in its present form the method is generic in that the domain 
knowledge (reference data) is separated from the computational component of the method.  The same approach 
has been used (Barber [5]) to segment MUGA images, with a reported SF of 0.93, so the method looks 
promising for the generation of ROI for dynamic nuclear medicine studies.   
 
6 Conclusion 
 
Automatic and reliable generation of kidney regions of interest on radionuclide renograms in a clinically useful 
timescale is possible. 
 
References 
 
1. D D R White, A S Houston, W F D Sampson and G P Wilkins.  Intra- and iteroperator variations in region-of-interest 

drawing and their effect on the measurement of glomerular filtration rates.  Clinical Nuclear Medicine 24(3):117-181 
1999 

2. A L Martel. The use of factor methods in the analysis of dynamic Radionuclide studies. PhD thesis, University of 
Sheffield, 1992 

3. R M J Jose. Analysis of Renal Nuclear medicine Images.  PhD Thesis University of London 2000 
4. A S Houston, D White, W F D Sampson, M Mcleod and J Pilkington.  An assessment of two methods for generation 

automatic regions of interest.  Nucl. Med. Commun. 19:1005-10161998. 
5. D C Barber  Automatic ROI generation using image registration (abs).  Nucl Med. Commun. 23, Oct 2002 



Investigation of Shape Changes in the Lateral Ventricles
Associated with Schizophrenia : A Morphometric Study Using a
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Abstract. A previous publication [1] described the use of a transportation method to improve point to point
correspondences in the construction of three-dimensional point distribution models (PDMs). Using PDMs
created in the described manner, we have carried out morphometric analysis of the lateral ventricles of a group
of schizophrenic and control subjects to investigate possible shape differences associated with schizophrenia.
Applying discriminant analysis to the most important shape parameters obtained from the PDM, the means
of the schizophrenic and control groups are significantly different (p< 10−13). The shape changes observed
were localised to three regions : the temporal horn (its tip near the amygdala, and along its body near the
parahippocampal fissure), the central part of the lateral ventricles around the corpus callosum, and the tip of the
anterior horn in the region of the frontal lobe. The differences in the temporal region and anterior horns are in
regions close to structures thought to be implicated in schizophrenia.

1 Introduction

Schizophrenia is a serious brain disorder which is accompanied by altered brain structure. Interest in investigation
of shape changes of the lateral ventricles due to schizophrenia can be attributed to the work of Johnstone et al. [2]
who showed that schizophrenia is accompanied by an increase in the volume of the lateral ventricles. Several
groups e.g. [3] [4], are currently developing methods to investigate whether specific localised shape changes occur
in the lateral ventricles and other neuroanatomic structures due to schizophrenia and other brain diseases.

Because of the wide range of natural variability in the shape of structures in the human body, statistical approaches
to measuring differences in shape are desirable. Statistical shape models (SSMs) use samples from control and/or
disease populations, the training set, to learn the variability in the structures being modelled. They can therefore
allow separation of shape changes due to disease in the presence of natural variation, and provide better charac-
terisation of differences between populations than volumetric techniques. A diverse number of SSMs have been
described. However, these all need a method of representing shape, establishing correspondence across the training
set and obtaining shape differences qualitatively and/or quantitatively.

The particular SSM we use here is the point distribution model (PDM) [5], which characterises shape by a small
number of “modes of shape variation”, providing a compact parameterisation. We apply linear discriminant anal-
ysis (LDA) to the shape parameters to characterise inter-group differences.

2 Related Work

Buckley et al. [6] use 48 manually defined landmarks corresponding to curvature extrema on the surface of the
ventricles of 20 schizophrenic patients and 20 control subjects to investigate shape differences. They considered
the whole ventricular system and reported no overall shape differences between the entire patient group and the
entire schizophrenic group. However, when only the males of both groups were considered, significant shape
differences were identified in the proximal juncture of the temporal horn and in the foramen of Monro.

Gerig et al. [3] performed shape analysis on the lateral ventricles of 5 pairs of monozygotic and 5 pairs of dizygotic
twins. Ventricles were mapped to a unit sphere and decomposed into a summation of spherical harmonic functions.
The first order harmonics were used to impose correspondence between points and the measure of shape differ-
ences was the mean squared distance between corresponding points on the surfaces. They showed that, without
normalisation for ventricular size, no significant differences were seen between the two groups. However, after
normalisation using the volumes of the ventricles, the right lateral ventricles of the two groups are significantly
different. They concluded that shape measures reveal new information in addition to size or volumetric differences,
which might assist in the understanding of structural differences due to neuroanatomical diseases.
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Narr et al. [4] obtained average maps of anatomical differences based on voxel values of the limbic structures
and the lateral ventricles of 25 schizophrenic and 28 control subjects. Their analysis showed significant shape
differences in the left lateral ventricles. In particular, there was enlargement of the superior part and the posterior
horn. There were also noticeable differences in the part of the lateral ventricles in the vicinity of the caudate head.

Our approach has aspects in common with [6] and [3]. We build PDMs based on corresponding landmark points
across a training set. The landmark points are used to generate a small number of shape parameters controlling
the modes of variation of the shapes. The use of this parametric description distinguishes our approach from that
of [6]. However, the parameters are devised from the training data, unlike those of [3].

3 Materials and Method

3.1 Data

Volumetric T2 MR scans of 30 controls (14-45 years, 13 female, 17 male) and 39 age and sex matched schizophren-
ics (14-45 years, 9 female, 30 male) were used in this study. The scans were independently acquired in the sagittal,
coronal and axial orientations. Each slice had 256 x 256 voxels, with in-plane size of 0.86mm by 0.86mm for
sagittal and axial orientations, and 0.78mm by 0.78mm for the coronal orientation. For all orientations the slice
thickness was 5mm and the intra-slice gap was 1mm. All images were corrected for MR inhomogeniety [7], and
the three views of each subject were combined by rigid registration and interpolation to give 3D images with
effective resolution of 0.78mm x 0.78mm x 0.78mm. The lateral ventricles were segmented using a 3D edge de-
tector [8] and edge segments were manually linked to form closed contours in each slice with the guidance of a
neuroradiologist. The contours of the left lateral ventricles were reflected to give the same pose as those of the
right, giving an evaluation set of 138 ventricles for this study.

For each subject, brain size parameters were obtained as follows. Skull stripping was performed on each MR
image [9], and ellipsoids were fitted to the resulting brains. The lengths of the three principal axes of the ellipsoids
were stored as the brain size parameters. The ventricular surfaces were aligned to a canonical coordinate system
using their centroids and the three principal axes obtained from the distribution of the coordinates of their surface
points. The brain size parameters were then used to scale each object centred ventricle independently in the three
orthogonal directions for normalisation for brain size with respect to the brain size of an arbitrarily chosen template
brain. This was necessary to remove the influence of brain shape on ventricular shape.

3.2 Point Distribution Models

A PDM [5] reparameterises a shape described by surface landmark points to a smaller set of shape parameters
using equation 1

x = x + Pb . (1)

x is the vector of the coordinates of surface landmarks of a particular shape,x is the average of these vectors
over a training set.P is the matrix whose columns are the eigenvectors corresponding to the largestk eigenvalues
of the covariance matrix of the shape vectors.b is a vector of weights of dimensionk. Due to correlations in
point positions,k can be much smaller than the number of landmark points.b then becomes a vector ofk shape
parameters which are equivalent tox as a description of the shape.

It is necessary to locatecorrespondinglandmark points on all the surfaces in the training set. In the case of 2D
PDMs this can be achieved by manual annotation. However, in 3D this becomes difficult and prohibitively labour-
intensive. Davies et al. [10] have shown that the specificity of a SSM depends critically on finding accurately
corresponding landmark points. Several approaches have been made towards automatic landmark generation in
3D, including the use of spherical harmonic parameterisation [3] and optimisation of the shape models [10]. Here
we identify landmarks from the set of “crest points” on the ventricle surface using a modification of the method
due to Subsol [11]. Correspondence is established using non-rigid registration of the surfaces and minimisation of
Euclidean distance expressed as a transportation cost.

3.3 Construction of the 3D PDM of the Lateral Ventricle

Crest points, which are curvature extrema on the ventricles, are used as automatically derived anatomical landmarks
here. According to the definition of [11] they are points where lines of principal maximal curvature on a surface



have maximum values. Crest lines are the locus of crest points and impose an ordering on crest points. The use
of crest points and crest lines in the creation of 3D PDMs of the ventricles has been described previously [1].
This also gives details of the transportation algorithm used to improve the correspondences obtained from the crest
points, showing it gives a greater number of matches and greater symmetry of matches when compared with an
Iterative Closest Point (ICP) method.

To create the 3D PDM, one ventriclevt was used as a template and its surface represented by vertices and vertex
faces defined by triangular triplets of the vertices. The initial triangulation produced about 10,000 vertices, but
for computational reasons these were decimated to give about 1,000 vertices. Crest lines were obtained for each
ventricle and normalised with respect to the template as described in section 3.1. The crest lines of each of the
remaining 137 ventriclesvi ∈ {v1, . . . ,v137} were matched in a pairwise manner to those of the chosen template,
vt. The matches were in both directions i.e.vt → vi andvi → vt, using the transportation method and a post-
processing step to enforce monotonicity. Matching was performed over 30 iterations: ten iterations each of rigid
alignment, affine alignment, and spline warping successively as described in [11].

Although the transportation-based method gives symmetric results for matches in both directions when the number
of crest points are equal, the results are not guaranteed to be symmetric when the number of crest points are not
equal, which in general is the case with matching ventricles. Therefore, from each matched pair (vt → vi and
vi → vt), a subset of matches occurring on parts of crest lines that were symmetrically matched in both directions
were extracted. Although this decreases the number of matched points used in the subsequent transformation, it
gives greater confidence that they are valid matches. For the present case, 1,586± 167 crest points (79% of the
total number matched) were on symmetrically matched crest lines for the transportation-based method, and 964±
160 (70% of the total number matched) for the ICP-based method. The symmetric subset of matched points are
used to obtain coefficients defining a final spline based warp allowing transformation of the vertex points ofvt

onto the surface of eachvi. The spline based warps are defined in [11].

3.4 Shape Analysis

The parameters of theb vectors are used to define a shape space using the firstk eigenvalues in the PDM (k=30
in the present case, explaining over 99% of the observed variance). Each member of the training set is a point
within thisk-dimensional space, represented by a vectorbk. To characterise shape differences between the groups
we conducted a LDA (see e.g. [12]) using Fisher’s criterion. This provides a “discriminant vector” in shape
space along which the difference between the groups is most marked. We can quantify the shape differences
by projecting the individual shape vectors onto the discriminant vector to provide a scalar value representing the
individual shapes. The nature of the shape differences between the groups can be visualised by reconstructing the
shapes corresponding to the group means. Specific differences correspond to locations on the shape where large
movements occur between the reconstructed shapes.

4 Results

Figure 1(a) shows the results of projection onto the discriminant vector. The difference in the means was statisti-
cally significant (p< 10−13 by a t-test). Figure 1(b) shows the difference between the means of the schizophrenic
group and that of the control group colour-mapped onto a ventricular surface. The greatest differences were in the
region of the tip of the anterior horn (8mm), in the region of the temporal horn (between 2mm and 6mm), around
the central part of the main body of the ventricle in the region of the corpus callosum (between 4mm and 6mm).

5 Discussion

The results of the morphometric analysis are similar to those of [4] in that they show differences localised to the
temporal horn in the region of the parahippocampal fissure, and in the anterior part of the lateral ventricle near
the frontal lobe. However, we also found differences in the central part of the lateral ventricle in the region of the
corpus callosum. Although [6] also report differences in the temporal horn of male schizophrenics, they did not
find differences in the pooled groups of male and females as we have reported here. Schizophrenia is a complex
disease and, as the results of the linear discriminant analysis shows, there is a considerable overlap in the ventricles
of schizophrenics and normals. Hence we do not propose we have a method that allows the discrimination of
lateral ventricles into schizophrenic and none schizophrenic groups. However, studies of this sort may help in
understanding and monitoring schizophrenia. In this study we combined left and right ventricles of both males
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Figure 1. Results of shape analysis

and females. We have also removed all overall volume effects by isotropic scaling of the ventricles prior to shape
modelling. The observed differences are residual differences in shape in addition to any volumetric differences.
Future work will include investigating age and gender effects as well as comparing left and right asymmetry.
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A Non-Euclidean Metric for the Classification of Variations in
Medical Images
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Abstract. The analysis of deformation fields, such as those generated by non-rigid registration algorithms, is
central to the quantification of normal and abnormal variation of structures in registered images. The correct
choice of representation is an integral part of this analysis. This paper presents methods for constructing multi-
dimensional diffeomorphic representations of deformations. We demonstrate that these representations are
suitable for the description of medical image-based deformations in 2 and 3 dimensions. We show (using a set
of 2D outlines of ventricles) that the non-Euclidean metric inherent in this representation is superior to the usual
ad hoc Euclidean metrics in that it enables more accurate classification of legal and illegal variations.

1 Introduction
Non-rigid registration algorithms [1, 2] automatically generate dense (i.e., pixel-to-pixel or voxel-to-voxel) corre-
spondences between pairs and sets of images with the aim of aligning analogous ‘structures’. The deformation
fields implicit in this correspondence contain information about the variability of structures across the set, and in
order to analyse quantitatively this variability, we need to be able to analyse the set of deformation fields. Such
analysis must be based (either implicitly or explicitly) on a particular mathematical representation of the deforma-
tion field. Previous work on modelling dense 2D and 3D deformation fields has either used the densely-sampled
deformation vectors directly (e.g., [3,4]), or has employed a smooth, continuous representation of these (e.g., [5]).
However, neither of these methods guarantees that the deformation field is diffeomorphic.
We contend that the appropriate representation should be continuous and diffeomorphic. Where such a correspon-
dence is not actually physically meaningful (e.g., in the case where additional structures such as tumours appear),
this should be indicated by the warp parameters assuming atypical values. When we are considering the correspon-
dence between discrete and bounded objects such as brains, it is also desirable that the warps themselves should
be discrete and bounded. This leads us to suggest that a suitable representation is that of the group of continuous
diffeomorphisms with some appropriate set of boundary conditions. Such a representation can be constructed us-
ing an approach based on Geodesic Interpolating Splines (GIS) [6]. In previous work [6,7] it has been shown that
this approach also allows the construction of a metric on the diffeomorphism group.
In this paper we demonstrate the construction of these diffeomorphic representations using a variety of spline
bases. We show that these representations generate warps that are suitable for the task in hand, giving biologically
‘plausible’ warps in both two and three dimensions, whilst being of a relatively low dimensionality. We further
study the significance of the metric (geodesic) distances between warps, and show that using it provides a measure
of atypical variation that has greater discriminatory power than naı̈ve measures based on the ad hoc use of a
Euclidean metric on the space of warp parameters.

2 The Geodesic Interpolating Spline
We consider a vector-valued spline function~f(~x), ~x ∈ Rn that interpolates between data values at a set of
knotpoints{~xi : i = 1 toN}, where~f(~xi) = ~fi, that can be expressed as the minimiser of a functional Lagrangian
of the form:

E
[
~f
]

=
∫

Rn

d~x
∥∥∥L~f(~x)

∥∥∥
2

+
N∑

i=1

λi

(
~f(~xi)− ~fi

)
, (1)

whereL is some scalar differential operator. The first term in the Lagrangian is the smoothing term; the second
term with the Lagrange multipliers{λi} ensures that the spline fits the data at the knotpoints. The choice of
operatorL and boundary conditions defines a particular spline basis. The general solution can be written in the
form:

~f(~x) = ~g(~x) +
N∑

i=1

~αiG(~x, ~xi), (2)

where the affine functiong is a solution ofL~g(~x) = 0 and the Green’s functionG is a solution of:
(
L†L

)
G(~x, ~y) ∝

δ(~x− ~y), with L† is the Lagrange dual ofL. For more details, see [8]. The choice of Green’s function depends on
the boundary conditions and smoothness appropriate to the problem considered. Suggestion of different possible
Green’s functions are given in [8], here we focus on the Clamped-Plate Spline (CPS), which has the boundary con-
ditions that it is identically zero on and outside the unit ball [9]. We contend that such boundary conditions are the
appropriate choice for images of discrete objects such as brains; other types of images may require different bound-
ary conditions. The biharmonic CPS (L†L = (∇2)2) in 2 dimensionsG2

2, and the triharmonic (L†L = (∇2)3)
CPS in 3 dimensionsG3

3, have Green’s functions ( [9,10]):
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G2
2(~x, ~y) = ‖~x− ~y‖2 (

A2 − 1− log A2
)
, G3

3(~x, ~y) = ‖~x− ~y‖
(

A +
1
A
− 2

)
, A(~x, ~y) =

√
~x2~y2 − 2~x · ~y + 1

‖~x− ~y‖ .

The CPS is only guaranteed to be diffeomorphic for infinitesimal deformations. The standard approach to con-
structing larger deformations is to build them up as an infinite sequence of infinitesimal deformations [6, 11] by
introducing a flow timet, so that the knotpoints follow paths{~xi(t); t ∈ [0, 1]} with the associated energy:

E [~αk(t)] =

1∫

0

dtG (~xi(t), ~xj(t)) (~αi(t) · ~αj(t)) . (3)

We no longer have an exact solution, since the knotpoint paths are only constrained at their end-points, so that
we have to numerically optimise equation (3) over the knotpoint paths between their end-points. For more details,
see [7]. It was shown in [6] that the optimised energy is the square of ageodesic distance functiond on the group
of diffeomorphisms, so thatEopt(ω) = d2(e, ω), wheree is the identity element of the group. This metric gives us
a principled way of defining warps that interpolate between any two given warps [10]; the optimal flowpath in the
group of diffeomorphisms gives a geodesic on the space of warps, and the geodesic distance allows us to calculate
a warp on this geodesic halfway between the two initial warps.

3 Representing Diffeomorphisms in Two and Three Dimensions

When considering warps of 2D biological images, it is obviously important that the generated warps are not
only diffeomorphic, but also biologically plausible. To investigate this, we considered a set of 2D MR axial
slices of brains, where the slices chosen show the lateral ventricles. For each image, the positions of the lat-
eral ventricles and the skull were annotated by a radiologist using a set of 163 points. We took a subset of 66
of these points to be the positions of our knots (see Fig. 1). Given a pair of images, the knotpoint positions
on the images gave us the initial and final positions for our knotpoint paths. We then calculated the geodesic
interpolating spline warp corresponding to these positions using the 2D clamped-plate spline as Green’s function.

Figure 1. Left: Annotation (white line) and

knotpoints (white circles) on the original brain

slice. Right: The same knots positioned on

another brain slice.

We did not affinely align the knots before calculating the warp; hence
the algorithm had to deal with a non-trivial pseudo-affine part. Affine
alignmentcould have been performed first, but we did not in order to
make the problemharder. Example results are shown in Fig. 2. The
warped images are not resampled – the images are instead plotted as
coloured surfaces, so that the size and position of each warped pixel is
retained. It can be seen that the warps are indeed diffeomorphic, and ap-
pear to be very smooth – each of the brain slices still looks biologically
plausible, despite the relatively low dimensionality of the representation
used – structures other than the labelled ones have been brought into
approximate alignment. This suggests that a dense correspondence (for
instance, one given by a non-rigid registration using maximisation of
mutual information) could also be represented by these warps without
an inordinate increase in the dimensionality of the representation.

We now show that the GIS can also generate biologically warps in 3D, and that, given a warp, we can choose the
knotpoints appropriately using a set of segmented hippocampi, each of which consists of a triangulated surface
with 268 vertices; examples are shown in Fig. 3. The vertices have been manipulated to give the optimisal corre-
spondence [12]. Pairs of hippocampi were chosen at random, and the 2 shapes aligned using generalised Procrustes
analysis. We used the triharmonic clamped-plate splineG3

3 as our GIS basis [8]. The required warp between source
and target was calculated iteratively – the warp was optimised for a given set of knotpoints, then new knotpoints
added and the warp recalculated. New knotpoints were selected from the vertices using a greedy algorithm: the
discrepancy between the vertices of the warped source and the target were calculated and new knotpoints selected
from those vertices that have the largest discrepancies.
Fig. 4 shows the distribution of the discrepancies between the aligned source and target, and the final warped
source and target, for a set of 70 knotpoints. It can be seen that the distribution of discrepancies as a whole has
been shifted towards smaller values. In Fig. 5, we show the maximum, median and mean square discrepancies
for non-knot points only as a function of the number of knots for 4 random pairs of hippocampi. The nature of
our greedy algorithm for selecting knotpoints means that the maximum discrepancy is not guaranteed to decrease
monotonically. However, all three graphs show that the algorithm quickly reaches to a reasonable representation
of the required warp, for a number of knotpoints that is approximately 25% of the number of vertices.

4 Using the Geodesic Distance to Classify Variations
We now consider the role of the geodesic distance in classifying legal and illegal variations in real biological data.
We take as our dataset the annotated outlines of the anterior lateral ventricles, as used in section 3 in the axial brain
slices. Each example consists of 40 knotpoints (see Fig. 6). The set of training examples was Procrustes aligned



Figure 2. Two examples of warp interpolation using the clamped-plate

spline. Pixel intensity is unchanged, but note that the image structures are

approximately aligned. Left: Source image, Centre: Warped image, Right:

Target image. Source and target images are undistorted images from 4 normal

subjects.

Figure 3. Target (top) and source (bottom)

hippocampi with knotpoints (black circles).

The correspondence between the shapes is

indicated by the shading.

Figure 4. Distribution of point discrepancy

between source and target (grey bars), and

warped source and target (white bars).

Figure 5. The maximum, median and mean square discrepancies, for non-

knot points only, as a function of the number of knots. Data is shown from 4

randomly selected pairs of hippocampi.

and then scaled to fit inside the unit circle. A linear Statistical Shape Model (SSM) was built from this training set
in the usual way. We then used this SSM to generate random example shapes. These examples were classified as
legal if the outlines of both ventricles did not intersect either themselves or each other, and illegal otherwise (see
Fig. 6). The training set of shapes are, by definition, legal.
We then calculated the GIS warps, using the biharmonic CPS basis, between the classified set of shapes and the
mean shape from the model. The geodesic distance from the mean is compared with the Mahalanobis distance
from the mean in Fig. 7. It is immediately obvious that we cannot separate the legal and illegal shapes by using
the Mahalanobis distance from the mean. However, using the geodesic distance, it is possible to construct a
simple classifier (shown by the dotted grey line) that separates the two groups, with only one example shape being
misclassified (the grey circle just below the line). Given that the Mahalanobis distance for the SSM is equivalent
to a Euclidean metric on the space of point deformations, this again demonstrates the superiority of the GIS metric
over an ad hoc metric. Note that the correspondences used in this example are a subset of the correspondences
that we would expect to be generated by a successful non-rigid registration of the images. Increasing the density
of points on the training shapes would have left the result for the Mahalanobis distance essentially unchanged.
However, the result for the GIS warp would have improved, giving a greater separation between the two sets of
shapes. This is because, in the limit where the lines become infinitely densely sampled, it is actually impossible to
construct a diffeomorphism for which the lines cross, which would mean that the geodesic distance for the illegal
shapes would approach infinity as the sampling density increased. We can now extend this argument to the case
of modelling the deformation fields for a non-rigid registration; a linear model of such deformation fields would
suffer the same problem as the linear SSM, where now the overlapping structures would correspond to a folding
of the warp. The GIS cannot, by definition, generate such a folding since it is guaranteed to be diffeomorphic.



Figure 6. Top: Examples from the training

set. Bottom: Legal (left) and illegal (right) examples

generated by the SSM. Knotpoints are indicated by

black circles; lines are for the purposes of illustration

only.
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shapes generated by the SSM, White triangles: le-
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the training set.

5 Conclusions
This paper has introduced a principled diffeomorphic representation of deformation fields with an inherent non-
Euclidean metric; the spline basis of this representation is defined by the choice of Green’s function and boundary
conditions, which can be altered to suit the particular task in hand. We have demonstrated that this representation
method can accurately represent real biological variations in both two and three dimensions. Conventional linear
modelling strategies impose a Euclidean metric on the space of parameters (in our case, the knotpoint positions).
The Mahalanobis distance that we have used for comparisons in this paper is derived from such a metric. The
example in section 4 clearly shows the superiority of the non-Euclidean metric in quantifying variation.
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Abstract. Deformation-basedmorphometryenablesthe automaticquantificationof neuroanatomicaldiffer-
encesby measuringregionalshapeandvolumedifferencesbetweenanatlas(or referencespace)andthepopu-
lation underinvestigation.In this paperwe usedeformation-basedmorphometricmethodsto studyvolumetric
differencesbetweenpreterminfantsat term equivalentageandterm born controlsusinghigh-resolutionMR
imaging. We investigatetheinfluenceof thechoiceof atlason resultsobtainedusingdeformation-basedmor-
phometry. For thispurposeweconstructedthreedifferentatlasesof termborninfantsandusedthemto compare
thebrainsof thepreterminfants(at termequivalentage)andthetermcontrolgroups.A non-rigidregistration
algorithmwas usedto mapall 3 atlasesinto a commoncoordinatesystemandvolumetricdifferenceswere
extracted.Our resultsdemonstratesignificantvolumedifferencesbetweenpreterminfants(at termequivalent
age)andthe control groupin the ventricularsystem,cerebrospinalfluid spacesanteriorlyandthe basalgan-
glia. Volumetricchangesareconsistentbetweenall threemapsof volumechangeandindicatethat theresults
obtainedusingdeformation-basedmorphometryarelargely independentof thechoiceof thereferencespace.

1 Introduction

Pretermdeliveryaffects5% of all deliveriesandits consequencescontributeto significantindividual,medicaland
socialproblemsglobally. The principle morbidity amongsurvivors is neurological,resultingfrom the profound
effect of pretermbirth on the developingbrain: half of all infantsborn at lessthan25 weekshave neurodevel-
opmentalimpairmentat 30 monthsof ageandin lessimmatureinfantsneuropsychiatricproblemsarecommon
in the teenageyears[1, 2]. This groupof infantscanbe studiedto evaluatethe neuroimagingcorrelatesof cog-
nitive andbehavioural impairments.Most imagingstudiesof the pretermbrain have usedultrasoundandhave
shown thatmajordestructive lesionssuchasperiventricularleucomalaciaandhaemorrhagicparenchymalinfarct
areassociatedwith motor impairment,but theselesionsdo not occurcommonlyenoughto accountfor the high
prevalenceof neuropsychiatricdisordersseenin this group [3]. However, high resolutionmagneticresonance
(MR) imagingdetectsmoresubtleabnormalitiesandshowsthatearlyfocal lesionsarecommonin preterminfants
at birth andcanchangeor resolve with time, andthatsubsequentdiffusewhite matterandcorticalabnormalities
arecommonat termequivalentage[4]. Theanatomicalphenotypeof thesechangesandhow they relateto adverse
neuropsychiatricoutcomehasnot beencharacterised.

2 Methods

Computationalmorphometryhasbeenusedin a numberof neurological[5–8] andneurodevelopmental[9–12]
disordersto capturenovel informationaboutnon-focalbrain changes.However, mostof theseapproacheshave
beenappliedto the maturebrain. In this paperwe usea high dimensionalnon-rigid registrationalgorithm[13]
to examinemorphometricdifferencesbetweenpretermandtermborninfants,andinvestigatetheinfluenceof the
choiceof atlasonresultsobtained.For thispurposewehaveanalyzedtheMR imagesof 66preterminfants(median
29.6,range26-34weekspost-menstrualage)at termequivalentage(38 to 42 weeks),togetherwith thosefrom 11
termcontrol infants(median39.6,range38-42weekspost-menstrualage).Ethicalpermissionfor this studywas
grantedby theHammersmithHospitalResearchEthicsCommitteeandinformedparentalconsentwasobtainedfor
eachinfant. Infantsweresedatedfor theexaminationbut nonerequiredmechanicalventilationat thetime of MR
imaging. Pulseoximetry, electrocardiographicandtelevisual monitoringwereusedthroughoutthe examination
which wasattendedby a paediatrician.For someanalyseswe defineda subgroupof 36 individualswith a post-
menstrualageof lessthan30 weeks. A 1.5 T EclipseMR system(Philips Medical Systems,Cleveland,Ohio)
wasusedto acquirehigh resolutionT1 weightedimages(TR=30ms,TE=4.5ms,flip angle= 30

�
). In additionto

conventionalT1 andT2 weightedimageacquisition,volumedatasetswereacquiredin contiguoussagittalslices
(in-planematrix size256 � 256,FOV = 25cm)with a voxel sizeof 1.0 � 1.0 � 1.6mm

�
.



2.1 Non-rigid Registration

In orderto maptheanatomyof eachsubject
�

into theanatomyof theatlas� it is necessaryto employ non-rigid
transformationssuchaselasticor fluid transformations.We areusinga non-rigid registrationalgorithmwhich
hasbeenpreviously appliedsuccessfullyto a numberof differentregistrationtasks[14,15]. Local deformations���	��

���������

aremodelledusingfree-formdeformations(FFD),

������

����������� �� �����
��

� � �
��
! � �#"

����$%� " � ��&'� " ! ��()�+*-,	. ��/ 0�. � / 12. ! (1)

where
*

denotesthe control pointswhich parameterisethe transformation.The optimal transformationis found
by minimisinga costfunctionassociatedwith theglobal transformationparametersaswell asthe local transfor-
mationparameters.Thecostfunctioncomprisestwo competinggoals:thefirst termrepresentsthecostassociated
with thevoxel-basedsimilarity measure,in this casenormalisedmutualinformation[16], while thesecondterm
correspondsto a regularisationtermwhich constrainsthe transformationto besmooth[14]. The resultingtrans-
formation

�
mapseachpoint in theanatomyof thereferencesubject� to thecorrespondingpoint in theanatomy

of thesubject
�

.

2.2 Deformation-based morphometry

To comparethe neuroanatomicalphenotpyesof the two groupswe selectedMR imagesof threeinfantsborn at
term which formed threedifferent referencespacesto which T1 weightedvolumedatasetsfrom 66 pretermat
term equivalentage(PAT) and11 term born controlswereregistered.In the first step,we calculatedthe global
transformationbetweenthe subjectsandthe atlascorrectingfor scaling,skew, rotationandtranslation.We then
appliedthenon-rigidregistrationalgorithmusingamulti-resolutionschemewith controlspacingof 20mm,10mm,
5mm and2.5mm. The resultingcontrol point meshdefinesa 354 continuousandanalytic representationof the
deformationfield which describesthepoint-wise3D displacementvectorsthatarerequiredto warpeachdataset
to thereferenceimage.

Theregistrationsbetweensubjectsandreferencesubjecthavebeencarriedout for all threereferencesubjectsand
all registeredimageswerecheckedfor artefactsandaccurateanatomicallocalisationby visual inspection.In all
casesregistrationachieveda visuallyplausiblealignmentof anatomicalstructures.

2.3 Data Analysis

To calculateregionalvolumechangesthedeterminantof theJacobianof thedeformationfield is usedto quantify
differencesbetweenregisteredimagesandreference.The determinantof the Jacobianfor any given locationin
thereferencecoordinatesystemfor eachindividual providesanestimateof thepoint-wisevolumechangeof that
individual with respectto the atlas. Valuesabove 1 indicatetissueexpansionandwhile valuesbelow 1 indicate
tissuecontraction.To evaluatetheconsistency of thedeformation-basedapproach,we calculatedvolumechange
mapsbetweeneachsubject6 andall threereferencesubjects,�87:9 , �87 4 and �87 � . We alsoregistered�87 4 and�87 � to �87:9 whichallowsusto transformeachvolumechangemapinto thecoordinatesystemof �87:9 . To correct
for possibleregional volumedifferencesbetweenthe referencesubjects,the volumechangemapsarescaledby
the Jacobiandeterminantof the transformationbetweenthe two referencesubjects. If the registrationshadno
associatederrors, the resultingvolume changemapswould identical regardlessof the choiceof the reference
subject. In addition,we have calculatedthe effect size to detectregional volume differencesbetweenthe two
groups[6,8,17]: ; �������=<�> �����@? <�A �����B >�CDA ����� (2)

Here <�> ����� and <�> ����� denotethe meanJacobianvalue at
�

for group A and B while B >�CDA ����� denotesthe
standarddeviationof theJacobianvaluesat

�
for thepooledgroup.

3 Results

A quantitativecomparisonof theresultsof theregionalvolumetricdifferencesbetweenthepretermandtermborn
infantsis shown in table1: while areassuchasthe basalgangliaaresmallerin the preterminfants,otherareas
includingtheventriclesarelargerin thepretermgroup.Table1 alsoshows theeffect of usingdifferentreference
subjectsasthestandardspacein whichto comparethevolumechanges.Boththeeffectsizeandthevolumechange
show a largedegreeof consistency regardlessof thereferencesubjectused.A qualitativecomparisonof theeffect
sizeis shown in Figure1: the isolinesrepresentregionsof equaleffect sizeandin the top row (a)-(c) the tissue
containedwithin theisoline,a regionwithin thebasalganglia,is morecontractedin thepretermat termequivalent



(a) (b) (c)

(d) (e) (f)
Figure 1. This figure shows examplesagittal,axial, andcoronalslicesillustrating the spatialdistribution of the
effect sizeof theJacobiandeterminantin bothgroupssuperimposedon a referenceimage.Theisolinesrepresent
regionsof equaleffectsizeandin thetop row (a)-(c)thetissuecontainedwithin theisoline(effectsize

;FE ?�GIH J
),

a region within thebasalganglia,is morecontractedin thepreterminfantsgroupcomparedto thetermcontrols.
The isolinesin figures(d)-(f) show areasof relative tissueexpansionin thepretermgroupcomparedto the term
infants. Theseareasarelocalisedto the lateralventricularsystem(effect size

;LKNM H O
) andthe interhemispheric

fissureanteriorly, andcerebrospinalfluid spacesaroundthe frontal lobes(effect size

;PKQM HSR
) (not shown in this

figure).Thesetissuedistributionsof morphometricchangewerereplicatedusingthreedifferentreferenceimages.

Effect size VolumechangeROI Subjectgroup �87:9 �87 4 �87 � �87:9 �87 4 �87 �
pre-term

K
30weeks -0.89 -0.76 -0.87 79% 84% 75%Basalganglia

pre-term

E
30weeks -1.04 -0.84 -0.99 72% 79% 74 %

pre-term

K
30weeks 0.47 0.46 0.41 123% 129% 122%Ventricles

pre-term

E
30weeks 0.75 0.70 0.68 127% 131% 127%

Table 1. Comparisonof theeffect sizeandthevolumechangemeasurementsin theventriclesandbasalganglia
for all referencesubject�87:9 , �87 4 and �87 � (notethatthevolumechangemeasurementsareexpressedrelative to
thecoordinatesystemof referencesubject�87:9 ).

agegroupcomparedto the term controls. The isolinesin row (d)-(f) show areasof relative tissueexpansionin
thepretermgroupcomparedto theterminfants.Theseareasarelocalisedto thelateralventricularsystemandthe
cerebrospinalfluid spacesaroundthefrontal lobes.

4 Discussion

We have useda high dimensionalnon-rigidregistrationalgorithmin a deformation-basedmorphometricstudyof
a largedatasetof neonatalMR brainimages.Thetechniquehasidentifiedmorphometricchangesassociatedwith
pretermbraininjury thatpersistat termequivalentage.We have observedrelative ventriculomegaly, wideningof
the interhemisphericfissureandcerebrospinalfluid spacesanteriorly, andlocalisedtissuecontractionwithin the
basalganglia.Theseobservationsareconsistentwith previsouly reportedresults:ventriculomegalyandwidening
of theanteriorinterhemisphericfissurehavebothbeenreportedin preterminfantsat termequivalentage,but these
changeshavenotbeenquantified[3]. In separatestudiesusingdiffusionweightedMR imagingwehavefoundthat
theapparentdiffusioncoefficient (ADC) valueof frontal lobewhite matter(adjacentto anteriorinterhemispheric
fissure)is higherthanADC valuesin otherbrainregions.In futureanalysesthis tool couldbeusedto explorethe



relationshipbetweenADC valuesandmorphometricchange.It is possiblethattheresultsareaffectedby errorin
theregistrationprocesswhich is currentlya featureinherentto all non-rigidregistrationalgorithms,andrepresents
an areafor future development.A secondareaof investigationwithin our groupis concernedwith definingthe
optimalmethodof parametricor non-parametricanalysisto determinesignificantdifferencesin effectsizebetween
groups.We arecurrentlyexploring thedatafor violationsof theassumptionsrequiredby eachtypeof analysis.

In conclusionthis studydemonstratesthe utility andconsistency of a non-rigid imageregistrationalgorithmin
defining the morphometricphenotypeof pretermbrain injury. We have demonstratedthe consistency of these
biologically plausiblefindingsusingthreedifferentreferencesubjects.The identificationof regionsof tissueex-
pansion(lateralventriclesandcerebrospinalfluid spaces)andtissuecontraction(within thebasalganglia)seems
largely independentof the choiceof referenceanatomyused.Othermetricsof shapechangecouldbe extracted
andstatisticalanalysesappliedin orderto furthercharacterisethesechanges;specifically, studyinginfantslongi-
tudinally throughoutthis periodof braindevelopment,andexploring datasetsfor associatedlocationsof volume
changewill furtherknowledgeof theneuroanatomicsequenceof injury. Definingthephenotypeof pre-termbrain
injury will enablerelationshipswith collateralclinical, imaging,biochemicalor geneticdatato beexplored.There-
fore thetechniqueprovidesanopportunityto relatestructureto functionaloutcome,andoffersa quantitative tool
for testinghypothesesconcerningtheaetiologyof injury, andtheefficacy of preventativestrategies.
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Abstract. Previously, we have described the use of projections to correct for � -space phase discontinuities in
single- and multi-shot echo-planar imaging (EPI). This work extends the method to � -space amplitude disconti-
nuities. We tested the algorithm by simulation for Fourier and radial � -space with ghosting arising from regular
and random discontinuities. We find that amplitude ghosts in Fourier � -space require an a priori model to
reduce the number of degrees of freedom to approximately 7, equivalent to an 8 interleaved EPI image. On the
other hand, radial � -spaces do not require such constraints and random amplitude variations can be successfully
corrected by MGP.

1 Introduction

Single-shot EPI covers the entire � -space in a single acquisition but suffers from field inhomogeneity artifacts
due to low bandwidth in the phase-encode direction (PE). Interleaved EPI was proposed by McKinnon [1] to
overcome these artifacts, but it suffers from ghosting artifacts in the PE direction due to amplitude and phase
discontinuities in � -space. The former can arise due to insufficient ��� recovery between interleaves, while the
latter arises due to gradient reversal [2]. Amplitude discontinuities are also present in other interleaved acquisitions
such as GRASE and FSE [3]. In general, � -space lines are no longer collected sequentially, and in an � -shot
acquisition the discontinuities occur after ��� -space lines giving a complex ghosting pattern [4]. In multi-shot
EPI, amplitude discontinuities are usually minimised by adjusting flip angle [1]. Other solutions are the use of
phase-encode ordering and or reference scans without phase-encoding to provide a template for normalisation [3].
We have reported the use of the method of generalised projections (MGP) as an image-based method for phase
correction [5, 6]. We found that MGP works only if we impose constraints through some a priori model of phase
variation in order to reduce the degrees of freedom. In this paper, we ask: Does MGP also work for amplitude
discontinuities in interleaved EPI? Does it also require a model of ghosting to reduce the degrees of freedom? We
also investigate how well the method works with radially acquired � -space.

2 Method

2.1 Outline of algorithm

Let the uncorrected � -space be 	�

�
����������� . The iterative algorithm is started with� ���
��������������	 
 �
����������� (1)

The ghosted image, ��� is reconstructed by inverse Fourier transform

���������! ��"�$#�% �'& � ���
������������( (2)

Our first piece of a priori knowledge is that ghosts should not be present outside the parent. With a manual or
automatic mask, a region of support (ROS) is defined around the parent image in the ghosted image, and the pixels
outside the ROS are masked to zero. This constitutes a projection operation )*� onto the set+ �,� & �������! ��*-.�������! ����0/ for �����! ��21354 ( (3)

where 4 is the region of support. We write the resulting masked image as

�76� �����! ��"�8)9�����������! �� (4)

The Fourier transform of the masked image,� 6� �
�������������:# & �76� �����! ���( (5);
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is taken as the model � -space. Now we make the hypothesis that the magnitude of the � -space lines in the model
is more correct than the original � -space, so we multiply the original � -space with the ratio of the magnitudes of
model line:original line for each ��� line, keeping the phase unchanged.� ��<=���
�����������"� � �>�
�����������@?9�
����� (6)

where the scalar ?9�
����� is the ratio of intensities of ��� lines,

?9�
�������BA!C � 6� �
�����������EDF��� AA!C � ���
�����������EDF��� A (7)

We obtain an estimate of the corrected image by inverse Fourier transform:

����<=�.�����! ��"�$# % � & � ��<=�.�
���G��������( (8)

Because we keep the phase unchanged, equations (6) to (8) constitute a projection )�H on to a set:+ H2� & �������! ��*- arg I � �>�
�����������KJ>� arg I 	 
 �
�����������KJ�LM�
������������( (9)

Is
+ H a convex set? If N and � are two elements of

+ H , then their Fourier transforms, O and
�

, have the same
phases, and therefore their linear combination:P

�
���G���������8Q>OR�
������������S0�ET,UVQ�� � �
���G������� (10)

also has the same phase. Taking the inverse FT:W �����! ����8Q�N������! ���S0�ET,UVQ��K�������! �� (11)

must also be an element of
+ H and so the set is convex, and convergence to a deghosted solution is assured with

the iterative projections algorithm: ����<=�X�Y)=HZ)9����� [7]. Unfortunately the two constraints represented by
+ � and+ H , i.e. specification of a region of support and phase, do not yield a unique solution. In fact there are an infinite

number of solutions. Without loss of generality we consider one column of � -space grid. The constraints are
equivalent to an equation: ?9�
������	 
 �
�������:# &'[ �� ��E\!�� ���( (12)

where [ �� �� is the top-hat function of the ROS, ?9�
�F��� is an arbitrary amplitude modulation, 	"

�
����� the original� -space with the correct phase. The function \!�� �� can always be found from

\!�� ���� # % � & ?9�
������	 
 �
������([ �� �� (13)

In summary, for any ?9�
����� , a solution can always be found which is zero outside the ROS and which after Fourier
transform has the same phase as the original � -space. The convex constraints mean that projections can be used
to find this solution. We now make the hypothesis that in interleaved EPI, as with phase variation, we can impose
additional constraints by using a priori knowledge to model the amplitude variations, and that this will allow the
algorithm to converge on a solution which is also the desired uncorrupted image. The simplest model assumes
that the amplitude of echoes in each interleaf differs from those of other interleaves by a constant fraction only.
The additional constraint does not change the convexity of the modified set as the argument above applies to
any arbitrary amplitude modulation, and therefore we can expect convergence of a projections algorithm. The
number of variables the algorithm needs to find is reduced from ]^)`_ , the number of phase encode lines, to
(number of interleaves U$T ).
2.2 Interleaved EPI

We performed simulations on a test axial human brain image (see Fig 1(a)), acquired with a spin-echo EPI sequence
with 128 phase encode lines, with centre of � -space on the 33rd line. To test the algorithm without constraints,
each phase encode line in raw � -space was multiplied by a random fraction to generate the corrupted � -space.
The algorithm was run until the change in consecutive amplitude corrections was ab/�c T.d . The mean absolute
difference between final and test image within the ROS, e , was used a measure of success. To test the algorithm
under model constraints, all lines belonging to the same interleaf were multiplied by the same randomly chosen
fraction. The highest intensity line corresponding to a particular interleaf was used to find the normalisation factor
for all other lines in that interleaf. The ROS and other measures were as above. Simulations for 2, 4, 8, 16, and 32
interleaves were performed.



2.3 Projection reconstruction

We performed simulations on data from a real phantom (Fig 2(a)) which comprised 128 radial lines over 180 f .
All lines in the complex � -space was multiplied by a random fraction. Reconstruction from complex radial � -
space was by 1d inverse FT, to give a sinogram. The phase information was removed by taking the magnitude of
the sinogram. The streaked image is reconstructed from the sinogram by filtered backprojection using MATLAB
iradon function. The ghosted image is then masked manually and the resulting image reprojected to a sinogram
(using the MATLAB radon function), and 1d FT to give the model � -space for MGP correction. All magnitudes
were expressed as a ratio relative to an arbitrary line. Assessment was qualitative.

3 Results

3.1 Interleaved EPI

The algorithm converged in all cases to solutions with reduced ghosting outside the ROS. Fig. 1(c) shows the
resulting severely corrupted image after correction without constraints. With model constraints, Figs. 1(d) to 1(m)
show images before and after correction, with simulated number of interleaves � = 2, 4, 8, 16, 32. The algorithm is
able to correct for low numbers of interleaves only, up to approximately � = 8. With large � , the ghosting outside
the ROS is suppressed, but the parent image becomes very blurred with loss of detail. In general, the number
of iterations before convergence increased with increasing number of degrees of freedom, ranging from around 5
iterations for 2 interleaves to over 50 iterations with 32 interleaves.

3.2 Projection reconstruction

Figs 2(b) and 2(c) shows the streaked image before and after correction with 5 iterations, showing good image
restoration and suppression of artifacts.

4 Discussion

Results with interleaved EPI show that the method works only if the amplitude variation is modelled to reduce
the number of variables in the problem to approximately 7 for our test image. Modelling reduced the space of
solutions so that the algorithm found the original image, or else images very near it. However, with more degrees
of freedom, the convergence point becomes increasingly dependent on initial conditions and made the algorithm
ineffective. With radial projections, amplitude modulation is not usually a problem because views can always be
normalised to the central � -space data point, which is sampled by all views. Here, MGP was able to recover the
amplitude corrections without requiring a model of ghosting. We hope to apply MGP to other sequences which are
affected by both amplitude and phase discontinuities e.g. GRASE.
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Figure 1. (a) deghosted slice for simulation. Each following pair of images shows simulated ghosting and result
of MGP correction. e = mean absolute difference between figure and test image. (b),(c) no model constraints;
(d),(e) 2-interleaves; (f),(g) 4-interleaves; (h),(i) 8-interleaves; (j),(k) 16-interleaves; (l),(m) 32-interleaves.

(a) (b) (c)

Figure 2. Real phantom (a) original test image (b) Streaked (c) MGP corrected.



Automatic Planning of the Acquisition of Cardiac MR Images
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Abstract. A method to automatically plan acquisition of images aligned with the cardiac axes is presented. The
average short axis orientation of images acquired from a group of fifty adult patients is calculated. Localiser
images are acquired with this mean orientation. These images are automatically segmented using the Expecta-
tion Maximisation (EM) algorithm. The borders of the left and right ventricle blood pools are then found by
analysing the properties of the segmented regions. Data points on these borders are used to provide an estimate
of the orientation of the cardiac axes.

1 Introduction

1.1 Motivation : Cardiovascular magnetic resonance imaging (CMR) is now regarded as a reference standard
for analysis of left ventricular ejection fraction and volume estimation [4]. Correct alignment of the imaging
planes with the cardiac planes is very important and a challenge, as previous studies using planes aligned with
the axes of the body were shown to be suboptimal [2]. Alignment of the imaging planes with the cardiac axes
requires specialist knowledge of cardiac anatomy and many radiologists and technicians find it difficult to plan
these images in a time-efficient and reproducible manner [4]. To our knowledge, there has been little research
in this area. Lelieveldt et al. proposed a method to automatically orient short axis CMR images using fuzzy
implicit surface templates [4] [5]. The work presented here differs from the work done by Lelieveldt in the choice
of localiser images and the method used to orient the cardiac axes. Lelieveldt used localiser images which were
aligned with the axes of the scanner. However, in this work, the localiser images are already approximately aligned
with the short axis of the heart (in a pre-analyse step). Unlike Lelieveldt’s localisers, they are breath-hold scans,
providing images which give more accurate cardiac positions. Lelieveldt used fuzzy implicit surface templates
of all the organs in the thorax to locate the cardiac axes. Our investigations of this method found it to be very
computationally intensive, which is a serious problem for rapid feedback to the scanner, so we have not followed
that route.

1.2 Manual Planning of Cardiac MR Images : In manual planning, a sequence of localiser and pilot images
are acquired which become increasingly closer to the true axis orientations. A typical procedure is described here,
based upon the document by Francis [3] which follows Pennell’s guidelines for assessing ventricular volume and
mass by CMR [6] and the published cardiac imaging standards [1] This manual planning procedure typically takes
a specialist five minutes from the acquisition of the first set of localiser images to the acquisition of correctly
aligned short axis images. All the acquisitions are breath-hold at end expiration and end diastole. Briefly, first
a localiser protocol is used to obtain transverse, coronal and sagittal views of the chest These images are then
used to position vertical long axis (VLA) and horizontal long axis (HLA) pilot images The short axis (SA) pilot
is positioned using the HLA and VLA pilots. Three slices are acquired with the basal slice parallel to the atrio-
ventricular (AV) valve plane. The SA pilots are then used to plan the acquisition of HLA and VLA cine images.
SA images are then positioned using the end-diastolic frames from the VLA and HLA cine images. The first slice
is positioned through the AV groove seen on both views. Parallel slices are then acquired until the entire ventricle
is covered. It should be noted that SA orientation mainly depends upon the position of the AV groove and not on
the shape of the left ventricle. Example HLA, VLA and SA images can be seen in Fig. 1.

2 Methods

The ideal method for automatic acquisition of cardiac MR images would involve just one localiser sequence.
The images from this sequence would be segmented (ideally with no user input) to give left and right ventricle
endocardial contours. The SA, HLA and VLA orientations would then be calculated from these contours in three
dimensions. These orientations would then be used to acquire correctly aligned images. This is the approach
adopted here.

2.1 Localiser Sequence : In this work a multiple slice imaging approach is used with slices oriented with the
average SA slice orientation (calculated in Section 2.3). A 3D acquisition was not used as we are presently unable

�
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HLA VLA SA

Figure 1. Example horizontal long axis (HLA), vertical long axis (VLA) and short axis (SA) images

original image
Gaussian mixture model

segmentation using EM algorithm field prior model
after applying Markov random

Figure 2. Segmentation using the EM-MRF algorithm

to acquire isotropic voxels of high resolution in the required imaging time. The acquisition is optimised for edge
sharpness, high contrast between blood and myocardium and to be compatible with a single breath-hold. All
images are acquired using a 1.5 Tesla Siemens Sonata. A 20 slice acquisition is used with a 280 � 340mm field
of view, a 1.8 � 1.8mm in-plane resolution and a 7.5mm slice thickness with a 7.5mm gap between slices. A
“true FISP” sequence is used with a 60

�

flip angle. The RF reception is on 2 elements of the spine array coil
and 6 channels of the anterior phased array coil. ECG gating is used and breath-hold commands are issued via
the intercom system. The location of the heart can be estimated with sufficient accuracy to guarantee that this is
covered by the slices used.

2.2 Segmentation of Left and Right Ventricle Blood Pools : A Gaussian mixture model is fit to the central
(10th) image in the localiser sequence using the Expectation Maximisation (EM) algorithm as described in Ye et
al. [7]. We use five Gaussians for the mixture model. Ye improved the segmentation by applying a Markov Random
Field (MRF) prior model. The results of applying the EM algorithm then the MRF model to a localiser image can
be seen in Fig. 2. Although the MRF model does improve the segmentation, it was decided that the degree of
improvement did not justify the extra processing time required for the work presented here. The pixel values
which correspond to the points of overlap between each Gaussian in the model are then calculated. The image
is smoothed by replacing each pixel value with the average value of its eight neighbours. Pixels are classified as
belonging to one of the five models depending on their value. A set of morphological filtering operations were
constructed using empirically determined parameters derived from a training set of images. These operations are
used to identify the left (LV) and right ventricle (RV) regions. This process is illustrated in Fig. 3. This process
is repeated for all the images in the localiser sequence using the parameters of the Gaussian mixture model found
by fitting it to the 10th image. Boundaries of the regions found for a localiser sequence can be seen in Fig. 4.
The positions of the centroids of both the left and right ventricle regions are compared to their means over all 20
images. Images where the positions of the centroids are less than one standard deviation from their means are then
displayed. The user can then choose to reject images where the regions have not been correctly located.

The normal to the SA is then found by fitting a straight line to the centroids of all the LV regions. The centre of
the middle SA slice is set to lie on this line and to be in the middle of the points used for the fit. The SA, VLA and
HLA are set as being at right angles to each other, although, as was discussed in Section 1, this is not necessarily
the case when this procedure is performed manually. The centres of the HLA and VLA slices are also defined as
being in the same position as the centre of the middle SA slice. This point will be the origin of the heart axes. The
position on the RV boundary which is furthest away from this SA and its angle around the SA vector are then found
for each image. The normal to the VLA is defined as passing through the heart axes origin, being perpendicular
to the SA and at the average of these angles. The normal to the HLA is then easily found as it is perpendicular to
both the SA and the HLA normals.

all blood pool regions
and solidity>0.5

area>0.01 x image size
min eccentricity

choose region with fill all pixels inside
convex hull = LV region

remaining regions with
area > 0.01 x image size

fill holes in region
= RV region

centroid is closest to
centroid of LV region

split regions using
erosion then dilation

Figure 3. Location of the LV and RV using mathematical morphological operations



Figure 4. Boundaries of left and right ventricles on all 20 localiser images
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Figure 5. Deviations of SA orientations from the mean SA (
���

) for 50 patients. (a) shows unit vector normals
perpendicular to the SA images, a section of the unit sphere and a plane tangential to this and perpendicular to the���

normal. (b) shows the positions at which the SA vectors would intersect this plane. The coordinates (U,V)
represent the distance from the point where the

���
normal intersects the plane. Iso-contours show the difference

in angle between the SA normals and the
���

normal

2.3 Calculation of the Mean SA Orientation : Recall that in our approach we acquire one localiser sequence
with an approximate SA orientation. This is found as follows. Unit normals to SA images for a group of fifty
adult patients selected at random from the data stored on the scanner were used (these were for acquisitions where
manual alignment was done). These patients had a variety of heart conditions representative of a cross-section of
cases seen in a CMR unit. The orientations of the axes were converted into spherical polar coordinates. The mean
polar angle (angle from the � axis) and mean azimuthal angle (from the � axis in the ��� plane) were found and
the mean SA normal was taken as a normal vector in the direction given by the two mean angles. The difference
in angle between the SA normals and the mean were then found. The mean polar angle was 115

�

and the mean
azimuthal angle was -37

�

. This can be written as the “Siemens double oblique slice orientation” S � C37.4 � T25.0.
This orientation is a sagittal (S) slice tilted toward coronal (C) by 37.4

�

and then toward transversal (T) by 25.0
�

.
The average deviation of the axes from this mean is 10.2

�

. The SA normals and the angle differences are shown
in Fig. 5. An illustration of the magnet coordinate system and the directions perpendicular to sagittal, coronal and
transversal images can be seen in Fig. 6(a).

3 Experimental Evaluation

A patient was positioned with their heart in the centre of the magnet in the � direction. A first set of 20 localiser
images was acquired with the calculated mean SA orientation (

���
) S � C37.4 � T25.0 and then a further 8 sets of

localiser images were acquired with variations from this mean orientation to simulate different heart positions. The
usual manual alignment was then done so the actual HLA, VLA and SA orientations were known for comparison

Table 1. Automatic alignment results

Angle from axis (degrees) Angle from axis (degrees)
Siemens Localisers Calculated Siemens Localisers Calculated

orientation
���

SA
���

SA VLA HLA orientation
���

SA
���

SA VLA HLA

S � C37.4 � T25.0 0.0 9.9 3.9 13.5 17.5 15.1 C � S37.6 � T-25.0 13.6 21.6 12.1 21.1 23.7 14.6
T � C-43.4 � S27.9 19.5 20.7 12.2 21.9 23.6 17.5 S � T26.84 � C20.0 13.6 8.7 2.1 7.8 25.0 8.3
S � C22.4 � T10.0 20.7 22.4 3.1 12.5 23.8 13.0 T � S43.4 � C-27.7 15.0 10.8 6.3 9.6 20.2 8.4
C � S37.6 � T-10.0 20.7 30.6 4.3 10.3 26.5 11.5 S � C37.4 � T-10.0 15.0 22.9 6.1 15.6 24.2 15.6
S � T42.2 � C17.0 19.5 10.0 2.9 7.4 24.6 7.6
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(a) The magnet coordinate system
(arrows show normals to image planes)
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Figure 6. Magnet coordinate system and variation of calculated SA, VLA and HLA

purposes. The angles of the different localiser sequences as shown in Table 1 together with the angles between
the calculated orientations,

���
and the manually aligned SA, HLA and VLA orientations. Figure 6 shows (b) the

SA orientations of the localisers and the corresponding calculated SA, (c) VLA and (d) HLA orientations. The
orientations are displayed as intersections of the normals to the images with three planes in a similar way to Fig. 5.
The planes are centred on the mean calculated SA, VLA and HLA orientations and, therefore, show the variability.
The average variations of the calculated orientations from their means were 5.6, 4.6 and 4.2

�

for the SA, VLA and
HLA respectively. (b) illustrates that very similar axes orientations were calculated from all nine sets of localiser
images. The angle between the mean calculated SA angle for the 9 cases and the manually aligned SA was 12.8

�

.
This angle was 22.8

�

for the VLA and 11.9
�

for the HLA. This shows that the method is reproducible but that
the axis orientations, especially that of the VLA, differ from those found manually. The average variation from a
“reference standard” of the SA orientations automatically found by Lelieveldt was 12.2

�

[4].

4 Discussion and Further Work

We have developed an approach to automated cardiac axes alignment which uses one localiser sequence and
automated image processing. The current approach is semi-automatic and gave results which were reproducible
but showed some inconsistencies with the manual approach. As was described in Section 1, although the manually
aligned long axis does align with the long axis of the heart in the mid-plane, it does not align with the axis toward
the apex. Similarly, the SA would be expected to be perpendicular to the long axis. This is not always the case
as, in the manual approach, there is a tendency to align the SA slice with the AV groove (which may or may
not be perpendicular to the long axis as defined previously). There are reasons for all these “tweaks”, which are
either historical (e.g. that is the approach that cardiologists use for ultrasound), or due to other analysis steps (i.e.
determining the cardiac volume through summing the volumes of multiple slices). Another point is that the VLA
is not necessarily perpendicular to the HLA, as might have been expected by those definitions. It highlights that
anatomical definitions can differ from computational model definitions. This is discussed in [6]. However, for this
application, it appears that a simple computational definition is adequate. Further work will focus on assessing
the significance and relevance of axes that are not mutually orthogonal. The variability of manually aligned axes
positions between specialists will also be investigated further. An important next step will be to integrate this
planning capability into the running of the MRI system and automating remaining steps which presently require
interactivity.
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Abstract. Research into fibre tracking within the brain has been prominent in recent literature. Several studies
have found fibre structure that is consistent with known anatomy in the major tracts. We present a model of fibre
connectivity using a weighted graph. In this initial investigation, we examine consistency of the connectivity
graph among individuals by modelling their variation with Principal Component Analysis. We assess the quality
of the model by the goodness of fit to unseen data, for a range of graph vertex sizes. We conclude that the brain
should be divided into no more than 32 vertices to achieve reasonable inter-subject consistency with our fibre
tracking algorithm.

1 Introduction and Background

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) allowsin-vivo imaging of diffusing water molecules
as they interact with microscopic cellular structures. Many studies have used the Diffusion Tensor (DT) [1] to
model the statistical properties of diffusing water molecules within the brain. Within brain white matter, the
organized fibre bundles impose anisotropic restrictions on the mobility of water molecules, which are consequently
likely to diffuse farther along the fibres than across them. White matter can be contrasted with other brain tissue
using conventional MR modalities, but DW-MRI is uniquely able to probe the fibre orientation.

Several studies have used DT-MRI to perform “tractography” –in-vivo reconstruction of the trajectory of white
matter axonal fibres. Tractography aims to determine the path that these fibres follow between their synaptic
junctions. The anatomical connectivity within the brain is interesting for studies of brain function, and also for
the investigation of white matter abnormalities. Detailed reviews of the published tractography techniques can
be found in [2] and [3]. The tractography techniques described to date have produced results that are consistent
with the known anatomy of the major fibre pathways in the brain, but these results cannot be validated sufficiently
for clinical applications. It is important to note that present DT-MRI images are restricted to resolutions of a few
millimetres, which is much greater than the diameter of individual white matter fibres (about 0.001 mm) [4]. The
“fibres” recovered from tractography are not fibres themselves but the estimated path of organized fibre bundles.

Jones, Griffin, Alexander, et al [5] studied the inter-subject coherence of fibre orientation within DT-MRI images
on the voxel scale, in ten healthy subjects. The images were registered into a common space to align the anatomical
features of the brains for comparison. Using a quantitative measure of eigenvector coherence, Jones showed that
the angular coherence within the group was stronger in some areas of the brain than in other areas.

The long term goal of our research is to develop a robust technique to model the fibre connectivity information
embedded in DW-MRI images. Statistics of such a model could be used to quantify the variation in connectivity
among individuals. This is interesting both to the study of natural anatomical variations, and for the study and
diagnosis of diseases where white matter abnormalities may be present. Scalar indices derived from DT-MRI have
been used to study white matter diseases such as multiple sclerosis [6] and schizophrenia [7], but these studies do
not address the patterns of fibre connectivity. The study of connectivity disorders is a potential future application
of our model.

In this study, we use a weighted graph to represent the connectivity between evenly segmented volumes of brain
tissue in the space of a DT-MRI image. We use Principal Component Analysis (PCA) to find the most significant
modes of variation in these graphs using a training set of seven healthy volunteers. We reconstruct images from four
other healthy volunteers from the principal components of the training set. We show that the principal components
of the training set can closely approximate the non-training data when the brain is divided into a cubic grid of 0.1
litre vertices.

∗email: p.cook@cs.ucl.ac.uk



2 Method

2.1 Outline of connectivity graph algorithm

1. Define the vertices of the graph in a reference image.

2. For each subject image:

(a) Compute a registration warp from the image to the reference image.

(b) Place tractography seeds in the centre of all voxels in the unwarped image.

(c) While there are unused seeds:

i. Attempt to track a fibre from the next seed.
ii. If a fibre is found:

A. Remove any remaining seeds along the fibre path.
B. Apply registration warp to fibre.
C. Add fibre to subject’s graph.

We used the fourth order Runge-Kutta method to track fibres. This method has the advantage of being reasonably
simple and fast to compute. After a fibre was computed, we removed the seeds along the fibre trajectory so that
it would be counted only once. Each fibre was ended when it reached a point where diffusion anisotropy was
below a level consistent with white matter. This method was shown by Basser, Pajevic, Pierpaoli et al [8] to
produce anatomically plausible results. We discarded tracked fibres shorter than 30mm. Such fibres do exist in
the brain but tractography performs best in the longer, wider fibre tracts, where the results can be compared to
known anatomy. The value of 30mm represents a subjective threshold and quantitative validation of tractography
is required to establish which fibres can be reliably tracked in the brain.

The connectivity graph is a weighted graph where the vertices are volumes of brain tissue. The graph is a symmet-
ric, sparsely populated (most pairs of vertices have no fibre connections) adjacency matrix,g. Each entrygij of the
adjacency matrix is the number of fibres that pass through verticesi andj. We normalize the graph (see equation
1) to remove variation in the absolute size of the fibre tracts.

We defined twelve graphs by covering the brain with a cubic grid of vertices, ranging from3× 10−4 litres to 0.39
litres. The vertices were defined in the space of a reference image from a healthy male volunteer. We registered
the subject images to the reference image using software from the FSL suite, (Oxford University, UK [9]).

2.2 Modelling connectivity variation

In the absence of errors, variation in inter-subject graphs would be caused by variation in position of the fibre
bundles (different vertices connected), or variation in the relative sizes of the tracts (different weights). With real
data, some of the variation will be errors introduced during the registration and tractography processes. Increasing
the vertex size absorbs some of the errors in the fibre trajectories at the expense of reducing the descriptive power
of the connectivity graph.

We used PCA to model the variation in a space of much smaller dimension than that of the data. We consider the
adjacency matrix as a vector ind2-dimensional space (equation 1), whered is the number of vertices:

x =
1
Z

(g11, g12 . . . g1d, g21 . . . gdd)
T

, whereZ =

√√√√ d∑
j=1

d∑
i=1

g2
ij (1)

Any n points ind2-dimensional space (whered2 ≥ n) define a subspace of maximum dimensionn− 1, and all of
these points can be described as a linear combination ofn− 1 orthogonal basis vectors. PCA finds an orthogonal
basis for the data as well as the variance in the position of the training data along each basis vector.

We used seven principal componentfemale subject images as the training set for our experiment. Images from a
further four subjects (three male, one female) were transformed into the Principal Component space to test how
well the principal components can describe the variation outside the training set. Withn = 7 training samples there



Figure 1. Two-dimensional slices of an anisotropy image, with vertex boundaries shown as dotted lines.
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Figure 2. Plot of residual error versus vertex volume for the four non-training graphs, and the mean residual error
of the training graphs, when reconstructed from the first 5 principal components. The numbers next to the data
points are the number of vertices used to construct the graph at the corresponding graph volume

can be at mostn − 1 = 6 nonzero principal components. The residual errorE is the euclidean distance between
the actual data point,x and the closest point in principal component space,x′, which is a linear combination of the
principal componentspi:

x′ =
(

p1 p2 . . . pn−1

)T
x (2)

E =| x′ − x | (3)

3 Results and conclusion

The residual error falls significantly as the vertex size increases, as shown in figure 2. The data in figure 2 is
reconstructed from 5 principal components that together account for approximately90% of the variance of the
training set. Graphs with hundreds or thousands of small vertices are poorly represented by the training set, but the
residual stabilises once the vertex volume reaches 0.1 litres (32 vertices of this size are needed to cover the brain).
It is possible that with a larger training set, graphs with vertices smaller than 0.1 litres could be reconstructed with
the same residual error.



4 Discussion and future work

This work is at an early stage and several problems remain to be solved. The cubic grid covers the whole brain,
which means that fibres anywhere in the brain can contribute to the graph but guarantees that erroneous fibre traces
can find vertices to connect. A sparse set of vertices, placed along known white matter fibres, would exclude some
parts of the brain from analysis, but might provide better results because random fibre trajectories would be less
likely to connect two vertices. This may allow us to use smaller vertices without incurring such large errors.

We are currently developing a replacement for the vertex grid with a smaller set of vertices defined by anatomical
landmarks. We are also investigating probabilistic tracking algorithms, which may provide a more robust estimate
of fibre connectivity.
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Abstract. Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been 
extended to the field of dermatology, as an attempt to algorithmically reproduce clinical evaluation. Accurate 
image segmentation of skin lesions is one of the key steps for useful, early, and non-invasive diagnosis of 
cutaneous melanomas. In this paper, a new segmentation technique has been developed to extract the true 
border that reveals the global structure irregularity (indentations and protrusions), which may suggest 
excessive cell growth or regression of a melanoma. The algorithm is applied to the Blue channel of the RGB 
colour vectors to distinguish lesions from the skin and proceed with grey scale morphology and background 
noise reduction to enhance and filter the image of lesion. The algorithm also does not depend on the use of 
rigid threshold values, because the isodata algorithm that is used determines an optimal threshold iteratively. 
Preliminary experiments are performed on digitised clinical photographs and also pigmented networks 
captured with the ELM technique. We demonstrate that we can enhance and delineate pigmented networks in 
skin lesions visually, and make them accessible for further analysis and classification.  

 

1  Introduction 

Trained dermatologists in the use of dermatoscopy or epiluminescence microscopy (ELM) can improve their 
diagnostic accuracy of melanoma from about 65% using the unaided eye to approximately 80% with the benefit 
of ELM [1]. However, even with ELM, a trained dermatologist can be deceived at least 20% of the time by the 
appearance of a melanoma. Low rate of correct classification of clinical diagnosis [2] calls for the development 
of both digitised ELM (DELM) and automated image analysis systems. For example, a recently developed PC-
based pilot system by Binder et al. [3] promises to automatically segment the digitised ELM images, measuring 
107 morphological parameters. A neural network classifier trained with these features is able to differentiate 
between benign and malignant melanoma.  

 
This paper demonstrates the use of an iterative segmentation algorithm as a tool for determining the borders of 
real skin lesions as an aid to skin lesion diagnosis. The algorithm has been developed and compared with other 
developed Neural Network techniques and also the automatic segmentation method by Xu et al [4]. Initial 
experiments have been done on synthetic lesions, and the work has been written up in a paper [5]. The next 
section shows the method applied. This is followed in section 3 by results and discussions demonstrating the 
segmentation method. Conclusions are drawn in section 4. 

 
 

2  Method of Processing Pigmented Networks 

The weak contrast within the pigmented network does not allow colour-based segmentation to extract pigmented 
networks directly. However, extracting homogeneous and differently coloured regions within the lesions is a 
robust method for separating lesions from surrounding skin [2]. As an example of analysing pigmented network, 
Fisher et al. [2] develop a colour based segmentation algorithm, which is applied to Karhunen loeve 
transformation of the RGB colour vectors. Because the pigmented network and the background do not have 
homogeneous luminance, the result of segmentation is enhanced in a circular region to limit the problem of 
heterogeneous regions.  



In this work the following processing steps are followed to delineate pigmented networks and make them 
accessible for further statistical analysis and classification. We suggest the processing of lesion images using the 
Blue channel of the RGB colour space followed by the grey scale morphology and intensity mapping to enhance 
and filter regions containing a pigmented network. Assuming that the previous steps assist to provide equal 
region probabilities then a simple iterative scheme would segment the image into binary regions containing the 
lesion and the background. This process is depicted in Table.1. In contrast with the above example of 
segmentation, the region processed is equal to the full size of image.  

 
 

Step1: {Source image} 
Source image  = Blue channel of  {R,G,B} colour image 
Step2: {Noise reduction} 
Grey morphology 
Subtract median background noise 
Step3: {Lesion enhancement} 
Map intensities with appropriate function 
Smooth 
Step4: {Optimal thresholding} 
Optimal thresholding 
Step5: {delineate object} 
Outline binary object 
Step6: {Object analysis} 
Set the minimum object Diameter and Area 
Scan the binary image Until 

         MinSize < Area < MaxSize 

Table 1. General algorithm steps to delineate colour lesion.  
 
 
Step 1. We use the blue channel of the intensity of an RGB colour skin lesion image as the first step. This 
approach has been demonstrated to provide the best results in global and dynamic thresholding algorithms [6].  
 
Step 2. Because real skin images often contain features such as hair and other small objects, we have added a 
grey scale morphological opening operation followed by a close operation as the first step of data reduction 
without destroying the morphological structure of the pigmented network [2,6]. The opening operation is 
expected to smooth objects and removes isolated pixels and the close operation performs smoothing and filling 
in small holes. For optimum use of the algorithm it is useful to remove the background intensity of skin 
surrounding the lesion. This is estimated by calculating the median of two strip windows from the top and 
bottom of an image, each of size  pixels, where w is the full image width [4].   10×w
 
Step 3. A mapping function F(Φ) is used here to map the intensities  I   to enhance features at the boundary; 

   
( )( )22 2/exp1)( σΦ−−=Φ kF  (1) 

where            

( ) 755432 IcIcIcI ++=Φ  (2) 

where  
kc 1=  (3)     

       
F(Φ) achieves less redundancy in the colour map than the Gaussian transformation used in [4] which makes it 
more suitable to map a wide range of intensities so that the lesion can be distinguished from the background. 
Another advantage here is that when mapping images of low noise variations, small σ, in the background (e.g. 
ELM images) then the function tends not to magnify that noise. The selection of the standard deviation (σ) of 
this mapping function is automatically determined according to the estimated standard deviation of the 
background surrounding the lesion; in the same manner when subtracting background median noise (Step 2). 
Small smoothing Gaussian kernels are adopted at this stage for two reasons: (i) to assist the extraction of 
morphological structure of the pigmented network, (ii) large smoothing is not necessary because the 
preprocessing steps of morphological operations already provide the robust noise reduction. 



Step 4. The thresholding algorithm described by Madisett et al as an isodata algorithm [7] is used here to find 
an optimum auto-threshold value T for an image. This value would segment the image into binary regions 
containing the lesion and the background. The histogram is initially segmented into two parts using an initial 
threshold value of T0=2(B-1), where B is the number of bits. For an 8-bit intensity image B=8 and T0=128. The 
sample mean of the gray values associated with foreground pixels ( m ) and the sample mean of the gray 

values associated with the background pixels are ( m ) computed. A new generated threshold value T  is 
computed as the average of these two sample means. The process is repeated, based upon the new generated 
threshold, until the threshold value does not change any more: 

0,f

0,b k
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Step 5. Delineation is applied to binary objects that result from optimal thresholding (step 4). The logic rule in 
this binary process simply follows “any foreground pixel with at least one background pixel in the 3x3 
neighbourhood is left unchanged, otherwise it is changed to the background colour” [8]. 
 
Step 6. This process is useful to analyse an image with multiple lesions or to correct errors caused in the 
delineation process such as the delineation of thick and dark hair. Scanning across the image is performed and a 
condition or a set of conditions reached. For example, a condition to check the area of the object between 
minimum and maximum size would eliminate unnecessary size of object: .  MaxSizeAreaMinSize <<

 
3  Experiments and Discussion 

We have processed thirty images of skin images. The first twenty images are captured by digitised clinical 
photographs [4]. We have chosen these low quality images to test the robustness of the algorithm to delineate 
images with clear skin texture. The other ten images are captured with the ELM technique. Successful delineated 
of the most noisy clinical photograph colour lesions are achieved. This preliminary test experiment demonstrates 
the robustness of the algorithm against wide range of noise such as skin texture, light reflections, and noise 
artefacts (see fig.1).   

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure1. Demonstration of iterative segmentation algorithm. (a) Gray intensities of blue channel. (b) 
Morphological operations followed by noise subtraction of median background. (c) Intensity mapping by 
function .  (d) Edge outline of binary segment at an optimal threshold. (e) Analysis of the resulting objects 
and eliminating the small objects. Labels are also used to check the success of the process, MinSize=0. (f) 
Excluding small objects, which are labelled as No. 1 to 6. 

)(F Φ

 
 



Another run of the algorithm has been applied to the inversion of the blue intensities (Eqn. 5) to delineate the 
inner-pigmented network (in this case the inner-pigmented region would represent the most brighter intensities). 
To avoid any possible growth of brighter intensities for regions surrounding the lesion, the median subtraction 
process (Step 2) is suppressed. Furthermore, a reverse order of the two successive morphological operations is 
used.   

),(),( jiBessMaxBrightnjiB −=  (5)  

 

Fig.2 demonstrates the ability of the algorithm to delineate three regions: inner-pigmented network with 
globules and pigmented network in poor contrast, outer light brown ring, and the surrounding skin. Fig2a is 
available in [9]. 
 
 

  
(a) (b) 

Figure 2. (a) Original lesion with pigmented network. (b) Demonstrate the use of the algorithm to  
delineate the dark centre of the lesion with globules pigmented network (black border region).   
The light brown ring with pigmented network is delineated by white border region. 
 
 

4  Conclusion 

In this paper we have discussed the development of the new algorithm to delineate skin lesions. A combination 
of moles and pigmented networks of ELM skin lesion images are chosen here to provide preliminary tests of the 
algorithm performance. We have demonstrated the ability of the algorithm to delineate both the dark centre of 
the lesion with globules and the light pigmented network in poor contrast. Visual enhancement and delineation 
of pigmented networks in skin lesions can make them accessible to further analysis and classification.  
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In this study we evaluate the relative utility of four approaches to statistical model-based image segmentation of 200
digitised abnormal mammograms from the Digital Database of Screening Mammograms (DDSM). Each model is con-
structed by employing combinations of a Weighted Gaussian Mixture Model (WGMM) and a Markov Random Field
(MRF) in a supervised and unsupervised manner. Maximum likelihood estimates of model parameters are obtained us-
ing the Expectation-Maximisation (EM) algorithm. The segmentation performance is evaluated by calculating the area
under the Receiver Operating Characteristic (ROC) curve, Az. The main contribution of this paper is the specification
and evaluation of the relative utility of each model in segmenting a data-set of mammograms comprising the complete
spectrum of varying mammographic breast density. We show that that the adoption of a supervised WGMM/MRF
approach gives the best result over all test mammograms (Az=0.73).

Keywords: Mammography, image segmentation, Gaussian Mixture Model (GMM), Markov Random Field (MRF).

1 Introduction

The aim of image segmentation is to divide an image into parts that have strong correlation with objects of the real
world contained in the image. Region based segmentation methods attempt to find border between regions. Statistical
approaches label pixels according to class conditional probabilities based on the distribution of the input feature data.
Extensive research has focused on the use of a Gaussian Mixture Model (GMM) to model such conditional probabilities.
The performance of a GMM as a model of the observed data has been shown to give good results as long as the different
classes are well separated in the input feature space. This though is not always the case and several studies have addressed
this problem by incorporating a Markov Random Field (MRF) hidden model capturing the spatial constraints of pixel
class labels [7, 8].

Within this study we evaluate a supervised and unsupervised approach to the segmentation of a test image using a
Weighted Gaussian Mixture Model (WGMM) and a WGMM regularised with a MRF [2]. The aim of the segmentation
is to label pixels as belonging to one of two classes, normal or abnormal. This study offers novelty in two areas:

1. The specification of four different combinations of WGMM and MRF models adopting a supervised learning and
unsupervised strategy for the segmentation of mammograms images.

2. An evaluation of the relative utility of the four segmentation approaches on a large set of mammograms taken from
the Digital Database of Screening Mammograms (DDSM) [5] covering the complete spectrum of mammographic
breast densities defined by the American College of Radiology (ACR) Breast Imaging Reporting and Data Systems
(BI-RADS). This lexicon identifies four mammographic breast density types: 1.) the breast is almost entirely fat;
2.) There are scattered fibroglandular densities; 3.) The breast tissue is heterogeneously dense; 4.) the breast
tissue is extremely dense.

2 GMM and MRF Modelling

The observed image model uses a GMM to model the Probability Density Function (PDF) of an input feature space x,
given that each sample belongs to one of L independent class labels

���������	�
�	���
���
, using J Gaussian functions ����� ,

mixed with a set of mixing coefficients � , thus ������� ����� �!#"$"&%&�('*)+-,#. � + ���/�0� ����1 + � . We combine the PDF’s for
each class using a WGMM to model the unconditional density such that each class distribution, � � �0� �2��� �!3"$" % , is
weighted by 45� � � thus, �6�7� ��� !3"8" � � ':9� ,#. 4;� � �<� � ��� ����� �!#"$" % . The WGMM allows us to model the PDF’s of
each class independently with 1 or more Gaussian centres. The parameters � 1 + � of the j’th component Gaussian comprise
the mean �/= + � , covariance ��> + � and mixing coefficient � + . The Expectation-Maximisation (EM) algorithm provides an
estimate of a maximum likelihood solution for the complete set of parameters for all Gaussian functions of a given class



distribution, l, � � �!3"$" % together with the class weights 4;� � � . This is achieved by iteratively maximising a likelihood
function across all data samples for each class, normal and abnormal.

Within this study we propose the use of an MRF to regularise the resultant observed model. This reduces classification
error associated with classes that are poorly differentiated in the input feature space when using the WGMM. The MRF
is used to model the spatial constraints of the pixel class labels in the segmented image. The class labels associated
with a pixel are assumed to be a realisation of a random process where the probability that pixel

��?
belongs to a given

class, depends on the class labels of neighbouring pixels
��@

from a given neighbourhood A ? , thus, ��� �B? � �B@���C5D�FE � ��6�-� �B? � �B@HG A ? �-� .
We evaluate four strategies for the use of a WGMM in the segmentation of a test mammogram. Two of the methods are
supervised such that the model parameters for the WGMM are learnt from an independent training set �JILKNMHMPO � ILKNMHM

"�QSR
O %

,
the others are unsupervised ��ILKNMHMPT � ILKNMHM

"�QSR
T %

. Two of the approaches constrain the WGMM with a MRF in
an attempt to improve the resultant segmentation � ILKNMHM

"8QSR
O � ILKNMHM

"8QSR
T %

.

3 Materials and Methods

The segmentation evaluation is performed on 200 mammograms each containing lesions taken from the Digital Database
of Screening Mammograms (DDSM). Each mammogram has been assigned to one of the BI-RADS mammographic
breast density groupings by an expert radiologist. There are fifty mammograms for each breast density grouping. We
have previously proposed a method to predict the mammographic breast density [3], but in this study the partitioning has
been performed manually on the basis of the DDSM ground-truth. Additionally, a further fifty normal mammograms are
selected for each breast type, although the performance of each strategy in their segmentation is not reported here, their
use being limited as training images only. Results for each segmentation strategy will be reported using ROC analysis,
quoting the mean Az value over all test images, within a given breast density grouping.

The grouping of mammograms by breast density type is only applicable to the supervised approaches. Supervised
approaches segmenting a mammogram with a specific breast density type, use a trained observed intensity model con-
structed with only training samples from that same breast type. Thus, each trained observed intensity model will be
specialised in the segmentation of a mammogram with a specific breast type.

As each breast type group comprises of 100 images (n=50 abnormal, n=50 normal), in order that an unbiased evalua-
tion can be presented, and such that all 50 abnormal image can be segmented, a 5-fold cross-validation strategy [1] is
adopted. Normal mammograms appear in training sets only and no abnormal image appears in a test and training set
simultaneously. For each of the five folds, equal numbers of normal and suspicious pixels are used to represent training
examples from each respective class. Evaluation of the performance on test of each strategy is determined using the
expert radiologist ground-truths, although an a posteriori probability estimate is only given for pixels lying within the
previously segmented breast profile generated using a technique proposed by Chandrasekhar and Attikiouzel [4]. By
doing this, the computational complexity of the test image segmentation is reduced.

A cross-validation approach is used to determine the optimal number of component Gaussians, m, for each class and for
each breast type. The determined value of m is then used for all training folds comprising each breast type. To determine
the optimal value of m, models with a different number of components are trained and evaluated with a ILKNMHM O
strategy, using an independent validation set. Model fitness is quantified by examining the log-likelihood resulting from
the validation set. Training files used are created by taking 200 samples randomly drawn with replacement from each
normal and abnormal image for each breast type. The data-set contains fifty training images per breast type, (n=25
abnormal, n=25 normal) giving a training set size of 10,000 samples per breast type. Repeating the procedure for the
fifty remaining separate validation images, results in a validation set of 10,000 samples per breast type. Figure 1 shows
the log-likelihood obtained by applying each trained model of order m, to the independent validation set for each class.
The selected model order is indicated by a circle for each breast type in each graph. Using the trained WGMM, each
test image is segmented according to each of the four different segmentation strategies ILKNMHM O , ILKNMHM _ MLUWV O ,ILKNMHM T and ILKNMHM _ MLUWV T .

4 Results

The performance of the segmentation strategies are evaluated on the basis of being able to differentiate abnormal pixels
from normal. A high performing segmentation strategy will be therefore judged as the one that has a high sensitivity
in the correct detection of abnormal pixels whilst minimising the number of false-alarms, i.e. normal pixels incorrectly
labelled as class abnormal. MAP segmentation is not performed but the a posteriori probability estimates for each pixel
in the test image are used to construct a ROC curve. By calculating the area under the curve, Az, as an indicator of the
quality of the segmentation [6], a mean Az value is quoted for each strategy over all 50 abnormal test images for each
breast type. These results are presented in Table 1. An example of the resultant segmentation using each strategy is



Table 1. Mean Az for each breast type and segmentation strategy, winning strategies shown in bold.

Breast Type ILKNMHM O ILKNMHM
"8QSR
O ILKNMHM T ILKNMHM

"�QSR
T

1 0.68 0.70 0.66 0.59
2 0.66 0.66 0.66 0.60
3 0.72 0.80 0.75 0.75
4 0.66 0.76 0.68 0.74

Mean 0.68 0.73 0.68 0.67

shown in Figure 2.

Reviewing these results, it can be seen that the supervised strategy combining an observed and hidden MRF model out-
performs all others for each breast type. The performance of this method, ILKNMHM

"�QSR
O can interestingly be observed

to be worse for the fatty breast types (types 1 and 2) compared with the denser types (types 3 and 4). This is in contrast
to the clinical observations that the former breast types are deemed easier to interpret by an expert radiologist. A simple
explanation for this phenomenon might be attributable to the model order selection where m=1 for the abnormal class
of the fatty breast types. A more sophisticated approach to determining model order might improve the segmentation
of these breast types, but this is outside the scope of this thesis. Without the hidden model the supervised strategy is
inferior to the corresponding unsupervised approach on the denser breasts. These results justify the utility of a super-
vised paradigm utilising a hidden model compared with other approaches in the segmentation of abnormal digitised
mammograms.

5 Conclusions

The motivation for the use of a statistical image model has been presented based on a Gaussian Mixture Model (GMM)
as an observed intensity model, and a Markov Random Field (MRF) as a hidden image model. By extending previously
proposed algorithms utilising the Expectation-Maximisation (EM) algorithm for parameter estimation, a novel imple-
mentation in the form of a Weighted Gaussian Mixture Model (WGMM) constrained with a Markov Random Field has
been evaluated. Four approaches to segmentation using the WGMM model have been evaluated on synthetic, composite
textured and mammographic images

By combining a hidden model of class labels using a MRF within the WGMM, the results presented give evidence that
a more robust segmentation is produced together with regions that are more homogeneous. The use of a supervised
learning paradigm in estimating the parameters of the observed model, circumvents initialisation problems occurring in
the unsupervised approach and that may lead to degraded segmentation performance.
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Figure 1. Selecting model order for grey-scale distribution (a) normal and (b) abnormal classes (m=number of compo-
nents).
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Figure 2. Examples of segmentation strategies on DDSM image R0147_R_MLO; (a) original, (b) ground_truth, (c)ILKNMHMXO , (d) ILKNMHM
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"8QSR
T .

(a) (b) (c)

(d) (c) (d)



Prostate Segmentation: A Comparative Study
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Abstract. To segment the prostate in Magnetic Resonance (MR) images is an important task whilst diagnosing,
staging and treatment of prostate cancer. Due to its anatomical location and its similarity to surrounding tissue,
the prostate is difficult to segment. Manually outlining the gland is time-consuming and tedious, so more effec-
tive methods, which should be (semi-)automatic, become essential. In this paper, we discuss two approaches
which are based on Active Shape Modelling (ASM) [1, 2] and a Polar Transform approach (PTA) [3]. Both
approaches are compared to manual segmentation.

1 Introduction

Prostate cancer is the second leading cause of death from cancer in men, exceeded only by lung cancer. Prostate
cancer accounts for 27% of all male cancers and 13% of male cancer related deaths [4]. In Western populations, the
incidence of the disease has increased significantly over the last 35 years, making its diagnosis and management a
major health issue. In the UK, 13,500 new cases are currently diagnosed annually [5].

Magnetic Resonance Imaging (MRI) is a very important modality for the diagnosis, staging and follow-up of
prostate diseases. The prostate is anatomically divided into peripheral, central and transitional zones. For a normal
prostate, there are increased signal intensity in the peripheral zone and decreased signal intensity in both central
and transitional zones on T2- weighted MR images. When diseases are developing in the prostate, the size and/or
the signal intensity of these zones will change, which makes it possible to make a diagnosis from image data.

In this paper, we concentrate on the automatic segmentation of the prostate in MR images. The shape and the
signal intensity of the prostate can vary both with time, as some diseases are developing, and between individuals.
Due to the variability, the interpretation of prostate disease from image data is difficult. A number of authors
have described possible approaches to medical image segmentation. Kass et al. [6] describedsnakeswhich em-
ploy a deformable contour to fit the shape of interest. Yezzi et al. [7] described a geometric snake model for
segmentation of medical imagery. Dryden and Mardia [8] described statistical models of shape. Ladak et al [9]
used model-based Discrete Dynamic Contour (DDC) for prostate segmentation from ultrasound images. Active
Shape Modelling (ASM) [1, 2] provides another approach to the segmentation of the prostate in MR images. A
parameterised shape model can represent shape variability in the training sets. With enough representative training
examples, such a model is able to represent any variations of the prostate. Moreover, when the best fitting in-
stance is generated, its parameters can be used for further processing, such as staging and classification of prostate
diseases.

2 Data

Our data set includes 24 male pelvis transverse MRI sequences, totalling 532 images. All images were obtained
on a 1.5 Tesla magnet (Sigma, GE Medical Systems, Milwaukee, USA) using a phased array pelvic coil, with
24 × 24cm field of view,256 × 512 matrix, 3mm slice thickness and 0.5mm interslice gap. Different types of
prostate abnormalities are included. Fig. 1 shows two typical examples from the data set. In Fig. 1 on the left
there are minor benign hypertrophic changes in the central zone. The peripheral zone architecture is generally
preserved, with some patchy loss of the normal high T2 signal, in keeping with some malignant infiltration. There
is no extracapsular extension present. In Fig. 1 on the right there are marked benign hypertrophic changes within
the central zone, with resultant compression of the peripheral zone to a thin rim of tissue. However, the visible
peripheral zone does return reduced signal, suggesting that some tumour is present. Evidence of extracapsular
spread is present within the MRI volume (but not on this slice).

All images were manually annotated by an expert radiologist and shapes are represented by landmarks. A landmark
is defined as a point of correspondence on each object that matches between and within populations [8]. Thirty-
two landmarks are used to depict the outline of the gland. For training purpose, all the slices from three randomly
∗email: yz@sys.uea.ac.uk
†email: rz@sys.uea.ac.uk



Figure 1. Axial view prostate MRI examples.

selected volumes were chosen from the complete data set (only slices containing the prostate were used).The
remaining volumes form the test data.

3 Methods

3.1 Active Shape Models

Using a shape model, the shape variability in a training set can be represented. The images in the training set are
labelled so that the shape of each object of interest is marked with some key landmark points. The shapes from
the training examples are aligned in order to be able to compare equivalent points from different shapes. Tangent
space projection is used to reduce the dimensionality. Once a set of aligned shapes is available, we can generate a
statistical model of shape variation by applying Principal Component Analysis to the landmark vectors describing
the shapes in the training set [1]. With the deformable shape model we can generate a basic shape and fit it to the
object of interest in an unseen image. Image interpretation or segmentation is treated as an optimisation process
that examines a region around each landmark to find a better match for this landmark and calculate the adjustment
to the shape parameters to best fit the new found landmarks. In practise, to segment prostate MR images, the
prostate central zones on all the example images are manually outlined and 32 landmarks are used for each. Since
the central gland is nearly oval-shaped, we choose the four intersection points of the outline and the vertical and
horizontal axes through the centre of gravity as the key landmarks. On each of the four outline sections, seven
landmarks were redistributed evenly. Subsequently the ASM algorithm is applied to the annotated training images.

3.2 Polar Transform Approach

A second, semi-automatic, approach to segment the prostate in MR images, based on Polar Transform space has
been developed [3]. To segment the prostate, the gland and the surrounding tissue are extracted into a polar
transform using

x = xc + r cos(θ)
y = yc + r sin(θ) (1)

where(x, y) is a position in the original image,(r, θ) represents the polar transform space, and(xc, yc) represents
the centre with respect to which the polar transform is obtained. Bilinear interpolation is used to sample the original
data and the result is inversed so that a dark boundary in the original image is shown as a bright ridge in the polar
transform. Lindberg’s approach [10] was used to extract ridges in the polar transform. Since the centre of the polar
transform is within the prostate, it was assumed that the boundary of the prostate will appears as a band across all
the orientations in the polar transform. Curvilinear structures were tracked across the image to find the longest one
which should represent the prostate boundary. An inverse polar transform is used to project the tracked curvilinear
structure back onto the original prostate image.



4 Results

For comparison purposes, we have applied the ASM and PTA segmentation to the same data. Some initial results
are shown below. Fig. 2 demonstrates the ASM and PTA segmentation results for the slices shown in Fig. 1. In
both cases the ASM and PTA based segmentation results are similar and show a good correlation with the expert
annotations. However, in both cases it seems that the deviation from the annotated segmentation shows common
aspects for the (semi-)automatic segmentation approaches. It should be noted that the PTA based segmentation
shows more local detail, in line with the annotations, than the ASM based results. This can be explained by the
limited number of landmarks used in the ASM approach.
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Figure 2. Comparison between manual (dotted lines), active shape modelling (continuous lines) and polar trans-
form based (dashed lines) segmentation for the slices shown in Fig. 1, where(x, y) are pixel positions.

To quantify the comparison, we employ the measure of overlap [11]. The overlap measureΩ is given as

Ω =
TP

TP + FP + FN
(2)

whereTP stands for true positive (area correctly classified as prostate),FP for false positive (area incorrectly
classified as prostate) andFN for false negative (area incorrectly classified as non-prostate).Ω = 1 means that
the segmentation result of both have exactly the same result whileΩ = 0 means there is no intersection between
the segmented regions.

The overlap measure for all the slices from two volumes (slice number 13 of each volume can be found in Fig. 1)
are shown in Fig. 3. This shows the overlap measure for both ASM and PTA versus manual segmentation. In
addition, we have included the overlap results for the ASM versus the PTA based segmentation. It should be noted
that ASM results have only been included for those slices where the method converged.

These results indicate that the ASM approach, when it converges, tends to provide a better correlation with the
manual segmentation. For both (semi-)automatic segmentation approaches good results have been obtained for
most of the central prostate slices. However, a poorer performance is obtained for slices at the base or apex of the
prostate. For the PTA segmentation this is shown as a low overlap measure whilst for the ASM segmentation this
is represented as a non-convergence and hence no overlap measure.

With reference to the ASM and PTA segmentation overlap measure, in most cases the PTA results show a closer
correlation with the ASM segmentation than with the manual segmentation results.

5 Conclusions and Discussions

Indicated by comparison with semi-automatic and manual segmentation results, the ASM approach produces
favourable segmentation results of the prostate. However, for some particular cases, in which the variation of
the gland is extremely large, this approach failed to converge. The failure might be caused by: 1) the insufficient
number of training examples, 2) the anatomical structure difference between individuals (this might be overcome
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Figure 3. The overlap, Eq. 2, between the annotated and polar transform based segmentation (4), annotated and
active shape modelling based segmentation (2), and active shape modelling and polar transform based segmenta-
tion (3).

by using additional surrounding anatomical information), or 3) when disease is developing within the gland, not
only the shape but also the intensity will change, e.g. a serious cancer in the peripheral zone will present low signal
intensity and makes it difficult to distinguish the peripheral and central zone, even for an expert radiologist (Active
Appearance Modelling [12] might provide a solution).

The PTA segmentation results are comparable to the ASM based results. The advantage of the PTA is its capability
to produce segmentation results at the base and apex of the prostate although these results show a poor correlation
with manual segmentation.

Moreover, both PTA and ASM tend to fail at the apex and base of the prostate where the prostate surface is far
from perpendicular to the slices. Thus 3D ASM will be a promising approach to extract the 3D boundary of the
prostate when sufficient training samples could be achieved.
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Histological parametric maps of the human ocular fundus:
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Abstract. Specificcoloursobserved in imagesof the ocular fundus dependon the architectureof its layers
and the optical propertiesand quantitiesof any pigments present. Thesecolourscanbe predictedfrom the
parametersdescribingtheoculartissuecomposition usinga physics-based modelof light transport.Thispaper
reportspreliminaryresultsof theapplicationof the inverseprocessby which theparameterscanbeestimated
from imagecolours.This is achievedby relatingthecolourof eachimagepixel to theclosestmatchingcolour
predictedby thelight transportmodel,andhenceto theparameterswhich generatedit. Thespatialdistribution
andestimatedquantityof eachparameteris shown in a separateimagecalledparametricmap. Thefirst para-
metricmapsof RetinalPigmentEpithelium(RPE)melanin,choroidalmelaninandchoroidalblood computed
by thismethodshow a distributionof pigmentswhich is generallyconsistent with physiology.

1 Introduction

Thepupil of theeye providesanopening through which theinterior of theeye (theocularfundus)canbeexam-
ined. This is clearly usefulfor the diagnosisof eye disorders.However, the fundus is alsoa unique locationat
whichbloodvesselscanbedirectlyobservedandthis makesit valuablefor thediagnosisof diseasesaffecting the
vascularsystem,suchasdiabetes.Many abnormal conditionsaremanifestedthrough local changesin thefundus
colouration or through the appearanceof unusual colours. The long term objective of this work is to relatethe
colours seenin thefundusto its condition andto any pathologicalchanges.

The colour of the fundus dependson several factorsincluding the architecture of its layersandthe nature and
densityof any pigments present[1]. Quantitativecharacterisationof thesefeaturesshouldbepossibleif a one-to-
onerelationshipexistsbetweenthesephysiological factors,andthespectralintensitydistribution (SID) of thelight
remittedfrom thetissue[2] under a givenincident light. This approachhasbeenshown to work for theskin [3].
In thiswork, it is applied to theocularfundusto createparametricmapsof thekey ocular pigments. Although this
researchwork is at preliminary stage,theearly resultsfor thehealthyfundus look promising. It is hoped that in
thelong termtheresultsof this researchwill beusedto helpwith thediagnosisof diabeticretinopathy, which is
themostcommoncauseof blindnessin theUK’s working population [4].

2 Outline of the method

The methodinvolves threemain steps. The first stepis to determine the composition of the ocular tissueand
specificallythe propertiesof its optically active components,their spatialarrangement andtheir physiologically
plausibleranges. This informationis usuallytaken from the previously publishedliterature. Thenext stepis to
predict the entire rangeof colourswhich canoccurin thehealthytissueandto relatethemto tissueparameters.
Thisyieldsamodelof tissuecolourationbasedonamathematicalmodelof theoptical radiation transport. Finally,
thetissueparametersfor aparticularcaseareestimatedfrom its colours.Thisis doneby relatingthecolour of each
pixel in a colour imageto thehistologicalparameters usingthemodel of colourationcomputedpreviously. The
distributionof eachparameteris shown in aseparatemonochromeimagecalledaparametricmap.A collectionof
thesemapswasshown to bevaluablein diagnosisof skindisorders [5].

3 Methods

3.1 The structure and optical properties of the ocular fundus

The human ocularfunduscomprisesa number of optically andanatomically distinct layersasshown in Fig. 1.
Its colour is determined primarily by theblood in thechoroid andfurther significantlymodified by theamounts
of pigment melaninin the RPEandin the Choroid. The internalretinais transparent exceptfor a few vessels,
thusreflectinglittle light. Light is highly scatteredby the collagenin the choroidal layer. The colour of blood�
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is determined by the chromophorespresentin it. The most important is the haemoglobin which can exist in
oxygenatedand de-oxygenatedform [6]. The two forms have slightly different absorption propertiesand for
modelling purposesareusuallycombined in the ratiosappropriatefor a given tissue. Melanin is a dark brown
pigment that is presentnot only in thefundus of theeye but alsoin theskin, in thehair andin theiris. Within the
fundus it canbefound in theRPEandin thechoroid. In theRPEhigher concentrationsof melaninoccurin the
fovealregion, whereas in thechoroid thedistribution is normally fairly even. Thelevelsof choroidal melaninvary
with racialgroup andwith eyecolour[7]. Macularpigments,includingXanthopyll [8], arelocalisedin thefoveal
region. They makeasmallcontributionto thecolour of thefundus[7]. Althoughthelensandtheintraocular media
do not belongto theeye fundus,they affect theobserved funduscolouration. Lensesbecomeyellowish with age,
thusreducing theamount of light remittedin theblueregion of thespectrum[9]. Theintraocular medialosesits
transparency andmayincreasethescatter, thusdecreasing thevisibility of finedetailin thefundus[7].

3.2 Model of colouration for the fundus

Theforward MonteCarlo(MC) modelof funduscolourationusedin this work wasoriginally proposedandvali-
datedby PreeceandClaridge[10]. Its construction requiresinformationaboutthestructure andopticalproperties
of thefundusanda model of light transport. Thefundusstructureis shown schematicallyin Fig. 1. This structure
is valid only for young Caucasiansubjectsandfor theperifovealareasof the fundus. Pigments in eachlayerare
characterized by an absorption coefficient �������
	 , a scatteringcoefficient ���
���
	 andananisotropy factor � . The
absorption coefficients for melaninandblood arewell studiedandwidely available(e.g.[10] [11]). The avail-
ability of scatteringcoefficient datais morelimited andhasbeentakenherefrom Hammeret al [12]. Giventhe

Pupil Plane

RPE

Neural Retina

Inner Liminting
Membrane

Choroid

Sclera

Intra−ocular
media

Remitted LightIncident light

Posterior

Receptor layer

fundus

Figure 1. A modelpathwayof light remittedfrom theocular fundus.Figurereproducedfrom [10].

above information,amathematicalmodelof light transport, hencecapableof solvingthegeneralradiativetransfer
equation (RTE), is required to predict all thepotentialspectraresultingfrom thedifferentcombinationof param-
etervalues.MC simulation[13] providesthemostaccuratestochasticsolutionto RTE, andit hasbeenshown to
generatespectrawhichagreewell with experimentalobservations[10]. Thisprocesscanbedenotedby amapping
function from theparameter space,P, to the remittedspectraspace,S. Theparameterspace� mustbe suitably
discretised. ���

���
��� (1)

Theimageacquisitionprocessis thensimulatedby applying opticalfilter functionsto thepredictedspectra.This
canbedenotedby a function from thespectraspaceS to theimagespace,I, whosevaluesarecolour vectors,such
asfor example[R G B]. � �

������� (2)

Figure3.2 depicts the two stagesof the forward modelling processwhich generatesa colour vector for every
possiblecombinationof histological parameters.In thiswayasystematicrelationshipbetweenimagevalues� and
parameters� canbeestablished.This relationship is known asthemodel of colouration.

3.3 Inversion process

Theobjectiveof theanalysiscannow bere-statedasfollows. Givenacolour image� andthemodelof colouration
determine theparametervalues � . Thecorresponding mapping function is

� � ������� (3)

This inversionproblem doesnot have to besolvedalgebraically. Insteada discretelook-up tablecanbeused.For
thosecolourvectors for whichthelook-uptabledoesnothavedirectentries,parametervaluescanbeinterpolated.
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4 An experiment

Thissectiondescribesapreliminaryexperimentcarriedoutto getaninitial indication of themethod’sperformance.
An imageof ahealthyfunduswasscannedfroma35mmslide.Theimagewasuncalibratedandnothingwasknown
about thephotographic processesthathadproducedit. This representsa majorproblem for thealgorithm because
the inversion process assumesthe calibrateddata. Calibrationis the subjectof further work. In an attemptto
reduce the illumination dependence,the original imagewasnormalisedby the average local brightness,but in
future work theuseof calibrateddatais envisaged.The imagewascropped to show only thepartof the fundus
which received fairly uniform illumination. This includesthe foveal region in which themapping is expectedto
fail, sincethecurrent model is only valid for theperifovealregion (theadditional pigments in thefovealregion are
notmodelledatpresent). Theparameterspace� wasvery coarselydiscretisedto asetof  "!# "!# equally spaced
valuesbetweentheplausiblerangesof concentrationsof thehistologicalcomponents shown in Table1.

LowerBound UpperBound
RPEMelanin 4.0 7.5
BloodHaemoglobin 4.0 7.0
Choroidal Melanin 0.8 2

Table 1. Plausiblerangesof concentrationsof thehistological components(mmol/l) [10].
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Figure 3. Modelof colouration.Themainaxescorrespondto thestandard RGBopticalfiltersapplied, whereasthe
sparsityof points revealthevirtual axesfor thethreeparametersconsidered.Any point in themodelof colouration
is linkedto a uniquesetof parameters,or concentrationsof thehistological componentsconsideredby themodel.

StandardRGB opticalfilters weremodelledasnon-overlappingGaussianfunctionswith centralwavelengths lo-
catedat 650, 550 and450 nm respectively and full width at half maximum(FWHM) of 40 nm. A schematic
representation of the modelof colouration is shown in Figure3 asa cloud of pointsin the imagespace� . The
individual pointsarelocatedat theRGB coordinatescomputedby applying theopticalfilters definedabove to the
spectrapredictedby themodel. Eachpoint in this spacehasanassociatedvectorof parametervalues,indicating
theoriginal setof concentrationsthathave yieldedthat point in the imagespace.It canbe seenfrom the figure
(Figure3) thatthemodel of colourationformsa volumewithin theimagespace.Thesparsityof pointsshown in
thefigurehelpsoneto observe thethreevirtual axescorresponding to quantitiesof thethreehistological compo-
nents.Oncetherelationship betweenestimatesof theparameters from theimagedatahave beenestablished,the
variationof eachparameteracrossthe funduscanbedisplayed in the form of a grey level image.Suchimageis
calleda parametric mapandmaybecomputedvery simply. TheRGB valuesof eachpixel in the fundus image
provide the index to the modelof colouration. Theparameters at this locationarelooked up in (or interpolated
from) themodel.A setof new grey level imagesis createdin whichthecolour of thepixel is substitutedby avalue



representing themagnitudeof thegiven parameter.

5 Results and discussion

Preliminaryresultsareshown in Figure4. Although the mapping is very crude, the mapsexhibit a distribution
of pigmentswhich is generally consistentwith physiology. TheRPEmelaninlevels increasetowardsthe foveal
region. In thecentralfoveal areathe incorrectly low levelsof melanin aremostlikely causedby thepresenceof
macularpigments which arenot representedby the model. The levels of choroidal melanindo not show much
spatialvariation acrossthe fundus, asexpected. Blood levelsareshown in two maps,onefocusingon largeand
mediumretinalvessels,theotheronblood level variations in thechoroid. It canbeseenthattheretinalvesselsare
pickedupwell. Whencontrastis stretched, somevariationsin thechoroidal blood startshowing up,however, their
interpretationwouldbeprematurebecausethelackof imagecalibration certainly introducedlargemapping errors.
Both mapsshow high levelsof bloodin thecentreof fovealregion, which is incorrect. This is likely to have been
causedby themacular pigments,similarly to theRPEmelaninmapdiscussedabove.

Figure 4. Fromleft to right: Original Image; RPEMelaninParametricMap; Choroidal MelaninParametricMap;
BloodParametric Map(Main vessels);BloodParametric Map(Choroidalvariations).

6 Conclusion

Thepreliminary resultsreportedin thispaperindicatethataphysics-basedinterpretationof thecoloursin theocular
fundusis feasible.Thefirst parametricmapsof RPSmelanin,choroidal melaninandchoroidal blood computedby
this method generally show thedistribution of theabove pigments consistentwith physiology. Furtherwork is in
progressto include additional ocularpigmentsin themodel,to calibrateor normalisetheinput imagedata,andto
increasetheresolutionwith which thephysiologicalparametersarediscretised.
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Abstract. We have investigateda combinationof statisticalmodellingandexpectationmaximisationfor a
texture basedapproachto the segmentationof mammographicimages. Texture modelling is basedon the
implicit incorporationof spatialinformationthroughthe introductionof a set-permutation-occurrencematrix.
Statisticalmodelling is usedfor dimensionalityreduction,datageneralisationand noiseremoval purposes.
Expectationmaximisationmodellingof theresultingfeaturevectorprovidesthebasisfor imagesegmentation.
Thedevelopedsegmentationresultsareusedfor automaticmammographicrisk assessment.

1 Introduction

Texture is oneof the leastunderstoodareasin computervision andthis lack of understandingis reflectedin the
ad-hocapproachestaken to datefor texture basedsegmentationtechniques.Althoughno generictexture model
hasemergedsofar a numberof problemspecificapproacheshave beendevelopedsuccessfully[1]. Althoughthe
describedapproachis developedwith oneparticularapplicationin mind,wedobelievethatit is genericwithin the
field of medicalimageunderstanding.

SinceWolfe’s [2, 3] original investigationinto the correlationbetweenmammographicrisk and the perceived
breastdensitya numberof automaticapproacheshave beendeveloped[4–6]. Examplemammogramsareshown
in Fig. 1. Someof thesemethodsare basedon grey-level distributions whilst othersincorporatesomeaspect
of spatialcorrelationor texture measure.While all thesemethodsachieve somecorrelationwith manualvisual
assessmentin generalthey arenotasgoodasexpertintra-observeragreement.Theaccurateandrobustestimation
of mammographicdensitycanbe usedfor risk modellingandpossiblyto determinescreeningintervals within
breastscreeningprogrammes.

(a) (b)
Figure 1. Fatty (a)anddense(b) mammographicimages.

It is our thesisthat the relative sizeof segmentedimageregions,representingdistinct anatomicaltissueclasses,
is correlatedwith mammographicrisk assessment.Statisticalmodellingin combinationwith expectationmaximi-
sation(EM) [7] is usedfor thesegmentationof mammographicimages.To our knowledge,we introducea new
concept,theset-permutation-occurrencematrix,asa texturefeaturevector. Realistictexturemodellingis possible
asspatialinformationis implicitly incorporated.To achievesegmentationanumberof stepsarerequired:a) infor-
mationgatheringwhich transformstheoriginal datain a multi-scalerepresentation;b) texture featureextraction
whichusestheset-permutation-occurrencematrixconceptto generateafeaturevectoratapixel level; c) statistical
modellingto provide a morecompactandgeneralisedrepresentationof thedata;d) EM clusteringto divide the
datain anoptimalsetof classes;ande) imagesegmentationwhichusestheclassesfor eachpixel. Therelativesize
of thesegmentedimageregionsis used,in combinationwith anearest-neighbourclassifier, to estimatethedensity
for eachmammogram.�
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2 Methods

In generalthe usageof the EM approach[7] for imagesegmentationis basedon the grey-level informationat
a pixel level with no direct interactionbetweenadjacentpixels. However, it is well known that texture based
segmentationshouldincorporatespatialcorrelationinformation. This meansthat our modellingshouldnot be
basedonasinglegrey-level valuebut incorporatesspatialinformationimplicitly.

Thefirst stepin obtainingthetexturefeaturesis thegenerationof animage-stackwhich is a scale-spacerepresen-
tation. At thesmallestscaletheoriginal grey-level valuesareusedandto obtainthe largerscaleimageswe have
usedarecursivemedianfilter [8], denoted

�
, andacircularstructuringelement,� (thediameterof thestructuring

elementincreaseswith scale� ). Theresultingimage-stackis a setof images

�
���
	���
 �����

�
���
	���
 � � ����� (1)

where � is anorderedsetof scales.This effectively representsa blurring of theoriginal dataandat a particular
level in theimage-stackonly featureslargerthan � canbefound.An alternativerepresentationof theimage-stack
is givenby

�
���
	 � 
 �����

�
���
	 ��
 � � ������� 
 � � ����� (2)

where � is a setof scales.This representsthe differencesbetweentwo scalesin 
 � andhencethe datain the
image-stackat a particularlevel will only containfeaturesat a particularscale� . It shouldbemadeclearthatthe
representationgivenby Eq.2 doesnot resultin a gradientimage.

To capturethetexture informationover a setof scalesa featurevectorwill needto beextractedfrom the image-
stack.Smallsizeaspects(like noiseandsmallobjects)arerepresentedat thetop (leastamountof smoothing)of
theimage-stack.Ontheotherhand,largesizeaspects(largeandbackgroundobjects)arerepresentedatthebottom
(aftersmoothingat theappropriatescale)of theimage-stack.

The developedmethodusesa modelthat canbe seenasa generalisationof normalco-occurrencematrices[9].
Indeed,if we just look at theco-occurrenceof grey-level valuestheinformationcanbecapturedin matrix format,
wheretherows andcolumnsrepresentthegrey-level valuesat two samplepoints. This processcanincludea set
of points ����� . An exampleof thepointsusedis shown in Fig. 2. In theexperimentsdescribedbelow wehaveused

� ��� � �
 �"!$#&%(' �*),+.-"/0� %(' +1-��*)�/32 (3)

where 4 � � �65�7��3�98�:;�3�6<;�3�>=;���$7��@?��@7��*=��@<��38�:��A5�7�� . In thecasedescribedherewe generatetheco-occurrence
betweenall the pointsin the setof samplepoints; i.e. a permutationof all pointsin the set. This is illustrated
in Fig. 3 for oneparticularpoint, but it shouldbenotedthat thesameapproachis usedin a round-robinway or
in otherwordsthepointsarefully connected.Whenusing � 
 � � (a similar notationcanbeobtainedwhenusing

��
 ��� ), this representationof thetextureinformationin theform of amatrix is givenby

B � %C' �A)�/D�FEHG �I(J KML ICJ K �"NPO (4)

and
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where Q denotesthenumberof elementsin a setand bXc denotesthesetof grey-level values.It shouldbenoted
that this approachprovidesa differentdescriptionthanthat would be provided by usinga setof co-occurrence
matrices.

Figure 2. Samplepoints �V��� . Figure 3. Samplepointsconnectivity.

Insteadof usingthe co-occurrenceof the grey-level valuesit is possibleto usethe occurrenceof the grey-level
difference.Again, this is usingthesamesetof samplepoints �V��� (seeFigs2 and3) at eachscale(i.e. level in
theimage-stack).As we areusingtheoccurrenceof thegrey-level differencevaluesour grey-level co-occurrence
matrixreducesto avector. Effectively this is analignmentof thecolumnsof theco-occurrencematrixwith respect
to thediagonal(i.e. wherethedifferencein grey-level valuesis equalto zero)anda subsequentsummationover
therows. Whenusingthedifferenceimage-stackrepresentation(seeEq. 2) the featurevectorat a singlescaleis
givenby

d � %C' �*)�/\�eEgf �I L I �"hji O (6)

whereb,c is thesetof grey-levels, � a givenscale,k N O is thesetof grey-level differencesand

f �I �lQ # %HS � S&T /�U �V���XWY�V���,Z 
 � %HS /P� 
 � %HS�T /\�m] 2 (7)

where,again,Q denotesthenumberof elementsin a set.

Thetexturefeaturedescribedaboveis extractedatapixel level andcombiningthetexturefeaturesoverall possible
scalesresultsin a featurevector. We have usedprincipal componentanalysis[10] to provide a morecompact
representationof thefeaturevector.

3 Results

TheEM approach[7] is usedto determinea setof classesfrom thefeaturevectorswhich canbeusedto segment
theimages.Althoughof interest,it is computationallyimpracticalto basetheEM modellingontheoriginaltexture
featurevectorasthishasa largenumberof elements(ahighdimensionality)andtendsto besparse.All theresults
presentedin this sectionarebasedon a PCA reducedfeaturevectorwherewe typically capture95%of thedata
variation(the dimensionalityof thedatawasapproximatelyreducedby a factorof ten). The EM andstatistical
modellingprocesstakeonly thebreastareainto accountwhilst excludingthepectoralmuscleandthebackground.
For theEM approachthenumberof classeswassetequalto six [11].

To testour thesisthattherelative sizeof thesegmentedregionsis linkedto mammographicrisk a smallsubsetof
theMammographicImagesAnalysisSociety(MIAS) databasewasused[12,13]. All the imageswereassessed
by mammographicexpertswho provided an estimateof the proportionof densetissuein eachmammogram.
Thesegmentationresults,basedon EM andstatisticalmodellingusing ��
 � � or � 
 � � , canalsobeusedto obtain
the relative sizeof the segmentedregionsfor eachclass. This featureis usedasour classificationspace.The
correlationbetweentherelativeregionsizedistributionandtheestimatedproportionof densetissue,whenusinga



nearestneighbourclassifieron a leave-one-outbasisfor � 
 � � , canbefoundin Table1. This shows anagreement
for 86%of themammograms(thisdecreasesto 66%whenusing �n
 � � . Thiscompareswell with aninter-observer
agreementof 45%. The intra-observer agreementon theuseddatasetis 89%. In addition,whenusingthesame
datasetandclassificationapproach,resultsbasedon theapproachesdevelopedby Byng [5] andKarssemeijer[4]
show anagreementof 67%and81%,respectively.

ExpertClassification
0-10% 11-25% 26-50% 51-75%

A
ut

om
at

ic
C

la
ss

ifi
ca

tio
n 0-10% 6 0 0 0

11-25% 0 5 2 0
26-50% 2 1 8 0
51-75% 0 0 0 12

Table 1. Comparisonof thedensityestimateasgivenby anexpertradiologistandautomaticsegmentation.Based
on � 
 � � .
4 Conclusions

Wehaveshown thatacombinationof EM andstatisticalmodellingresultsin arobustapproachto thesegmentation
of mammographicimages. We have introduceda texture featurevectorbasedon a set-permutation-occurrence
matrixwhichcapturesbothspatialandlocalgrey-level information.Theuseof thistypeof matrixwill needfurther
developmentto exploreits limitationsandfull potential.It shouldbenotedthatsomefundamentalquestions,such
as the influenceof the size and shapeof the distribution of samplepoints �V��� , needfurther investigation. In
addition,thedevelopedtexturesegmentationapproachwill befully evaluatedonsyntheticandnaturaltextures.

We have shown that the segmentationresultscanbe usedto provide valuableinformation in the estimationof
mammographicdensityand thereforpossiblyfor mammographicrisk assessment.The developedapproachis
comparableto expert intra-observer variation,shows considerableimprovementon the inter-observer agreement
andcomparesfavourablewith existing techniques.
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ABSTRACT 

 
We report a new method for recording multiple-exposure holograms in order to synthesize a monochromatic 
3D image from a series of medical tomograms.  The object was to produce high-resolution images with a 
wide viewing angle and a high diffraction efficiency, which could be viewed unaided in white light.  A spatial 
light modulator is the key component of the holographic system, and this is used to display a sequence of 
two-dimensional views that can be recorded sequentially on holographic plates.  

 
 
1. Introduction 
 
A number of researchers have attempted to produce volume multiplexed holograms from medical data with 
varying degrees of success.  Perhaps the best known of these are the researchers at Voxel, who developed their 
method for producing high-resolution holograms and put it on the market by the end of 1994.  The Voxel 
holograms exhibit monochromatic images with 256 levels of grey scale, and over 200 slices combined in an 
image.  Although they are effectively synthetic holograms made up from a number of 2D images, all the basic 
depth cues are available with the reconstruction of the third dimension, with the rear images being visible 
through the images at the front.  
Now, in Doncaster, we have developed a new setup for recording holograms that can be viewed directly in white 
light, are easier to produce and can be viewed from different perspectives without distortion or ambiguity. 
 
 
2. Method 
 
This technique is designed to incorporate cross-sectional images of a three-dimensional object such as those 
produced by computerised tomography (CT) and magnetic resonance (MR) scans.   An expanded and collimated 
laser beam is transmitted through the image of a tomographic slice displayed on a high-resolution, 1024*768 
XGA LCD.  The image is then projected on to the rear of a diffusing screen, thus representing the “object” in 
traditional holography.  Once the first slice has been exposed, the next slice can be displayed, the screen having 
been repositioned at a new distance from the holographic plate incremented by the scan slice interval.  Again an 
exposure is made and the process continued until the entire subject volume is recorded as an integrated 
holographic image.  The images are stacked one on top of the other within the thick emulsion of the plate, and 
this is essentially the same principle as that employed by Voxel. 
 
 
2.1 Voxel’s Method 
 
The optical setup used by Voxel involves splitting the beam into two separate paths, one to illuminate a spatial 
light modulator, (SLM) and the other to act as a reference beam.  In order to achieve this, Voxel have used a 
voltage-adjustable wave plate under computer control, to split the beam and thus adjust the beam ratio [1].  This 
allows them to both keep the beam ratio as low as possible and at the same time at a constant level for every slice 
used.  When using a high beam ratio, the holographic plate is repeatedly exposed to the plane wave from the 
reference beam and this can limit the number of exposures possible before the emulsion becomes saturated.   
This can make it necessary to increase the exposure time so that subsequent exposures receive more energy than 
the first.  This is to increase the number of multiple-exposures that can be superimposed, without the problem of 
holographic reciprocity law failure, (HLRF).  HRLF is the chronological decrease in diffraction efficiency when 
multiple exposures are recorded with equal energy.  A twofold decrease in diffraction efficiency has been 
experimentally observed, [2], when six holograms were superimposed on the same holographic plate.   



The Voxel holograms are transmission holograms and as such cannot be viewed in white light without the aid of 
a dispersion compensation unit. This idea was developed by Kaveh Bazargan, [3] and uses a compact light 
source, diffraction grating, collimating element and direction selective filter to eliminate the chromatic 
dispersion produced when viewing transmission holograms by white light.   
Voxel use transmission holograms because the spatial frequency of the fringes recorded is lower than those 
found in a reflection hologram, and this places less strain on the resolving power of the emulsion [4].  They also 
suggest that the apparatus used for producing transmission holograms is less susceptible to vibration. 
 
 
2.2 Plane and Volume Holograms 
 
In order to explain the difference between our technique and the one used by Voxel it is first necessary to explain 
the differences between a plane hologram and a volume hologram, Fig1).  As the angle between the object beam 
and the reference beam changes, so does the spacing between the fringes in the emulsion.  A plane or surface 
hologram has the image only on the surface.  This means that the fringes are almost perpendicular to the plane of 
the emulsion. 
If the angle is between 450 and 900 the fringe spacing becomes small enough for the recording process to be 
taking place throughout the volume of thickness of the emulsion.  As the emulsion becomes thicker and/or the 
angle increases, the Bragg condition becomes more dominant and the fringe planes are more nearly parallel to 
the emulsion surface.  This type of hologram is called a volume hologram. 
In a volume reflection hologram, the reference beam strikes the plate from the opposite side to the object beam.  
A reflection hologram can be viewed very satisfactorily in white light.  The distance between the fringes is a 
function of the wavelength of the light used to produce the hologram and is constant.  Only the wavelength of 
light that matches the fringe spacing will be reflected towards the viewer. 

 
 

OB    RB<450 
PLANE TRANSMISSION HOLOGRAM 

 
 
 

    RB>450 
HOLOGRAPHIC PLATE           VOLUME TRANSMISSION HOLOGRAM 

 
 
 
 

RB=1800 
 

IN-LINE VOLUME REFLECTION HOLOGRAM 
    

   
Figure 1) 

 
2. Optical Set-up Used 
 
Very few reflection holograms are made in-line or with 1800 difference between the object and reference beams.  
This is because in order to reconstruct and view the image, you have to look directly into the light source you are 
using to playback the hologram.  With a reflection type hologram you can get around this by using angle 100 less 
than 1800 in-line format.   
It is this in-line format that we are using as part of our setup, with a reference beam created by light reflected 
back from a mirror positioned just behind the holographic plate.  Because a lens is used to collect and collimate 
the light projected on to the diffusing screen, the image of the object reflected back towards the plate directly 
coincides with the image of the object incident on the emulsion. Fig 2) 
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Figure 2) 
 
3. Results 
 
3.1 Advantages of the Set-up Used 
 
Because the reflected image that acts as a reference beam is exactly the same size as the object image produced 
for each two-dimensional slice, only that part of the emulsion that covered by that image is exposed for each of n 
exposures.  Also, the ratio of the object beam (OB) to the reference beam (RB) is constant for every slice and 
should remain close to the ideal 1:1 ratio required for multiple-exposure holograms. 
If you add to this the increased stability provided by using a single beam rather than a split beam set-up 
and the white light viewing, then the advantages are very exciting, but the diffraction efficiency and sharpness of 
the images produced using this technique have been inferior to those produced using the Voxel method. 
 
 
3.2 The Spatial Light Modulator 
 
Tests of the quality of our SLM have shown inherent problems with a device of this type.  The pixels of an LCD 
are constantly being refreshed and their effective optical distances may thereby fluctuate.  The LCD modulates 
by absorption of the rotated polarisation of light and LCDs typically waste up to 90% of the available laser light.  
The LCDs structure has a number of surface interfaces, which back-reflect and absorb light.  Also the fill factor 
for a LCD is typically only 70%, [5]. 
The fill factor for our SLM is unknown.  The measured transmittance as around 20% and it may be that our 
spatial light modulator is inefficient and requires more laser power to overcome its deficiencies. 
A small residual “twitching” of each pixel as the array is electrically scanned will reduce the diffraction 
efficiency of a hologram created using an LCD due to degradation of laser beam coherence. 
With our SLM there is a clear degradation in diffraction efficiency when comparing a hologram made with a 
transparency with one made with the SLM using similar exposure and geometry. 
The contrast ratio is given by the manufacturer as 150:1 and is low because the LCD’s black base line is not 
completely opaque.  At the black level the power density level measured was typically 0.21 µW.  
 
 
3.3 Hologram Recording Materials 
 
We have been able to make small format holograms with a degree of success, initially on Agfa 8E75HD film 
emulsions that require an exposure of about 60 to 100 µJ.cm2.  We have also used Birenheide BB-640, 2.5 inch 
square glass plates, that require at least 3-4 times the exposure.  These have a grain size that is a great deal 
smaller than the Agfa film, which is 20 to 25 nm.  The results have been promising.  It is obviously easier using 



plates than film and the small plates can be illuminated with an adequate power density when using a 30mW 
laser.  Using a 30 mW He:Ne laser limits the amount of light available for making holograms.  This situation 
does not improve when using the SLM, as typically only 21% of available light is transmitted through the 
display. 
Unfortunately the Birenheide plates are no longer available from the original source and we have now switched 
to 4 by 5 inch Slavich PFG-01 plates.  Up to now we have not managed to use these successfully, due to the 
longer exposure times required with our current laser.  This is because the area of the projected laser image used 
to fill the larger format plates has increased. 
 
 
3.4 Pyrochrome Processing 
 
High spatial frequencies are required with reflection holography and a typical resolution between 4000 and 6000 
cycles/mm is required.  By using Pyrochrome processing it is possible to produce bright, low noise high-
resolution reflection holograms without having to be over critical with respect to exposure and development 
times [6].  It is also possible to control the colour of the final hologram by adding a controlled quantity of 
sodium sulphite to the developer. 
 
 
Discussion 
 
We have developed a new method for making volume-multiplexed holograms and in the future we intend to 
explore the following ideas: 
 
• The effects of using a 50 mW diode laser (650nm) instead of a 35 mW He:Ne laser. 
 
• Making our own silver bromide holographic recording materials with different emulsion thicknesses. 
 
• The use of image processing to produce high contrast images that are segmented and rendered. 
 
• Using area partitioning to display volume multiplexed holograms from different perspectives. 
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Abstract:
A technique is described which enables quantitative histological data to be recovered from conventional 
digital images. Methodology is developed around the concept of image ratios, which are shown to be 
invariant to scene geometry and illumination intensity. Key to the success of this technique, is a function 
which maps uniquely from a vector if image ratios to the corresponding vector of histological parameters. 
The existence of this function is established using mathematical techniques drawn from differential geometry. 
The methodology is formulated generally then applied to a two-parameter model of human skin. A function 
relating image ratios to concentrations of melanin and blood is established and used to process a standard 
RGB image. The technique successfully maps out the distribution of blood and melanin across the entire 
image.

1 Method

As light optical radiation propagates through skin it is both scattered and absorbed. Scattering primarily occurs 
from the underlying tissue structure whilst absorption tends to result from the tissue pigments. Healthy skin can 
be considered the two-layered structure, depicted in figure 1. Incoming light first passes through the epidermis. 

No scattering occurs in this layer but the presence of the pigment melanin 
to be absorbed. The light then passes into the dermis where it is scattered
being absorbed by the pigment haemoglobin. It has been argued [1,2] 
sufficient to model radiation transport within skin. If scattering coefficien
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Figure 1: Tissue structure of normal skin
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described, with the addition of melanin in the dermal layer. This system has been developed into a commercially 
available system by Aston Clinica and is proving to be of immense value to clinicians in their diagnosis of 
melanoma. Although proving effective, the system requires exact calibration of the illuminating light source and 
does not take into account any variation in surface geometry. This latter assumption can result in inaccuracies 
when skin is imaged in the vicinity of a joint. In the following section a technique is described for recovering 
histological parameters from image data in a way that is insensitive to scene geometry and illumination intensity. 
This method is then applied to a two-parameter model of skin.

1.1 Achieving invariance to surface geometry and illumination intensity

The dichromatic reflection model, first proposed by Shafer [6], states that light remitted from an object is the 
sum of two components, the ‘body’ component and the ‘surface’ component. The body component refers to 
physical processes occurring after penetration of light into the material and the surface term to reflections that 
take place at the surface of the object. By using a system of cross-polarised filters on the illuminating source and 
the image acquisition system, it is possible to eliminate the surface component of reflection. This leaves only the 
body term, which is the product of a geometric factor and a colour term. The technique described here is 
applicable to problems, in which the spectral characteristics of the illuminating light source are known a priori. 
For such a system the illuminating light may be written as

)()( 00 λελ EE =

where 0ε is a wavelength independent scaling factor determined by the intensity of the light source but which 
does not change with wavelength. This allows the dichromatic reflection model to be written as
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where K0εε =  and K is the geometric factor in the body term of the dichromatic reflection model. The 
function Rn(λ) defines the spectral response of the nth filter and Sn(λ) the remitted spectrum of the illuminated 
tissue. If an image acquisition system measures an N+1 dimensional vector of image values, then a vector of 
image quotients can be defined as 
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where R  denotes the N-dimensional space of image ratios. All components of this vector will be independent of 
the constant ε and thus independent of illumination intensity and any geometrical factors in the imaged scene. 
The situation in which K histological parameters are required to describe all histological variation is considered 
and an appropriate parameter vector defined as

where P  denotes the K-dimensional space of parameter variation. If a function exists which maps uniquely from 
any vector of image ratios to the corresponding vector of scene parameters, then it is possible to recover 
histological parameters from image data in a way that is insensitive to scene geometry and illuminating light. 
This idea, of dividing two image values, has been used successfully by Healey [7] who was able to identify metal 
and dielectric materials in a segmented image independently of scene geometry.

1.2 Establishing Uniqueness

Any function, which is to map from the space of image ratios to parameter space to must be 1-1. If this is not the 
case, ambiguity will arise as it could be possible to recover more that one set of parameter values from a given 
vector of image ratios. To establish this condition, it is first necessary to consider with the function f, which 
maps from points in parameter space to points in the space of image ratios. This function is a vector valued 
function of a vector variable and is defined as

Ppp ∈= Kppp ,...,, 21
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To implement this function, it is first necessary to compute the spectral reflectance of the material of interest for 
the given set of parameter values, or point in parameter space. This is done using the Kubelka-munk model of 
light transport with the appropriate parameter values. Using the computed spectral reflectance, along with the 
spectral responses each of the filters Rn(λ) in the image acquistion system, a vector of image values can be 
calculated. From this vector a corresponding vector of image ratios can then be computed. To establish whether 
the function f is 1-1, the determinant of the Jacobian matrix, defined as,
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must be analysed [8]. If the determinant is non-zero at a point in parameter space then there exists a 
neighbourhood around this point where the function f can be approximated linearly. This means that any point 
within this region will map under a 1-1 mapping to a unique point in the space of image ratios. By discretising 
parameter space into suitably small intervals and establishing that the Jacobian is non-zero across the whole 
space, it is possible to establish the 1-1 condition for all possible parameter values. This can be thought of as 
analogous to the one-dimensional case where the absence of a zero derivative ensures no turning points and thus 
a 1-1 condition over a defined functional range. 

With this condition established a function, g, can be defined as

)(rp g=

which relates the vector of image ratios to the corresponding vector of parameter values. This is best achieved 
using some form of interpolation technique. This allows a piecewise continuous function to be constructed which 
is valid across the whole of parameter space. Using this function, parameter values can then be obtained at every 
pixel and corresponding parametric maps produced.

2 Results

Figure 2: (a) RGB facial image  (b) parametric map of melanin  (c) parametric map of blood

The technique was applied to facial images acquired using a standard RGB digital camera. As it is necessary to 
measure the same number of image ratios as histological parameters, a two-parameter model of skin was used. 



The dermal thickness was measured using the system developed by Astron Clinica [9] and assumed to be 
constant across the face. This is thought to be a reasonable assumption as, although thickness varies between 
individuals, it is fairly constant for a relatively small area of an individual. 

Using the responses of the imaging acquisition system along with the spectral characteristics of the illuminating 
light source, a 2-D vector of image ratios was computed for every point in a discretised parameter space. From a 
consideration of the determinant of the Jacobian, uniqueness was established. Using this discrete data was 
constructed using a triagle-based cubic interpolation method which was implemented in matlab. This function 
was used to process the image shown in figure 2a to produce the parametric maps of melanin and blood. These 
have been shown in figures 2b and 2c respectively.

The images show that the method is able to differentiate between melanin and blood born pigments. The melanin 
image demonstrates how moles are detected, there being two under the left eye which do not show in the blood 
parametric map. The images also demonstrate the uniform distribution of melanin across the face. This is in 
contrast to the uneven distribution of blood, which tends to have locally increased concentrations, for example in 
the lips and where spots are present.

3 Discussion

Preliminary results suggest that the technique described in this paper could enable parametric maps to be 
produced independently of curvature in an imaged scene.  With an invariance to illumination intensity, it will not 
be necessary to accurately position the camera and illuminating light source before image acquisition. This will 
allow much wider application of the system developed by Cotton and Claridge [4,5]. 

Work is now underway to increase the number of histological parameters in the model to allow analysis of more 
complex skin lesions. This should enable the development of a system that can assist clinicians in the diagnosis 
of non-melanoma skin cancer, such as basal cell carcinoma that tends to occur on the face. It will also allow for 
the assessment of wounds where it is not possible to make contact with the imaged tissue, such as with diabetic 
foot ulcers.

It is envisaged that this methodology will be applicable to imaging other tissues. Two potential applications have 
so far been identified. These are imaging the ocular fundus [10,11] and the gastrointestinal tract. Success in both 
these applications requires a system which is able to recover histological data in a way which is invariant to 
surface geometry and illuminating light. Thus, the methodology presented in this article could prove key to their 
success.
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Abstract. This paper describes a computer based system for the acquisition and analysis of images from
nailfold video microscopy. It uses video frame registration to facilitate integration of information over time,
averaging out noise and temporal variability in the appearance of the capillary loops. The system is now in
routine use and a clinical study has shown improved inter and intra observer reproducibility when compared
with results from a previous system based on single digitised VHS video frames.

1 Introduction

Primary Raynaud’s phenomenon [1] is a temporary interruption of the blood supply to the extremities triggered
by exposure to cold. It can usually be dealt with by protecting the affected areas with warm clothing and is not
thought to be linked to any underlying disease. However, a more severe version of Raynaud’s, sometimes leading
to amputation, can be associated with the connective tissue disease scleroderma [1]. Scleroderma is a progressive
disease and treating the reduction in peripheral circulation is a major concern of clinicians. To measure the progress
of the disease and assess the effectiveness of any potential treatment requires an objective quantification of the
condition of the circulation in the extremities. A widely used technique is to measure the size of the capillaries
at the base of the fingernail (nailfold) from images obtained via an optical microscope - as disease progresses the
long thin loops of the normal patient become thickened and distorted in shape.

Previous techniques have relied on measuring the capillary loop dimensions from single video frames - a major
drawback to this approach is that the loops can appear incomplete at any one instant since the capillary walls
themselves are transparent and there can be gaps in the flow of red blood cells. To overcome this limitation we
have developed a method in which several video frames from a sequence can be integrated into a single image,
averaging out temporal variability and allowing the user to build up a mosaic of the whole area under study in much
higher resolution than could be achieved by resorting to lower magnifications. Central to this is robust video frame
registration since there is some movement of the finger during image acquisition. Previously we have described
the registration process in detail [2], discussed its robustness and accuracy [3], and its extension to fluoroscopy [4].

Here we describe a data acquisition system based on this method integrated with a capillary loop measurement
interface. The performance of the whole system is assessed in a clinical study, and the results are compared with
those from a previous study using single video frames.

2 Data Acquisition System

2.1 Hardware

Figure 1 shows the experimental set-up now in use at Hope Hospital. The optical microscope was developed by
KK Technologies1 specifically for the examination of blood vessels in the skin and is essentially a CCD video
camera with X300 objective lens surrounded by a ring of green LEDs to provide high contrast illumination of the
blood vessels under the skin. The finger is lightly constrained on a platform at the base of the microscope, and the
position of the microscope is adjusted via three orthogonal micrometer screws. The output from the microscope’s
CCD camera is fed to a Snapper82 video digitiser board inside a standard PC.

2.2 Software

Video frame registration is based on a binary ‘skeletal’ representation of the images created using linear feature
detection, in which the majority of remaining white pixels represent the center-line of the capillaries. This ensures

∗philip.allen@man.ac.uk.
1www.kktechnology.com
2www.datacell.co.uk



Figure 1. Schematic diagram of the system
hardware.
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Figure 2. Screen-shot of the data acquisition interface.

that the registration process is based on the capillaries and not influenced by noise artifacts whose motion do not
reflect that of the finger. Image combination is done by taking the mean value at each pixel position in the registered
scene, and subtracting one standard deviation as previous research showed this to give optimal signal to noise in
video sequences containing intermittent features [2].

Figure 2 shows the user interface of the data acquisition system. The bottom left window displays a live image
from the microscope with contrast and brightness controls available. The objective is to pan across the finger,
building up a composite image of the whole nailfold area and so to begin with the user moves the microscope
to one end of the distal row of capillary loops. Once optimum focus is achieved the user presses the ‘capture’
button - 16 video frames are then captured at a rate of 5Hz by the Snapper8 video digitiser board and stored on
the PC. These 16 video frames are then automatically registered to compensate for movements of the finger during
the capture period, and combined into a single image which is displayed in the window at the bottom right of the
interface.

The user then adjusts the microscope position so that the next area of interest is visible, maintaining an overlap
with the previous area. The capture button is pressed as before and a further 16 video frames are digitised, only
this time the resulting composite image is itself registered with the previous composite image and the resulting
panoramic composite is displayed in the window in the middle of the interface.

This process is repeated across the finger until the whole area of interest has been covered. If the patient has been
examined before, the previous panoramic mosaic can be displayed in the window at the top of the interface allowing
the user to ensure that the same region is captured on subsequent visits. This is very important in studies that
attempt to monitor the progress of disease over time as the condition of the capillaries, and hence their appearance,
can vary greatly across the nailfold of a single finger.

3 Measurement System
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Figure 3. Screen-shot of the interface through which capillary
dimensions are measured.
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Figure 4. Schematic diagram of a capil-
lary loop showing the positions of the ves-
sel thickness measurements.

Figure 3 shows the interface created for manual loop measurement from data collected via the system described in
section 2. The full resolution panoramic mosaic is displayed in the window in the middle of the interface and an



enlarged view of a portion of this mosaic is displayed in the window on the bottom left of the interface. This is the
window in which the user makes the measurements and the region which it displays can be chosen by clicking on
the current mosaic window above.

Figure 4 shows the capillary dimensions measured in previous studies [5] and also adopted in this system. The user
selects the appropriate dimension from a set of radio buttons and then, using the mouse, clicks either side of the
capillary at the desired points - the left button beginning the measurement, and the right button closing it. A line
is drawn between the two points, using a different colour for each of the dimensions. To distinguish which side
of the loop is arterial and which is venous, the user must be able to see which way the blood was flowing through
the loop and so the original 16 frames that made up the scene containing that particular loop are played back in a
movie sequence in the window at the bottom right of the interface. This movie view is also zoomable since it is
necessary to be able to see the individual blood cells. If data from a previous visit is available it can be displayed
at the top of the interface with the previous measurements superimposed on the mosaic image, so that the same
capillaries can be measured at the same measurement points.

4 Clinical Study

To asses the above system as a practical clinical tool a study was carried out to quantify the inter and intra observer
reliability and explore any possible relationship between the size of the capillaries and disease group. A patient
group consisting of 48 healthy controls, 21 Primary Raynaud’s (PRP), 40 Limited scleroderma (LSSc - skin disease
restricted to extremities) and 11 Diffuse scleroderma (DSSc - skin disease affecting proximal limbs and/or trunk)
were examined using the method described above. An observer reproducibility study was performed on a sub-set
of the data containing 10 controls, 10 Primary Raynaud’s, and 10 SSc. For each patient, five capillary loops were
measured from the ring finger of the non dominant hand and the mean across the five loops was taken for each of
the four dimensions measured (figure 4).

For both inter and intra observer reliability, two studies were made - a ‘blind’ study in which the observer had
no access to the previous measurements so that neither the same capillaries nor the same measurement positions
could be guaranteed, and a second in which the observercould see the previous mosaic with the measurement
points visible.

These results were compared with those of a study by Bukhari et al [5] using a previous video capillaroscopy system
at Hope Hospital. In this system a video microscope was connected to a VHS video recorder and measurements
were made from single video frames digitised from the video tape. This did not allow any reference to previous
measurement positions to be made during the data acquisition or measurement phases. Bukhari’s study was similar
in its patient group to ours but used the mean of all the visible capillaries in a 3mm length of the distal row, which
translates to roughly 15 loops for controls and about 10 for scleroderma.

For all inter/intra-observer studies the bias and limits of agreement [6] were calculated and all dimensions were
log transformed to achieve normality in both studies.

4.1 Observer Reproducibility

Apex Arterial Venous Total
−60

−40

−20

0

20

40

60

80

Bi
as

 w
ith

 lim
its

 o
f a

gr
ee

m
en

t (
%

)

Figure 5. Bias and limits of agreement for the
inter-observer study. Current study - circles, cur-
rent study ‘blind’ - triangles, Bukhari - squares.
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Figure 5 shows the results of the inter observer study and figure 6 shows the results of the intra observer study
for both this and previous work. For our ‘non-blind’ intra observer test there was a relationship between observer



difference and measurement size for the Apex and Venous dimensions and so the figures shown represent an
upper limit on the limits of agreement. When no reference is made to the previous measurement, both this and
Bukhari’s study show similarly poor reproducibility, whereas being able to refer to the previous measurements
greatly improves reproducibility.

4.2 Disease group separation

Figure 7 shows the mean and standard deviation of the loop
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Figure 7. Mean and standard deviation of the
apex loop thickness for the four disease groups.
Current study - circles, Bukhari - squares.

apex width for the four disease groups included in this and
Bukhari’s study. Similar patterns are exhibited in the other
loop dimensions; a detailed analysis of this data along with
its clinical significance will be presented elsewhere. Suffice
to say here that there is considerable overlap between the
groups, but with an increasing trend in the means and cor-
responding decrease in loop density with increasing severity
of disease. In both studies comparing scleroderma patients
with controls and PRP showed a statistically significant dif-
ference. Bukhari found a significant difference between LSSc
and DSSc but not between Controls and PRP, whereas this
study found the opposite. There appears to be a systematic
difference between the two sets of measurements across the disease groups, this may be due to a consistent subjec-
tive difference in deciding where the measurement points are placed with respect to the capillary edge, however,
this has no impact on observer reproducibility or disease group separability studies.

5 Conclusions

As expected, access to the previous measurement positions on subsequent examinations greatly improves repro-
ducibility as it allows the same capillaries and similar measurement points to be chosen. However, this also
suggests that measuring a sub-set of capillaries, five in our case and even fifteen in Bukhari’s, is not always
representative of the patient because of the high capillary loop variability that can occur within an individual, a
conclusion borne out by the relatively large limits of agreement exhibited in our ‘blind’ reproducibility tests. Thus,
the above method can improve the accuracy of studies into the progress of the disease over time, but will not nec-
essarily improve the sensitivity of studies into disease separability. The latter would presumably require a much
greater number of capillary loops to be measured and this will never be practical in a manual system. To address
this limitation we are currently investigating the possibility of automatic measurement of the capillary loops.
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Abstract. This paper describes a novel method for simulating soft tissue deformation with image-based 
rendering. It is based on the association of depth map with colour texture and the incorporation of micro-
surface details to generate photo-realistic images representing soft tissue deformations. In a pre-processing 
step, the depth map describing the surface is separated into two distributions corresponding to macro- and 
micro-surface details. During user interactive simulation, deformation resulting from tissue-instrument 
interaction is rapidly calculated by modifying a coarse mass-spring model fitted to the macro-surface model. 
Micro-surface details are subsequently augmented to the modified model with 3D image warping. The 
proposed technique drastically reduces the polygonal count required to model the scene, whilst preserving 
deformed small surface details and offering a high level of photorealism.  

1 Introduction 
Over the last ten years there has been a strong movement towards improved techniques of minimal access 

surgery. Endoscopy, including bronchoscopy and laparoscopy is the most common procedure in minimal access 
surgery, which is carried out through natural body openings or small artificial incisions. If handled properly, 
endoscopes are completely harmless to patients. Diagnostic endoscopy can achieve its clinical goals with 
minimal inconvenience to patients. Compared with conventional techniques, patient trauma and hospitalisation 
can be greatly reduced and diagnostic accuracy and therapeutic success increased. However, the complexity of 
instrument controls, restricted vision and mobility, difficult hand-eye co-ordination and the lack of tactile 
perception require a high degree of manual dexterity of the operator. Consequently much attention has been paid 
to new training methods for these skills. Computer simulation provides an attractive possibility for certain aspects 
of this training, particularly for hand eye co-ordination. The benefits of endoscopic training through computer 
simulation, rather than the traditionally performed one-to-one apprenticeship schemes, are now well accepted in 
the medical community. It has been proven to be an economical and time saving solution for acquiring, as well as 
assessing basic surgical skills. 

Hitherto, a significant amount of research has been carried out in the area of minimal access surgical 
simulators. One of the major challenges of these systems is the creation of photo-realistic rendering. Due to the 
complexity of geometry used to represent internal body organs and the fact that they are all non-rigid, the realism 
of deformations is one of the key issues of surgery simulation [6]. In this paper we present a novel technique for 
soft tissue modelling which offers both visual realism and realistic interactive tissue deformations. This is 
accomplished by combining the promise of photo-realism set by image-based rendering with the simplicity of 
mass-spring tissue deformation modelling. 
 
1.1 Image-Based Rendering 

Image-based rendering (IBR) has established itself as a powerful alternative to conventional geometry-based 
computer graphics. A set of images or depth-enhanced images is used to synthesise novel views of either 
synthetic or real environments. The simplest form of IBR method is texture mapping [5], which was the first 
technique to represent complex materials that are hard to model and render. A major limitation of texture 
mapping is that texture mapped surfaces still appear as 2-D images painted onto flat polygons. They lack 3D 
details and don’t exhibit appropriate parallax as the viewpoint changes. To address these problems, several 
extensions have been proposed. Blinn [2] developed a bump mapping technique that enables the surface to 
appear dimpled by applying perturbations to surface normals. The results, however, are not always convincing 
especially when viewed from certain positions, as silhouette edges can appear to pass through depressions [13]. 
Other methods such as height fields and displacement maps have proven to be either difficult to calculate or 
computationally prohibitive. Better illusion of depth can be achieved at interactive frame rates by using image-
based rendering methods, in which the colour texture image is associated with a depth map used in the image 
generation process. This is referred to as Image-Based Rendering by Warping (IBRW) [12]. The depth map is 
used with the texture image to model surface details. At run-time, the depth information at each image point is 
projected onto the viewing manifold to achieve realistic rendering.  
 
1.2 Soft Tissue Modelling 

Deformable tissues can be geometrically represented as a set of surfaces or volumes. The choice of 
representation is dependent on two factors: computational efficiency and physical accuracy [7]. Surface models 



are faster to render since the number of vertices used to represent the surfaces are fewer than those used in the 
volumetric approach, though the deformations are less accurate. 

Several methods for modelling soft tissue deformation exist. They can be divided into three main categories: 
non-physical models, finite element models and mass-spring models. Non-physical models are parameter-based 
representations that include splines, patches, and free-form deformations. The curve or surface is defined by 
using a set of control points. Although these methods are sufficient for some simulations, they are not widely 
used in medical simulations because of the difficulty in computing the parameters required to accurately deform 
the model. Finite element models, on the other hand, provide accurate deformations. In these methods, the 
deformable surface is described as a collection of basic elements such as triangles and quadrilaterals where shape 
functions are defined [7]. This leads to the surface being treated as a continuum with deformation equations 
derived from continuum mechanics [8]. Although much research has been carried out in using finite element 
methods for real-time tissue deformations [3,4], their general application was limited by their extensive 
computational requirements; especially when the surface exhibits large shape changes. Real-time tissue 
deformations are typically achieved by using mass-spring models where the object is modelled as a collection of 
masses connected by springs.  Mass-spring models only represent an approximation to real-world physics; 
however, they are characterized by their relative ease of implementation and well-understood dynamics [14]. In 
the work presented here, we integrate 3D image warping with mass-spring tissue modelling to achieve realistic 
simulations (real-time deformation and visual realism). Implementation details and issues related to 3D 
perspective accuracy are discussed. 
 
2 Method 

The proposed method uses colour and depth information to simulate tissue deformation. While the colour 
image captures the photometric properties of the surface, the depth image describes the orthogonal distance from 
the modeled surface to each image point. Therefore, the depth image is considered as a modelling primitive that 
implicitly describes detailed surface geometry. In a pre-processing step, filtering is used to separate the depth 
image into macro- and micro-surface details. The micro-depth structures represent important surface details, 
which are difficult to be modeled by soft-tissue deformation, whereas the macro-depth maps are those derived 
from interactive tissue deformation. In this framework, a coarse mass-spring model can be fitted to the macro-
surface model, thus allowing rapid computation of interactive tissue deformation. The use of IBR allows the 
augmentation of microscopic surface details, permitting a photorealistic representation of the soft tissue 
undergoing free-form deformation. The process of simulating tissue deformation is illustrated in Figure 1. 

        
(a)       (b)   (c)     (d) 

Fig. 1.  Deformation when the surface is pulled outwards, where (a) illustrates the mass-spring model used and (b) shows the 
combined macro and micro depth structures. Images (c) and (d) are the distorted texture image and its 3D rendering 
respectively. 

2.1 Mass-spring-damper Model 
Simulating tissue deformations using a mass-spring-damper model is a well-established technique. A mass is 
assigned to each vertex in the geometric model describing the surface, then the vertices are connected using 
springs and dampers. When a force acts on the surface, the movement of a single mass point is computed using 
Newton’s Second law of motion. In a dynamic system, the motion of the point is given as 

∑ ++−=
j

ijiiii fxvam µ      (1) 

where ai is the resultant acceleration of point i with mass mi due to forces applied by neighbouring springs, 

∑
j

jix , and other external forces if , such as user and gravity forces. The term ivµ−  is used to ensure system 

stability where iµ  is a damping coefficient and iv  is the speed of point i. As the system progresses through 
time, the new point position is calculated by solving the differential equations. Since the described image-based 
solution divorces deformation modelling from rendering, different deformable models can be used, such as finite 
element methods with hierarchical mesh refinement, where more accurate deformations are required. 



2.2 3D Image Warping 
By using the plenoptic function approximation [1], which describes everything visible from a given point in 

space, we define the mappings from one image to another as image warps [9].  3D image warping is a geometric 
operation where visible reference image points with depth are mapped onto a target image. Along with the 
reference camera model, the depth values provide a representation of the structure of the scene.    A 3D point X 
seen through two different image planes as shown in Figure 2a, can be defined by using Equation 2.  
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where, 1C and 2C are centres of projection of the reference and target cameras, M1 and M2 define the reference 
and target camera models, x1=(u1,v1) and x2 =(u2,v2) are reference and target camera image plane points and  t1 
and t2 are reference and target camera constant scaling factors, all respectively. By expanding and rearranging 
terms of Equation 2, the 3D image warping Equation 3 can be derived[9], where )( 1xδ is the depth at reference 
image point x1. A new image can therefore be rendered from a nearby target viewpoint by projecting the 
reference image pixels to their 3D positions and then re-projecting them onto the target image plane. 

                       
                              (a)     (b) 

Figure 2. (a) A 3D point X can be defined by using the camera centre-of projection Ci, image plane point xi and 
scalar value ti along the ray di form Ci through xi for both reference and target cameras, where i=1 and 2 
respectively (b) If the reference and target camera image planes coincide, 3D image warping equation simplifies 
to relief texture mapping equations. 

Having the reference image represented with a parallel projection camera model and by making both reference 
and target image planes coincide, as illustrated in Figure 2b, the warping equation simplifies to the relief texture 
mapping equations [10], 
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where a�  and b
�

are the reference camera image plane basis vectors in Euclidean space, c�  is the vector from 
target viewpoint to the origin of the reference image plane, f

�

is the vector perpendicular to the reference image 
plane, disp(u1,v1) is the depth at reference image plane point (u1,v1), and (u2,v2) is the target image plane point.  
Relief texturing is used in the presented image-based approach to render deformed surface. The relief texture 
mapping process is carried out in two steps [11]: first, an intermediate image is generated by warping the source 
image to a viewing plane that has exactly the same position, dimensions and orientation as the destination 
polygon, then the intermediate image is texture mapped onto the destination polygon using texture mapping 
hardware. 

3 Results 
To demonstrate the visual realism achieved by using the described technique, two deformable tissue simulation 
experiments have been implemented. The first system employs conventional geometry-based tissue deformation 
with a mass-spring model, while the second uses the described image-based soft method. Two views from both 
systems are shown in Figure 3, from which it is evident that the proposed method provides enhanced visual 
realism and improved image quality over conventional methods. It can be seen that when the tissue is deformed, 
the 3D structure of micro-surface elements is still preserved resulting in rich surface details (Figures 3a and 3c). 
Moreover, the texture pixelisation problem is minimised because the texture image is dynamically generated for 
each frame. This becomes noticeable when the surface is viewed at sharp angles or from near viewpoints. The 
accuracy of the proposed method is established through error analysis by comparing it to the conventional 
polygon-based method. 
 
 



Incident Viewing 
Angle (degrees) 

                Mean Projection Error in Pixels 
    Image-Based Method                   Polygon Method 

11 10.140 10.104 
14 10.013 11.548 
19 8.5482 15.511 
21 8.3895 15.317 
23 8.2596 16.261 

Table. 1.  Error analysis for comparing relative performance of image-based and polygon-based methods at different angles 

In table 1, error is defined as the screen-space distance in pixels between the projections of selected texels and 
the projections of corresponding object-space points. The scale of pixels in the rendered images is illustrated in 
Figure 3c. From Table 1 it can be seen that using the image-based method decreases the mean error. It is also 
apparent that by increasing the viewing angle, the error for the polygon-based method increases which is not the 
case for the new technique. 

 
Fig. 3. Results from two deformable tissue simulations, where images (a) and (c) are obtained by using the proposed image-
based technique, and images (b) and (d) are generated by using the conventional polygonal method.  
 
4 Discussion and Conclusions 
In this paper we have introduced a new image-based tissue rendering technique. It is shown that the separation of 
surface details into macro- and micro-structures allows for fast deformation calculations and photo-realistic 
rendering. By comparing the quality of the rendering results, it is demonstrated that the described method offers 
significantly improved visual realism over conventional polygonal methods. The validity of the proposed 
technique has been established by simulated tissue deformations and quantitative error analysis. A possible area 
for future work is investigating the use of image-based lighting techniques to further improve the realism of the 
rendered scene. 
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Abstract. In the context of our research on Augmented Reality based surgical navigation for stereoscopic
microscope based ENT surgery, we aim to use autostereoscopic displays as a complementary visual aid. We
performed an experiment to evaluate the depth perception capabilities from four stereoscopic visual aids: the
surgical microsope, the SHARP twin LCD autostereoscopic display, the DTI Virtual Window 2015XLS flat
panel autostereoscopic display and the naked eye. Five expert and five non-expert subjects performed an unbi-
ased depth test to assess the autostereoscopic displays using the naked eye and microscope as the gold standard.
The SHARP display was considered to allow sufficient lateral and longitudinal freedom whilst providing ac-
curate stereo vision. The DTI display, though much lighter and easy to manipulate than the SHARP, did show
promising results, eventhough not all subjects were at ease with the overall display quality and corresponding
stereoscopic quality.

1 Introduction

There are three realistic and feasible solutions to augment images captured from a surgical microscope with vir-
tual images. The first approach is to inject the virtual images (after registration) in the microscope’s optics. This
approach was successfully implemented by Edwards et al [4]. An alternative solution is to use a head-mounted
display (HMD) based (lightweight) microscope. This approach was pioneered by Birkfellner and Figl et al [5] and
shows great promise. Finally, the third approach is the one we suggest, by using an autostereoscopic display in
conjunction with the microscope. We explain shortly why we opt for this particular solution.
The stereoscopic surgical microscope is used for a variety of ENT procedures. Though, an invaluable tool for such
interventions, it has a number of drawbacks when used for long periods. Typically, surgeons suffer from eye strain
and back and cervical spine complaints because of the bent-over position. Although a visualisation aid such as a
microscope, which captures and magnifies an area of interest of the surgical scene is always needed, excessive use
can be avoided if an alternative, complementary device such as an autostereoscopic display is present. Autostereo-
scopic displays have been successfully evolved in the last couple of years and more recently, flat panel versions
have been commercialised.
Although an autostereoscopic display could be used for any surgical intervention requiring the microscope, they
have also specific advantages for augmented reality based surgical navigation. The stereo pair of images, captured
by a pair of CCD cameras mounted on the microscope (Figure 2(c)), can be converted from RGB to digital format
and overlaid with virtual images. The digital video format then allows the blending of both virtual and real images.
This also avoids auxilliary hardware adaptations typically needed for alternative augmentation approaches such as
injecting the virtual images into the microscope optics [4] or the use of head-mounted microscopes [5].
Despite this advantage, the ultimate question remains whether autosteoroscopic displays provide sufficient quality
in stereoscopic vision? To answer this question, we designed a depth experiment to assess two autostereoscopic
displays, the SHARP micro-twin LCD display and the DTI Virtual Window 2015XLS flat panel display. Five
experts in using the surgical stereo microscope and five non-experts were tested. The surgical microscope and the
‘naked’ eye were used as the gold standard (the former in particular for the experts).
The next section discusses in brief the technology of autostereoscopic displays, the experimental setup and proto-
col. The sections thereafter report the experimental results followed by a discussion and conclusion.

2 Autostereoscopic displays

Stereoscopic displays, requiring the user to wear special glasses, have been in use for several years. However,
many of these systems suffer from uncomfortable eye-wear, control wires, cross-talk levels up to 10% and other
image degrading effects such as image flicker and reduced image brightness [6]. Autostereoscopic displays require
no viewing aids and are thus more comfortable to use. They do suffer from limited viewing freedom as compared
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Autostereoscopic display SHARP micro-optic twin DTI Virtual Window 2015XLS
LCD panels 2 SHARP TFT LCD 1 Active Matrix TFT LCD
Size 10.4inch 15.0inch
Pixel pitch 0.33mm�0.33mm 0.297mm�0.297mm
Resolution 640�480 1024(512)�768
Longitudinal viewing freedom 550-990mm 609-813mm
Lateral viewing freedeom �480mm 1̃50mm

Table 1. Technical specifications of the SHARP micro-optic twin LCD display and the DTI 2015XLS flat panel
display.

to shutter-based systems, a disadvantage we will cover later on. Their principle of operation is based on optical
output producing two ‘windows’ separated by a plane, which allow the left and right eye to see a different image
(Figure 1(a)). Besides the restricted lateral viewing freedom, there is a restriction in the longitudinal direction as
well (Figure 1(b)).
The SHARP micro-optic twin display (Figure 2(a)) has two LCD displays of which a stereo pair of images is
generated using two mirrors, a beam splitter and a beam combiner (see Figure 1(c)). As there is a display for each
image, full resolution is guaranteed though the complex optic system results in the SHARP being relatively heavy
(around 20kg) and large, especially in the depth dimension.
The DTI Virtual Window 2015XLS display (Figure 2(b)) is a flat panel display and therefore much lighter and
smaller than the SHARP. Though, it only contains one LCD display and therefore the horizontal resolution is
halved. Figure 1(d) shows the principle of creating two windows by using a mask which selects alternate pixel
columns for left and right images respectively.
Table 1 shows the specifications of the two displays.

3 Experimental results

The experiment aims to test depth perception (along the z-axis). Therefore any assessment based on planar (x-y)
evaluation needs to be eliminated. The test should also be solely based on visual feedback (i.e. no force or touch-
based feedback). The use of other visual cues such as focus should be eliminated as well.
Two Allen keys, one of which fixed, the other one movable, were used to perform level-matching in the z-direction
solely based on vision. The movable key was fixed into a three translational degree of freedom micrometer device.
The keys were relatively rotated so that the flat part of the movable key was opposite the sharp edge of the fixed
key. This was to avoid matching using x-y correspondence or focus (see Figure 2(d)).
Before the experiments, the keys were level-matched by an operator using a dial indicator. The operator then
checked the position of the z-slide of the micrometer. He/she then placed the movable key up or down and the
subject had to level-match the keys using stereo vision only. The subject first ‘guesses’ the position of the movable
key, i.e. whether it is above or below the fixed key. Any mistake in this initial ‘guess’ would indicate that either the
experimental setup/condition for this particular visual aid had been corrupted or that the subject may not correctly
interpret the image. If this condition was controlled the experiment could carry on. Six trials for each visual aid,
i.e. the DTI display, the SHARP display, the ZEISS surgical microscope and the ‘naked’ eye were then performed
by the subject. The depth level error was noted after each trial as was the time needed to complete six trials for a
particular device.
In total, 12 subjects participated of which experimental results of two people with poor stereo parallax cues (who
performed poor on all tests) were eventually disregarded, leaving five subjects in the expert group and five subjects
in the non-expert (control) group.
Table 2 shows the average absolute value of the errors and the corresponding standard deviation for experts and
non-experts respectively, for each visual aid. To take the absolute value of this error is justified as no trends were
found in being below or above the target. Numbers are reported to three decimals accuracy though the overall
system setup error was 0.05mm.

4 Discussion

One has to be careful with the interpretation of experimental results, especially if (non-robust) statistics such as
averages are reported on a relatively small-sized sample. However,Table 2 shows interesting results which appear
to make sense. The most obvious observation is the performance of the experts group on the surgical microscope
as compared to the non-experts group. The former group performs significantly better than the latter (p=0.05), as
one would expect. The real objective of the experiments was to assess the auto-stereoscopic displays and more



Figure 1. (a) The principle of ‘windows’ in autostereoscopic displays; (b) Longitudinal viewing freedom in
autostereoscopic displays; (c) The SHARP micro-optic twin display stereoscopic principle; (d) The DTI 2015XLS
flat panel display stereoscopic principle. source (a),(b),(c): Woodgate et al. [6]; source (d): DTI Virtual Window
2015XLS manual [3].

(a) (b)

(c) (d)
Figure 2. (a) The SHARP micro-optic twin display;(b) The DTI Virtual Window 2015XLS flat panel display;
(c) Experimental setup with SHARP, DTI and microscope with mounted cameras; (d) Micrometers for depth
measurement and dial indicator to set gold standard. The movable Allen key - centre left; indicated by arrow (2) -
is changed in z-level by the micrometer device’s z-adjustment - bottom adjustment knob; indicated by arrow (1).



Device DTI display SHARP display Microscope Naked eye
Experts mean error (mm) 0.298 0.203 0.115 0.211

stdev error (mm) 0.169 0.251 0.0983 0.0395
Non-experts mean error (mm) 0.286 0.160 0.490 0.237

stdev error (mm) 0.172 0.107 0.398 0.135
Experts mean time (mins) 11.2 4.8 5.8 3.3

stdev time (mins) 5.4 2.0 2.3 1.6
Non-experts mean time (mins) 11.2 5.6 7.2 5

stdev time (mins) 4.0 2.0 2.3 1.4

Table 2. Averages and standard deviations of the absolute values of the depth error, and the time needed to
finish six trials, on each of four visual aids, for both expert and non-expert groups. Significant differences in
performance (p=0.05) from t-tests was found on the use of the microscope for experts vs non-experts. The experts
group performed less well (p=0.05) on the DTI display as compared to the microscope.

in particular the DTI flat panel display as it was the first time we tested it. Some subjects performed well on
the DTI, though others had great difficulty in experiencing a constant stereoscopic image. This is reflected in the
higher average and standard deviation as compared to other visual aids (except for the microscope in the non-
experts group). The performance on the DTI for the experts group was also significantly less (p=0.05) than on the
microscope. The time needed to finish six trials when using the DTI display was significantly higher than the time
needed for the other visual aids. Care has to be taken with this finding as the DTI display was the first device to
be tested so part of the time needed may be due to getting used to the experimental protocol. The SHARP display
was already tested (though using a different) experiment in [1, 2] and the current experiment confirms the earlier
findings. The SHARP display performs very well, which strengthens the argument of autostereoscopic displays
as a complementary device to the microscope. The DTI display seems to be very sensitive to the correct settings
of the camera intrinsic parameters. Due to lack of independent adjustment freedom in height (affecting the focal
length) of the stereo pair of cameras we could not get both stereo images perfectly in focus. This appeared to affect
the performance on the DTI display, whilst the SHARP display was not affected by this technical shortcoming.

5 Conclusion

The experiment as presented in this paper aimed to assess the potential of autostereoscopic displays as a comple-
mentary visualisation aid to the surgical microscope in the operating theatre. The experimental results showed that
the SHARP display performed well in its ability of providing stereoscopic vision. In [1], the SHARP was tested in
the operating theatre and it was found to be a useful visual aid though cumbersome to manipulate due to its weight
and dimensions. The DTI display’s performance varied amongst users so at this stage a test in the operating theatre
would be too early. Its advantages are being light-weight and small, and its relatively low purchase cost. Though
sensitive to accurate settings of the intrinsic parameters of the cameras, we hope to introduce the DTI display in
the operating theatre after optimisation of our microscope/camera setup.

6 Acknowledgments

To all willing subjects to spend an hour for no pay!

References

1. P. Chios. The Design Process of an Autostereoscopic Viewing Interface for Computer-Assisted Microsurgery. PhD thesis,
University College London, August 2002.

2. P. Chios, A.C. Tan, G.H. Alusi, A. Wright, G.J. Woodgate, and D. Ezra. The potential use of an autostereoscopic 3D display
in microsurgery. In Proc. of Medical Image Computing and Computer-assisted Intervention - MICCAI’99, Volume 1679 of
Lecture Notes in Computer Science, pages 998–1009. Springer, September 1999.

3. Dimension Technologies Inc., Rochester, NY 14611. DTI Virtual Window 2015 XLS - manual, 2002.
4. P.J. Edwards et al. Design and evaluation of a system for microscope-assisted guided interventions (magi). In Proc. of

Medical Image Computing and Computer-assisted Intervention - MICCAI’99, Volume 1679 of Lecture Notes in Computer
Science, pages 842–851. Springer, September 1999.

5. M. Figl, W. Birkfellner, et al. PC-based control unit for a head mounted operating microscope for augmented reality visu-
alization in surgical navigation. In Proc. of Medical Image Computing and Computer-assisted Intervention - MICCAI’02,
Volume 2489 of Lecture Notes in Computer Science, Part II, pages 44–51. Springer, September 2002.

6. G.J. Woodgate, D. Ezra, et al. Autostereoscopic 3D display systems with observer tracking. Signal Proccessing: Image
Communication, 14:131–145, 1998.



Automatic Capillary Measurement

Kaiyan Fenga, P. D. Allena, T. Mooreb, A. L. Herrickb, and Chris J. Taylorb

aDivision of Imaging Science, Stopford Building, Oxford Road, University of Manchester, M13 9PT, UK,
bUniversity of Manchester,Rheumatic Diseases Centre, Hope Hospital, Salford, M6 8HD, UK

Abstract. Microscope images of nailfold capillaries can be used to investigate changes in the peripheral cir-
culation in Raynaud’s disease. In particular, there is evidence that they may help in differentiating between
Primary Raynaud’s, which relatively benign, and scleroderma, which is more serious. We describe a method
of enhancing capillary images so that other structures are ignored, then measuring vessel width and tortuosity
automatically. We show good agreement between automatically measured capillary width and the manually
measured width. We also show that combining width and tortuosity may be useful in classifying subjects into
normal control, Primary Raynaud’s and Secondary Raynaud’s groups.

1 Introduction

We describe a method for measuring the changes in the vessels of the nailfold in patients suffering from Raynaud’s
disease. Raynaud’s phenomenon is caused by interruption to the blood supply, and can be classified as primary
or secondary. The peripheral vessels in individuals with primary Raynaud’s respond abnormally to external and
internal stimuli (eg cold or emotional stress) but have no underlying vascular disease. Individuals with secondary
Raynaud’s have underlying vascular disease, such as scleroderma. Previous studies have suggested that it may be
possible to distinguish between them by observing the form of the blood vessels in the nailfold. Normal controls
tend to exhibit narrow, straight and regularly organised vessels, whilst subjects with Primary Raynaud’s have wider
vessels, and those with secondary Raynaud’s still wider and more tortuous vessels [1]. Peripheral vessels can be
imaged non-invasively using nailfold microscopy (the nailfold is the strip of skin immediately adjacent to the finger
nail). Examples of nailfold microscope images for a normal control and Secondary Raynaud’s patient are shown
in Fig. 1.

Existing quantitative studies have involved manual measurement of vessel width [2]. No quantitative studies of
tortuosity have been reported. There is thus significant clinical interest in automated methods of measuring vessel
width and tortuosity.

Figure 1. Nailfold Capillaroscopy Images (they are inverted) Taken from a) Normal Control Subject and b)
Raynaud’s phenomenon subject.

In the remainder of the paper we describe an automated method of measuring vessel width and tortuosity, from
nailfold microscope images. Methods from mathematical morphology are used to enhance the vessels, derive
orientation maps, and measure the average vessel width and the dispersion of vessel orientations.

2 Enhancing Capillaries

Due to a large amount of noise, illumination variation and the presence of confounding structure in the capillary
images, we choose first to enhance the vessels.

2.1 Directional Opening

Thackray et al. [3] used the supremum of rotating directional openings to enhance vascular structures. We adopt a
similar idea. We definefθ(~x) as the directional opening of an imagef(~x) with a linear structuring element at angle



θ, where~x is the position in the imagef . Opening is a sieving process that tends to preserve image structures whose
shape can contain the structuring element, thusfθ(~x) will retain linear structures at angleθ. If we apply opening
at many anglesθ, we can definefmax = maxθ[fθ(~x)], which will tend to preserve linear structures at any angle.
We can define an orientation at each pixel,θ(~x) = argmaxθ[fθ(~x)], the angle at which the maximum offθ(~x)
occurs. We also definefmin = minθ[fθ(~x)], which will tend to suppress bright structures narrower than the length
of the structuring element, leaving the background intact. Finally, we definefmm(~x) = fmax(~x)− fmin(~x) which
removes the background, leaving only the linear structures. Examples offmm(~x) are shown in fig. 2. Examples of
θ(~x) · fmm(~x), whereθ is color-coded and multiplied byfmm(~x) to code saliency, are shown in fig. 3.

Figure 2. fmm of a) the Normal Control Subject in Fig. 1 and b) the Raynaud’s phenomenon subject from Fig. 1

Figure 3. (Color) Colour-Coded direction imageθ(~x) (multiplied byfmm) from b) the Normal Control Subject in
Fig. 1 and c) the Raynaud’s phenomenon subject in Fig. 1; a) shows the correspondence between angle and colour.

2.2 Directional Filtering

Because the dominant direction of the capillaries tends to be vertical, those pixels that have vertical direction are
given a higher weight and vice versa. We define a weight function as a Gaussian functionw(~x) = Nµ,σ(θ(~x)),
whereµ = π/2 is the dominant direction of the capilliaries andσ is the deviation of the Gaussian function. Asσ
decreases, the structures at vertical directions are given more weight. We define the direction filter asfdfilter(~x) =
fmm(~x) ·w(~x), which removes the linear structures that have horizontal direction infmm. Examples offdfilter(~x)
usingσ = 40◦ are shown in fig. 4. Many of the structures, which are not capillaries, are eliminated fromfmm in
Fig. 2.

2.3 Line Probability Images

Instead of thresholdingfdfilter which is not robust, each pixel’s line probability (the probability that the pixel falls
on a linear structure) is estimated to further enhance the linear capillaries. In order to obtain the probability image,
we need to understand the background and capillary response infdfilter. We can assume that most of the image
contains response to noise, so the cumulative distribution offdfilter approximates the cumulative distribution of
the background.

Figure 4. fdfilter Image of a) the Normal Control Subject in Fig. 1 and b) the Raynaud’s phenomenon subject in
Fig.1



Figure 5. ffinal of a) the Normal Control Subject in Fig. 1 and b) the Raynaud’s phenomenon subject in Fig.1

The cumulative distribution function offdfilter is calculated asP1(h) = N(fdfilter≤h)
N(fdfilter≤hmax) , wherehmax is the

maximum intensity infdfilter, N(fdfilter ≤ h) is the number of pixels infdfilter which have intensity less than
h. (1− P1(h)) is the probability of a background point having a response less thanh, soP1(h) is the probability
that a pixel is a line response rather than background. Thus we defineffinal(x) = P1(fdfilter(x)). Fig. 5 shows
the line probability imagesffinal obtained fromfdfilter in Fig 4. It can be seen that the non-linear transformation
has significantly enhanced the contrast between the vessels and background noise.

3 Measuring Width and Tortuosity

As we mentioned previously, we wish to measure the width and the tortuosity to separate different disease groups
automatically. After the images are enhanced, the measurements are carried out based on the final enhanced image
ffinal.

The width of the capillaries can be measured by pseudo-granulometry which is based on the granulometry devel-
oped by [4, 5]. Granulometries are obtained using a series of openings with structuring elements of increasing
size. The larger the size of the structuring element, the more structures will be smaller than the structuring ele-
ment, and will thus be eliminated. Width can be estimated by investigating the variation of the image volume as
a function of the size of the structuring element. Pseudo-Granulometry uses only the boundary of the structuring
elements used in granulometry. The boundary of a disk, i.e. an annulus structuring element is used in our re-
search. Let[[Br]] be the annulus structuring element with radiusr. We define the pseudo-granulometry onffinal

asGr = ffinal ◦ [[Br]], r = r1, ..., rn, where◦ is the opening operator. The volume ofGr is measured to esti-
mate the width of the capillaries and is denoted byV ol(Gr). So the size distribution function can be calculated
asF (r) = V ol(Gr)

V ol(ffinal)
, r = r1, ..., rn. The size density function isP2(ri) = F (ri) − F (ri+1), i = 1, ..., n − 1,

showing how many structures are eliminated when the size of the structuring element increases. We calculate

width =
n−1∑
i=1

riP2(ri), which is the first-order moment of the size density function, as the average width of the

capillaries.

The tortuosity is measured from probability-weighted orientation histogram,S(φ) =
∑

∀{~x:θ(~x)=φ}
ffinal(~x), which

is the sum of the intensities of all the pixels inffinal at angleφ. The entropyH = −
π∑

φ=0

P3(φ) ln(P3(φ)), where

P3(φ) is the normalization ofS(φ), measures the dispersion of the orientations of vessel pixels, indicating the
tortuosity of the capillaries.

4 Results

Initial experiments were performed using nailfold images from 21 subjects: 5 normal control subjects, 9 Primary
Raynaud’s patients and 7 Secondary Raynaud’s patients. Composite images of a section of nailfold were obtained
for each subject using methods described previously [6]. Experiments were performed to validate the automatic
width measurement and to test the ability to separate the different groups using the width and tortuosity measure-
ments.

Manual measurements of width were made on the composite nailfold images by two clinicians, using a simple
measurement interface. Five capillaries were selected and the width was measured at three points (arterial limb,
apex and venous limb). Automatically obtained width measurements were compared with the average of these 15
manual measurements for each composite image. The automatic measurements were made for the raw images and
the final enhanced imagesffinal. The results are shown in Fig. 6(a) and (b), and demonstrate improved agreement



with manual measurements for widths measured from the final images, compared to those measured from the raw
images. The correlation coefficient between the automatic and manual measurements increases from 0.33 to 0.66.
The results follow the expected trend of increasing width when moving from normal controls, to Primary Raynauds
to Secondary Raynauds. The separation between the different groups is, however, far from perfect, and is worse
than that obtained by manual widths.
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Figure 6. Automatic width vs manual width for a) raw images and b)enhanced images; c) shows the width VS
tortuosity of the capillaries. O = Normal Controls, + = Primary Raynaud’s, x = Secondary Raynaud’s

We investigated the possibility of obtaining better separation between the different groups by combining width
and tortuosity measurements. Fig 6(c) shows a plot of width vs tortuosity for the same set of patients. This initial
dataset is too small to perform a meaningful quantitative evaluation of the ability to classify subjects into the three
groups, but the inclusion of tortuosity seems qualitatively to improve the separation, with Secondary Raynauds
subjects displaying, as expected, vessels which are both wide and tortuous.

5 Conclusion

We have shown that by exploiting the known properties of the vessels in nailfold capillary images it is possible to
generate vessel probability images which demonstrate good visual separation between the vessels and the back-
ground. We have used these images for measuring vessel width and tortuosity using pseudo-granulometry and
the entropy of the vessel orientations. We have demonstrated that using the vessel probability images gives bet-
ter agreement between automatically and manually measured widths than are obtained using the original images.
Finally we have shown that combining automatically measured width and tortuosity shows promise as a basis for
classifying subjects into normal control, Primary Raynauds and Secondary Raynauds groups and is better than
width alone. We are currently undertaking a more comprehensive study using a much larger group of subjects, al-
lowing more quantitative classification experiments, some repeat investigations, allowing evaluation of test-retest
reproducibility, and long-term retest of subjects with disease, allowing us to evaluate the possibility of measuring
disease progression.
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Abstract. We present a novel3D mean shift filtering algorithm to denoiseCT data sets. The mean shift
algorithm is well suited for filtering and segmentation of images, but application for large size3D medical
data sets require a lot of computing time. In this paper we propose an efficient approximation of the3D mean
shift algorithm using sub-sampling techniques. Experimental results on variousCT data sets are presented.
Quantitative validation of the results consists of applying the output filtered data sets as input to a segmentation
procedure for the extraction of the portal vein tree. We compare the developed approach against other variants
of the MS filter, and a classical filter technique. Experiments show that the developed filter is efficient and
provides a good approximation to the3D mean shift method.
Keywords: Mean shift filter, sub-sampling techniques, nonlinear filtering.

1 Introduction

In the last years, different nonlinear filtering methods have been developed and used as a preprocessing step for im-
age data including medical images. In particular, nonlinear methods such as wavelet denoising methods [1,2] and
techniques based on anisotropic diffusion [3,4] provide very good results. Themean shift(MS) algorithm belongs
to the class of nonlinear methods. The algorithm is based on theMS method proposed by Fukunaga et al. [5].
The MS method estimates the probability density function (pdf) from the data. Application areas of theMS
algorithm include denoising and segmentation [6, 7], and analysis of video motion [8]. However, the large size of
medical data sets requires a lot of computing time when theMS algorithm is applied. Therefore, we introduce an
approximation of the3D−MS filter. This approximation consists of using a reduced set of voxels for each data
point to be filtered instead of using the complete set of voxels. This reduction is obtained selecting points from the
neighbouring slices of the current slice to be processed. Our goal is twofold: i) Obtain a filter quality similar to the
original3D−MS filter and, ii) reduce the execution times as far as possible.
This paper is structured as follows: In Section 2 we briefly outline the main ideas of theMS algorithm. In Sec-
tion 3 the new approach is presented. In Section 4 the proposed filter is compared to other versions of theMS
filter, and a traditional filter technique. Discussions are presented in Section 5.

2 Mean Shift

TheMS is a nonparametric method which tries to estimate the probability density function (pdf) from the data
of a feature space. Fukunaga et al. [5] proposed the method already in1975, and Cheng rediscovers it for cluster
analysis [9].MS algorithm was developed by Comaniciu and Meer [6,7], as a technique for the analysis of multi-
modal feature spaces. The goal of that analysis is to delineate the cluster regions present in the feature space. This
space is constructed from the spatial coordinates and the gray values of each pixel or voxel. TheMS algorithm
was presented as a method to detect the modes of the associated pdf. TheMS method estimates the pdf of the data
using the so-called Parzen window density estimator [10]. Givenn data pointsxi, i = 1, ..., n in the d-dimensional
space<d, the multivariate kernel density estimator with kernelKH (x) computed at the pointx is given by

f (x) =
1
n

n∑
i=1

KH (x− xi) . (1)

The profile of a kernelKH (x) is introduced as a functionk such that

KH (x) = ckk
(
‖ x ‖2

)
, (2)

whereck is the normalization constant which makesKH integrate to one. The normal kernel characterized by the
Gaussian function [11] is one of the most common used kernels. Comaniciu et al. [7] showed that the mean shift
vectormh,G (x) is proportional to the normalized density gradient

mh,G (x) ∝ ∇fh,K (x)
fh,G (x)

, (3)
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whereK andG are kernels with profilesk andg respectively, andh is the bandwidth of the used kernel. Condition
g (x) = −k′ (x) relates both profiles, wherek′ is the derivative of the profilek. Expression (3) indicates that
the mean shift vector is aligned with the local gradient estimate. Given an original imagef , formed byn pixels
xi=(xi, yi, ri), (i = 1, ..., n), wherexi, yi are the spatial coordinates, andri is the gray value, a filtered imageg
can be obtained as follows. The pixelsxi are included in the3−D dimensional feature space formed by the co-
ordinates and the gray values (the so called joint spatial-range domain). Then, the mode search is performed by
running the algorithm in the feature space. For all data pointsi = 1, ..., n, each data pointi is associated to a local
mode in the joint spatial-range domain. Let us denote each convergence point of pixelxi of theMS procedure as
xi,conv = (xi,conv, yi,conv, ri,conv). The filtered imageg is defined by the range informationri,conv of the conver-
gence pointgi = (xi,conv, yi,conv, ri,conv). The convergence properties of the method can be found in [9] and [6].
TheMS filter is closely related with other nonlinear filter methods such as ‘anisotropic diffusion’ (AD) [3], and
‘bilateral filtering’ (BF ) [12]. For3D medical data sets, applying theMS algorithm slice by slice does not take
into account the three dimensional nature of the data. Since the data is3D, our goal is to make full use of its
information. For this reason, we have developed a fast3D extension of theMS algorithm.

3 Our Method

A simple 3D extension ofMS filtering is straight-forward. One just needs to consider a 4D-space (3D+gray-
value) for the pdf estimation and apply theMS procedure on this new pdf. In such a case, and due to the large size
of the data, the running time of the3D version of the algorithm increases considerably. Our method is based on
a reduction of the feature space where the algorithm is applied. This reduction is obtained using only a subset of
pixels for estimating the pdf and finding the mode. In particular, for each slicek of the original volume dataf , we
taken anterior slices, i.e.k − 1, ...,k − n (we called it anterior set); andm posterior slices, i.e.k + 1, ...,k + m
(named posterior set). In the usually case,n andm are equal (except in the borders of the data set), and a small
value (e.g.2) is taken. From the anterior set and the posterior set, we select a subset of points and map them into the
4D feature space (we named it asfs). The current slicefk to be processed is mapped completely into the feature
spacefs. With this new set of points, we perform the pdf mode searching process. The filter process consists of
running theMS algorithm only on this subset of points. Once the algorithm converges, a filtered version of the
slicek (referred asgk) is then written to the output data setg. After that, the same procedure is repeated for the
next slicek+1 and so on, until the whole volume has been processed. Algorithm 1 shows the core of the proposed
algorithm named fast sub-sampling3D−MS.

Algorithm 1 Fast sub-sampling3D−MS.
Input: Original data setf ; bandwidths:hs (spatial),hr (range).
Output: Filtered data setg.

1: for all slices fk do
2: selectsn points ofn anterior slices
3: selectsm points ofm posterior slices
4: select all pointss of fk

5: mapped the selected points into the feature spacefs

6: gk = meanShift3DSubSampling(fs, hs, hr)
7: end for

meanShift3DSubSamplingis the real mean shift algorithm on the feature spacefs using spatial bandwidthhs,
and range bandwidthhr.

To choose the points of the previous and posterior slices to be mapped into the feature space, different choices
can be made. In this work we have experimented with a regular grid. But it is also possible to use irregular grids,
taking into account the gray level distribution of the slices. We should mention that borders of the data set need
special treatment. Anterior and posterior sets are taken as the slices are available, i.e. on the first slice only the
posterior set is used and in the last slice only the anterior set is used.

4 Experiments

To evaluate the proposed approximation we have performed a set of experiments with differentCT data sets. Sizes
of the used data sets are512 × 512 × 109 voxels,512 × 512 × 96 voxels, and512 × 512 × 96 voxels. The data
sets will be referred asds01, ds02, andds03 respectively. The gray value range of the data sets is12-bit. The
proposed fast sub-sampling3D−MS version is compared against the full3D−MS, a fast3D−MS version [13]
(named fast average3D−MS), a 2D−MS version applied slice by slice, and a3D median filter adapted from



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Original data and filtered results of an axialCT image. a) Original slice, b)3D mean shift, c) fast
average3D mean shift, d) fast sub-sampling3D mean shift. Subfigures e), f), g), and h) are zoomed views of
subfigures a), b), c) and d) respectively.

(a) (b) (c) (d)

Figure 2. Segmented portal vein of data setds03. Filters used: a)3D median filter, b)3D mean shift, c) fast
average3D mean shift, d) fast sub-sampling3D mean shift. Region growing parameters: thresholdT = 50, seed
gray value= 252.

the2D version [14] (called3D−MF , window size:5 × 5 × 3). The parameters used for theMS versions were
hsx = hsx = hsz = 5 andhr = 20.0 for data setds01, andhsx = hsx = hsz = 3 andhr = 18.0 for the
other two data sets1. The parameter values of the filters were chosen in order to reduce the noise and maintain
structures of interest. Different values of the parameters were chosen because the data setds01 is more noisy than
the other two data sets. For the fast sub-sampling3D−MS algorithm,2 slices of the anterior and posterior sets
were used to build the mapped feature space. Contrast agents were used to enhance the vessel system. Figure 1
shows the filteredCT images and a zoomed view of them. Figure 2 shows a segmentation of the portal vein.
The segmentations were obtained applying a region growing process [14] with thresholdT = 50, and a seed
gray value equal to252. The seed value was obtained by estimating the mean value of an small region of interest
which contains the desired structure to be segmented. We can see that the segmentation results in theMS cases
are similar. To evaluate this difference a quantitative analysis was also performed. It consists of a comparison of
true positives, false positives, and false negatives against the full3D−MS filter, relative to the presence of the
portal vein. Table 1 shows the achieved rates for each case. Note that differences exist betweenMS methods
but the achieved rate of true positives is very good. Also the rate of true positives was increased and the rate of
false negatives was lowered, which shows that the method achieves a closer approximation to the full3D method.
Table 2 lists the execution times.

1hsx, hsy , andhsz represents the spatial spread in each direction (x, y, z respectively), andhr is the spread in the range domain.



Data set Measure 3D-MF 2D-MS Fast average 3D-MS Fast sub-sampling 3D-MS

ds01 True positives 60.29 74.42 74.48 80.94

False positives 0.80 1.33 1.33 1.56

False negatives 39.71 25.58 25.52 19.06

ds02 True positives 58.75 89.22 90.23 91.46

False positives 3.68 4.02 4.02 4.07

False negatives 41.25 10.78 9.77 8.54

ds03 True positives 57.19 94.00 94.01 96.62

False positives 0.45 1.32 1.32 1.15

False negatives 42.81 6.00 5.99 3.38

Table 1. Percentage of true positives, false positives, and false negatives relative to the real3D−MS algorithm.
Filter methods:3D median filter (3D-MF),2D mean shift (2D-MS), fast average3D mean shift (Fast average
3D-MS), fast sub-sampling3D mean shift (Fast sub-sampling 3D-MS).

Data set 3D-MF 2D-MS 3D-MS Fast average 3D-MS Fast sub-sampling 3D-MS

ds02 429 208 3912 142 845

ds03 681 347 5064 354 799

Table 2. Execution times in seconds for different filter methods.

5 Conclusions and Future Work

This paper has presented a novel extension of theMS method for denoisingCT data sets. The approach is based
on the combination of a data reduction of the feature space and theMS algorithm. Experiments onCT data
sets, indicate that the proposed method obtains similar results to the real3D−MS algorithm, with faster execu-
tion times. Other experiments show that segmentations are similar in quantitative and qualitative comparisons.
Influence of mapping functions to obtain the subsampled points will be explored in future research.
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Abstract. Severity of dysplasia is an important factor in the diagnosis of colorectal tumours, but visual exami-
nation of dysplasia is a time consuming, subjective process that is prone to inter-observer variation. We present
our findings after an investigation into the ability of multiresolution colour texture features to classify images
of colorectal tissue into a much finer classification than considered in previous studies. Here we consider five
levels of dysplastic severity, namely: normal, mild, moderate, severe and cancer. Using a multiresolution colour
texture based approach developed in our previous research, test images previously labelled by a trained clinician
are classified into these five classes with an accuracy of 75%.

1 Introduction

Worldwide, colorectal cancer is the third most common malignant neoplasm. In the UK, colon cancer is the second
most common cancer related cause of death, and kills around 17,000 people annually, with approximately 34,000
new cases each year. After diagnosis, around 60% of patients die within 5 years [1]. As with most other types of
cancer, early diagnosis of colon cancer can drastically increase the chances of successful treatment [1].

This paper presents the results of an investigation into the discriminating ability of multiresolution colour texture
features in the fine grading of dysplasia as displayed in colorectal biopsy images.

Previously, we have shown colour [2] and multiresolution [3] texture features to be closely correlated with dys-
plastic severity. This study examines the application of these features to five classes of severity - a much finer
classification than considered in previous studies.

Related studies have attempted to classify such images using morphometric analysis [4] or texture analysis limited
to grey-level, single resolution techniques [5] [6]. These investigations have considered only two classes, corre-
sponding to normal and abnormal tissue. Multispectral texture analysis has been investigated in the domain of
prostate cancer [7]. Again, this work deals with only a single spatial resolution, although the analysis involves
three classes of image.

2 Method

We have shown in previous work [2] [3] that colour texture analysis can be used to classify images into three
classes of dysplastic severity with very high levels of accuracy. To achieve the more complex task of assigning
cases into more, smaller classes than previously used, it has been necessary to use more complex image analysis
techniques. Related work in this area [6] successfully applied grey-level texture analysis to colon images, but
our investigation showed that it was not sufficient when using more than two classes [2]. A technique commonly
employed by pathologists to increase the visual contrast between areas of differing cytological content in colon
biopsies is dual staining with Haematoxylin and Eosin. This dual staining procedure highlights cell nuclei blue
and cytoplasm pink or red. The information that could be extracted from the pattern of hue and saturation is lost
when colour information is discarded, as it has been in previous research. By using colour texture analysis, we
have been able to improve the accuracy of classification [2].

Our previous research has also shown that using multiresolution texture analysis also increases classification accu-
racy [3]. Dysplasia is exhibited at both histological and cytological levels, and pathologists analyse both of these
aspects by using multiple objectives. Multiresolution texture analysis exploits this behaviour.



2.1 Image Acquisition

In total, 60 5µm slices from colorectal biopsy tissue were investigated. These samples exhibit various stages of
dysplastic progression. Staining was performed using Haematoxylin and Eosin. The slides were digitised and
classified by a qualified histopathologist with a specialism in gastro-intestinal cancers. The resulting images are
768 × 576 pixels, examples of which are shown in Figure 1. In our previous experiments [2] [3], regions of the
slide were selected to ensure that the image contained only tissue of one class. In this study we consider the more
challenging situation in which entire samples are used.

Figure 1. An example image from each class.

2.2 Texture analysis and classification
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Table 1. Texture measurements extracted from co-occurrence matrices

Co-occurrence matrices [8] [9] have been used in the past to extract texture information for many applications,
including medical image analysis [10] [11]. The co-occurrence matrix is constructed by first determining a pairing
relationship. The pairing relationship, often expressed as a distance,d, and angle,θ, is used to pick pairs of pixels
from the image. All pixel pairs matching the pairing relationship are analysed, and their values used to populate
a matrix such that the values of the two pixels (source and target) are used as row and column identifiers in the
matrix. The cell identified by the values of the pixel pairs is incremented for each valid pair. The co-occurrence
matrix then contains the number of times two pixels with any given value occur in the image, separated by the
pairing relationship.

For our work rotational invariance is necessary, and so co-occurrence matrices are calculated with the angle be-
tween pixel pairs set toθ, θ + 90, θ + 180 andθ + 270 degrees. The final co-occurrence matrix is calculated by
averaging these four intermediate matrices. This also means that horizontal and vertical measures are now the
same. For example, horizontal and vertical mean are now the same and are referred to simply as mean.



Normalisation of a matrix is carried out by dividing each element by the total number of valid pairs. So, for a
normalised matrix,P , P (i, j) is the probability of the source pixel having valuei and the target pixel having value
j for any given pair of pixels matching the pairing relationship. A normalised co-occurrence matrix is constructed
for each image in our data set. From this matrix each of the features in Table 1 is extracted.

In an earlier study [2], we demonstrated that colour texture information improves the accuracy of classification.
Building on this approach, we extract the features described in Table 1 from each channel of the RGB and HSB
representations of the data.

Features that indicate dysplasia are visible at different levels of magnification, corresponding to cytological and
histological disorganisation. Pathologists, therefore, use multiple objectives to asses dysplasia at these levels. The
size, shape and stain uptake of thecellschange as dysplasia becomes more severe, which affects the visible texture
of the images at a high resolution. By pathologists, this is evaluated at high magnification. Using texture analysis,
this is measured with values ofd between 1 and 4. The abnormal growth and rate of replication also cause the
tissueto appear disorganised at a lower magnification, in the merging and branching of crypts, and in more severe
cases, loss of differentiation. This structural exhibition of dysplasia has been measured usingd at 40, 60, 80 and
100, with neighbouring pixels also taken into account using a Gaussian average at the source and target with a
radius,r = 15 andσ = 15.

Classification has been carried out using discriminant analysis to determine which features correlate with dysplastic
severity, and to asses the ability of these features to classify the images.

3 Results

Specificity and sensitivity are difficult to define where the classification involves more than two groups. Instead
we present figures that indicate similar characteristics, but which are easily calculated and understood. If we
define downward misclassifications as cases of abnormal tissue being classified as normal, in a two class system
for example, and upwards misclassifications as the opposite, we can see that fewer downwards misclassifications
is similar to increased sensitivity, and fewer upwards misclassifications is similar to increased specificity. In this
experiment, downwards classifications accounted for 10% of cases, and upwards classifications accounted for 15%.

Table 2 shows the actual and predicted classifications. Overall, this is a classification accuracy of 75%.

Actual↓ Predicted→ Normal Mild Moderate Severe Cancer

Normal 12 0 0 0 1
Mild 1 10 0 4 0
Moderate 0 2 13 1 0
Severe 1 2 3 4 0
Cancer 0 0 0 0 6

Table 2. Actual classifications and those predicted by discriminant analysis

Discriminant analysis reduced the necessary features to just nine, shown in Table 3

Correlation of the green component at 100 pixelsEntropy of the hue component at 4 pixels
ASM of the green component at 100 pixels ASM of the green component at 40 pixels
Contrast of the red component at 1 pixel Entropy of the blue component at 80 pixels
Mean of the saturation component at 100 pixelsEnergy of the green component at 4 pixels
ASM of the green component at 4 pixels

Table 3. Discriminating features

4 Discussion

The results presented above clearly show that there is a strong correlation between multiresolution colour texture
features and the severity of dysplasia in colon biopsy images. While this is a drop in accuracy from our previous
results which achieved an accuracy of over 98%, it is important to note that the complexity of the task has been



increased by removing the selection of a region of interest and by increasing the number of groups from three to
five. Hence, a direct comparison is inappropriate.

With reference to Table 3, it is interesting to note that although previous research has used grey-level features to
classify images of this type, none of the features accounting for the majority of variability in this study are taken
from the brightness channel.

Five of the nine features selected by discriminant analysis use large values ford, indicating that the measure-
ments of lower resolution, structural deformities are at least as important as the more commonly used fine texture
measurements. Again, these features have previously been overlooked.

Bosman [12] states that problems with inter- and intra-observer variation in the assessment of dysplasia are mainly
due to two things: a lack of clearly defined morphological criteria, and the enforcement of a discrete classification
on a process that is intrinsically continuous. We have attempted to overcome the first of these problems by using
textural features rather than morphological features, thereby removing the need to obtain an accurate segmentation
of structures in the images. We propose that a possible solution to the second problem may be found through an
investigation of the relative weightings associated with the discriminating features identified in this study.
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Abstract Ventilation-perfusion (or VQ) planar scintigraphy is a commonly used tool for the diagnosis of 
pulmonary embolism.  Diagnosis is made based on areas that are normal in the ventilation image and 
abnormal in the perfusion image.  Simultaneous acquisition of ventilation and perfusion images offers several 
advantages over separate acquisition.  However, it is hampered by downscatter of photons from the 
ventilation acquisition window into the perfusion acquisition window.  To overcome this, a novel scatter 
correction algorithm was developed on the basis of phantom experiments.  Another factor that limits VQ 
scanning is the subjectivity and difficulty of interpreting image pairs displayed as separate images.  To 
overcome this, an automatic interpretation algorithm was developed.  Clinical trials, including Spearman’s 
ranked correlation coefficient tests and t-tests, have shown that the scatter correction algorithm is successful 
in removing scatter.  Visual inspection of the interpretation algorithm shows that it works well, although a full 
clinical trial still needs to be carried out on it.  In summary, novel scatter correction and interpretation 
algorithms have been implemented for the enhanced display of pulmonary embolism in ventilation/perfusion 
planar scintigraphy. 

 
1 Introduction 
Pulmonary embolism is a potentially life-threatening condition that occurs when an embolus becomes trapped in 
a pulmonary artery or one of its branches, blocking blood flow to one or more segments of the lung.  About 10% 
of patients die within an hour of a major blockage occurring [1].  Ventilation-perfusion (or VQ) scintigraphy is a 
routine test used in the diagnosis of pulmonary embolism.  It consists of performing a ventilation study using 
81mKr-labelled technegas (190 keV), and a perfusion study using 99mTc-labelled macroaggregated albumen 
(140keV). VQ scintigraphy is the modality of choice because it is non-invasive, inexpensive, readily available, 
gives little radiation dose, can be performed rapidly and causes little discomfort to the patient.   
A diagnosis of pulmonary embolism is determined on the number and extent of areas of the lung that are normal 
in the ventilation image and abnormally low in the perfusion image.  However, visual interpretation of the image 
pairs displayed as separate images is difficult and subjective and this is the motivation for moving to a method of 
display that is more robust.   
Initially, registration of separately acquired ventilation and perfusion images was tried, but this did not prove to 
be sufficiently reliable.  Simultaneous acquisition of ventilation and perfusion images would therefore be 
preferable since, as well as saving time, the images would naturally be registered.  However, downscattering of 
photons from the Krypton acquisition window into the Technetium acquisition window limits the applicability of 
such simultaneous dual isotope acquisition. 
To solve this problem, a simultaneous dual isotope scanning protocol and a scatter correction algorithm were 
developed, based on phantom experiments.  In addition, an interpretation algorithm was developed and used in 
conjunction with the ventilation images and scatter-corrected perfusion images to highlight potentially embolic 
areas of the lung. 
 
2 Method 
 
2.1 Scatter correction 
 
i The single isotope scanning protocol 
VQ scanning is commonly performed using 99mTc (technetium) labelled macro aggregated albumen (MAA) for 
perfusion and 81mKr (krypton) labelled technegas for ventilation. The scans are performed on a single-headed 
DSXi GE gamma camera.  The perfusion image is produced by giving the patient an intravenous injection of 
100MBq of 99mTc-MAA.  The aggregate particles are 10-40µm in diameter, which means that when the particles 
reach the lungs they become lodged in the terminal arterioles and other precapillary vessels.  The number of 
particles that become trapped indicates the relative pulmonary arterial blood flow to different segments within 
the lung. 
Ventilation imaging is performed using 81mKr from an 81Rb (rubidium) generator mixed with oxygen or air in a 
breathing apparatus that is given to the patient via a mouthpiece.  Perfusion images are acquired at four different 
views, which are subsequently followed by ventilation images.  Both sets of images are acquired for 2×105 
counts.  The views used are: 



• Posterior 
• Right posterior oblique 
• Left posterior oblique 
• Anterior (this is not always used e.g. for bed patients) 
 

ii Simultaneous ventilation and perfusion scanning 
The VQ scanning protocol described above takes ventilation and perfusion images of the 81mKr and 99mTc 
isotopes separately using single photopeak windows that cover ±10% of the peak energy. Hence the protocol can 
be referred to as a single isotope VQ scanning. The idea of simultaneous or dual-isotope scanning is to take the 
ventilation and perfusion images at the same time for each view by using two photopeak windows centred on 
140 and 190keV. However due to the higher energy of the 81mKr photon, Compton scattering within the patient 
or within the detector causes it to lose energy and down scatter into the 99mTc window, causing cross-talk. The 
increased scatter in a dual isotope perfusion image degrades the image quality and therefore the cross-talk has to 
be removed.  
Prior to implementing cross-talk correction procedures, it was necessary to devise a simultaneous scanning 
protocol.  Four energy windows were used for this: the two original windows for the 81mKr and 99mTc photopeaks 
as per the single isotope procedure, and two additional scatter windows either side of the Technetium window: 
 
 
 
 
 
 
 
 

 
 
To implement scatter correction, three different methods were investigated, and the best one chosen.  This 
method was a modification of a triple window scatter-correction method developed by Ogawa et al [2].  It 
consisted of summing the contents of the high and low scatter windows and multiplying the result by 0.6.  The 
factor of 0.6, determined from phantom experiments, was required as the scatter in the 99mTc window was lower 
than that in the surrounding windows. 
 
2.2 Interpretation algorithm 
The purpose of the interpretation algorithm was to aid with evaluating the difference between the ventilation and 
scatter-corrected perfusion images.  To do so, there were a number of steps that needed to be performed.  These 
were:  
i Smoothing  
This was to remove noise from the image so that a smooth outline of the lung could be generated.   It was found 
empirically that performing two Gaussian smooths was the optimum method of performing smoothing, as this 
gave a good balance between removing noise-induced rough edges and preserving resolution. 
ii Normalisation 
Each ventilation and perfusion image was normalised to its own 80th percentile value (V80 and Q80 respectively.)  
It has been shown that these values represent a close approximation to normal tissue [3].  They were therefore a 
more robust value to which to normalise the images than the maximum number of counts in the image, which 
could be subject to statistical variations. 
iii  Lung segmentation 
This was in order to delineate the edge of the lungs in both the ventilation and perfusion images.  Masking 
operations were used to perform this operation. When masking ventilation images, it was found that a threshold 
of about 20% of V80 was found to give the best compromise between excluding the trachea from the image and 
excluding parts of the edge of the lung that may have been tissue.  When masking perfusion images, a value of 
about 15% of Q80 was found to give the best result.  The mask for the ventilation image and that for the perfusion 
image were combined using an ‘OR’ operation to allow for the possibility of either or both being abnormal.  
Following masking, the images were eroded by three pixels and dilated by three pixels in order to remove small 
areas of the mask that fell outside the main body of the lungs.  To exclude large areas (for example an 
accumulation of krypton towards the superior portion of the trachea) a circular mask was used.  This circular 
mask was centred on the centre of gravity of the lung and was just large enough to encompass the area of the 
lungs. 
 
 

Window Peak Energy 
/keV 

 

Window 
width /% 

 
 

Approx. window 
width /keV 

81mKr 190 20 173 - 211 
99mTc 140 17 128 – 152 

High scatter 159 8 153 – 165 
Low Scatter 122 8 117 – 127 

99mTc window 

81mKr window 

Low scatter window 

High scatter window 

       Figure 1: windows for scatter correction



iv Filtration 
The next step in the image processing chain was to filter the original ventilation and scatter-corrected perfusion 
images, so that their statistical fluctuations would be suppressed prior to comparison.  A variety of different 
filters were examined.  A Butterworth filter, with a cut-off of 0.16 and an order of 20, was found to give the best 
compromise between noise reduction and preservation of low spatial frequencies that could contain 
diagnostically useful information. 
v Comparison of ventilation and perfusion images  
For the purposes of comparing the relative number of counts in ventilation and perfusion images, several 
algorithms have already been developed.  Among these are subtraction algorithms and quotient algorithms [4].  
It was noticed that these two algorithms suffer from drawbacks.  In particular, subtraction algorithms tend to 
underestimate the significance of relative changes in the number of counts at the edges of the lung where counts 
per pixel are lower, whilst quotient algorithms tend to overestimate this significance.  In order to overcome these 
drawbacks, a novel approach was developed.  This approach sought to find the percentage changes in the number 
of counts, by calculating max[(V-Q)/V], and max[(Q-V)/Q], where V and Q are the ventilation and perfusion 
images respectively, both having been filtered, normalised and segmented as described above.  The two images 
generated by these two algorithms would then be displayed with a threshold of 0 and a saturation of 1.  To 
evaluate this novel technique with respect to the existing techniques, the quotient image (V/Q) was calculated 
and displayed with a threshold of 0 and a saturation of 10, and the subtraction images (i.e. max[V-Q, 0] and 
max[Q-V,0]) were calculated and displayed with a threshold of 0 and a saturation of 1. 
 To display the results of these algorithms, a colour scale was created.  This colour scale had white as its 
threshold colour and red as its saturation colour so that emboli towards the edge of the lung would have a strong 
contrast against the white background.  Since the images were consistently scaled, the different colours could be 
interpreted as representing a specific range of perfusion loss. 
vi Abnormal tissue windowing 
The mean and standard deviation number of counts of the ventilation and perfusion images of each of a group of 
five patients designated as normal were found.  From these values, the mean mean (µ) and the RMS standard 
deviation (σ) of the number of counts was found for each of the four views: anterior, posterior, right posterior 
oblique and left posterior oblique.  The performances of two thresholds ((µ+3σ) and (µ+2σ)) were compared for 
each of the following three algorithms: V/Q displayed between 0 and 10, max[V-Q, 0] displayed between 0 and 
1, and max[(V-Q)/V, 0] displayed between 0 and 1. A single erode and dilate was used to remove stray noise 
from each of these windows.  
 
2.3 Evaluation of techniques 
To test the scatter correction algorithm, 20 pairs of ventilation/perfusion images were presented to two different 
observers (a consultant physicist and a consultant doctor). These pairs of images corresponded to 10 patients, 
with two pairs for each patient: one corresponding to single isotope ventilation/perfusion images, and the other 
corresponding to the scatter-corrected dual isotope ventilation/perfusion images.  The single-isotope method was 
regarded as being the truth.  Of these 10 patients, 6 had unmatched defects, two were normal and two had 
matched defects.  A score was given to each lobe of the lung based on the likelihood of it containing an 
embolism.  For each observer, a Spearman’s ranked correlation coefficient was used to assess both the 
simultaneous lobe scores versus the truth and, in order to test the observer’s consistency, the repeated truth 
scores versus the truth. In addition, a t-test was performed between the scatter-corrected lobe scores minus the 
truth, and the repeated truth minus the truth. 
To evaluate the interpretation algorithm, the output of each individual step was checked visually for consistency 
and accuracy. 
 
3 Results 
3.1 Scatter correction 
The Spearman’s ranked correlation coefficient tests all gave results at the 99% significance level, with the 
exception of observer A’s scatter-corrected lobe score versus the single-isotope lobe score, which gave a result at 
the 95% significance level.  The scatter plots for these comparisons are shown on the next page.  These show the 
correlation visually. 
 
 
 

 

 
 
 



 
 
 
 
 
 
 
 
 
These results indicate that the scatter-corrected images are not significantly different to the single isotope 
images.  The t-test gave a result at the 20-50% level (t=1.13) confirming that there is no significant difference 
between the scatter-corrected images and the single-isotope images. 
3.2 Interpretation algorithm 
The interpretation algorithm operated fully automatically on all the image studies.  Visual inspection would 
indicate that it gave good results in discriminating between areas of possible pulmonary embolism and normal 
tissue, in that the abnormally high window was consistently empty for normal lungs, whereas areas of disease in 
abnormal lungs was consistently detected as being abnormally high.  This discriminatory power is shown below 
in figures 3a and 3b: 
 

 
            

A full clinical trial still needs to be performed on the output of the interpretation algorithm to investigate its 
value. 
 
4 Discussion 
A novel scatter correction algorithm for simultaneous dual-isotope ventilation-perfusion lung scintigraphy has 
been developed and has undergone clinical trials, with successful results.  This has paved the way for further 
image processing techniques to be explored, including a novel comparison algorithm.  The initial results of these 
techniques are promising, although full clinical trials still need to be performed.  The limitations of the work are 
that some of the parameters used in the algorithms were arrived at empirically on a small number of patients.  
Therefore, some more work may have to be done with a larger patient set to refine the techniques.  Also, the 
statistics used for the comparison and windowing algorithms were fairly crude.  This was because they were 
based on the overall characteristics of entire images.  For this reason, further work may include statistical 
parametric mapping (SPM), which operates on a finer level.  Despite these limitations, it has been shown that 
scatter correction for simultaneous dual isotope ventilation-perfusion planar scintigraphy of the lung is viable in 
a clinical context, and that it facilitates the possibility of further image processing techniques to highlight 
pulmonary embolism. 
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Figure 2: scatter plots for observer analysis

Figure 3: a (left) Results for normal lung 
b (right) Results for abnormal lung
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Abstract. A new method for the measurement of acetabular wear in total hip replacements is proposed. It
is more automated than previous methods and uses standard clinical radiographs. Active ellipses with prior
knowledge of the intended contour are used to search for the boundaries of the femoral head and acetabular
rim. A set of radiographs were manually annotated and the characteristics of these boundaries were learned.
Two ellipses were sequentially placed on each radiograph, the first deforming around the boundary of the
femoral head, the second placed using the previously learned model and converging to the wire marker on the
acetabular rim. Once both ellipses had converged the distance between their two centres was estimated as a
measure of wear. The method was validated by comparison with a labour intensive method in which ellipses
were fitted to27 manually selected points. The active ellipses method was found to be more repeatable and the
two methods agreed to the extent that they were considered clinically interchangeable.

1 Introduction

Over 40,000 total hip replacement (THR) operations are performed annually within the UK and over 5,000 of these
are revisions [1]. The majority of failures are due to the displacement of the centre of the femoral head relative to
the centre of the acetabular cup (see Figure 1a) [2]. The aim of the research reported here is to create a new method
for the analysis of THRs that is more automated, precise, accurate and repeatable than existing methods. There are
clear benefits in providing early detection of implant failure, evaluation of surgical techniques and evaluation of
implant designs.

Analysis of THRs is conducted by a variety of methods including manual methods such as overlaying concentric
circular transparencies on the radiograph and annotation via pencil and rulers on the film or a digitizing tablet.
A more automated method is roentgen stereophotogrammetric analysis (RSA) [3] which requires the insertion of
markers used as reference points in follow up X-rays. Since the markers are inserted during the operation it cannot
be used retrospectively. Semi-automated image processing techniques have been implemented [4], [5] for use with
standard radiographs. These techniques use edge detection but do not use any prior knowledge of the distinct
contour of the femoral head or wire rim and require considerable user interaction. Also of note are Cootes and
Taylor’s Active Shape Models (ASMs), deformable models trained using examples to locate structures in images,
in particular hip implants [6]. They have not been used for the measurement of acetabular wear.

Figure 1. a) A radiograph of the Zimmer CPT prosthesis. b) Annotation of the femoral head with 9 approximately
equi-spaced points. Numbers correspond to the order of annotation. c) Annotation of the acetabular rim showing
the ordering of points on the right wing of the rim. Points are concentrated in areas of high curvature.

2 Method

The method proposed uses active ellipses and models of the normalised grey-level derivatives around the boundary
of the femoral head and the acetabular rim. These models are learned from a set of manually digitized and annotated
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radiographs. The active ellipses are used to search for the head and rim in novel images, locating first the elliptical
contour of the femoral head and then that of the acetabular rim. The Euclidean distance between the centres of the
two ellipses is then computed as a measure of wear.

2.1 Head and Rim Models

For each image in a training set, landmark points are annotated on the boundary of the femoral head, equi-spaced
over the elliptical portion by taking the midpoints between existing points as shown in Figure 1b. A second
annotation is required for the rim wire with points concentrated in areas of higher curvature to ensure an accurate
fit (see Figure 1c). A least squares (LS) ellipse fit is performed on the points from each femoral head and on each
acetabular rim [7].k pixels are sampled alongN normals centred on the ellipse contour. Separately for the femoral
head and the acetabular rim the normalized first-order derivative profiles are calculated along each normal. Again
separately for the femoral head and the acetabular rim a covariance matrix and a mean profile are determined from
all the training examples. This results in two distinct models, one for the femoral head and one for the acetabular
rim (see Figure 2). Additionally, the mean axes lengths and orientation of the rim are calculated for use as a starting
point in the search.

Figure 2. The average normalized derivative profile of the boundary of the femoral head (left) and at the wire
marking on the rim (right). Covariance matrices were also estimated but are not shown.

2.2 Ellipse Searching

The models are used to search for the head and rim ellipses in novel radiographs. The system searches along
extended normals to the ellipse of lengthm1 andm2 pixels respectively (wherek < m1 andk < m2).

By taking normalized grey level derivative profiles of lengthk along the search line and using means and inverse
covariance matrices, the Mahalanobis distance can be computed between each possible location on the search line
and the model. The Mahalanobis distance is used as it is a measure of the difference of the current profile from
the mean profile of the model taking into account variation around the mean estimated from the training set. The
location on each search line with the smallest Mahalanobis distance is stored. As there is no edge information
in the neck region of the prosthesis (see Figure 1a), the results of searches in this region should not contribute to
the ellipse fitting. Therefore, the derivatives are summed for each matching profile and the 25% with the lowest
sums are discarded. The remaining points are stored and a least median squares fit (LMedS) is performed to them.
LMedS was demonstrated by Rosin to be a reliable and robust method for ellipse fitting [8]. LS fitting is highly
sensitive to outliers while LMedS can provide accurate results with up to 50% outliers.

2.3 Locating the Head and Rim

A head ellipse is initialised with the centre chosen by the user and the other parameters set to their average values
from the training set. Searching is repeated until this ellipse converges around the contour of the femoral head. The
next stage is to locate the acetabular rim. However, on search normals that do not contact with the acetabular rim it
is helpful to prevent edges on the contour of the head being considered as rim points. Points close to the head are
not considered. Since computing the Euclidean distance to an ellipse is computationally expensive [9], a binary
mask is created wherein all points within the ellipse of the head are set to true. The mask is dilated and used to
prevent points on the femoral head being chosen again during the search for the rim. The rim ellipse is initialised
with its centre coincident with the head centre and its other parameters set to their average values from the training
set. This time searching uses search-lines of lengthm2 and the mean and inverse covariance matrix for the rim.
An LMedS fit is performed and the search is iterated until convergence. Once the two ellipses have converged it



is trivial to find the Euclidean distance between their centres and given the known diameter of the femoral head,
conversion can take place from pixels to mm.

2.4 Experimental Preparation

The method described above was implemented as a Matlab routine. In order to validate it the training set consisted
of 45 postoperative radiographs. The test set consisted of 30 Year 1 radiographs. Both sets were radiographs
containing Zimmer CPT prostheses with a 22.225mm diameter head, the preferred model at Ninewells Hospital,
scanned at 150 dpi (see Figure 3a). Out of the 75 radiographs used in both training and test sets there were 5 in
which the acetabular rim was non-elliptical in the plane of the radiograph (see Figure 3b). These were rejected
prior to training and testing.

As a means of comparison to the new method, analysis was conducted on the test set by having a practitioner
highlight 9 landmark points on the femoral head and 18 on the acetabular rim (see Figure 1). A LS fit was done to
each set of points and the Euclidean distance between the centroids was calculated in pixels. Each radiograph was
measured twice, with a week between each measurement. In order to analyse the repeatability of the active ellipse
method, two measurements were made upon each radiograph with different initialisations.

The searches were deemed to have converged when the change in orientation was less than6◦ for the rim, with the
axes lengths and centre coordinates changing by less than0.5 pixels. The search parameters were set tok = 31,
m1 = 191, m2 = 91 andN = 200.

The methods of Bland and Altman [10] were used to investigate the repeatability and agreement of the two meth-
ods. Repeatability coefficients for each method and the limits of agreement between the methods were calculated.

3 Results

The active ellipse method did not find the rim on two examples due to the acetabular rim ellipse being particularly
eccentric (see Figure 3c). The results of the comparison between the active ellipses and the manual annotation
can be seen in Table 1, where the active ellipse method exhibits a lower repeatability coefficient (i.e. this method
shows greater repeatability). Limits of agreement between the manual annotator and the system are−0.42mm and

Figure 3. a) Successful location of the femoral head and the acetabular rim. b) Radiograph where the acetabular
rim is non-elliptical. c) Elongated elliptical acetabular rim where method currently breaks down. d) Successful
location of the broken wire of an acetabular rim.



0.47mm. These limits of agreement are well below values of migration considered clinically relevant and thus the
active ellipse method could replace the manual annotation method.

Technique Repeatability
Coefficient (mm)

Manual Annotation 1.70
Active Ellipse 1.35

Table 1. Repeatability coefficients for the methods using a) LS fitting to 27 manually selected points and b) LMedS
fitting using active ellipse models.

4 Discussion

The robust active ellipses method has been compared to a more labour intensive method involving least squares
fitting to 27 manually selected points. The active ellipses method was found to be more repeatable and the two
methods agreed to the extent that they are clinically interchangeable.

Searching for the acetabular rim does not work with particularly elongated ellipses (see Figure 3c). If there is an
additional wire marker inside the cup (see Figure 3b) it should be possible to estimate wear by fitting an ellipse
to this instead of the rim. The method presented here could be extended to other prosthesis designs given suitable
training data. It should also be possible to build additional models to locate the edge of plastic or metal-backed
rims without wire marking.

Future work will include use in a clinical study of wear, comparison with other methods (such as RSA), the effect
on the repeatability of decreasing the convergence criteria decided upon in Section 2.4 and general improvement
of the LMedS fitting. The limitation towards dealing with eccentric rims is being investigated via consideration of
the merits of geometric ellipse fitting [9].

Despite these limitations the advantages over existing methods remain. These include exploitation of the difference
between the profiles of the contours of the femoral head and acetabular rim, robustness as the method is able to cope
with deformities of the wire marker while maintaining an elliptical shape (see Figure 3d) and the direct application
of the shape model to measuring acetabular wear.
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An Automated Algorithm for Breast Background Segmentation
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Abstract. Accurate and robust segmentation of breast and non-breast regions is a basic requirement for im-
age analysis of mammograms. Unfortunately, the problem is made difficult by the presence of labels, digitiser
wedges, and the weakly controlled way in which the breast is positioned in the mammography machine. This
paper describes an accurate and robust algorithm for automatic breast-background segmentation. The algorithm
is based on intrinsic image properties and can be easily adapted to images with different gray-scales and resolu-
tions. A reliable skin-background boundary is particularly important for mammogram registration and feature
extraction. The new segmentation technique is compared to other methods and its performance is illustrated
with examples.

1 Introduction

Breast cancer is one of the leading causes of death for women. Computer Aided Diagnosis (CAD) techniques are
crucial tools for the analysis of mammographic images and for developing algorithms to aid in the early detection
of breast cancer. CAD, and every other mammographic image processing problem such as 3D reconstruction of
the breast and non-rigid registration of mammograms, depend upon accurate segmentation of the breast region
from the background. Casual inspection of a mammogram suggests that this is a trivial problem which might
be solved, for example, by thresholding. Unfortunately, such simple algorithms are not effective, as the problem
is made difficult by the presence of labels, digitiser wedges, and the weakly controlled way in which the breast
is positioned in the mammography machine. Segmentation of the breast region is generally considered to be an
easier problem for full-field digital mammograms; but these are not yet widely available, and there are, in any case,
millions of mammograms awaiting digitisation and analysis.

An x-ray mammogram is a projection of a compressed breast with an intensity range between the low intensities
of the background and the high intensities of the digitiser artefacts. Evaluation of the transition between the
regions is difficult due to the high optical density of the skin and subcutaneous tissue. This is a direct result of the
mammographic processing technique [1], since due to the compression applied to the breast during mammogram
acquisition, the breast edge is mainly composed of fat.

Various techniques have been implemented for addressing the breast-border segmentation step. Algorithms in
the literature include use of local gray-value range on modified histogram analysis, border region search methods
based on the gradient of gray values, [2] [3], etc. Ferrari et al.’s [4] skin-air boundary segmentation algorithm
applies contrast correction with a logarithmic operation applied to the entire image as a contrast correction step
followed by thresholding. However, extensive smoothing eliminates the nipple contour in a number of cases.
Karssemeijer [1] applies global thresholding that results in a binarized image of the breast region. The method is
straightforward and fast, but not very reliable as it always results in underestimation of the breast region and loss
of the nipple contour.

Highnam and Brady [5] developed an algorithm for breast-background segmentation as a first step in their new
Standard Mammogram Form model. Linear Hough transforms are applied to the mammogram, in the areas where
the film edges should appear. A gradient operator is applied to the resulting image followed by thresholding to
remove background pixels that have lower gradients. Any wrongly marked pixels are removed with binary mor-
phological erosion. A closing operator is applied to make the breast and background regions into coherent areas.
Some morphological post-processing may be required to remove labels and touch the breast edge for smoothness.
The segmentation is found to be efficient and robust. However, in mammograms, the background pixels near the
labels may also have gradients higher than the rest of the background and this could have the effect of introducing
wrong breast regions. Sometimes the breast border appears somewhat jagged, and the nipple is not preserved.

This paper reports a new, fully automated breast and background region segmentation technique that reliably
identifies the breast area, removes any labels and digitiser introduced wedges, and provides a smooth breast contour.
Importantly, it also preserves the nipple, a key landmark for registration and three dimensional reconstruction.

∗Email: styliani@robots.ox.ac.uk



a. b. c. d.

Figure 1. Applying the new breast-background segmentation algorithm. (a)The breast mammogram, (b)the breast
after local enhancement filtering, (c)the breast “fat-band” and (d)the resulting segmented breast region.

2 Description of the Breast-Background Segmentation

The method described here is principally based on a simple local enhancement transformation, that accounts for
the behavior of intensities on the breast region adjacent to the skin-air interface. During mammogram acquisition,
the breast is compressed between two plates. As a result, the breast edge is mainly comprised of fat which has high
optical density and thus appears opaque, [5]. This is precisely the area of the mammogram that needs enhancement.
Local enhancement is achieved using transformations based on certain properties (e.g. the gray-level distribution)
in the neighborhood of every pixel. The pixels in the breast edge have much lower intensity and contrast when
compared to pixels in the rest of the breast; the opposite is true when the breast edge pixels are compared to pixels
belonging to the background. At every pixel location, the local intensity histogram is computed. A number of
measures are computed from this histogram and are used to revise the gray level intensity of the central pixel.

The first step in the algorithm is the application of a median filter to the digitised mammogram for noise removal.
This is followed by an initial segmentation of the breast region using global thresholding. This step results in
removal of labels and digitiser introduced artefacts, as well as an initial estimate of the breast area, -including
the pectoral muscle in MLO views-. Generally, the background pixels in a mammogram are gaussian distributed
with a prominent peak in the lower part of the mammogram’s histogram. This peak is automatically detected, and
used as the intensity threshold. In this report this peak is referred to as mean background intensity. The largest
object after thresholding is chosen to be the region of interest (ROI). However, this ROI is an underestimate of
the true breast [1]. Therefore, the region is expanded by applying dilation using a circular structuring element of
1.5cm radius -which is an overestimation of the error in the estimation of the breast edge resulting from simple
thresholding-. The result is used as a mask of the expanded region where the true breast area may lie.

Following, is local enhancement of the image resulting after median filtering of the mammogram. Let the global
mean and variance of the mammogram be denoted bym andσ. m andσ give information about the overall
intensity and contrast. The local mean and variance, calculated from the histogram of a small neighborhood of
1.5mmx1.5mm around each image pixel give information about the characteristics specific to the neighborhood.

To enhance the breast edge that appears opaque the transformation needs to enhance just the dark areas with low
contrast near the skin-air border. To measure whether a pixel is relatively dark or light, the local meanmSxy

is compared to a multiple of the global mean,m. To measure the contrast, the local standard deviationσSxy is
compared to the global standard deviation,σ. A lower limit is also set for comparingσSxy to σ, to restrict the
lower values of contrast acceptable for enhancement, as the background has minimum contrast. The pixels of the
mammogram fulfilling the intensity and contrast criteria are enhanced by multiplication with an integer constant
valueI to increase the pixel intensities relative to the rest of the image. The enhancement transformation can be
summarised as follows:

If f(x, y) is the intensity value of the mammographic image pixel at any coordinate(x, y) and g(x, y) is the
corresponding enhanced pixel in the transformed image, then:

g(x, y) =
{ I.f(x, y) if km ≤ mSxy ≤ kom and k1σ ≤ σxy ≤ k2σ

f(x, y) otherwise
(1)



a. b. c. d.

Figure 2. (a) Medio-lateral Mammogram. (b) Segmented breast region with new algorithm. (c) Segmented breast
region with Highnam and Brady algorithm. (d) Mammogram and breast border contours. The smooth contour is
the result of the new algorithm while the jagged contour (mostly outside) is the result of the Highnam and Brady
algorithm. Highnam and Brady introduce artefacts on the breast border.

wherek, k0, k1, k2 andI are constants experimentally specified based on the global mean, the global contrast and
the mean background intensity, and are specific to mammographic type images [6].

The image resulting after local enhancement has a very strong breast edge (Figure 1b). The fat lucent areas at
the edge of the breast that were not obvious in the initial image now have high intensities and strong gradients.
Unfortunately, some background regions towards the right edge of the mammographic image (near the digitiser
wedge) tend to increase as well.

Application of the dilated mask of the ROI, previously obtained, on the enhanced image results in an image where
the background is almost zero (with the exception of some background pixels within the tolerance region) and
the edges of the breast are almost the strongest intensities in the entire breast region. Simple binarization of the
enhanced image in the ROI results in a mask that can be applied to the mammogram to obtain the true breast area
(Figure 1d). If, instead of binarization, we apply both lower and upper thresholding, a thin band representing the
skin and subcutaneous adipose tissue, characterised here as the “fat-band” (Figure 1c), is obtained. The outer side
of this “fat-band” is the skin-air border.

3 Results and Discussion

The algorithm was applied to 80 mammograms from the Oxford Database. The mammograms were digitised with
the Lumisys 85 digitiser at 12 bits per pixel. The subsampled images have a resolution of300µm with a size of
591× 802. The program is completely automated and does not require user interaction.

The novel breast-background segmentation algorithm was tested both on cranio-caudal and medio-lateral mammo-
grams. One typical output from the process is shown in Figure 1d. The results were visually inspected and were
found to be very satisfactory in all 80 cases.

The performance of the segmentation routine was evaluated in comparison to the segmentation results by Highnam
and Brady [5]. Both algorithms were applied to the 80 mammograms. The new algorithm presented here has
superior performance, as is shown in Figures 2 and 3. It evaluates the true breast area, results in a smooth breast
edge and preserves the breast nipple. In Figure 2 the new method provides a smooth breast outline and the nipple
is preserved. The same is true in Figure 3. These image characteristics are not obtained when using the method by
Highnam and Brady [5].

The breast-background border obtained with the new segmentation algorithm is smooth and does not need mor-
phological operators to close or fill in gaps. The results are extremely close to manual outlines of the breast edge.
The labels and wedges are completely removed in such a way that no jagged effects occur on the skin-air border
contour. Moreover, the new segmentation algorithm gives a very strong outline of the nipple. As noted earlier, in a
number of algorithms, due to smoothing, interpolation, dilations and erosions, much of the information about the



a. b. c. d.

Figure 3. (a) Cranio-Caudal Mammogram. (b) Segmented breast region with new algorithm. (c) Segmented breast
region with Highnam and Brady algorithm. (d) Mammogram and breast border contours. The smooth contour that
preserves the nipple is the result of the new algorithm while the other contour is the result of the Highnam and
Brady algorithm.

nipple is lost or falsified. When the edge “fat-band” is estimated, the nipple is clearly outlined in both the inner and
outer side. In cases where the nipple is not in profile, it is outlined in the leftmost side of the “fat-band” (Figure
1c). This result is very important in nipple detection especially in cases where the nipple is inside the breast edge
and consequently very difficult to detect. Moreover, the “fat-band” can be used in algorithms for more accurate
estimation of breast thickness during mammogram acquisition.

4 Conclusions

A new method for breast segmentation based on local enhancement is presented. An intermediate step of the
algorithm provides a strong outline of the nipple in all cases, independently of whether the nipple is in profile
or not. Accurate segmentation of the breast boundary is very important in providing the correct breast region
for CAD analysis. It is important in developing automated, quantitative and objective measures for early breast
cancer diagnosis, evaluation and clinical assessment. Since a number of measures rely on the skin-line position
for feature extraction, inaccurate breast boundary estimation may have a negative effect on the results. The initial
evaluation results for this segmentation algorithm are very promising and this algorithm has since been used as
a pre-processing step to improve the performance of CAD systems, to perform nipple detection and to improve
registration algorithms, [7].
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An Artificially Evolved Vision System for Segmenting Skin Lesion
Images

Mark E. Roberts and Ela Claridge∗
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Abstract. We present a novel technique where a medical image segmentation system is evolved using ge-
netic programming. The evolved system was trained on just 8 images outlined by a clinical expert and gener-
alised well, achieving high performance rates on over 90 unseen test images (average sensitivity 88% , average
specificity 96%). This method learns by example and produces fully automatic algorithms needing no human
interaction or parameter tuning, and although complex, runs in approximately 4 seconds.

1 Introduction

In many areas of medicine, images are used as a diagnostic aid, but images in themselves only partially contribute.
Crucially, input comes from interpretation of the image by an expert using the power of the human visual system.
This human system works in real time, does not need carefully tuned parameters, and perhaps most importantly, is
able to learn by example to recognise general image features. These qualities provide the inspiration for this work.
We present here a method which learns by example, and produces fully automatic, parameter-free algorithms to
identify given features.

The diagnosis of malignant melanoma at the primary care level is difficult because at the early stages it may
look similar to innocent pigmented lesions – “moles”. Moderate diagnostic rates achieved by dermatologists [1]
confirm this difficulty and for this reason there is a growing body of work on using image analysis methods to aid
the diagnosis of melanoma [2]. The diagnosis first requires the segmentation of the lesion from the surrounding
skin, which is a difficult task, mainly due to the variability in lesion appearance. Some lesions are well delineated
and make good contrast with the skin, whereas others are indistinct, variegated and difficult to see by an untrained
eye. The published methods use a variety of approaches, including threshold-based methods [3], colour clustering
and distance functions in a colour space [3,4], edge modeling [5,6] and various combinations of these [7].

What these methods have in common is the fact that they all have been developed by image analysis experts, in
most cases informed by clinical practitioners. This paper describes a very different approach, in which expertise
in image analysis is not necessary for being able to create a well performing image processing system, in this
case for lesion segmentation. This is achieved through the use of an evolutionary computation technique - genetic
programming (GP) in which a lesion segmentation system is automatically evolved, purely on the basis of example
segmentations provided by an expert clinician. The paper first outlines the concept of genetic programming. This
is followed by the description of a study in lesion segmentation using GP, its results and discussion.

2 Materials and Methods

2.1 Pigmented Lesion Images

A set of 100 pigmented lesion images is used in this study. The images were acquired using a SIAscope [8], a
device designed specifically for skin imaging, that takes a number of images of the same area of the skin at different
wavelengths. In its normal mode of operation it uses an optical model of the skin to compute parametric maps
showing the distribution and levels of individual histological components of the skin such as melanin, haemoglobin
and collagen [8]. In this study images acquired in the blue band are used because of strong absorption by both
melanin and blood makes the lesions stand out against the skin background. Image resolution is 40 microns per
pixel and a circular area with radius of 280 pixels is used. A ”ground truth” data set in the form of binary images,
is created from outlines drawn by a clinical expert at Addenbrooke’s Hospital, Cambridge, UK.

2.2 Genetic Programming

Genetic Programming (GP) is a powerful extension to the genetic algorithm (GA) paradigm which evolves popu-
lations of computer programs as opposed to the simplistic binary strings used in GAs. These programs are repre-
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sented as tree structures and are initially created randomly from sets of functions and terminals. The programs are
run on a problem, and a fitness value is assigned based on how well they perform. These fitness values are used to
implement “survival of the fittest” procedures which select, and then adapt, the fitter individuals by means of mu-
tations (random changes to a single individual) and crossover (creating new offspring influenced by two parents).
With programs represented as trees, mutation replaces a randomly chosen sub-tree with a randomly generated new
sub-tree. Crossover simply selects random points from two trees and swaps over the sub-trees beneath them to
generate two new children. Over many generations, better and better solutions to the problem emerge. Effectively
GP creates programs to solve a problem, without being told how to solve it, or knowing anything about its under-
lying nature. The programs produced are often quite novel, as the process is free from any human preconceptions
about the problem or what constitutes a good solution.

However, the huge computational expense of running thousands of complex programs for many generations means
that only recently have we reached the stage where imaging problems can be tackled by using image processing
operations in the function set, and input images in the terminal set. Figure 1 shows some very simple examples of
GP image trees, the output they produce, and how a crossover operation would create two random children.
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Figure 1. A demonstration of GP evaluation and crossover. The trees represent hierarchical programs.I represents
the input image,M is a 50/50 image merge,* multiplies images,T thresholds the image to the given value andE
performs an edge detection. Crossover can be seen to generate children with some of each parent’s properties.

2.3 Experimental Setup

The data was divided into a training set containing 8 examples and a test set containing 92 examples. The 8
images were chosen as they represented most of the variation found in the dataset. A population of programs is
then randomly created from the function and terminal sets. The function set contains imaging operations such
as thresholds, quantisation, morphological operations, logical operations, region intensity functions (mean, min,
max), edge filtering, merging etc. The terminal set consists of the input image, and numerical and coordinate
values. More information about this type of system can be found in [9].

Every generation, each program in the population is run on each of the images in the training set. The fitness of each
program is measured, and then used to influence the selection procedures to decide which ones are adapted and put
into the next generation. A population of 5000 programs was used, and the system was run for 75 generations.

2.3.1 Fitness Function

The fitness function is key to the success of the evolution. It should provide proportional feedback to the GP system
in a way that correctly captures what it means for a solution to be better or worse than another. The fitness function
used in this case is a modification of a function proposed by Poli [10] for similar segmentation problems, summed
over all of theN images in the training set. It is defined using measures of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) which are used in this fitness function. It is important to use these



measures instead of simple pixel difference counts for obvious reasons. The function used is:

f =
N∑

i=1

FP

FP + TN
+

FN

TP + FN
exp

(
10

(
FN

TP + FN
− α

))
(1)

whereα is a parameter (in this case set at 0.4) allowing the relative importance of sensitivity and specificity to be
varied. Also, as in Poli’s work, a wrapper function is used which thresholds the image before the fitness calculation.
So, the system is actually trying to find the solution that, when thresholded, best matches the target output.

3 Results

The binary image that the program outputs is compared to the correct outline and each pixel is classified as a TP,
FP, TN, or FN. From these classifications, measures of sensitivity and specificity are produced. These are shown
for each of the 92 test images the a 2-axis histogram in Figure 2. A four colour image produced showing these
classifications as light grey, black, white, and dark grey respectively. Some examples are shown in Figure 3.

Figure 2. Sensitivity-specificity histogram showing the percentage of results in each performance category for the
92 unseen test images images

Figure 3. Examples of inputs and performance on images from the unseen test set. Light-grey=TP, Black=FP,
Dark-grey=FN, White=TN. Shows examples of hair removal, detection of similar non-outlined lesions, good seg-
mentations in spite of irregularity, and a complete failure.

4 Discussion and Conclusions

4.1 Analysis of Performance

On the unseen test data the program performs very well on the majority of the examples, as can be seen from the
histogram in Figure 2. Most of the examples are clustered in the very high accuracy regions of the histogram. The
examples on which the program performed badly are generally those which are highly irregular which were not
fully represented in the training set. Future training should use more of these irregular images.



Although the segmentations produced are not perfect, the algorithm would be a good first step to a system such
as [5], which can perform a more detailed analysis of the lesion borders but needs first to locate the centre of the
lesion. This system could quite easily produce this sort of input.

4.1.1 Programs produced

The best program produced after 75 generations contained 330 nodes and executes in about 4 seconds. Pruning
and optimisation of the program tree could easily reduce this down to real time. The run that produced the program
took approximately 24 hours to complete, running on a cluster of computers of varying specifications. This amount
of time may at first make this approach seem prohibitive, but this is a one-off expense in search of just one single,
and actually quite simple program which takes only 4 seconds to run. The obvious question arises from this work;
what does the resultant program do that makes it so good? This is a very difficult question to answer because of
the complexity of the programs and the often unconventional steps they use, and this analysis is an ongoing task.

4.2 Summary and Future Work

We have presented preliminary results of a system which uses GP to evolve a program to segment pigmented skin
lesions. The method presented has several important benefits over more traditional segmentation methods. The
most important is that it can be used by non-experts. All the system needs is input images and target outputs.
Secondly, the fact that the system learns by example makes it applicable to many more problems than model based
approaches which can be too specific. Generalisation is a key feature of this method and the fact that the system
performs well when trained on only 8 images demonstrates this. Also, the programs produced are free from human
preconceptions about the problem, and pick up on aspects of the problem that humans may miss.

There is enormous scope for future work in this area. The method could be applied to almost any binary segmen-
tation problem and a few modifications to the paradigm could make the system applicable to non-binary problems.
All that is required is for an expert to provide hand segmented examples for training. Specific future work includes
using outlines drawn by multiple experts in order to reduce the intra and inter-expert ambiguities which confuse
the learning process.
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Abstract. In thispaperanautomaticatlas-basedsegmentationalgorithmfor 4D cardiacMR imagesis proposed.
Thealgorithmisbasedonthe4D extensionof theexpectationmaximisation(EM) algorithm.TheEM algorithm
usesa 4D probabilisticcardiacatlasto estimatetheinitial modelparametersandto integratespatially-varying
a-priori informationinto theclassificationprocess.It providesspaceandtime-varyingprobabilitymapsfor the
left andright ventricle,themyocardium,andbackgroundstructuressuchastheliver, stomach,lungsandskin.
Thesegmentationalgorithmalsoincorporatesspatialandtemporalcontextual informationby using4D Markov
RandomFields(MRF). Validationagainstmanualsegmentationsandcomputationof thecorrelationbetween
manualandautomaticsegmentationon 2493D volumeswerecalculated.Resultsshow thattheprocedurecan
successfullysegmenttheleft ventricle(LV) (r=0.95),myocardium(r=0.83)andright ventricle(RV) (r=0.91).

1 Introduction

In MagneticResonanceImaging (MRI) of the cardiovascularsystem,an accurateidentificationof the borders
of theventriclesandmyocardiumis essentialto quantitatively analysecardiacfunctionsuchasejectionfraction
or wall motion thickening. Several approacheshave beenproposedfor the automaticsegmentationof cardiac
structuresin MR images(for a review see[1]). Recently, several techniquesbasedon active appearancemodels
(AAM) have emergedshowing improvedreliability andconsistency [2]. However, theapplicability is restricted
to theMR imagingsequenceusedfor trainingsincetheintensityappearanceanddistribution is anexplicit partof
thestatisticalmodel.Mostof thesetechniqueswork only for 2D eventhoughextensionsto 3D havebeenrecently
proposed [3]. This paperproposesan approachwhich combinesthe expectationmaximisation(EM) algorithm
anda 4D probabilisticatlasof theheartfor theautomaticsegmentationof 4D cardiacMR images.Methodsbased
on theEM algorithmhavebeenpreviouslyproposedfor theclassificationof MR imagesof thebrain [4,5] where
they alsoincludecontextual informationinto the EM algorithmby meansof Markov RandomFields(MRF). In
this work we usean extensionof the EM algorithmto 4D (spaceand time) andMRFs to segmenta complete
4D sequenceof cardiacimages.We alsousea 4D probabilisticcardiacatlasto includespatiallyandtemporally
varyinga-priori informationinto theEM segmentation.

2 Methods

2.1 EM algorithm

TheEM algorithmis aniterativeprocedurethatestimatesthemaximumlikelihoodfor theobserveddataby max-
imising thelikelihoodfor theestimatedcompletedata.Thecompletedatacomprisesof theobserveddataandthe
missingdata. The algorithmconsistsof two steps:The first oneis the expectation step,wherethe missingdata
areestimatedby finding the maximumlikelihoodparameterestimatesfor the observeddata. The secondstepis
themaximisation step,wherethemaximumlikelihoodfor theobserveddataareestimatedby maximisingthelike-
lihood for theestimatedcompletedata. In our case,theobserveddataarethesignalintensitiesof theMR image
sequence,andthemissingdatais thecorrectclassificationof the imagesequenceaccomplishedwith helpof the
parametersthatdescribethemeanandvarianceof eachclass(anatomicalstructure),which areusuallymodelled
by a Gaussiandistribution. Givena setof

�
classes,the probability thatclass � hasgeneratedvoxel value ��� at

position � is givenby theclassificationstep:���
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The equationscanbe solved by iteratingalternatinglybetweenclassification(Eq. 1) andparameterestimation
(eqs.2 and3). In our implementationwe areconsideringfour distinctclassescorrespondingto the left ventricle
(LV), myocardium,right ventricle(RV) andbackground.

2.2 Markov Random Fields

In orderto improve theclassificationprocessandincorporatecontextual information,Leemputet al. [4] propose
theuseof MRFswhereotherconstraintsareaddedtakinginto accounttheneighbouringvoxels.They useasimple
MRF thatis definedon a so-calledfirst-orderneighbourhoodsystem,i.e.,only thesix nearestneighbourson a 3D
lattice areused: CD� �=( �FE � �FG � �FH � �FI � �KJ � �?L / denotesthe neighbourhoodof voxel � where �FE � �?G � �KH and �FI areits
four neighboursin short-axisdirection,and �KJ � �?L its two neighboursin thelong-axisdirection. In addition,in our
approach,we arealsoconsideringthevoxelsof theneighbouringtime framesof thesequence.Furthermore,we
assumethat the spatialinteractionbetweenvoxels andits neighboursis different in the temporaldirection. For
short-axisimageswith a typical slicethicknessof 10mm,thecontributionof neighboursin thelong-axisdirection
is notsignificantwhentheMRF parametersarecalculated,thereforewedonotconsiderthemin thecalculationof
theMRF parameters.Following Leemputet al. [4] we usethefollowing Pottsmodelto representthespatialand
temporalinteractions: M'NPO�Q �>	 � �SRT��� E�

� �� 	�U�5VXW �SY 	5U��Z\[ � (4)

Here W �]� 	 �_^ Y 	 �a` Y 	 �_b Y 	 �ac is a vectorthat countsper class � the numberof spatialneighboursof � that
belongto � . Similarly, [ �'� 	 �ed
f6g Y 	 �_dah6g countsperclass� thenumberof neighboursin thetemporaldirection
thatbelongto � . V and Z are

�ji
�
matricesthattogetherform theMRF parametersk R �l( V � Z / . Equations

(2) and(3) remainthesamebut theclassificationstepis no longergivenby (1) but by
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and uw� is a binary vector with 1 at the kth componentand 0 everywhereelse.1 The calculationof the MRF
parametersk R �2( V � Z / canbesolvedby usingtheproceduredescribedin [4].

2.3 Construction of a probabilistic atlas of the heart

Probabilistic maps:Thepurposeof theprobabilisticmapsis to automatetheestimationof the initial parameters
(meanandvariance)for eachclass(structure)andto providespatiallyandtemporallyvaryinga-priori information
aboutthelikelihoodof differentanatomicalstructures.For thispurposethe4D MR imagesequencesof 14subjects
weremanuallysegmented.Theimagesequenceswerethenresampledusingshape-basedinterpolation[6] in order
to obtaina setof imageswith isotropicresolution.Oneof the14 subjectswasrandomlychosenasthereference
subjectandall othersubjectshave beenalignedto this usinganaffine registrationalgorithm[7]. In addition,we
have performeda temporalalignmentby matchingtheend-systolicanddiastolictime framesof all subjectsusing
theautomatedalgorithmdescribedin [8]. Theprobabilisticmapshave beencalculatedby blurring thesegmented
imagecorrespondingto eachstructurewith a Gaussiankernelof 7���� mm andsubsequentaveraging.Thefinal
4D probabilisticatlasconsistsof 20 time frames,andeachtime frameconsistsof a volumeof �!��� i ����� i *.�!�
voxels.Theframework for theconstructionof theprobabilisticatlasis illustratedin Figure1.

Background map: Thebackgroundwasdividedinto 4 subclassescorrespondingto theliver, thestomach,theleft
lung andtheskin. For this purposethebackgroundstructuresof thereferencesubjectweremanuallysegmented
andresampledusingshape-basedinterpolation.This 4D backgroundmapwasusedto estimatethemodelparam-
eters(meanandvariance)of thedifferentstructuresin thebackground.This backgroundmapis neededbecause
it containsvariousorgansandmodelling it usinga single Gaussianwould not be sufficient sinceit containsa
wide rangeof intensities.Theseregionswereconsideredassubclassessincethey wereonly usedto estimatethe
parametersof thebackground.They werenot usedfor theMRF calculationor for theprobabilisticatlas.

Template:In addition,a 3D templateof theheartduringenddiastolehasbeenalsoconstructed.This 3D template
hasbeencalculatedby normalisingandaveragingtheintensitiesof all end-diastolicimages,afterspatialalignment
to thereferenceimage.Thetemplateallow usto align thecardiacatlaswith theimagesto besegmented.

1The ��� ’s areK-dimensionalvectorssuchthat ���T����� for some� .
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Figure 1. Constructionof theprobabilisticatlas.

3 Automatic segmentation

In the first stepof the automaticsegmentationthe 3D templatewas registeredto the end-diastolictime frame
of theMR sequenceby usinganaffine registration.This producesa transformationwhich spatiallyalignsthe4D
probabilisticatlasto theMR imagesequence.A temporalalignmentwasperformedusingtheautomatedalgorithm
describedin [8]. Subsequently, a maskwasgeneratedfor eachclass(LV, RV, myocardiumandbackground)in the
probabilisticatlasby usingonly thoseareasthathada probabilityhigherthan50%of belongingto thatclass.For
thebackgroundeachsubclasswasusedasa mask.Sincetheatlaswasalreadyalignedwith theMR image,each
of thesemaskswasusedto calculatetheinitial modelparameters(meanandvariance)of eachclassandsubclass.
Having theinitial modelparametersallowsusto performthefirst classificationof theimagesequenceby assigning
theclasswith thehighestprobabilityfor avoxelatposition � . Thebackgroundhadfour probabilitiescorresponding
to eachsubclassandonly thehighestwasconsideredastheprobabilityof thebackgroundof thatspecificvoxel. In
summary, theEM algorithminterleavesfour steps:classificationof thevoxelswith theinitial parameters(Eq. 1),
estimationof theGaussianparameters(eqs.2 and3), estimationof theMRF parametersandclassificationusing
all the parameters(Eq. 5). The probabilisticatlasconstrainedthe classificationsinceit provideda spatiallyand
temporallyvaryingprior probability for eachtissueclass � . ClassificationusingtheEM algorithmwasrepeated
until thevaluesof theparametersdid notchangesignificantly. All theparameters(mean,varianceandMRF model)
werere-estimatedat eachiteration.

4 Results

Cardiacshort-axisimageswereacquiredat Royal BromptonHospital,London,UK, from 12 healthyvolunteers
usinga SiemensSonata1.5T scannerwith a TrueFispsequenceand �!��� i ����� i *.� voxels. Similarly, two more
imagesequenceswereacquiredatGuy’sHospital,London,UK usingaPhilipsGyroscanIntera1.5Tscanner. Each
imagesequenceconsistedof 10 to 26 time frames,involving a total of 249volumetricdatasets.Thefield of view
rangedbetween300-350mm, thethicknessof sliceswas10mmandthetotal acquisitiontime wasapproximately
15 minutes. In order to avoid bias,we usedthe ’ leave oneout’ testwherethe imageset to be segmentedwas
not usedin theconstructionof its correspondingatlas.Theresultsof theautomaticsegmentationwerecompared
againstthoseobtainedby manuallysegmentingthe14 4D imagesequences.In orderto assesstheperformanceof
theautomaticsegmentationthe volumesof the ventriclesandmyocardiumwerecalculatedandlinear regression
analysiswasusedto comparethemanuallyandtheautomaticallysegmentedimages.Figure2 shows theresults
for the automaticsegmentationwhenconsideringonly the neighbouringvoxels in the short-axisdirections.The
correlationfor theLV, myocardiumandRV is � �+�T� ��  , � ���¡�£¢�¢ and � ���¡� ��  , respectively. Figure3 presents
theresultsof theautomaticsegmentationincludingalsotheneighbouringvoxels in thetemporaldirectionwhere
an improvementis noticeable,especiallyin themyocardium( � �¤�T� �!¥ ) andRV ( � �¤�¡� �¡* ). The resultsfor the
LV arelargely unchanged( � �¦�¡� � � ). Theautomaticsegmentationfor a completesequenceof 26 framestook 25
minuteswith anaverageof 20 iterationsfor theEM algorithmto converge.
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Figure 2. Comparisonof thevolumesof 2493D imagesobtainedby manualandautomaticsegmentationconsid-
eringneighboursin theshort-axisdirectiononly andusingtheprobabilisticatlas.
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Figure 3. Comparisonof thevolumesof 2493D imagesobtainedby manualandautomaticsegmentationconsid-
eringneighboursin thespatialandtemporaldirectionsandusingtheprobabilisticatlas.

5 Discussion and future work

We have presenteda methodfor the automaticsegmentationof 4D cardiacMR images.Sincethe probabilistic
mapsrepresenta 4D atlas,a goodsegmentationwasobtainedfor the entiresequencedespitethe considerable
changein the sizeof the structuresduring the cardiaccycle. Also, usingthe spatio-temporalMRF approachfor
theEM algorithmimprovedtheresultssignificantlycomparedto spatialMRFsonly. Our approachis completely
automaticand consistentsince the alignmentof the atlas is performedautomaticallyby an affine registration
algorithm. In addition,it is independentof the imageintensitiesin theMR imagesandcanbeappliedto images
acquiredwith othersequences(e.g.black-bloodstudies)sincetheestimationof theparametersis performedusing
theatlas.Themajor limitation is that therecouldbemisclassifiedvoxelsat theboundariesof theclassesandthat
thosecanbeslightly overestimated,especiallywhenvesselsarevery closeto theventriclesor whenthecontrast
betweenmyocardiumandsurroundingtissuesis very low. This canalso happenwhen the differencebetween
neighbouringtime framesis too big. Futurework will includeothercardiacstructuressuchasthe left andright
atriaandsomeof themainarteriesandvesselsto preventthemfrom beingclassifiedaspartof theventricles.

References

1. J. S. Suri. Computervision, patternrecognitionandimageprocessingin left ventriclesegmentation:The last 50 years.
Pattern Analysis and Applications, 3(3):209–242,2002.

2. S.C.Mitchell, B.P.F. Lelieveldt, R.J.VanDer Geest,H. G. Bosch,J.H.C.Reiber, andM. Sonka.Multistagehybrid active
appearancemodelmatching:Segmentationof left andright ventriclesin cardiacMR images.IEEE Transactions on Medical
Imaging, 20:415–423,2001.

3. S.C.Mitchell, B.P.F. Lelieveldt, J. G. Bosch,R. Van Der Geest,J.H.C.Reiber, andM. Sonka. Segmentationof cardiac
MR volumedatausing3D active appearancemodels. In SPIE Conference on Medical Imaging, Image Processing, pages
433–443,2002.

4. K. VanLeemput,F. Maes,D. Vandermeulen,andP. Suetens.Automatedmodel-basedtissueclassificationof MR imagesof
thebrain. IEEE Transactions on Medical Imaging, 18(10):897–908,1999.

5. Y. Zhang,M. Brady, andS.Smith.Segmentationof brainMR imagesthroughahiddenmarkov randomfield modelandthe
expectation-maximizationalgorithm. IEEE Transactions on Medical Imaging, 20:45–57,2001.

6. S.P. RayaandJ.K.Udipa. Shape-basedinterpolationof multidimensionalobjects.IEEE Transactions on Medical Imaging,
9(1):32–42,1990.

7. C. Studholme,D.L.G. Hill, and D.J. Hawkes. Automatedthree-dimensionalregisration of magneticresonanceand
positronemissiontomographybrainimagesby multiresolutionoptimizationof voxel similarity measures.Medical Physics,
24(1):71–86,1997.

8. D. Perperidis,A. Rao,M. Lorenzo-Valdes,R. Mohiaddin,andD. Rueckert. Spatio-temporalalignmentof 4D cardiacMR
images.In FIMH Conference on Functional Imaging and Modeling of the Heart, 2003. In press.



Motion Trajectories For Ultrasound Displacement Quantification
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Abstract. We present a robust methodology to quantify displacements in musculoskeletal ultrasound se-
quences. This paper extends the principles of 2D interframe displacements produced by our earlier work using
hierarchical variable block size matching, to quantify displacement trajectories. We provide novel solutions for
probe motion, quantification of objects moving in the 3D volume traversing the 2D plane, and improving the
temporal coherence of displacements for typical captured sequences, direct from modern ultrasound machines.

1 Introduction

High frequency ultrasound is emerging as the technique of choice in clinical musculoskeletal (tendon) pathology
investigations. Increased resolution and the ability to readily capture sequences have pioneered the use of intrinsic
(image-based) over extrinsic (invasive) techniques to understand tissue mechanics. Biological tissues experience
mechanical deformation, where an important measure to quantify is displacement. We aim to quantify displace-
ments in tendons using intrinsic methods that must be robust for a range of inherent imaging artefacts such as
acoustic speckle noise, dropouts and probe motion artefacts that exist in the majority of clinical ultrasound images
(definitions of these can be found in [1]).

Current intrinsic ultrasound research has concentrated on analysing specific frame pairs using a variety of methods
including optical flow [2], spectral integrals [3] and block differentials [4]. We present a novel extension to in-
terframe displacements by quantifying motion trajectories in sequences. Our contributions include, encapsulating
increased temporal displacement correlation, probe motion registration and quantifying objects in the 3D volume
traversing in and out of the 2D plane. This is achieved by extending a multiresolution block matching algorithm
defined in [5] to compute a trajectory field using normalised cross correlations in the Fourier domain.

During any clinical freehand ultrasound sequence acquisition, both probe and subject are kept stationary to ensure
a reproducible imaging plane. Sonographer fatigue, probe decoupling, subject and feature movement can produce
observable effects in imaging. Image registration prior to displacement quantification is necessary for invariance to
image acquisition-specific artefacts, including fluctuating probe motion (including pressure) that occur in freehand
scanning. Variations of probe pressure on the skin can cause local deformations of the anatomy on a large scale
compared to pixel size. Global displacements can be derived locally [6] and globally [7] using both intrinsic and ex-
trinsic measures. Without extrinsic probe position measurements and global displacement registration limitations,
we have used local measurements in the skin to transducer surface region to register our displacement trajectory
fields since from our previous work [5] we observed that this region takes on probe motion characteristics.

In this paper, after briefly outlining our in vitro groundtruth and in vivo datasets, we detail our proposed method,
explaining the logical extension of trajectories from interframe displacements, tracking, trajectory updating and
probe motion correction. Results from an in vitro groundtruth and an in vivo musculoskeletal sequence of the
patella tendon are illustrated. Finally, we discuss the important benefits of trajectories, use of the normalised
correlation coefficients as a confidence measure, and future work.

2 In vitro groundtruth and in vivo dataset

To facilitate performance evaluation of the proposed method, we generated in vitro groundtruths. The first is
an equine tendon with inserted landmarks pulled under controlled loads whilst continuously scanning [5]. The
second is a section of muscle cut and uncut, and again pulled at various controlled rates. Using specific in vitro
groundtruths instead of synthetic images [8] for testing can reduce in vivo result ambiguity [3], as synthetic data
rarely synthesises ultrasound information.

Our in vivo dataset focuses on sequences of longitudinal sections of normal tendons captured with an 8-15 MHz
probe using a Diasus Dynamic Imaging ultrasound machine. Each sequence captures a dynamic flexion to ex-
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tension of the muscle giving rise to tendon displacement. The tendons anisotropic fibrillar texture [9] [10] means
that any slight obliquity of the angle of incidence or curvilinearity, can obscure or mimic texture details and create
aperture problems. Here we present results on the patella tendon, an area of high clinical interest due to the demand
for improved understanding of patellar tendinopathy (athletes knee). More dynamic results can be found online 1.

3 Motion Trajectories

In [5] we previously defined a multiscale block matching pyramid initialised by a regular lattice R, sampling by P×
Q (typically 8×8 or 4×4) an initial ultrasound frame f t. Blocks of M ×N , where M ,N = {64, 32, 16, 8, 4}were
used to increasingly improve displacement accuracy for R till M = P and N = Q. Using spatial convolution we
minimised the mean squared error between candidate blocks I in a search region I ′ from ft and ft+1 respectively,
to find the optimum displacement.

Here we determine the local disparity between I and I ′ by identifying the maximum correlation coefficient using
normalised cross correlation (NCC). We now define I as a zero padded candidate block so that I, I ′ = M × N ,
enabling the NCC to be performed in the frequency domain using the FFT for efficiency, defined

c =
F−1{Î∗Î ′}√∫ ∫ |Î|2 · ∫ ∫ |Î ′|2

leading to {0 ≤ c ≤ 1} (1)

where Î and Î ′ denotes the Fourier transform of blocks I and I ′ respectively, F−1 the inverse Fourier transform
and ∗ the complex conjugate. By multiplying the spectral components, the DC element is filtered out removing
any global illumination and high frequency noise. Furthermore, by normalising the correlation, invariance to mean
intensity fluctuations is achieved. The spatial displacement vector d = (d1, d2) is then estimated from locating the
maximum correlation coefficient. For each block in R the NCC is performed at multiple block scales, using the
previous d as I and I ′ offsets, allowing a varying smoothness constraint across each I for all scales.

Trajectories represent the temporal tracking of features sequentially through a sequence using the NCC for feature
location. NCC tracking is sensitive to imaging scale, rotation and perspective distortions. In this context minimal
perspective and rotation distortions potentially exist, however, the NCC does enable equal sized patterns to be
detected by a rotation distortion of 5◦ to 10◦ [11]. Image scale distortions are more prominent, and by using the
multiscale NCC we achieve scale invariance and improved accuracy from local illumination variations.

At this stage we have quantified an optimal displacement d for each block in f t lattice R yielding an interframe
displacement field dR. For sequences, this process is repeated for every frame pair in the sequence to give:

dt
R . . . dt+n

R = NCC{(ft, ft+1) . . . (ft+n, ft+n+1)} (2)

After quantifying interframe displacements using R, we redefine R, offset by the prior displacement field d t
R.

Consequent tracking, results in a displacement vector with temporal history h, a trajectory defined for each original
block in R, hence producing a trajectory field. A powerful benefit from the trajectory definition is h which has a
direct relationship with temporal displacement coherence.

Tracking, especially in long sequences, requires feature identification in each next frame f t+1 for inclusion or
exclusion update. Potential causes of trajectory update are features traversing in the 2D plane, 3D volume, at
image boundaries and occlusion, producing potential trajectory clusters and voids. A new trajectory is included by
comparing each d to neighbours in R centred in the range A×B, with an Euclidean distance > P ×Q. Similarly,
trajectories are flagged for exclusion if any neighbouring final positions in A×B conflict, by a proximity threshold
defined empirically. Trajectory results in Figs. 1 and 2 are illustrated in black for R and red for updates (for colour
images please see online1).

We use the assumption that the intensity signal from the skin to transducer represents probe motion δ xy . Global
displacement and trajectory field registration is achieved by using the mean displacement, δ µ

xy , in this region, and
updating the fields respectively using:

d =
(
d1 + δµ

y , d2 + δµ
x

)
(3)

1http://www.cs.bris.ac.uk/home/revell



4 Experimental Results

Fig. 1(a) shows a sample frame of our in-vitro groundtruth, a partially cut muscle segment under x-axial linear
load. Figs. 1(b) and 1(c) are typical interframe and trajectory displacement field results respectively, sampling at
P × Q = 4 using block scales M × N , where M ,N = {16, 8}. Fig. 1(b) illustrates large linear displacements
located at the cut as the muscle is pulled. The trajectory field in Fig. 1(c) highlights biased muscle movement to
the right as the cut opens, resulting in new trajectories (inclusion update, shown in red) between the cut edges.

(a) Cut Muscle (post strain) (b) Interframe Displacement Field (c) Trajectory Field h = 4

Figure 1. (a) In-vitro groundtruth muscle segment, (b) Interframe displacment field, (c) Trajectory Field.

Figs. 2(a), 2(b) and 2(c) are (lognormal) longitudinal sagittal sections of the patella tendon, traversing left to right
from extension to flexion in 1 second and captured at 30Hz. The trajectory fields in Figs. 2(d), 2(e) and 2(f) were
produced by sampling at P × Q = 8 using multiple block scales M × N , where M ,N = {64, 32, 16, 8}, with
h = 10. All trajectory fields are post probe motion registration using (3), resulting in approximate stationarity in
the upper skin region so that throughout the sequence this region is constrained to d ≈ 0. All trajectories show high
temporal correlation for all frames in the sequence. New trajectories (inclusion update, shown in red) appear at
image boundaries from the horizontal movement, and several appear in the central plane from 3D movement. The
trajectories highlight very linear displacements in the tendon as expected, and temporal displacement correlation
and structure in lower regions of well defined acoustic speckle noise, that mimic the tendon motion.

(a) Patella Tendon f10 (b) Patella Tendon f20 (c) Patella Tendon f30

(d) Trajectory Field h10 ⇒ (f1 tof10) (e) Trajectory Field h10 ⇒ (f11 tof20) (f) Trajectory Field h10 ⇒ (f21 tof30)

Figure 2. (a)-(c) In vivo patella tendon for f t=10,20,30, (d)-(f) Displacement trajectory fields.

An example of probe motion correction showing significant probe movement can be observed at f 20 through to
f30, as illustrated in Fig. 3 for the patella tendon sequence in Fig. 2(f). Fig. 3 compares both trajectory update and
probe translational displacement results. Throughout the sequence probe y-axial displacement was approximately
zero, with any supported deviations potentially due to probe pressure. After f 20, x-axial displacement increased
to approximately 3 pixels, with the mean used for trajectory correction, resetting approximate stationarity in the



skin region. By determining δµ
xy at each frame pair we dynamically update the amount of registration correction.

Trajectory inclusion and exclusion updates increase accounting for probe movement. These updates have a high
temporal correlation as new features appear as existing features move out of plane, from the applied extension
flexion motion.

Correlation coefficients measure confidence in trajectory accuracy. Using a single scale block matching approach
we observed large coefficient variance that corresponded in visual accuracy for the displacement fields in our
musculoskeletal dataset. From using multiple scales we observed that correlation coefficients increased as block
scales refined with improving displacements. Lack of space prevents us from illustrating our good trajectory
validation results, as we did in [5] where we forward-warped every frame by each corresponding displacement
field and used a frame differencing measure to determine accuracy. We hope to report these in our future work.

5 Discussion
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We have presented a novel extension to interframe displace-
ments by developing motion trajectories. By application to in
vitro and in vivo data we illustrated many benefits. The trajec-
tory fields proved invariant to a range of capture rates and ob-
ject movements, whereas interframe displacements only anal-
yse user specific frame pairs. Also regions of tissue can be
tracked through typical length sequences, eliminating the no-
tion of mere frame matching. Finally, we have shown trajecto-
ries improve temporal displacement correlation (correspond-
ing to strain history).

Using a multiscale NCC proved robust for high frequency ul-
trasound. Final correlation coefficients, our confidence mea-
sures, were consistently over 90% correlated, but showed re-
strictions at finer scales. Probe movement from displacements
between skin and probe surface yielded high accuracy once an
optimum section was defined. Poor region selection results in
a direct effect on the registration accuracy. The mean displace-
ment was sufficient in smoothing spurious values. Consequent
registration results were encouraging especially without any

prior knowledge from transducer position sensors or definite fixed landmarks. A detailed investigation will be part
of our future work, analysing strain fields from trajectories, with experiments on curvilinear tendons.

References

1. J. Thijssen & B. Oosterveld. “Texture in tissue echograms: speckle or information?” American Institute of Ultrasound in
Medicine 9, pp. 215–229, 1990.

2. G. Mailloux, F. Langois, P. Simard et al. “Restoration of the velocity field of the heart from two-dimensional echocardio-
grams.” IEEE Transactions on Medical Imaging 8, pp. 143–153, 1989.

3. D. Cooper & J. Graham. “Estimating motion in noisy, textured images: optical flow in medical ultrasound.” In British
Machine Vision Conference (BMVC), pp. 585–594. 1996.

4. A. Morsy & O. Ramm. “3D ultrasound tissue motion tracking using correlation search.” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control 20, pp. 151–159, 1998.

5. J. Revell, M. Mirmehdi & D. McNally. “Variable sized block matching for in vivo musculoskeletal motion analysis.”
Accepted in Visual Information Engineering, 2003.

6. F. Yeung, S. Levinson & K. Parker. “Multilevel and motion-based ultrasonic speckle tracking algorithms.” Ultrasound in
Medicine and Biology 24, pp. 427–441, 1998.

7. G. Treece, R. Prager, A. Gee et al. “Correction of probe pressure artifacts in freehand 3D ultrasound.” Proceedings of
Medical Image Computing and Computer Assisted Intervention (MICCAI) pp. 283–290, 2001.

8. F. Valckx & J. Thijssen. “Characterisation of echographic image texture by cooccurence matrix parameters.” Ultrasound
in Medicine and Biology 23, pp. 559–571, 1997.

9. J. Ellis, J. Teh & P. Scott. “Ultrasound of tendons.” Mini-symposium: Musculoskeletal Ultrasound 14, pp. 223–228, 2002.
10. C. Martinoli, L. Derchi & C. Pestorino. “Analysis of echotexture of tendons with ultrasound.” Radiology 186(3), pp. 839–

843, 1993.
11. D. Nair & L. Wenzel. “Image processing and low-discrepency sequences.” SPIE Advanced Signal Processing Algorithms,

Architectures, and Implementations 3807, pp. 102–111, 1999.



Dealing with cardiovascular motion for strain imaging in the liver
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Abstract. Elastography or elasticity imaging, which uses ultrasound to image internal tissue strain due to an
applied external displacement, can display elastic inhomogeneities such as stiff tumours and heat-ablated
tissue with high contrast in static situations. However, its application to liver in vivo is problematic because
the organ is already in motion. In a previous study, we characterised the cardiovascular component of liver
motion, with the objective of understanding it well enough to propose strategies for its correction and to
simulate it in computer and phantom experiments when testing these strategies [1].

This paper presents the extension of this earlier study, in which we have now developed, tested and
evaluated several strategies for dealing with cardiovascular motion for the application of elastography in the
liver. The evaluation was carried out in part using a phantom, containing soft gelatine with a stiffer inclusion,
that was subjected to an independent, cyclic motion while being manually palpated using an ultrasound
imaging transducer. As a result of this study, several strategies to deal with cardiovascular motion were
implemented successfully and shown to provide worthwhile improvements in elastographic image quality.

1 Introduction
Elastography (a technique to image internal tissue strain) of in vivo liver can be problematic because the

organ is continuously subjected to unwanted internal motion, such as cardiovascular activity. It has been
recognised by others [2, 3] that these pre-existing motions cause problems in temperature (strain) imaging and,
as will be shown in this study they are also problematic for ultrasonic elasticity imaging. In previous work, the
cardiovascular component of liver motion was characterised, with the objective of understanding it well enough
to propose strategies for its correction [1]. The motion patterns of some liver segments were found to be
complex, but they were also cyclic and repeatable, indicating that motion compensation should be possible.
Furthermore, it was proposed that the data obtained could be used to design simulations in computer and
phantom experiments, for testing suggested motion compensation strategies. This paper reports the results of
such experiments, using phantoms.

2 Aims and objectives
Our long term aim is to assess the feasibility to apply freehand ultrasonic elasticity imaging to the liver

for the purpose of detecting elastic inhomogeneities. This particular study had two objectives. The first objective
was to investigate whether cardiac motion is problematic for conventional freehand elasticity imaging, and to
assess the severity and nature of artefacts as a function of the relative amplitude of the cardiac motion. Phantom
experiments are ideal for this purpose since degraded image quality in the presence of motion may be compared
with images obtained from the same object when stationary. The second objective was to test and compare
various motion correction and motion utilisation strategies designed to improve the quality of the elasticity
images acquired in vivo in the liver. Again, tissue phantoms provide a useful controlled situation in which to
objectively compare alternative compensation techniques.

3 Materials and methods
This paper presents a study in which we evaluated experimentally the following strategies for dealing

with cardiovascular motion for ultrasonic elasticity imaging in the liver:
(1) Identify a time window in the heart cycle where the cardiac motion is negligible compared to the externally

applied motion.
(2) Identify periodic moments in the heart cycle for combined phase-shifted (gated acquisition) multistep strain

estimation.
(3) Extrapolation and subtraction of pre-existing motion if an external stress is applied (this included two

alternative extrapolation algorithms, which will be described later).
(4) Utilise the cardiovascular motion component to produce internal strain.

These motion compensation strategies were evaluated using a gelatine phantom containing a stiff
inclusion in a homogeneous soft background, which was subjected to simulated cardiac motion while being
manually palpated and imaged using the ultrasound transducer.

For this study an arbitrary ratio R, between the externally applied motion and simulated cardiac motion,
measured at the centre of the lesion, was defined as a convenient quantity to vary, and in order to investigate the
limits of performance of the motion correction strategy:
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motioncardiac
palpationR =

where ‘cardiac motion’ is defined as the maximum difference between the peak positive displacement and the
peak negative displacement of the lesion, and the ‘palpation’ is defined as the difference between the peak
positive displacement of the lesion before palpation and the peak positive displacement at the end of the period
of palpation. Figure 1 illustrates both definitions of palpation and cardiac motion. It may be seen that the ratio, R,
would be zero if no palpation were applied and infinite if only palpation motion were present. Figure 2 shows the
mechanical system, which allowed the generation of a simulated cardiac motion by displacing one boundary, and
hence generating strain in the tissue phantom.
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Figure 1. Figure illustrates the definitions of the terms ‘palpation’ and ‘cardiac motion’ used to calculate the
variable R in experiments to explore the varying influence of cardiac motion on elastography and the

effectiveness of motion compensation algorithms.

Experiments were repeated six times, each time employing a different value of R, obtained by varying
both the amplitude of the simulated cardiac motion and the total applied displacement due to palpation. In the
experiments described in this paper, motion compensation strategies over a range of R-values were investigated.
The worst-case scenario however is when R=0, that is, no external applied displacement is measurable, and the
only strain inside the liver is generated due to cardiovascular motion.
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Figure 2. Photograph of the mechanical system to simulate the most dominant component of cardiac motion in
phantoms. Strain due to simulated cardiac motion is generated by horizontal displacement of the plate d. Strain
from freehand palpation is generated by moving the hand-held ultrasound transducer (not shown) in a vertical

direction to apply force to the top surface the phantom (not shown) sitting on plate e and between plates d and f.

Note that for eventual application of the method in vivo the “externally” generated stress or strain could
result from pressure applied with an object such as the ultrasound probe during suspended respiration, or might
arise from motion of the diaphragm during respiration.



4 Results
Figure 3 illustrates a series of elasticity images of the phantom that was subjected to a cyclic motion

while being manually palpated using an ultrasound imaging transducer, as described above. The dark grey level
in the elasticity images indicates low strain, associated either with the stiff lesion or with regions exposed to low
stress due to the boundary conditions of the experiment. The bright areas indicate high strain, i.e. either low
stiffness or high stress. These results, and others like them, showed that elasticity imaging without motion
compensation was difficult for situations in which the amplitude of the palpation was less than 1.5 times the
amplitude of the cardiac motion (see figure 3 top row of elasticity images). In practice, this ratio might be easy to
achieve for superficial tissue structures, but for deeply situated tissue structures, the amount of displacement due
to the externally applied strain could be relatively small.

Time windowing and phase-shifted multistep strain imaging (suggested motion correction methods 1 and
2) were, with the currently used data-acquisition system, unsuccessful. These strategies for motion compensation
were therefore not considered applicable for experiments in vivo and the results from these methods are therefore
not shown in figure 3. However, when in the future ultrasound equipment with higher frame-rates become
available, this method of motion compensation should be re-considered.
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Figure 3. A gelatine phantom, containing a spherical lesion stiffer than the homogeneous soft background, was
subjected to external applied compression and simulated cardiac motion. The top row of elasticity images was

obtained using no motion compensation algorithms. The second and third rows show elasticity images generated
after correcting for the simulated cardiac motion using extrapolation techniques based on analysing the
frequency components of displacement and generating an average cardiac-cycle displacement template,

respectively. The bottom row shows the elasticity images in which all the strain that was present in the image
was used to derive the strain distribution. The trend of decreasing quality of the strain images with decreasing R

was observed when no motion compensation technique was applied. In all the elasticity images that were
processed with algorithms designed to deal with pre-existing motion, the quality of the elasticity images

improved and in almost all cases the stiff lesion was more visible than without processing.

The method of subtracting pre-existing motion by characterising it and then extrapolating to predict the
undesired displacement during the period of the palpation was successfully implemented using two different
approaches: (1) based on the analysing the frequency components of the simulated cardiac motion and (2) based



on a computing a template of the typical simulated cardiac motion during any one cycle. In cases where the
amplitude of the palpation was more than 0.5 times the amplitude of the simulated cardiac motion, the lesion was
still clearly visible in the strain image. For smaller ratios, strain imaging using this type of motion correction was
unsuccessful in that it was difficult to visualise the lesion and its associated background strain pattern (see figure
3, second and third rows of elasticity images).

The idea of using all axial tissue motion, whether its origin is from external palpation, cardiac activity or
even breathing, has been successfully implemented. One of the causes of image degradation when performing
strain imaging without motion correction is that not all of the axial motion that is present in the tissue will
contribute to the formation of the strain image. In the worst case, if the axial motion is repetitive with no net
displacement of the tissue, the resulting mean axial displacement over one cycle would be zero. In such a
situation, the strain over time would cancel itself out (mean value equals zero) and would produce a zero strain
field. A very simple solution to this would be to take the absolute or unsigned value of the strain between each
successive frame instead of a signed value. All the axial motion in the image would then contribute to the
formation of the axial strain image (see figure 3 bottom rows of elasticity images).

5 Discussion
The proposed strategies in this study were developed as a means of compensating for cardiac motion in

ultrasonic elasticity imaging of the liver. However, some of the techniques for motion compensation might be
applicable to other organs that are subjected to motion, either due to cardiovascular motion or respiration
activity. Similarly, some may be extended to elasticity imaging methods that are not based on ultrasound, such as
MRI-elastography, as well as to non-elastographic imaging methods, such as ultrasonic temperature imaging [4]
or attenuation imaging [5].

A further area of application of the motion characterisation and motion correction strategies developed in
this study could be in external beam therapy, such as radiotherapy and focused ultrasound surgery, where organ
motion can increase the margins on the delivered dose, reduce the tumour control probability and increase the
toxicity to organs at risk.

6 Conclusions
After analysing the internal liver motion, several strategies were suggested for minimising the effects of

pre-existing motion on the procedure of generating an elasticity image. For relatively simple sinusoidal motions,
a technique that works well is that of subtracting the predicted cyclic motion obtained by extrapolating data that
was obtained before palpation. Performance was found to be similar, whether the extrapolation was achieved
using the frequency components of the motion or its typical behaviour per cycle (as represented by a template).
However, because real cardiovascular motion is more complex than our simulated motion, our extrapolation
algorithms need to be improved to predict the motion sufficiently in order to use this technique in vivo and this is
likely to be most feasible for the template-based method.

As a result of this study, we suggest the different strategies for dealing with cardiovascular motion may
be needed for different parts of the liver. For example, in some parts of the liver the strain generated by
cardiovascular motion alone may be sufficient to create an elastogram of adequate quality. In other parts of the
liver this is unlikely to be the case and strain signal-to-noise ratio will suffer. Then, of course, external
compression may be sufficient without motion compensation. However, if a single general approach to deal with
cardiac motion is desired, we suggest that for each elastogram pre-existing motion data be acquired prior to
compression. Using these data, parameters can be derived for extrapolation to subtract the pre-existing motion
during external compression. The results shown in Figure 3 suggest that employing such a method does at least
do no harm to elasticity image quality when motion compensation is not required.

References
1 AF Kolen, JC Bamber and EE Ahmed EE (2002) Analysis of cardiovascular liver motion for application to elasticity

imaging of the liver in vivo. pp. 25-28 in: Houston A, Zwiggelaar R (eds.) Proceedings of the sixth annual conference on
medical image understanding and analysis. ISBN 1901725219, British Machine Vision Association.

2 C Simons, P VanBaren and E Ebbini “Motion compensation algorithm for non-invasive two-dimensional temperature
estimation using diagnostic pulse-echo ultrasound.” In SPIE proceedings: Surgical applications of Energy, San Jose:
1998.

3 T Varghese, JA Zagzebski, Q Chen et al. “Ultrasound monitoring of temperature change during radiofrequency ablation:
preliminary in-vivo results.” Ultrasound in Medicine & Biology 2002, 28(3), pp. 321-329.

4 NR Miller, JC Bamber and GR ter Haar “Fundamental limitations of noninvasive temperature imaging by means of
ultrasound echo strain estimation.” Ultrasound in Medicine & Biology 2002, 28(10), pp.1319-1333.

5 NL Bush, I Rivens, GR ter Haar, et al. “Acoustic properties of lesions generated with an ultrasound therapy system.”
Ultrasound in Medicine & Biology 1993, 19(9), pp. 789-801



 

Fourier Snakes for the Reconstruction of Massively Undersampled 
MRI 

 
A.M.S.Silvera, I.Kastanisb, D.L.G.Hilla, S.R.Arridgeb 

 
(a) Imaging Sciences Division, KCL, 5th Floor Thomas Guy House, Guy’s Hospital, London SE1 9RT, UK 
(b) Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK 

 
Abstract. In order to support very fast cardiac MRI (Magnetic Resonance Imaging), a method for reconstructing contours of 
high contrast directly from massively under-sampled projection MRI data is proposed and tested. A phantom was built and 
scanned to provide a controlled set of raw data and images. A small number of parameters needed to describe contours of 
interest in the image was iteratively updated with a fast forward model involving the linearised updating of model parameters 
based on differences between measured and predicted data. This allowed the close approximate reconstruction of a contour in 
an image from a small number of projections. 
 
1 Introduction 

1.1 MRI 
MR images are normally built up from multiple echoes obtained from separate excitations. Each measurement 
during the acquisition is referred to as a ‘Phase encode line’ or ‘k-space profile’ and is in the ‘inverse,’ 
‘frequency’ or ‘Fourier’ domain, also known as k-space. If k-space is completely sampled, an inverse Fourier 
transform (IFT) will convert the data into the image domain. 
 
A major difficulty facing all MRI is that the data takes a significant time to acquire. In the case of typical cardiac 
MR sequences, such as the steady state free precession (SSFP) sequences now in widespread use, each single k-
space profile takes several milliseconds to acquire.  To acquire sufficient data for reconstruction, 100s of k-space 
profiles are needed, giving an acquisition time approaching one second for each slice and each time point in the 
cardiac cycle. To quantify ventricular function, typically 10 or more slices at 10 or more phases are required. 
This set of images needs to be acquired over many heart beats, and usually also multiple breathing cycles, which 
is both time-consuming and difficult for sick patients. In order to use these images clinically, the endocardial 
contours are segmented at each phase of the cardiac cycle, which requires considerable user interaction [1].  
 
The aim of this work is to address the two critical issues in cardiac MRI images of this type: shortening the 
acquisition time, and automatically segmenting the endocardial boundary. In this proof-of-concept study, we  use 
a phantom study to demonstrate a technique that segments features of interest directly from undersampled radial 
k-space acquisitions.    
 
2. Theory and algorithm 
 
2.1 Reconstruction and Segmentation 
 
Identification of objects in images that are themselves reconstructed from measured data can be thought of as a 
two step process: (1) Reconstruction of an images _from measured data and (2) Classification of pixels in the 
image as belonging to, or nor belonging to the object. If the first step is well posed then the reconstruction is 
generally robust, and the second step is the one requiring most attention. One possible segmentation process, 
commonly called active contours or snakes, assigns an objective function to the contour C(s) that depends on 
geometric properties of the contour and also on the samples x  at the intersection of the contour and the image. 
 
When the image reconstruction process is ill-posed, which is the case for example in severely undersampled 
data, then the first step is not robust, and can lead to severe image artefacts unless appropriate regularisation 
steps are taken. This in turn will complicate the segmentation step. 
 
In this paper we introduce a different approach. The contour C is described in terms of a finite set of basis )(s
functions, and the classification of a pixel as part of the object is considered as a mapping G from the XP →:
space of coefficients of the contour basis functions, to the space of pixels. The data can then be further 
considered as a mapping from the space of pixels to the space of measurements. The advantage 
now is that the combined mapping

YXF →:
y YPGFZ ∈∈== y,)),(()( γγγ  can be treated as a forward model for 



 

the measurement of the object, and determining the object boundary can be considered as an inverse problem. In 
this paper we consider the case of undersampled MRI data, and we consider the inverse problem as identification 
of the contour _ that produces the best least squares fit of the forward model to the measured data. The method is 
based on a technique described in [2]. 
 
2.2 Model Based Approach - The forward mapping 
 
If the region boundary is sufficiently smooth, it can be represented for example in the form )(sC
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where )(snθ  is some periodic and differentiable basis function,  is the number of these basis functions and 

. A representation of the form (1) does not have such limitations as convexity for admissible domains, 
but it does have the drawback that it is difficult to set constraints such as non-self-intersection. This difficulty is 
handled in a special way as described below. 
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Let γ denote the vector of all boundary shape coefficients, that is, 
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The goal is now to express the discretization of the forward model as a mapping from the boundary coefficients 
γ to data z. This is done in three steps. 
 

1. Classification of pixels as inside, outside or intercepted by a given region boundaryC .Let )(s
{ }0:)( ≠∩ΩΩ= smms CCB  

denote the set of elements intercepted byC . )(s
2. Determination of intersections of pixel edges with a given boundary . The goal is to find the 

exact intersection points

)(sCs

{ }mm ss 21 , of C(s) and the pixel edges for each pixel ( sm CB∈ )Ω  The 

intersection of with the edge from vertex N)(sC i to Nj is obtained using a binary search algorithm. 
3. Pixels are assigned contrast c if inside C, 0 if outside, and an intermediate value proportional to the area 

of intersection if the pixel is intersected by C. 
 
The above constitutes the implementation of mapping G. The mapping F is simply a Fourier Transform followed 
by subsampling in k-space, or alternatively an undersampled Radon Transform. 
 
2.3 Model Based Approach - The Inverse Problem 
 
Although F is linear, G is non-linear, so the combined mapping Z=FG is non-linear and the solution of the 
inverse problem will require an iterative approach. One well-known method is a Newton method which 
iteratively updates the solution estimate 
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where is the linearisation of the combined mapping Z=FG, and λ is a control parameter. Since F is )( kJ γ
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= is the Jacobian of the mapping G. 

Finally, we can find the components of efficiently as follows XJ

 
 



 

2.4 The Algorithm 

 
Figure 1. The Algorithm 

 
The function of the algorithm is shown in Figure 1. At each iteration, the Fourier snake parameters, p, are 
transformed into a contour image X using knowledge of expected image contrast, from which a sinogram y is 
produced by the Radon transform F. This is then compared to the measured data g by subtraction, producing the 
difference sinogram r. The linearised inverse F* computed from the Jacobian of G is then used to produce the 
parameter updates ∆p which are added to the parameters.  As regions of high intensity gradient in the sinogram 
indicate candidate boundaries, an extension of the model replaces F with a forward model that generates an 
intensity derivative along each sinogram line, in which case a gradient operator is applied to the measured data to 
obtain g, prior to the comparison and update stages. The iterations are finished when the model is only updated 
by a suitably small amount. 
 
3. Experimental Method 
 
Phantom Design 
In order to produce a controlled set of images and data, an imaging phantom was built comprising an acrylic 
cuboid tank with an open top which could contain acrylic tubes of varying diameters screwed into the base. The 
tank and tubes could contain fluids to provide the desired image contrast. Figure 2 shows one possible layout. 

  
Figure 2. Design view of Phantom Figure 3. Experimental Fully Sampled Image 

 
The solutions used were varying concentrations of Magnevist™, a Gadolinium (Gd) Chelate used clinically for 
MR imaging. As the aim was only to simulate an image with properties approximating to typical cardiac cine 
images, it was not important to simulate the exact T1 and T2 values of thoracic tissues and blood.  

 
Scanning Parameters 
Different configurations of tube position, size and fluid or air content were scanned in order to provide a 
comprehensive set of images for testing. The basic aim of the algorithm is to match a contour to the boundary of 



 

a region that is brighter than the surrounding image. In real heart scans there may be bright patches of fat, both a 
left and right ventricle to consider, in addition to the dark regions of the lungs. Therefore, tubes could be used to 
simulate these possible features with varying positions and signal intensity. 
 
The scans were acquired on a Philips Intera™ 1.5T scanner using a radial T1-weighted gradient echo sequence 
(TR=4ms, TE=1.88ms, flip angle =20°). The body coil was used for transmit/receive to give signal uniformity.  
 
Image processing 
256 readout lines, each of 256 samples, were acquired with uniform angular separation. The raw data were 
transferred to Matlab™ (prior to regridding or reconstruction). A fully sampled data set, reconstructed by k-
space regridding and IFFT is shown in Figure 3. We evaluated the algorithm on data with varying degrees of 
sub-sampling produced by selecting a uniformly spaced sub-set of readout lines.  
 
4. Results 
 
Results are shown on undersampled data with 5 projections. Figure 4 shows a direct reconstruction of the entire 
image from 5 projections. Figure 5 shows the boundary contour of the snake in white overlaid on a 
reconstruction of the fully sampled data set. Both Figure 4. and the background of Figure 5. were reconstructed 
using a filtered back-projection and have the same intensity window. Figure 5. shows from visual inspection that 
the snake is segmenting the contour to a desirable accuracy. 

 
Figure 4. Entire image reconstruction from 5 

projections using filtered back projection 
Figure 5. Contour overlaid on fully sampled 

reconstruction. 
 
5. Discussion and conclusions 
 
We have demonstrated how a reconstruction technique based on Fourier snakes can be used to delineate 
boundaries from highly undersampled MR images. The algorithm was applied to phantom MR data 
approximating short axis views of the heart. The next stage of this work is to apply it to human cardiac images, 
where our approach should enable reduced acquisition times and avoid the need for subsequent image 
segmentation.  The approach can be extended to 3D, and also can support multiple Fourier snakes. Kalmann 
filtering could be used to improve the convergence error and time by ‘predicting’ the movement of the snake 
when applied to a time series of data, such as images over the cardiac cycle. This work has some similarity with 
the level set approach used on nuclear medicine images by Elangovan and Whitaker [3].  
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Volume reconstruction from sparse 3D ultrasonography.

Mark J Goodinga∗, Stephen Kennedyb and J Alison Noblea

aMedical Vision Laboratory, University of Oxford, UK
bNuffield Dept. of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, UK

Abstract. 3D freehand ultrasound has extensive application for organ volume measurement and has been shown
to have better reproducibility than estimates of volume made from 2D measurement followed by interpolation to
3D. One key advantage of free-hand ultrasound is that of image compounding, but this advantage is lost in many
automated reconstruction systems. A novel method is presented for the automated segmentation and surface
reconstruction of organs from sparse 3D ultrasound data. Preliminary results are demonstrated for simulated
data, and two cases of in-vivo data; breast ultrasound and imaging of ovarian follicles.

1 Introduction

Ultrasound imaging is used widely in clinical medicine. Its benefits include speed, low cost and the limited ex-
posure risk associated with it. A review of 3D scanning techniques can be found in [1]. Free-hand 3D ultrasound
scanning produces sparse data-sets, but benefit may be derived from image compounding to reduce noise and ar-
tifacts, where image planes intersect [2]. Free-hand 3D also allows multiple views of the same organ, which can
be used to circumvent problems associated with acoustic shadowing. There are two main techniques for object
reconstruction from such scanning; those in which segmentation of images is performed prior to object recon-
struction and those which perform it after image reconstruction. In the former case the benefit of compounding
is lost [2]. A review of medical applications of image segmentation and object reconstruction is presented in [1].
Our interest primarily lies in the use of these methods in ovarian follicular volume estimation during assisted re-
production techniques such as in-vitro fertilisation (IVF). The use of automated methods for object reconstruction,
for this clinical application, has been limited [3, 4]; In general it appears that most reconstruction methods, with
the exception of [4], adopt the approach of segmentation prior to object reconstruction.

In this paper we present a novel method whereby segmentation is performed simultaneously to surface fitting,
to preserve the benefit of spatial compounding, using a Level Set method [5] which allows for the simultaneous
reconstruction of multiple objects. Although not limited to these applications, preliminary results are presented for
in-vivo data from free-hand 3D breast ultrasound and ovarian scans.

2 Reconstruction method

Level Set methodology is a powerful tool which finds application in many fields including medical image segmen-
tation and object reconstruction [5]. The essence of the approach is to define a boundary implicitly in a higher
dimensional function, for example a curve (1D) is represented by the zero level set (φ = 0) of a surface,φ (2D).
The advantage of this representation is that complex topology and surface evolution, for example curve merging,
can be handled in an elegant manner. A full explanation of the method can be found in [5]. The main equation
solved by the method is:

φt + F |∇φ| = 0 (1)

where the embedded function,φ(t), is evolved over time using a speed function,F , such that the zero level set,
φ = 0, at timeT = ∞ is the optimal solution for the application of interest; in our case, the segmentation and
reconstruction of sparse ultrasound data. Equation 1 may be numerically minimised by defining the iterative update
equation:

φnew = φold −∆TF |∇φ| (2)

where∆T is a small time step. A speed function,F , must be defined for the application of interest. A method for
reconstructing an object from sparse known edge points was presented in [6], whereF was defined as:

F = ∇d.
∇φ

|∇φ|
+

d

p
∇.

∇φ

|∇φ|
(3)

Hered is the distance to the nearest edge point andp is the weighting factor controlling the smoothness of the solu-
tion. In this case the speed function finds the weighted minimal surface to the edge points. Although such a method
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could be used to fit a surface to 2D segmentations, our aim is to segment sparse 3D images after reconstruction.
To this end we propose a new speed function as follows:

F = αFsurf + βFimage + γFreg (4)

whereFsurf is the surface reconstruction term in Equation 3,Fimage is a segmentation term andFreg is a regu-
larisation term; in this instance proportional to the level set curvature∇. ∇φ

|∇φ| . The purpose of this last term is to
keep the segmentation result smooth. The parametersα, β andγ are application specific and must be determined
empirically. Our method is as follows: first the free-hand data is reconstructed as a volume image. Then the level
set is evolved using information from the volume image to guide both the segmentation and reconstruction. The
distance to the edge point required for Equation 3 is calculated at each iteration from the current positions where
the zero-level set intersects the image data.

A relatively simple segmentation term,Fimage is used in the work. Given a prior segmentation, whether by
initialization or as a result of a previous iteration, each region is labelled with a class,c, such thatc(x) is the
current class at pointx within the volume image. For each class, a non-parametric probability density function
derived from the intensity of the points contained within the class. We then definepc(x)(v) as the probability that
intensity valuev belongs to classc(x). The intensity value used atx is the mean intensity within a neighbourhood,
N2(x), around that point. For a particular point,x, we consider the probability of membership to any region
within a neighbourhood,N1(x) around that point.Fimage is set to the difference in the probability of membership
between the current class and the most probable neighbouring class. For non-boundary pixels where all points
within N1(x) are the same class, or for areas where there is no data withinN2(x), Fimage is set to zero. This
results in the segmentation term,Fimage, having a value between -1 and 1, with the sign chosen such that the
region is extended if it is more probable that the point belongs to the class that it is already belongs to than any
other class. This can be expressed as:

Fimage(x) = max
∀u∈N1(x)|u6=x,c(u) 6=c(x)

[
pc(u)(µ(N2(x)))− pc(x)(µ(N2(x)))

]
(5)

but for allx whereN2(x) = ∅ or where∀u ∈ N1(x), c(u) = c(x);

Fimage(x) = 0 (6)

2.1 Implementation of the object reconstruction

The implementation of the level set method is done in a similar way to [6], but with the two following important
modifications. First, we subsample the 3D image into a voxel array of the same resolution as the level set function
voxel array, with the mean intensity being used in any voxel with more than a single pixel falling in it. In such an
arrangement we may consider the neighbourhood,N2, of a point as being the voxel in which it falls.N1 is defined
as the 27-voxel neighbourhood of each voxel. In principle, the reconstructed image can be kept in the form of a
position-intensity pair, where the position is not quantised to a voxel array but is in “real space”. Such a scheme
is used in [6], however once the distance fieldd is calculated for each point, the raw data can be discarded. In our
method the raw data cannot be discarded since the intensity at each position is needed for theFimage term, andd is
recalculated at each iteration. Since our data sets are very large (of the order106 points), the memory requirements
to store the information make such an approach unfeasible so we adopt the voxel based representation.

Second, a single level set function is conventionally used to embed a single object class,φ > 0 (background) and
φ < 0 (object), as in [6]. However we require identification of multiple object classes. Level set segmentation
methods exist which operate by evolving multiple coupled surfaces in parallel, requiringN [7], or at bestlogN [8],
embedded functions for N classes. In [9] a method is presented for embeddingN classes in a single level set
function, which although slow is memory efficient. For 3D applications, memory becomes more constrained than
for 2D image analysis and as a result a modification of the implementation in [9] has been developed as follows.
Multiple classes evolution is achieved by storing a class label for each voxel. When the sign ofφ changes for a
particular voxel, its label either becomes that of the background class, forφ > 0, or the same as the object that it
is touching. If two different object classes come within 2 voxels of each other both have the speed setF = −1
such that they will be driven apart again, as this prevents problems of class assignment occurring on the boundary
between the object classes. Once the regions are “driven back”, the class with the highest true speed value is the
first to move back into the gap and the two regions compete in this way. This method varies from [9], by allowing
for non-binary speed functions, storing of the class labels, and preventing region merging. Merging is prevented
because in our particular application neighbouring objects have the same class description, and as a result the initial
seeding is performed manually with the classes setapriori.



3 Experimental analysis

3.1 Simulated data sets

In this experiment the data consists of simulated scans of a spherical object of 20 voxels radius. On each scan
plane, the regions corresponding to the sphere would have intensity values in the range from 60 to 120, uniformly
distributed, while the background has intensities from 10 to 240. Each voxel on a plane had between 30 and 60
intensity values assigned to it to simulate compounding. Simulations were made with 2 scan types; linear sweep
across the x-axis, and rotation about the x-axis. Two different plane spacings and spherical initialisations were
used for each scan as indicated in Table 1. Table 1 shows the volume error for each of the simulated data tests.
All volume estimates fall within an equivalent of 1 voxel change of radius. The linear scan measure shows larger
error for the smaller initialisation as the method cannot extend to unconnected scan planes. The closer spacing of
planes, for both linear and rotational scans, gives greater accuracy as expected. For the rotational scan the smaller
initialisation results in poorer accuracy. This is caused by an error in the surface fitting between planes.

scan type linear rotational
spacing 5 voxels 2 voxels π

12 rads π
24 rads

initial radius 15 25 15 25 15 25 15 25
volume (voxels) 29819 32173 29861 33493 30573 32417 32406 33338

error (%) -10.65 -3.58 -10.52 0.37 -8.38 -2.86 -2.89 -0.10
Table 1. Volume results for simulated data compared with true volume.

3.2 In-vivo scanning

Consenting patients were scanned at the John Radcliffe Hospital, Oxford. Ethics committee approval was granted.

Breast data: The breast ultrasound data consist of 174 B-mode images recorded at approximately 25Hz using
a linear sweep across a cyst. The images were scanned using an AuIdea4 (Esaote) and an LA13 7.5Mhz linear
array probe. The positions were recorded by a Polaris Hybrid optical tracker (Northern Digital Inc). No quanti-
tative measurements of the cyst were made. Figure 1 shows the segmentation and surface fit of the breast cyst.
Visually, the segmentation and object reconstruction appear good. A deformation in the surface of the cyst can be
observed. This was caused by variation in the contact force between the probe and the breast, resulting in variable
compression of the cyst. This error must be addressed before quantitative measurements can be made [10].

A B C
Figure 1. A shows the 3D shape of the breast cyst when reconstructed in 3D. The shift in the surface is as a result of
breast deformation under different probe contact pressure.B shows the segmentation overlaid on the compounded
image for a particular plane.C shows the same segmentation overlaid on the original image from that plane.

Follicular data: In this experiment the data consist of scans from 2 patients undergoing IVF treatment. Each set
contains 180 B-mode images of an ovary recorded at approximately 12Hz using a rotational motion. The images
were scanned using a Powervision 6000 (Toshiba Medical Systems) and a transvaginal probe at 7.5MHz. Positions
were recorded by a Faro Arm (Faro Technologies). Mean diameter measurements were made by the clinician
during scanning from a single ultrasound image. Each follicle was aspirated as part of the normal IVF treatment,
shortly after scanning, and the volume was recorded. Object reconstruction was done using one, manually ini-
tialised, level set region per follicle. Figure 2A shows the reconstruction. Although the reconstruction appears
good, Table 2 shows that the method underestimates the aspirated volume in 3 out of 4 cases. The reconstructed
volume is of a similar accuracy to the volume predicted by the 2D measure currently used by clinical staff. The
re-sliced compounded image (Fig. 2B) reveals that misplaced images, as a result of patient breathing or motion,
lead to lower image quality and decreased accuracy of the resulting segmentation and measurement.



mean diameter estimated estimated error in error in
Ovary/ measured in volume from volume from aspirated estimate from estimate from
follicle 2D US (mm) 2D US (ml) 3D US (ml) volume (ml) 2D US (%) 3D US (%)

1/i 21 4.9 6.21 7.0 -30 -11
2/i 22 5.6 2.91 5.5 +1.8 -47
2/ii 22 5.6 4.70 7.0 -20 -32
2/iii 9 0.4 1.57 1.0 -60 +57

Table 2. Measurements of follicle volume compared to aspirate volume

A B C
Figure 2. A shows the shape of the follicles when the ovary is reconstructed in 3D.B shows the compounded
image for a particular plane.C shows the same segmentation overlaid on the original image from that plane.
Compounding can be seen to be making image quality worse. This effect is a result of patient motion and breathing.

4 Discussion and Conclusion

This paper has presented a novel method for the 3D volume reconstruction from sparse 3D (ultrasound) scans.
Initial experimental results are encouraging despite the simple segmentation model, with reconstruction of artificial
data falling within 1 voxel radius of the true volume. The preliminary results on in-vivo scans are encouraging,
showing plausible segmentation results. However volume estimates are disappointing as a result of patient motion,
but have similar error range to 2D clinical measurement. Several problems need addressing in future work: first,
problems with the data acquisition process, for example patient motion and probe contact force deformation,
need consideration. These are not problems of the algorithmper se, but do affect the accuracy of the resulting
segmentation and volume estimation. Second, a feature of the segmentation term is that compounding gives better
separation for classes with different mean values, but segmentation will fail for classes with similar means. This
can be addressed by using a different measure to calculate class membership. Work also needs to be done to
compare this method to 2D segmentation followed by object reconstruction.
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	R: 177



	P186: 
	Numb: 
	Numbx: 
	C: 
	L: 178
	R: 



	P187: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 179



	P188: 
	Numb: 
	Numbx: 
	C: 
	L: 180
	R: 



	P189: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 181



	P190: 
	Numb: 
	Numbx: 
	C: 
	L: 182
	R: 



	P191: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 183



	P192: 
	Numb: 
	Numbx: 
	C: 
	L: 184
	R: 



	P193: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 185



	P194: 
	Numb: 
	Numbx: 
	C: 
	L: 186
	R: 



	P195: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 187



	P196: 
	Numb: 
	Numbx: 
	C: 
	L: 188
	R: 



	P201: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 193



	P202: 
	Numb: 
	Numbx: 
	C: 
	L: 194
	R: 



	P203: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 195



	P204: 
	Numb: 
	Numbx: 
	C: 
	L: 196
	R: 



	P209: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 201



	P210: 
	Numb: 
	Numbx: 
	C: 
	L: 202
	R: 



	P211: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 203



	P212: 
	Numb: 
	Numbx: 
	C: 
	L: 204
	R: 



	P213: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 205



	P214: 
	Numb: 
	Numbx: 
	C: 
	L: 206
	R: 



	P215: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 207



	P216: 
	Numb: 
	Numbx: 
	C: 
	L: 208
	R: 



	P1: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 189



	P2: 
	Numb: 
	Numbx: 
	C: 
	L: 190
	R: 



	P3: 
	Numb: 
	Numbx: 
	C: 
	L: 
	R: 191



	P4: 
	Numb: 
	Numbx: 
	C: 
	L: 192
	R: 





