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Foreward

This is the seventh in a series of annual scientific and technical meetings designed to provide a UK forum for
discussion and dissemination of research in medical image understanding and analysis. The meeting has been
sponsored by three professional organisations representing the disciplines active in this area, namely the British
Machine Vision Association (BMVA), the British Institute of Radiology (BIR) and the Institute of Physics and
Engineering in Medicine (IPEM). We are grateful for their support, which contributes significantly to the
success of MIUA.

The use of mathematical techniques and computers to help in the interpretation and quantification of medical
images has a history which spans several decades. Computer processing of images is usually time consuming
and until fairly recently this represented a limit on what processing could be done in a clinically useful time.
With the increased computational power now available this restriction is being relaxed. In addition, the
determination of the Department of Health to introduce full electronic management of patient data through the
Integrated Care Record, and the fact that a key component of this will be digital image management, means that
digital medical images will rapidly become widespread throughout healthcare, raising hopes and expectations
that software tools for aiding in diagnosis and therapy will become available as digital imaging technology
comes on-line. The scientific and engineering community seeks to develop such tools, the clinical community
seeks to use them clinically. An important aim of MIUA is to bring these communities together to encourage
and facilitate the use of medical image understanding and analysis. If effective progress is to be made each
community needs to understand the limits and constraints under which the other is working, and how these are
best circumvented, as well as together working towards the benefits that medical image analysis can bring to
patients.

The range and quality of submissions continues to be high. Each paper submitted to MIUA2003 was reviewed
by three members of the programme committee and feedback was provided to the authors. Most reviewers
reviewed 10 papers and ranked them. The results of this ranking were used to compute a robust average rank
and these values were used by the Programme Committee to select 24 papers for oral submission and 28 for
poster presentation. These proceedings contain all 52 accepted papers. The submission, reviewing and selection
processes were facilitated by the CAWS conference management software package developed and operated by
Imaging Science and Biomedical Engineering (ISBE) at the University of Manchester. This system has proved
invaluable for conference administration and special thanks are due to Mike Rogers at ISBE for providing help
and technical support in the use of CAWS for MIUA2003.

Although MIUA frequently has contributions from outside the UK it continues primarily to be a forum for
distributing research results generated within the UK. It is a particularly friendly forum for students or young
researcher making their first presentations and MIUA2003 is no exception to this. Producing proceedings prior
to a meeting poses some difficulties, but I believe it is useful to be able to refer to papers both before and after
their presentation. I am grateful to all authors for getting their camera ready copy to me on time, for preparing
their papers in the correct format and for keeping to length. This has made my task much easier than it might
have been.

I am grateful to my colleagues in Sheffield for the help they have given to organising MIUA2003 and to the staff
of the University of Sheffield for facilitating the conference. I am especially grateful to the help Margaret
Beckett has given in administering the conference.

David Barber
July 2003
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A Statistical Model of Texturefor Medical | mage Synthesis and
Analysis

C.J. Rose*and C. J. Taylor

Imaging Science and Biomedical Engineering,
University of Manchester, UK

Abstract. We address the problem of building generative statistical models of the appearance of highly variable
medical images, in particular mammograms. We treat appearance as a texture that can vary over the image
plane. We present a model motivated by one of the most successful algorithms in the texture synthesis literature.
Our approach has significant advantages over existing methods: it can learn from very large data sets, does not
need to assume spatial ergodicity and can be used for synthesis and analysis. We present early results in the
form of synthetic images.

1 Introduction

We are interested in building generative statistical models of the appearance of highly variable medical images,
for use in model-based interpretation. In particular, we are interested in digitised x-ray mammograms and the
detection of abnormal features which can indicate cancer. Breast cancer is a significant health issue in the western
world. In the period 2001-2002, 39,000 British women were diagnosed with breast cancer [1]; a national breast
screening programme has been running for several years. Due to the nature of the imaging process and anatomical
differences between women, mammograms exhibit high variability, both between and within patients. Manual
placement of the breast by the radiographer results in variation in image content. There is significant variation
in anatomy: the number of ducts in one woman’s breast may differ from another. Because of the large scale and
limited effectiveness of x-ray mammography [2] there has been considerable interest in Computer Aided Detection
(CADe). Conventionally, mammography has been treated as a pattern recognition task, where a classifier is trained
on examples of normal and abnormal descriptors extracted from training images [3]. Conventional approaches to
CADe do not attempt to explain image content, choosing instead to use ad hoc descriptors that seem to capture
various characteristics of abnormal signs in mammograms. Most significantly, although breast cancer is a major
cause of death in women, cancers are extremely rare in screening mammography. Therefore, detecting signs of
abnormality should ideally be treated as a novelty detection, rather than classification, task [4].

Statistical model-based approaches such as [5] have been applied successfully to many image interpretation tasks.
Such methods rely on establishing correspondences across a set of training images. Due to the variability in
mammograms described above, establishing such correspondences is extremely difficult, if not impossible. We
propose an alternative approach, considering mammographic appearance to be a spatially variable texture — i.e.
local appearance is treated as a texture, which can vary over the image plane. A statistical model-based approach
enables us to explain and account for variation in a principled way, regardless of its origin. We aim to build
generative models of pathology-free mammograms and approach image interpretation as a novelty detection task.
We have developed a generative statistical model of texture which we describe in this paper. We present early
results in the form of synthetic images.

2 Background

In [6], Efros and Leung describe a novel non-parametric method of synthesising new textures from a sample
image, motivated by [7] (which is closely related to [8]). Their method assumes that an empty image is seeded
with a section taken from a sample image; they call this the seed image. They select a pixel which neighbours the
boundary of the seed in order to fill it with an appropriate value. A square window is extracted around this pixel.
Some of the extracted window elements contain pixels from the seed and the remaining elements contain blank
pixels. The authors define a similarity measure which allows them to compare the extracted window with all such
windows in the sample image, taking account of the blank (missing) elements in the extracted window. Using the
similarity measure, a small set of candidate windows is selected from the sample image. One of these windows
is chosen at random, and its centre pixel is placed into the seed image to fill the selected pixel. This process is
repeated until all pixels in the seed image are filled. Although the algorithm is simple, it produces some of the
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best results in the literature. The method has been applied to simple textures, natural images and images of text
with convincing results. In [9], Efros and Freeman address one of the main problems of [6]: synthesis is slow
because for each pixel synthesised, a comparison has to be made between the extracted window and all windows
in the sample image. They address this problem by synthesising the texture in a patch-by-patch process rather than
pixel-by-pixel: they partially overlap whole windows with the growing texture and merge the edges of the window
to fit the image being synthesised. This results in much faster synthesis at a little cost in the quality of the synthetic
textures. Other methods, for example those presented in [10-12] use wavelets to accomplish texture synthesis and
modelling; in particular, the methods in [10, 11] are among the best in the literature.

Most methods in the literature rely on the assumption of spatial ergodicity (i.e. invariance of texture statistics
across the image plane). The methods presented in [7,8, 11, 12] consider learning from training sets, but none of
them consider learning from very large data sets. Our approach, presented in the next section, was motivated by
the work of Efros and Leung [6], and can be considered as an extension to [7] and [8]. It can also be viewed as a
unification of [6] and [9] within a statistical framework. Our contribution is to unify two state-of-the-art algorithms
for texture synthesis within a principled statistical framework that enables image analysis. We have addressed the
problem of learning from large training sets. Furthermore, we have developed a model which does not need to
assume spatial ergodicity, as do most methods in the literature

3 Method

We assume a training set of digitised images. For each image in the training set, we extract a square window of
pixel values around each pixel (the centre pixel), and treat each window as a vector, as in [6]. We want to model
the distribution of points in this vector space. For all but the most powerful computers, directly modelling this
distribution is computationally difficult due to the dimensionality of the data and the size of the training set.

3.1 Modeling the Data

The first step in our approach is to build a parametric model of the data. We have chosen to use the k-means
clustering algorithm [13] (also described in [14]) to build a Gaussian mixture model (GMM) of the distribution;
the parameter k is the number of components in the mixture. Automatic selection of the number of components
needed to best model a distribution is an open research question, and so we choose k& based upon experience using
the model. To deal with very large training sets, we adopt a ‘divide and conquer’ approach to clustering [15] (also
described in [14]). We divide the training data randomly into subsets, each of which can be clustered in memory.
We perform clustering on each of these subsets using the k-means algorithm. Each clustering then contributes
a representative set of data points from each cluster to form a central pool of data. The number of data points
contributed from a particular cluster is proportional to the probability of that cluster and is such that the final data
set can be clustered in available memory. The final model of patch pdf is:

k

p(x) = p(i)p(a|i) . )

=1

where « is a point in our vector space, ¢ indexes the model components, & is the number of components in our
model and p(x|i) ~ N(u;, X;), where p, is the mean vector for the i-th component and X; is the covariance
matrix for the i-th component. Given this model, we can perform image synthesis and, ultimately, analysis.

3.2 Image Synthesis

We assume a model of texture built as described above. As in [6], we form a seed image and extract a window
around a pixel neighbouring the seed. We treat the window as a vector, x, where some elements are known (i.e.
they contain pixel values sampled from the seed) and some elements are unknown (i.e. they contain blank pixels
from the seed). We want to be able to sample a pixel value from our model that is consistent with what we have
observed. To do this we first marginalise the model over the dimensions of « that are unknown (except the centre
pixel). For a multivariate Gaussian this is achieved by ‘crossing out’ the rows and columns of the covariance matrix
that correspond to the dimensions we are marginalising over, doing likewise with the mean vector. We perform this
process on each component of the model. We then condition the marginal distribution on the dimensions of « we
know. For a multivariate Gaussian, this can be achieved by computing a new mean vector and covariance matrix.



Let us partition x as [z, x2] T where x; corresponds to the dimensions that we do not know and a5 corresponds to
the dimensions we do know. (We want to determine the distribution of the centre pixel values given measurements
for some elements in the sampled window. After marginalisation, x; corresponds to the centre pixel.) We partition
the mean vector and covariance matrix of each component as:

1231 PETPED)
= = . 2
u [H} [221222} @

where p,; corresponds to the unknown dimensions and p., corresponds to the known dimensions; similarly for the
partitioned covariance matrix. The conditioned mean vector and covariance matrix are computed by [16]:

o=y Tn (@ — ), I =1 — T10 55 5o (3)

We perform this process on each component of the model. To complete the computation of the conditional distri-
bution, we need to update the the mixing proportions. This is easily achieved using Bayes’ theorem:

p(@a|i)p(i)

(@) p(x2]i)p(i) - 4)

plilzs) =

where the p(a2|i) is computed by marginalising each component over the known dimensions, as described above.
(The distribution of the centre pixel values is a univariate distribution and not a multivariate distribution as the
notation in (3) implies, but we present the general method for completeness.) The model of the distribution of
possible centre pixel values is:

k

plar) = plilwa)p(a: i) (5)

i=1

where z; is the centre pixel and p(x1]7) ~ N(u}, 2%) (a univariate distribution). Once we have computed (5), we
sample from it, setting the pixel being considered to the sampled value. Sampling from (5) is achieved by choosing
one of the clusters using p(i|x2) and then sampling from the p(x1|¢) corresponding to the chosen component. After
sampling the pixel value for the current pixel, we move on to another pixel neighbouring the (growing) seed and
repeat the process of marginalisation, conditioning and sampling until the entire seed image has been populated.
The approach to synthesis described above is analogous to the non-parametric approach of [6]. By skipping the
marginalisation step (sampling all remaining pixels in the window), our approach can be considered analogous to
the non-parametric approach of [9]. Most methods in the literature rely on the assumption of spatial ergodicity (i.e.
invariance of texture statistics across the image plane); our model makes no such assumption. We can explicitly
include spatial information in the training vectors to build a texture model that captures textural variability over the
image plane. We can then condition the model on such information during synthesis and analysis.

4 Results

We have evaluated our approach by producing synthetic textures and making qualitative judgements. Quantitative
evaluation of results is notably absent from the texture synthesis and modelling literature; quantifying the generality
and specificity of our models will form part of our future research. Figure 1 shows training and synthetic images
from two of our models. The first model was built from 10 patches taken from pathology-free mammograms in
the DDSM [17]. The second model was built from the four Asphalt images in the MeasTex database. No spatial
information was included in the models. Qualitatively, our results are comparable to those produced by the best
methods in the literature, such as [6] for the image classes being considered. It is difficult to make comparisons
between our results and those of other methods in the literature because our method allows us to use a large training
set while others [6,9,11] are limited to a single sample image. While [7,8,10] could be trained using data extracted
from more than one image, the results they present are generated from a limited training set, most likely a single
image. Although [12] presents a sophisticated model which is trained using a reasonably large data set, we argue
that our synthetic images are more convincing.
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Figure 1. Mammographic textures: A training patch (a) and a synthetic patch (b). MeasTex Asphalt textures: A
training patch (c) and a synthetic patch (d).

5 Conclusions

We have described an approach to texture modelling for synthesis and analysis of digitised mammograms and other
classes of medical image. We have unified two state of the art algorithms for texture synthesis within a principled
statistical framework that enables image analysis. We have also addressed the problem of learning from large
training sets. Furthermore, we have developed a model which does not need to assume spatial ergodicity, unlike
most methods in the literature. Our results indicate that this approach is successful at modelling such textures.
Current work focuses on the use of dimensionality reduction techniques such as PCA [18] to improve clustering
accuracy and increase synthesis speed. Our ultimate aim is to model entire, pathology-free mammograms in order
to perform abnormality detection as a novelty detection task.
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Improving Appearance Model Matching Using Local Structure

I.M. Scott T.F. Cootes, C.J. Taylor
Imaging Science and Biomedical Engineering, University of Manchester.

Abstract. We show how non-linear representations of local image structure can be used to improve the perfor-
mance of model matching algorithms in medical image analysis tasks. Rather than represent image structure
using intensity values, we use measures that indicate the reliability of a set of local image feature detector out-
puts. These features are image edges, corners, and gradients. Detector outputs in flat, noisy regions tend to be
ignored whereas those near strong structure are favoured. We demonstrate that combinations of these features
give more reliable matching between models and new images than modelling image intensity alone. We also
show that the approach is robust to non-linear changes in contrast, such as those found in multi-modal imaging.

1 Introduction

This paper builds on Cootes&t al.[1] work on constructing statistical appearance models and matching them to
new images using the Active Appearance Model (AAM) search algorithm. We want to use a representation of
image structure that discriminates in favour of a reliable comparison between image and model, and is invariant to
the sorts of global transformation that may occur. For example, statistical appearance models commonly represent
image texture by a vector of pixel intensities, linearly normalised so as to be invariant to global contrast and
brightness. Nevertheless, such models tend to be sensitive to imaging parameters, biological variability, etc.

An obvious alternative to modelling the intensity values directly is to record the local image gradient in each
direction at each pixel. Although this yields more information at each pixel, and at first glance might seem to
favour informative edge regions over flatter, less informative regions, it is only a linear transformation of the
original intensity data. Since building our models involves applying a linear Principal Component Analysis (PCA)
to the samples, the resulting model will be almost identical to one built from raw intensities.

-

deal with |mage data with strong non-linear contrast in- s P
variants, as found in multi-modal imaging. oL = —3, 0, 3 ¢ =-3, 0, +3

This work is related to previous work on statistical modF|gure 1. Effect of varying first two parameters of

els of shape and local feature response [3,4]. In thoggmal X-ray appearance model, 83 standard devi-
approaches there is no dense model of texture, and ﬁ,ﬂaons from the mean.

feature detector location, and effect on the shape model, has been set by humans rather than learnt. Moghaddam
and Pentland [5] have built eigen-faces models of smoothed canny edges. That approach does not model shape
variation, and much edge information is discarded through non-maximal suppression.

2 Active Appearance Models

Given a training set of correspondingly marked images, we can generate statistical models of shape and texture
variation using the AAM method developed by Coo&sl.[1]. The shape of an object can be represented as a
vectors of the positions of the landmarks and the texture (grey-levels or colour values) as atveltias texture

is sampled after the image has been warped to the mean shape. The texture preprocessing described in this paper
also takes place after the texture has been warped to the mean shape. The appearance model has parameters,
controlling the shape and texture accordingte 5 + Q,c andt = t + Q;c wheres is the mean shape,the

mean texture an€),,Q; are matrices describing the modes of variation derived from the training set. An example
images can be synthesised for a give(see figure 1.) Such a model can be matched to a new image, given an
initial approximation to the position, using the AAM algorithm [1]. This uses a fast linear update scheme to modify

the model parameters so as to minimise the difference between a synthesised image and the target image.

*ian.m.scott@stud.man.ac.uk
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Figure 2. How o and s relate Figure 3. Making cornerness independent of edgeness
to cornerness and edgeness. by doubling angle from axis.

In this paper, rather than just recording the intensities at each pixel, we record a local structure tuple. It is useful
to think about the rest of this work as usitexture preprocessorghich take an input image, and non-linearly
produce an image of tuples representing various aspects of local structure. When sampling the image to produce
a texture vector for a model, instead of samplingnage intensity values from the original image, we sample all

the values from each-tuple atn sample locations, to produce a texture vector of lemgth

3 Local Structure Detectors

As noted earlier, the texture preprocessor needs to be non-linear to make a significant difference to a linear PCA-
based model. If we restrict the choice of preprocessor to those whose magnitude reflects the strength of response
of a local feature detector, then it would be useful to transform this magnituateo a reliability measure. We

have chosen to use sigmoid function for this non-linear transfem = -“*— wherem is the mean of the feature
response magnitudes over all samples. This function has the effect of limiting very large responses, preventing
them from dominating the image. Any response significantly above the mean gives similar output. Also, any
response significantly below the mean gives approximately zero output. This output behaves like the probability
of there being a real local structure feature at that location.

The first local structure descriptor with which we have experimented is gradient orientation. Early work on non-
linear gradient orientation is described in [2]. We calculate the image graglientg.. ¢,)” at each point giving

a 2-tuple texture image for 2-d input images. The magnitgdean be transformed using the sigmoid function,
while preserving the direction. This is followed by the non-linear normalisation step tdgive,)” /(|g| + |gl)

We had observed that image corners were sometimes badly matched by gradient and intensity AAMs. Corners
are well known as reliable features for corresponding multiple images, and in applications such as morphometry
accurate corner location is important in diagnosis.

Harris and Stephens [6] describe how to build a corner detector. They construct a local texture descriptor by
calculating the Euclidean distance, or sum of square differences between a patch (of ah,)raadetself as one

is scanned over the other. This local image difference engrggy zero at the patch origin, and rises faster for
stronger textures. To enforce locality and the consideration of only small shifts, they added a Gaussian window
w(u, v),and then made a first order approximation;

2
BE(z,y) =Y w(u,v) [28(z,9) + yZ(z,y) + O(a*,y?)]” ~ A2”+2Czy+By® = (v yM(z y)"

U, v

wherew(u,v) = exp —(u? —v?)/20%, A(z,y) = [2—5]2 ® w, etc. The eigenvalues,5 of M = (4 §)
characterise the rate of change of the sum of squared differences function as its moves from the patch origin. Since
« andg are the principle rates of change, they are invariant to rotation. Without loss of generality, the eigenvalues
can be rearranged so that>= 3. The local texture at each point in the image can be described by these two
values. As shown in figure 2, low values®@fandg imply a flat image region. A high value of and low value of

G imply an edge. High values of bothand imply a corner.

At this point Harris and Stephens identified individual image corners by looking for local maxiahet Ml —
k[tr M]2. We leave their approach here, except to note that useful measures derived & can be found
without actually performing an eigenvector decomposition,éeg(M) = AB—C?. For our purposes, it would be
useful to have independent descriptors of edgeness and cornerness. Todad@into an independent form, we



take the vectofa 3)” and double the angle from theaxis, as in figure 3. Itis possible to calculate the cornerness,
r, and edgeness, defined this way, without explicitly having to calculate an eigenvector decomposition. Note
thate is independent of edge direction unlike the gradient measure, and so may describe additional structure.

r=2AB — 2C? e=(A+ B)\/(A— B)2 +4C?

These values are then normalised using the sigmoid transform, and combined to produce a texture preprocessor.

4 Experiments

We took a previously described [7] data set of low-dose D

X-ray Absorptiometry (DXA) lateral scans of the spines of 4
normal women. The vertebrae from T7 to L4 were marked
under the supervision of an experienced radiologist — figure
shows an example. The images are 8-bit greyscale and roug
140x 400 pixels in size. To investigate their behaviour we teste
both the original “intensity” AAM and several texture prepro
cessors made from “sigmoidally normalised” combinations
“gradient”g, “edge”e, and “corner’r.

Since we did not have a large data set, we performed leavg
out experiments, by repeatedly training an AAM on 46 of t
images and testing it on the remaining image. For each t
image we performed 9 AAM searches starting with the me{
shape learned during training, displaced by all combinations
[—10,0,+10] pixels in x and y. After the AAM search had con
verged we measured the distance from each control point on
AAM to the nearest point on the curve through the equivale
marked-up points. We calculated the mean of these absoll,_q
errors for each AAM search. and after multi-modal simulation.

In another experiment, to simulate performance in the presence of the hiding and inversion of contrast gradients
that are typical of multi-modal images, roughly half of the set of images were transformed by a bitonic pixel-value
transfer function — see figure 4 for an example. The two groups were then merged, to give a set of 47 images. A
leave-1-out experiment, similar to the above, was then performed.

4.1 Results 250
.,'. — | ntensity
istri i _ 200 o == Sigmoidal undirected edge -
The distribution of mean absolute errors for #1ex 9 = wes Sigm. comer edye and gradient

423 searches of the normal data set for three of the pre- . _,
processors is shown in figure 5. Figure 6 summarise%ﬁo* ;;
the results for all of the preprocessors. The results frong ! 1
the simulated multi-modal data set for the original “In- L‘Eloo—i 1
tensity” and the “Sigmoidal corner, edge and gradient” 1
X L 1
AAMs are summarised in figure 7. 50,! 1

For statistical analysis, we have classified each searchre-
sult as a success if the mean point to curve errorwas less  © &y, ans arror for asingie searchresult / pixela

than 2 pixels. (The estimated repeatability of expert agq,;re 5. Comparing the distribution of errors between

notation is 1 to 1.5 pixels on this data.) We would expegpinal AAM control points and the marked-up curves.
the number of successes for a given texture preprocessor

to be a binomially distributed random variable. We can then calculate the probability of the null hypothesis that the
two experimental results came from the same underlying distribution, given the result of the first experiment, and
over all underlying binomial distributions. Figure 6 gives fhealues for each texture preprocessor, given a null
hypothesis that a poorer performing experiment could have produced that result. Because the 9 search tests per
image can not be considered independent of each other, we based the significance calculation on-a ¥&lue

We can see that the large improvements between the “intensity” AAM and the various texture preprocessor AAMs
are certainly significant. With the exception of the “sigmoidal gradient” preprocessor, the differences between the

v



Figure 6. Comparing the point-to-curve errors (in pixels) for different spinal AAM texture preprocessors, including
the probabilities g-values) that an experiment could be a random result of a worse performing spinal experiment.

Texture Preprocessor Point-Curve error | Searches — log,, p-value given base result

mean| std | 90%-ile | <2 pixels | 35% | 40% | 75% | 80% | 81% | 82% | 85%

Intensity 54 | 38| 11.0 35%

Sigmoidal gradient 51 | 40| 108 40% 0.5

Sigmoidal corner 26 | 2.7 7.5 75% 47 | 39

Sigmoidal corner and gradient | 2.1 | 2.2 1.2 80% 56 | 48 | 0.6

Sigmoidal corner and eddge 22 | 2.6 4.8 81% 6.1 | 53| 08| 05

Sigmoidal edge 24 | 31 6.5 82% 61| 53| 08| 05| 04

Sigmoidal edge and gradient 19 | 21 4.6 85% 67| 58| 09| 06| 05| 05

Sigm. corner, edge, and gradient 1.5 | 1.4 18 92% 95| 85| 22| 17| 14| 14| 1.2

1 Note that the fraction of successful results is rounded down to the next lowest multiple ér p-value calculation, causing
two rows with slightly dissimilar success rates to have idengieghlues.

various texture preprocessors are not significant atthe0.01 level.

5 Discussion and Conclusion Figure 7. Comparing the point-to-curve errors (in pixels)
for simulated multi-modal spinal images

We have shown that using descriptions of local struc=sgyiure Preprocessof _ Point-Curve error | Searches
ture for the texture model of an AAM significantly mean| std | 90%-ile | <2 pixels
improves the accuracy and reliability of AAM search.|ntensity 95 1 611 16.0 7%
Furthermore, the local structure descriptors are leSSigm ~ comer, edge
dependent on global or sub-global contrast effectsand gradient

caused by differing imaging parameters. The simu-
lated multi-modal spinal image experiment shows that the “intensity” AAM needs to devote so much variance to
it's texture model to cope, that it fails to learn any useful information about the images. Comparing the results for
the “Sigmoidal corner, edge and gradient” preprocessor in figures 6 and 7 shows that the severe image corruption
has a relatively small effect on a local structure AAM.

34 | 38 9.3 60%

Using all the sigmoidally-normalised local structure descriptors gives the best results. This suggests that it may be
advantageous to add more local structure descriptors, including parameterised families of descriptors, e.g. differ-
ential Gaussian invariants or complex wavelets.

We can see from figure 6 that the “sigmoidal edge” local structure descriptor is responsible for the majority of the
improvement, while the “sigmoidal gradient” detector shows no significant improvement. In experiments on facial
AAMs [2], the “sigmoidal gradient” detector shows large improvements over the ordinary “intensity” AAM. In
this paper we have shown that providing the AAM training algorithm with all of the local structure descriptors, it
can learn which descriptors are most useful, and adjust the importance of each descriptor on a pixel by pixel basis
to get optimum performance.
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Multi-resolution transportation for the detection of
mammographic asymmetry

Michael Board” and Sue Astley
Division of Imaging Science and Biomedical Engineering, University of Manchester, M13 9PT, UK

Abstract. We are developing a method of comparing left-breast and right-breast mammographic images
with the aim of identifying asymmetries caused by malignancy. Our approach uses a novel multi-resolution
transportation algorithm to measure image similarity. This efficient algorithm permits the processing of high
resolution images for which a standard linear programming solution to the transportation algorithm would
be infeasible. Initial results are presented which demonstrate the potential of the method to aid the detection
of abnormal asymmetry.

1 Introduction

Computer aided detection (CAD) systems have been developed to aid radiologists searching for abnormalities
in digitised mammograms. In these systems, computer vision algorithms detect potentially abnormal areas in
the images. The attention of the radiologist is drawn to the most suspicious areas of the original films by
prompts presented as markers superimposed on low resolution versions of the images. There is evidence that,
provided the prompts are sufficiently accurate, this approach can improve human detection performance.

One technique used by radiologists when reading mammograms is to compare anatomically similar regions in
the left and right mammogram images to look for differences that may be due to abnormalities. The automatic
detection of asymmetry is a technically challenging problem because of the wide variation in normal
mammographic appearance, and because not all asymmetry is indicative of an abnormality. Such an approach
could, however, be used both for the detection of focal masses (in addition to methods targeted at local
increases in density), and also for the more difficult to detect diffuse asymmetric densities. Figure 1 shows two
example pairs of mammograms, one normal and one in which an expert breast radiologist has identified
abnormal asymmetry. Note that the difference between normal and abnormal variation in symmetry is very
subtle. Glandular tissue appears brighter than the grey fatty background, and the small white blobs in the
abnormal image pair are calcifications.

(a) (b)

Figure 1. Examples of (a) normal and (b) asymmetric cranio-caudal mammogram images. The left and right
breast images are displayed ‘back-to-back’ to facilitate comparison.

Bilateral subtraction, in which one breast image is reversed and subtracted from the other, is an obvious
starting point for the detection of asymmetry [1,2]. In order to achieve sufficient sensitivity, registration is
required. Mammograms, however, are difficult to register accurately, since there are few points of
correspondence [3,4]. It is also possible that distortions in the tissue due to warping in the registration process
may produce artificial asymmetries.

" e-mail: michael board@stud.man.ac.uk
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The approach described by Miller [5] differs from other published methods in that no registration took place
and the comparison was made on the basis of measuring the cost of transporting the grey level values in one
breast image to the other. With this approach, any slight misalignment of the images or difference in size
between the breasts resulted in a pattern of movement that was easily distinguished from patterns generated by
more sinister differences in breast density. One of the main limitations of Miller’s technique is that, for
practical reasons, it was applied only to very low resolution images (regions of approximately 20 by 30 pixels).
At such a low resolution small or subtle abnormalities may be overlooked. The technique classified cases as
normal or abnormal but did not result in the output of a precise location of any suspected abnormality. It was
suggested that this could be achieved by searching for clusters of long journeys in the transportation results.

The aim of the work described in this paper is to build on Miller’s work, which produced promising early
results (despite the low resolution it gave a sensitivity of 74%), and to develop an efficient method of
comparing bilateral mammograms. Ultimately, the objective of our research is to produce a prompting
algorithm for asymmetries which will be sensitive, specific and efficient.

2 The transportation algorithm

The transportation problem is the problem of distributing goods from warehouses to markets at minimum cost
[6]. The problem can be solved using linear programming to give the optimal set of journeys and a total
minimum cost. The transportation algorithm is commonly applied to logistics and telecommunications, and
more recently it has found use in image-based applications. Applied to images, the transportation takes place
from a source to a destination image. We treat the source image as a map of warehouse locations in which the
pixel intensities represent the goods. The destination image is our image of markets; the cost of moving a unit
of intensity is the distance it must travel to satisfy the demand. Thus the total cost of efficiently distributing the
pixel intensities from the source image to the destination image gives us some measure of the similarity
between the two images. In mammographic imaging, the transportation algorithm has previously been used to
compare image signatures [7] as a means of detecting asymmetry between left and right breasts [5], and to
evaluate the efficacy of prompting algorithms [8].

To solve the transportation problem it is formulated as a linear programming problem, and it is most commonly
solved by use of a simplex solver [9]. More recently, interior points methods have been applied and these may
be more efficient, especially in the case of large scale problems [10]. Using a simplex algorithm from the
Numerical Algorithms Group (NAG) [11], the problem scales badly with increasing image size. Figure 2 shows
the time to compare two images plotted against the number of constraints applied, which is equal to the total
number of non-zero pixels in both images.

50000
0 40000 /%
S 30000
c —e—NAG
2 20000 -
£ 10000
= 0 #

0 2000 4000 6000
No. constraints

Figure 2. Time to solve transportation problem using the NAG simplex algorithm vs the number of constraints
3 Multi-resolution transportation

In mammographic imaging many of the features of interest are small or subtle, and digital images used for
analysis are often processed at high spatial resolution (typically 50 microns per pixel). For the transportation
algorithm to be applied to images at a resolution where all the detail required is present, a more efficient
transportation method is required. One approach to reducing the size of the problem is to place restrictions on
the transportation, so that not all of the possible journeys are permitted. If each pixel in the source image is
only allowed to transport its intensity to a sub-set of pixels in the destination image, this can drastically reduce



both the size of the problem and the time taken to solve it. The pixels should be restricted to move only to
‘likely’ destinations — considering every pixel in the destination image is unnecessary and computationally
costly.

To define these restrictions one could permit only journeys made to a local neighbourhood, but in some cases
longer journeys are necessary and this restriction would render the problem insoluble, or not allow a natural
solution. Our solution is to apply a multi-resolution approach. A gaussian image pyramid [12] is formed and
the unrestricted transportation algorithm is applied to the lowest resolution image pair. From the results of this,
the transportations allowed at the next highest resolution are defined. Pixels in the equivalent source location at
the next higher resolution are permitted to travel to the pixels at the equivalent destination from the solution at
the lower resolution. The constraints upon movement are also relaxed to allow travel to both the destination
and its local neighbourhood. This makes it less likely that the problem will be rendered infeasible and also does
not bind the solution to that produced at the lowest resolution. This process is illustrated diagrammatically in
Figure 3. The method was developed using synthetic images to ensure correct and consistent behaviour, output
was compared with conventional transportation at low resolution.

Az,

Figure 3. Diagram of multi-resolution restricted transportation. A pixel’s journey at the previous lower
resolution restricts its movement in the equivalent location at the next level of the pyramid.

4 Detection of asymmetry

An evaluation on a test set of 10 normal and 10 abnormal pairs of screening mammograms is underway. The
data comprise image pairs from the Greater Manchester Breast Screening Service, digitised to a resolution of
50 microns per pixel at 8 bits per pixel greyscale on a Kodak LS85 digitiser. The expected pattern of movement
for a normal case involves mainly straightforward shifting and scaling to compensate for alignment and
compression differences. Shifts result in a pattern of transportation characterised by many parallel journeys,
whereas scaling results in largely isotropic movement around the border of the breast image. For abnormal
cases, the pattern of movement is dependent on the location of the asymmetric tissue, with many long journeys
to a particular destination. Examples of the patterns of movement in the normal case and asymmetric (cancer)
case shown previously in Figure | are shown in Figure 4(a) and Figure 4(b). A further pattern of movement
from a case where the abnormality is a mass is shown in Figure 4(c). To simplify display of movement, only the
most significant journeys in terms of both length and quantity are shown. It can be seen that the transportation
for the normal mammogram pair is essentially a set of parallel journeys diagonally across the image, indicating
a systematic difference between left and right breasts. The transportation pattern for the abnormal image pairs
show movement to a focus within the breast, which correspond in each case to a region indicated by the expert
radiologist who reviewed the cases.

(@) (b) (©)

Figure 4. Density transportation between pixels in normal (a) and abnormal (b), (c) mammograms
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5 Discussion and further work

We have described a novel, efficient transportation-based technique for the bilateral comparison of
mammograms. The initial results are promising, and an evaluation based on clinical data is currently in
progress. Results show significant computational improvement with timings for a given step up to 30 times
faster than conventional methods, allowing higher resolution images to be processed than previously.

Miller segmented the glandular tissue from the mammograms before comparing image pairs, having showed
that the shape differences in glandular discs allowed classification by radiologists. Hence segmenting or
enhancing the glandular disc may improve results further. Segmentation also has the advantage of reducing the
size of the images to be processed, thus further reducing computational expense.

Our work will now proceed with statistical analysis of journey clusters to form a prompting system based on
focal regions within the breast to which significant transportations are made. Regions which contribute most to
the overall transportation cost of the image pair can be considered as candidate abnormalities. Further work
will examine the extent of normal variability to improve specificity. Ultimately, the algorithm could be included
in a prompting system, as asymmetry is one of the most subjective signs which radiologists are required to
detect.

This technique may have other applications, both in mammography and in other medical imaging modalities in
which bilateral or temporal differences are important. For example, multi-resolution transportation could be
used to look for changes over time in slow growing lesions, or to investigate changes in clusters of
calcifications with a view to identifying potential malignancy.
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Combining rCBF SPECT images obtained from different centresin
a composite normal atlas
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Abstract. An attempt is made to produce a normal rCBF SPECT atlas, using images obtained from normal
control subjects at two centres. Severa registration methods are first tested using images from one centre and
it is shown that a non-linear approach is necessary. On this basis, non-linear SPM registration is adopted and
applied to the images from both centres, using one of the images as a reference. The resulting images are
normalised to total counts and the mean and SD images, together with the first ten eigenimages, are extracted.
The composite atlas provides good ‘nearest normal’ fits to images in the data set from both centres and to an
abnormal image obtained at one of the centres. The results are comparable with those obtained using the
corresponding local atlas and much better than those obtained using the corresponding remote atlas.

1 Introduction

With a growing requirement for standardisation in healthcare for image acquisition and processing techniques, it
is entirely possible that national or international computerised normal atlases can be developed for different
imaging procedures. The use of normal atlases in medical imaging, particularly with regards to brain imaging in
SPECT and PET, has, so far, generally been restricted to a single site using a single imaging device. A problem
that persists is whether normal image sets obtained under different conditions at different centres are in any way
transportable and whether they can somehow be combined in a single normal atlas. At present, this problem is
compounded by the fact that image acquisition and processing techniques are inconsistent from siteto site. This
paper attemptsto create asingle normal atlas for regional cerebral blood flow (rCBF) SPECT images obtained from
normal subjects at two centres— Royal Hospital Haslar and Southampton General Hospital.

Several methods have been suggested for using information from a set of normal images to analyse images of
patients, including statistical parametric mapping (SPM) [1] and the use of normal eigenimages to create ‘ nearest
normal’ fits to new images [2,3]. For the purposes of this paper, the latter approach will be adopted, although an
alternative approach using SPM is currently under investigation. The use of eigenimages, highlighting major
variations within the image set, allows us to examine whether or not images obtained from different centres can
realistically be combined in thisway

2 Materialsand Methods

Fifty rCBF SPECT images were obtained from normal volunteers at the Royal Hospital Haslar and a further 24
images were obtained from normal volunteers at Southampton General Hospital. Exclusion criteria at both sites
included previous head injury with loss of consciousness; history of neurological or psychiatric disease;
participation or past participation in boxing and undersea diving; and pregnancy.

Of the 50 normal subjects imaged at Haslar, 25 were male and 25 female with an overall age range of 18-79. The
mean age and SD were 38 and 16 in the male group and 38 and 15 in the female group. Of the 24 normal subjects
imaged at Southampton, 11 were male and 13 female with an overall age range of 40-96. The mean age and SD were
68 and 17 in the male group and 67 and 12 in the female group. Clearly, as well as procedural differences between
the groups in the acquisition and processing of the images, there is al so an obvious age mismatch.

The image acquisition procedure at Haslar was as follows. Patients are injected, while lying down, with 500MBq
#¥MTc-HMPAO in aroom with subdued lighting. The acquisition is performed within 30 minutes of the injection
on an ADAC Vertex dual-headed gamma camera, using LEHR collimators. The camera heads are rotated through
180° using a circular orbit at a radius of 20 cm that is consistent among subjects and 64 planar images of 45
seconds each are acquired within a 128x128 matrix. The zoom is set & 2.19 giving a pixel size of 1.42mm. The
reconstruction is performed on a Pegasys workstation and uses Pegasys filtered back-projection with a
Butterworth filter (order: 10; cut-off: 0.17). Attenuation correction of 0.12 cmi® is achieved using the iterative
Chang method with an ellipse outline set for atypical slice. The resultant images, which were 128 transaxial slices
of 128 x 128 matrix size, are not reoriented prior to analysis.
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The image acquisition procedure at Southampton was as follows. Patients are injected, while lying down, with
500MBq “"Tc-HMPAO in aroom with subdued lighting. The acquisition is performed within 30 minutes of the
injection on a GE-SMV DTX dual-headed gamma camera, using LEUH collimators. The camera heads are rotated
through 180° using an elliptical orbit that varies between 13-18 cm among subjects and 128 planar images of 25
seconds each are acquired within a 128x128 matrix. The zoom is set at 1.33 giving a pixel size of 3.38mm. The
reconstruction is performed on a Vision workstation and uses automatic full back projection with aramp filter. The
planar images are first decay corrected but no pre-filter is used. Attenuation correction of 0.112cm” is achieved
using the iterative Chang method with an ellipse outline set for each slice. The resultant images, which were 128
transaxial slices of 128 x 128 matrix size, are not reoriented prior to analysis.

As aprecursor to combining the image sets, the effects of registration errors obtained using different registration
algorithrms were examined. A normal atlas for rCBF SPECT was constructed using images for the 50 normal
subjects in the Haslar data set. The images were registered, with one of the images as reference, using five
different algorithms: (a) optic flow affine [4,5]; (b) SPM affine [6]; (c) AIR affine [7]; and (d) SPM non-linear
normalisation (parameters as in next paragraph) [6]; and (€) AIR non-linear second-degree polynomia [7].
Following registration, they were normalised to total counts in each case. Mean and SD images were obtained for
128 transaxial slices in each case. It became apparent that, in al cases, 40 slices above the head contained no
information, while 24 dlices at the base were unreliable due to the edge of the camera being at different relative
locations. These slices were omitted post-registration, reducing the number of transaxial slices to 64. For each
registration method, the set of 64-slice images were again normalized to total counts and mean and SD images
plusthefirst ten eigenimages were obtained in each case.

Registration problems were apparent near the edge of the brain on the transaxial slices of the SD image and first
eigenimage for SPM and AIR affine and at the top of the brain for optic flow affine. Problems at the edge of the
brain were also apparent for the non-linear fits but were less pronounced. Figure 1 shows single corresponding
transaxial slices of the first eigenimage obtained using registration methods (@), (b), (c) and (d). The first
eigenvalue accounted for (a) 30.6%; (b) 32.0%; (c) 29.1%; (d) 15.0% and (€) 13.5% of the total variance in the
registered brain set. It would appear that the large values found for methods (a) to (c) are due to registration
errors and that alinear transformation is inappropriate for the construction of normal atlases of thistype.

It was therefore decided to use one of the non-linear methods to register the combined image set for the two
centres. From inspection, it was decided that the SPM non-linear normalisation (method (d)) performed best on
the Haslar image set and this method was adopted. All 74 images were registered to one normal control image
from Haslar, which was stored as a template image. Therefore, the registered images will not be registered in
Talairach atlas space. No masking ismade of the images prior to SPM registration and, since the template imageis
also one of the image set, the neurological convention (R is R) was selected. Registration involved twelve non-
linear iterations with 4x5x4 non-linear basis functions and medium regularization. The parameters for re-slicing
were 1.5mm x 1.5mm x 1.5 mm voxels (the template image was 1.42mm x 1.42mm x 1.42mm) with a bounding box of [-
95, 96] in al three dimensions (ensuring an output matrix of 128 x 128 x 128). Bi-linear interpolation was used. A 12
mm Gaussian smooth is applied to the Southampton images after registration. No smooth is applied to the Haslar
images. The images were then reduced to 64 transaxial slices, as previously described, and normalized to total
counts. Mean, SD and the first ten eigenimages were obtained.

Two atlases, constructed using registration method (d), were now available: a Haslar atlas based on 50 normal
subjects and a combined atlas based on all 74 normal subjects. A third normal atlas, based on the 24 norma
subjects from Southampton, was produced in the same way. Each atlas had a mean image, an SD image and ten
eigenimages, al with 64 transaxial dices of matrix size 128 x 128.

To test the atlases, we selected one image from each of the Haslar (female aged 51) and Southampton (male aged
50) normal image sets and also an image of an 87-year-old patient with a large CVA, obtained from archive at
Haslar and acquired and processed according to the procedure described previously for Haslar. All three images
had first been registered, count normalized and reduced to 64 transaxial slices using the same procedure as was
used for the three atlases.

3 Results
The mean images for the combined, Haslar and Southampton atlases are displayed in Figures 2a, 2c and 2d
respectively, while the first eigenimage for the combined atlas is shown in Figure 2b. This eigenimage will



represent the greatest normal variation in the image set and should contain mainly differences between the two
image sets.

The eigenval ues corresponding to the first ten eigenimages for the three atlases are shown in Table 1.

Atlas No. of Eigenvalues
studies
1 2 3 4 5 6 7 8 9 10
Combined 74 0280 | 0092 | 0051 | 0037 | 0028 | 0025 | 0021 | 0021 | 0.018 | 0.018
Haslar 50 0.150 | 0073 | 0.053 | 0041 | 0034 | 0030 | 0029 | 0028 | 0025 | 0.023
Southampton 24 0184 | 0142 | 0.0%4 | 0085 | 0054 | 0053 | 0047 | 0038 | 0034 | 0.032

It became apparent that, in all cases, the eigenvalues tend to level out after the fourth eigenvalue. For this reason
four eigenimages were used in the construction of ‘nearest normal’ images in each case. Coefficients of the
eigenimages were constrained to be within £3 times the SD for corresponding coefficients in the normal image set,
thus constraining the effect of the eigenimages.

In Figure 3, single corresponding transaxial slices are shown for the selected Haslar normal control and ‘ nearest
normal’ fits obtained from the combined atlas, the Haslar atlas and the Southampton atlas. Figures 4 and 5 show
similar configurations for the selected Southampton normal control and the abnormal Haslar patient respectively.

4 Discussion and Conclusion

From Figures 3, 4 and 5 it is seen that good ‘ nearest normal’ fits are obtained from the combined and local normal
atlases but not from the normal atlas obtained at the remote site. It is also apparent from Table 1 that combining
normal image sets from different centres does not necessarily involve the use of an increased number of
eigenimages. This suggests that the construction of composite normal atlases from anumber of centresisviable.
In this case, the images obtained from the two centres were quite different with the Southampton images
appearing much smoother than the Haslar images. It should be stated that Southampton use this smooth image
for statistical analysisonly and adifferent image for viewing, while Haslar use the same image for both purposes.

Future work will involve using SPM and Talairach atlas space to compare images from the two centres. It is also
planned to include athird centre in future analyses.
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Figure 1. Corresponding transaxial slices are shown fromthe first eigenimage obtained using, from left to right,
(a) optic flow affine registration; (b) SPM affine registration; (¢) AIR affine registration; and (d) SPM non-linear

normalization.

Figure 2. Corresponding transaxial slices are shown, from left to right, for (a) the mean image and (b) the first
eigenimage of the combined atlas, (c) the mean image of the Hadlar atlas and (d) the mean image of the
Southampton atlas.

Figure 3. Corresponding transaxial slices are shown, from left to right, for (a) the Haslar normal control; and
‘nearest normal’ fits obtained from (b) the composite atlas, (c) the Haslar atlas and (d) the Southampton atlas.

Figure 4. Corresponding transaxial slices are shown, from left to right, for (a) the Southampton normal control;
and ‘nearest normal’ fits obtained from (b) the combined atlas, (c) the Haslar atlas and (d) the Southampton atlas.

9 @

Figure 5. Corresponding transaxial slices are shown, from left to right, for (a) an abnorma Haslar patient; and
‘nearest normal’ fits obtained from (b) the combined atlas, (c) the Haslar atlas and (d) the Southampton atlas.
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Abstract.

This paperdescribesesearchexploring the problemsassociateavith interpretingregionalbloodflow measure-
mentsin the brain. We investigatea methodfor separatingrormalsfrom thosewith cerebraldiseaseswhere
the diseasds causeddy, or hasresultedin, alteredcerebralhaemodynamicsCerebralperfusionmapsaredi-
videdinto 10 vasculatterritories. The variancescaledmeanvaluesfrom eachregion areusedto determinelO
principle axes of the normaldata. We demonstratéhat normalvariability in theseaxesis large, but that our
techniques capableof detectingmeasurablg@erturbationsn cerebralhaemodynamicsilt is alsopossibleto
localisediseasegroupswith known vascularchangewithin a portionof the normalspace.

1 Introduction

Measurementf cerebrabloodflow hasimportantactualandpotentialclinical utility, particularlyin diseasesuch
as carotid stenosis stroke and Alzheimer's dementia. Dynamic T2* susceptibilitycontrastenhancedviagnetic
Resonancdmaging (DSCE-MRI) can be usedto obsene the passagef a bolusof Gd-DTFA contrastagent
throughthe brainvasculatureandhenceeffectively imagebloodflow. Fromthe contrastconcentratiorime course
of thefirst passof the bolusthroughthe brain, it is possibleto determinethe volumeandmeantime of arrival of
contrastagentin avoxel [1]. Corventionalapproache® perfusionmeasuremertiasedupondecorvolution of the
signalfrom a voxel by somearterialinput function (eg, [2] [3]) make too mary invalid assumptionsgo provide
meaningfulestimatesof blood flow [4]. We have previously shown [5], usingthe idea of bolustracking, that
parametridmagemapsof CerebralBlood Volume (CBV) andTime to Mean(TTM) canbe usedto calculatethe
Net CerebraBlood Flow (NCBF) acrossavoxel. Netflow is implicitly assumedo benegligible in methodologies
basedipondecorvolution,althoughwe believeit to dominateatthemillimetreimagingscaleof MRI. Thesuccess
of our approachfundamentallyreliesuponthe ability to obtainnearisotropicvoxel dimensionsn orderthatthe
velocitycomponenbf flow canbecomputedrom TTM mapsusingspatialdifferentiation.Thistechniqueprovides
a uniqueopportunityto determinedirectionalestimatesf blood flow at all locationsin brain tissue. Suchdata
providesgreatpotentialfor the analysisof blood flow in disease.Althoughthis is a novel techniquejn [1] we
demonstrateéhat normal dataagreeswith both a physiologicalmodeland flow valuesderived using alternatve
techniques However, regardlesof the physiologicalmeaningof thesemeasuresthe true value of the technique
canonly befoundby testingits diagnosticpower.

This paperdescribesaninvestigatiorinto the utility of usingour measuresf bloodflow in separatinghormaland
diseaseggroups. To demonstratesuchutility, we mustfulfill two criteria. First, thatwe canquantify changein
normalsabove andbeyondthatof normalvariationandmeasuremerdccurag. Secondlythatnormalanddisease
groupswith known cerebralvascularabnormalitieswill separatén the measuremengpace.If thesecriteriaare
met,themethodcanbe appliedto dataset$n orderto confirmor disputehypothesesf vascularabnormality The
approactwe havetakenis to dividetheNCBFandTTM imagemapsinto vasculaterritories[6]. We haverestricted
oursehesto one planeof datathroughthe brain at an anatomicallevel at which it is relatively straightfavard
to identify vascularterritories. Correlationsbetweenthe flow valuesfor eachregion areidentified by Principle
ComponentsAnalysis (PCA), giving us the major modesof variation of the data;a spacein which normaland
diseasgyroupsareexpectedo separate.

2 Methods

Subject data: Tablel outlinesthe groupsof subjectdata,choserto illustratethe utility of ourtechnique As well

asthe normalgroups,we have a groupof patientswith carotidstenosegall had> 70% occlusionin atleastone
carotidartery),whowereimagedeforeandafteracarotidendarterectomgaproceduralesignedo improve blood
flow in arteries)in orderto investigatewhetherwe canquantify a changen flow dueto the intervention. Patients
with Alzheimer's dementiatypically shov hypoperfusiorof partsof the temporaland parietallobes[7], so this
groupshouldseparatdrom the normalgroups.Finally, we have a groupof patientswith amnestianild cognitive
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Table 1. Subjectgroups,numbersmeanageandranges LACAT RACAT

SubjectGroup  Number MeanAge Std.Dev  Range \T‘"‘L{RAWT
Normal 60 73.05 5.81 61-87 , RMCAT
MemoryPoor 34 73.24 5.23 63-85 T A
Alzheimer's 9 61.56 6.15 54-72
CarotidStenosis 5 70.60 - 63-80

Figure 1. The vascularterritories overlaid on a T2* map. L/R =
Left/Right, AAIM/PCAT = Anterior/Middle/PosterioiCerebralArterial
Territories, A/IPWT = Anterior/PosterioMWatershedrerritories

impairment8] (“memorypoor”), apossibleprecursoto Alzheimer’s, for whichthereis atentatve hypothesighat
theremaybeanunderlyingvasculaicausg9]. All subjectainderwena PREST [10] scan(TR=28ms,TE=20ms,
FA=10°, voxel size=1.79x 1.79x 3.5mm).

Vascular Territories: As we areinterestedn detectingocalisedvasculainbalancesn bloodflow, it is expedient
to divide the brain into vascularterritoriesbasedon the supply of blood to theseregions. We have devised a
methodfor separatinghebrain,atthelevel of the upperborderof thethird ventricleinto 10 classicallydefined[6]

vasculatterritories.Arterial regionsarethosedirectly senedby theanterior middleandposteriorcerebrakrteries
(obsenrersleft andright); the watershedegions (anteriorand posterior)arethosein between. An active shape
modeldefiningcontrolpointsis fitted to arepresentatie T2* imageusingalinearaffine transformandtheregions
aredefinedaccordingto thesepoints(fig. 1). The vascularterritoriesare overlaid on the mapsof interest(the
log(NCBF)or TTM maps)andthemeanandstandarcerrorof thepixel valuesin eachof the 10 regionscalculated.

Standardising the data: The distribution of NCBF valuesis highly skewed dueto the few high flow andmary
low flow vesseldn aslice. A logarithmictransformis thereforeappliedto the datain orderto make the distri-
bution conformmorecloselyto a Gaussiardistribution. The TTM mapdistributionsdo approximatea Gaussian
distribution, andthe numbersagainareabsolutebut the datahasno fixed origin dueto variationsbetweersubjects
in injection time andbolus passageIn orderto compareregions betweensubjectswe subtractthe meanpixel
valuefor the whole slice sothatthe distribution of valuesis centredaroundzero. Note thatwhenlooking at dis-
easegroups,global delaysaffecting the whole slice equallywill not be detected.For eachsubjectandmaptype
(ie, log(NCBF)or TTM), we have two 10D vectors;onecontainingthe meanvaluesfor the 10 regions,the other
containingthe standarcerror on the meanof eachregion. PCA requireshomogenousneasuremergrrorsacross
the input vectorspace soin orderto comparethe meanpixel valuesof the differentregionsusing PCA, all the
regional valuesneedto have the samestatisticalscaling;ie, all the regionsshouldhave unit variance.To obtain
the scalefactors,we take the averageof the regional standarcerrorsover all of the normaldata. Becauseof the
hemisphericymmetryof the data,we canaveragethe scalefactorsfor theleft andright regionsandusethe same
weightsfor both left andright regions. Thereis no reasonto believe thatthereshouldbe arny differencein the
ability to accuratelymeasureéhe meanbetweertheleft andright regionsof the brain. Herewe useonly thenormal
datato createthe scalefactors.

To transformthe datainto a form suitablefor PCA, we producea Covariancematrix of the scaleddatafor the
Normalsubjects.The Covariancematrix allows usto quantifythe correlationsn flow betweenrall of thevascular

Table 2. CorrelationMatrix for weightedNormal NCBF data.Bold indicatesvaluesreferencedn text
Regions RACAT RAWT RMCAT RPWT RPCAT LPCAT LPWT LMCAT LAWT LACAT
RACAT 1.0 - - - - - - - - -
RAWT 0.72 1.0 - - - - - - - -
RMCAT 0.53 0.59 1.0 - - - - - - -
RPWT 0.23 0.57 0.50 1.0 - - - - - -
RPCAT 0.46 0.57 0.63 0.42 1.0 - - - - -
LPCAT 0.48 0.57 0.71 0.54 0.69 1.0 - - - -
LPWT 0.33 0.39 0.44 0.61 0.49 0.63 1.0 - - -
LMCAT 0.60 0.61 0.78 0.61 0.65 0.70 0.54 1.0 - -
LAWT 0.60 0.88 0.63 0.62 0.63 0.62 0.37 0.75 1.0 -
LACAT 0.56 0.76 0.62 0.46 0.56 0.49 0.28 0.66 0.77 1.0
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Figure 2. Plot of datain 1stand2ndeigervectorspaceor log(NCBF)andTTM data,e = hormals,c = carotid
stenosislinesindicatedirectionof movementafterwideningof arteriesthick endof line indicatespost-operatie,
O = Alzheimer's,+ = memorypoor

regions(seetable?). Thegreatestorrelationsareseerbetweertheleft andright anteriorwatershederritoriesand
theleft andright middle cerebralarterialterritories. The factthatthereis goodagreemenbetweensymmetrical
regionsis acorollaryof thefactthatthe physiologicalprocesseswolvedin NCBF formationaresymmetric.There
is alsoa high correlationbetweerthe left anteriorwatershederritory andboth adjacentegions(the left anterior
and middle cerebralarterial territories). This may be dueto the fact that both of the left middle and anterior
cerebralarteries(indirectly) feedthe watershedegion, but may alsobe dueto a misplacemenof the boundaries
betweertheseregions. With 10 regions,thereis areasonablehancehatarny oneregionwill behighly correlated
with another However, the factthatthe greatestorrelationsoccurbetweensymmetricalterritories,wherethere
is no confoundingboundarybetweenthem, and that thesecorrelationsare an averageover the whole training
setsuggestshatthe correlationsrepresenthe true physiology SingularValue DecompositionSVD) is usedto
performPCA onthe Covariancematrix andgivesus 10 eigervectorsandcorrespondingigervalues.

3 Reaults

We transformall of the datainto the eigervectorspace. The first two principle axes (eigervectors)accountfor
thegreatestariationin the normaldata.Resultsfor thelog(NCBF)andTTM datain thetransformecdeigervector
spaceor all subjectgroupsareshavn in figures2aand?2b.

For the carotidstenosipatientslinkedby linespre-andpost-operatiely in thefigures)therearesignificantmea-
surablechangegpost-operatiely in bothlog(NCBF)andTTM for mostpatients bearingin mind the eigervector
axesrepresenthe standarderror space. The direction of changeis unimportanthere,the main point is that a
perturbationn the cerebrablood supplyhasproduceda measurablehange We would not necessarilyexpectall
patientsto respondin the samemanner particularly after sucha major operation. Examinationof the normals,
memorypoorandAlzheimer's subjectdn thefirst two component®f eigervectorspacefor boththe log(NCBF)
andTTM shows thatthe datais dominatedoy normalvariation,andthatthereis no clearseparatiorbetweerary
of thegroups.Distributionsof datain theremainingcomponent®f eigervectorspacearesimilar andnot reported
here.Despitethelack of separationthe Alzheimer's patientsdo form adistinctclusteratthe edgeof theboundary
of the normalsubjectsn the log(NCBF) caseand have a significantly differentmean(at the p=0.05significance
level) from the normalsin the 1steigervectorspacgp=0.014).Alzheimer’sdementisappears$o have asystematic
vascularcomponent.The Alzheimer's groupis youngerthanthe othergroupsbut thereis no evidenceto suggest
thatwhatwe areseeingis purely anage-relateaffect, asthey do notdirectly correlatewith similar age-matched
normals. Thereappeardo be no differencebetweerthe normalsand memorypoor subjectgp=0.84andp=0.58
for 1stand2ndeigervectors).

The mechanism®f the diseaseslsoallows us to hypothesizeon the utility of the technique. Carotid stenosis
patientshave animpedimentto flow in oneor moreof the majorbrainfeedingarteries.We would expectregions
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suppliedby thesearteriesto be fed slightly later than unimpededregions, either becausehe occlusionslowvs

the blood, or becausehe region is fed by collateralflow. An occlusionwould thereforecausea large change
in the TTM acrossthe brain. Widening of the arterieswould resultin a returnto normal TTM values. This is

indeedshown in fig. 1(b). By contrastjn termsof vasculadiseaseAlzheimer’s dementias atthe microvascular
level [11], wherewe expectto seelocalisedchangesn flow, ratherthana consistenglterationin TTM. Again,

thisis seenin 1(a);thereis a consistentrendin thelog(NCBF) caseandthe Alzheimer's patientsshov no change
from normalityin the TTM case(p=0.13andp=0.55for 1stand2ndeigervectors).

4 Conclusions

This paperdescribes preliminarystudyin theanalysisof regionalnetflow variablesfrom dynamicsusceptibility
contrastenhancedRI. Having takenappropriateaccounbof statisticalvariability in our data,theresultsfrom the
normalsand carotid stenosigatientssuggesthat thereare significant,measurablelifferenceswithin the normal
group.Subjectswith Alzheimer’sdementiehave grouplevel variationswhich causea systematishift in thegroup
distribution with respecto the normalgroupbut do not causechange®utsidethe normalobsenablerange.This
is an importantfinding asit suggestghat it might not be physiologicallypossibleto exist outsidenormal flow
boundariesand thereforewe would never expectto seea clear separatiorin the log(NCBF) eigervectorspace
betweemormalanddiseas@roups.Thistechniqueasit standds unableto separateliseasegroupsfrom anormal
group. However, we have successfullylocalisedthe Alzheimer’s patientsto a portion of the normal space. In
termsof thememorypoorindividuals,they overlapthe normalgroupwell anddo notlocalisein the samemanner
asthe Alzheimers patients,so we cannotconfirmthe role of a vascularcomponenin this disorder The utility
of the differentflow maps(log(NCBF) or TTM) is dependenuponthe diseasainderinvestigation. TTM image
mapsaremorelikely to be usefulwhenlooking at macrosasculardiseaselog(NCBF) mapswill be moreuseful
for small-vesseldisease Although regionalmeasurementsf netflow shav promisethereare mary areaswhich
still requireattention.In particular the large degreeof variability of flow patterngn normalscouldbein partdue
to aninability to enforceanequialentphysiologicalstatebetweernindividualswhenscanningn future work we
intendto investigatenorerigorouscontrolstratgiesbeforeandduringacquisition.In addition,althoughthis work
setsabenchmarkor whatwe cancurrentlyachiese, thereis still muchto be donewith regardto analysisof whole
volumesof dataandalsoalternative analysistechniquegincluding non-linearmethods)for the identificationof
correlatedchangedetweergroups.Both of theseissuesarenow areaof ongoingresearch.
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1 Intr oduction

Currentlythefinal output of DiffusionTensoMRI is the calculationof fibretracts( [1,2]). Thetractsaresupmsed
to be afair representationof axonalconrectionsin the brain. Here,we usethe phrase’final output’ in the sense
thatnothingfurtheris extractedout of thefibres,andthey areusuallysimply displayedleadingto the criticismthat
their clinical useis limited. Clinically, theanisotrofes of thetensorscanbe displayedusinga colou schemebut
thisinformationis justatthevoxd level, andnotabouthow voxelsareconrected 3]. We praposehereaparticular
useof mathematicatools from the geoméry of curves. Theseallow statement$o be madeabou the shapeof
cunes thatareindependent of their spatialposition thusby definition abou the shapespaceof the curves. Future
applications might include the quariification of normd andabnamal shapesthe classificationof differentfibre
tracts,the chaacterisatiorof tractsthat passcloseto eachotherandidentificationof functionally similar brain
regions by examinirg the end points of tractswith similar shapes.We candefinea norm on the setof shapes
of curves,andthuswe have the necessaryngredientsfor statistics. We note that Bassetasalreadymentiored
usingcurwve invariantsin [4], andthey have beenusedimplicitly to stopfibreswhenthey becane abnomal [2].
Furthemore, Ding et al. have recentlypropseda methal to groupfibresby bundles, andrepat cunatureand
torsionvalues[5]. Here, however, we make a more systematicuseof theseinvariants. We propcse that using
the fundamentaltheaem of the geornretry of spacecurvesis a more rigorousway to classify curves into bundes
of similar shapes.By factoing out irrelevant paraméers suchas spatiallocationandglobal scale,we areable
to definea shapespacefor fibre tracts. Thesetoolswill allow intersulject compaison of individual curves. We
alsoexterd thegeanetryto therelative spatialconfiguationsof curves,describingor examge how spatialcurves
wind arownd eachother usingquantititiesik e theLink, andthe Writhe of a pair of curves. Someof thetechniqes
areinspiredfrom DNA andpolymer folding analyse$6-8]. We constriet simulationsdemanstratingthe methal,
andapplythis methal to in vivo datasets.

2 Method

MR diffusiondataon two healthyvolunteerswereacquiedusinga 1.5T Siemens/ision systemon two separate
occasios. The scansconsistedbf a multi-slice (60 contiguousslices)diffusion-weighed sequencavith 20 uni-
formly distributeddirections (humberof averages=1)and3 nordiffusion-weighedimages( [9]). Theacquisition
wasperfamedtwice on onevoluntee, resultingin threedatasetsabeledal anda2for the samevoluntee, andb
for theothervoluntee.

Fibertrackirg wasperfamedusinga streamling algorithm( [1, 10]). Fibretractsaremathematiclly descriledas
non<losedspatialcunes,writtenc : [0, L] — R® whereL is thelengh of thecurwe. If thecuneis repararetrised
by arc-lengh [, thenthe derivative with respecto [, ¢(1) =: T(l) is a constantspeed with |T'(l)| = 1. From
this it follows thatthe accelerationx(l)N(I) := ¢(I) is perpewicular to the speedvector In this paranetri-
sation, the magnitue of the acceleratioris the cunaturex(l) andits directin is N(I). The binormal vector
B(l) = T(l) x N(I) complets a right hande trihedon, the Frenetframe[11]. The variationof this frameis
entirely descrited by the curvature,andanotter quartity, thetorsionr(s) of the curve. As eachof T', N, B are
normal, their derivative is perpadicularto their own direction for exampe asB = T x N, B = T x N is always
perpadicularto T, thusparallelto N, andthe coeficient BN =: 7 is thetorsion. The cunature describe how
mucha curve turnsinside the planeof its speedand accelerationthe torsionthe speedat which it getsout of
this plane. The curvatureandtorsioncanbe shovn to be indepgendentof the parametrisatios, i.e. depemw only
on the shapeof the curve. The fundamentaltheoremof spacecurvestheoryis thatthe recipracal holds: given
particula curvature andtorsionfunctions,thereis, upto rigid motion,only onecurve with the samecunatureand
torsion. This curve canberecorstructedby integrationof the Frenet-Seet equatims[11]. Thistheoemprovides
uswith a comgete tool to classify shapef fibre tracts. We definethe shapeof a curve asanequialenceclass
of curvesuncer the equivalenceof rigid body motions, anddende the shapeof cune ¢ by [¢]. Thefundamenth
*P. G. Batchelor(EPSRGOGrantno GR/N048&) D. Atkinson,(EPSRCFellowshipAF/001381)andD. L. G. Hill areatthelmagingSciences
Division, King’s College, Guy’'s Campusondon SE19RT, F. Calamante D. Tournier R. Blyth andA. Conndly areat the Radiobgy and
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tool to classifyobjectsis to have adistancdundion ontheseobjects,andthetheoremallows usto do exactly that:
ary distanceon a pair of functions will generatea distanceon shapes.The simplest,and most straightbrward
is the L2 nom d([c1], [c2]) = (fo |k1(8) — ka(s)]? + |1(s) — 2(s)]?) ds)l/2 whete the cunesarescaledto
unit length Having a distancefunction on shapeswe candefinethe meanshapeof a set[cy] .. .[c,] astheone
minimisingthe sumof squaeddistanceso thec;s (oneof the possibledefinitiors of the mear). Doingthiswe get
ameancunatureandtorsion whichwe canintegrateto getarepresetationof themeanshape For a setof curves
¢, ..., cp, We definethe meanshapeasthe onecorrespondig to & = > k;/n, 7 = >, 7;/n wherex; andr; are
the cunaturesof thec; (scaledo a unitlength,usinge;/I;). Thischoiceof meanis somavhatarbitrary but using
it consistentlyis sufiicient for our applicatio. In this way, we obtainstatisticson the setof shapeswithou the
difficulty of registration, andfor exampe, cananalyseandcompare corresponthg fibresacrossndividuals, (see
theexanplesin Fig. 1). We couldthenfor exanple group curnestogetter by thresholihg ontheir shapedistance.
Bundlesof CurvesAnother aspecbf interestfor mutliple fibres,is how theirgeoméry interacts.In threedimen-
sions,thegeonetricalinteraction betweercunesis relatively comgicated,asonecurve cantwist, or wraparourd
anotter. We propase heretoolsfor the quantification of sucha relation. For two curves ¢, andc,y, we consider
configurations,i.e. pairs[cy, c2] equivalentunderrigid body motion. TheLink of apairis definedas

Lk([e1, c2]) // ) X ch(o )*|C1(())—_cc; |3d = / / Lioc(c1(8), ca(0)) dsdodo

(the prime meansderivative with respecto the paraneters, which is notrequired hereto be arc-lergth) andthe
Writhe of a curve shapeis definedasWr([c]) = Lk([c, c]). Theseareusedin molecularbiology to studyDNA
ribbonsandpolymershapg6-8,12]. Theseguantitiesareagainrigid bodyinvariants.

Computation In practice the computationis dore by fitting cubic splinesandresamplingat 100 (which makes
comprisonsmorepractical)pointsthrough every setof curve points. The derivativesarecomputedby symbolic
differentiationof the splinecurves. Thetorsioninvolvesthird derivatives,andFig. 1 suggestshatfor exanple a
medianfiltering of the torsionimprove robustnesgalthowh the recorstructedcurve doesnot seemto have been
affected. Theintegratim is straightbrward summation

3 Results

As afirst exanple, weillustratehow we canreconstrat ameanshapewithoutregistration We startwith thecurve
in Fig. 1 &), with cunaturel + sin(t) for ¢ in [0, 2], andconstahtorsion.We constrt artificial pertubationsby
creating50 copes of the curve, by randbmrigid bodytransfornationandadditionof a pertubation seeFig. 1 b).
Fromthesewe computetheaveragecunatureandtorsion(Figs. 1c,e)andusingthesewe canreconstrat a curve
similarto theoriginal (Fig. 1 f) by integrationof the Frenet-Seet equatioss.

Curve Classification We thusdefinea shapespaceof curves, andclassify curve shapesisingthis spacewith
its metric. Shape®f interestcouldbe,amory others—straightlines (x = 0,7 = 0), —circuar lines(x =corst,
7 = 0, —helicoidallines(x andr corst),—'U’-shapedcurves(x piecaviseconstant; = 0). Seefor exanplethe
tractsin [13], asexanplesof shape®f clinical tracts.

The corticespinalfibre tracts(CST) werecompued for eachdataseusinga streamlinesalgoithm startingfrom
similar seedregions (al: 53 tracks,a2: 15 tracks,b: 10 tracks). Note that no registrationwas requred, and
thatthe nunber of tractsin eachbunde weredifferent. The computedshapedistancedetweermean shapesre
d(al,b) = 17.3016, d(a2,b) = 15.4497, d(a2,al) = 10.7459. SeeFig. 2 for plotsof the curvaturesandtorsiors
of themeanshapes.

We alsotracked the cross-pntinefibres (CPF),and compued the link betweena pair of fibresin the CST, and
betweenonefibre in the CST andonein the CPF (see2 c) andd)). The CSTFCST link was-0.0378, while the
CSTCPFonewas0.501.

4 Discussion

We have demastratedechnigeesthat might be usedfor the classificationrandcomparisonof fibre shapespr in
summay, ashapespaceof fibre tracks.With theseoolsonecan,for examge, usecurvatureandtorsionto quartify
fibre geonetry. We have alsointroduceda methdal to studytherelative shape®f multiple fibres,andin particular
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Figure 1. Constructionof meancurve andtorsionwithou registration. a) Original curve, b) the original curve
spatially transfomed and pertubed, c) the original curvature (with meancunature overlaid) d) the cunatures
of the cunesin b), e) the origind torsion,with meantorsionoverlaid f) the curve reconstrated from the mean
cunatureandtorsionby integration of the Frenetequatios. Horizontal axis nomalisedfor cunatureandtorsion
plots. Notethatthejumpin the estimatedorsionis likely to bedueto finite differenceestimationf derivatives.

to quantify their spatialrelationslip usingthelink. Oneperhgsunexpecteduseof thesetechniaiesis to goin the

reversedirection givenafibre ¢; in brainl andthe“closest”fibre ¢, in brain2, we candefinea corresponénce
betweenthe end-ints, andthis is withou registratian. This correspaderte is basedon anatomial features.

Theadvartageover aregistrationbasedechniqieis thatwith registratian, we canfor examge matchtwo starting
points, but thenthe fibres startingat thesepoints are unlikely to endin correspaderce. The integrdion of the

Frenet-Saetequatims seems particulaty natual way of normalisingshapegseethatusedin [5]).

Brainfibre tractsareclinically tangble objeds, andary statemenabaut their shapds directly clinically relevant.
All themeasuresve arecalculatingcanbe usedasa quantitatve measurdo decice if sometlng is similarto other
casepr differentfrom anormd, or comparetwo grouys (patiers with a givenpathol@y andcortrols), or classify
variowstracks etc. Currently mostof thestudiesdoit by looking atthegeneratedibresanddecidng if they "look”
normal or abnornal. Onecouldusethesemeasure definewhatis normd, andthentestif somethiig is abnomal.
Furthemore,onecouldspeculatanotter poternial clinical use:for a given pathdogy onecouldseeif ary of these
measuress a goad marker or predicta of the severity of the abnornality. For exanple, in anideal situation,the
Link of two fibre bundlescouldbehighly relatedto thesevelity or outcaneof anabnamality associatevith those
fibres,or to a given neurgsychdogical test(IQ, languag, etc) of a function associatedvith thosefibres. In that
(ideal)case pnecouldusethe Link for patientmanagment.For examge, therearea nunberof epilepsystudies
thathave demastratedocal abnomalitiesin eitherADC(av) or FA in individualsvs. cortrols, andin mary cases
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Figure 2. a) Cunatues,b) Torsionof the corticospnal tractsfor the dataset®1,a2,andb. c) oneof thesetracts
shawn relativiey to the FA mapd) the corticaspinaltracts(CST), “link ed” with the cross-patinefibres(CPF).The
colormap correspadsto the cunatureof thefibres.

theseabnamalitieswerenot detectake by visual assessmentAlso, a nunber of neurgsycholgy studieshave
beenundetaken,andhave shavn correlatiomsbetweerFA ande.g.indicatass of languae function in regions that
appeamormal visually. If ary equivalentanalysesvereto be uncertalenwith respecto tract orientationrather
thanthedegreeof anisotroy, we would requre someparametethatcharactasesthespatialpropetiesof thefibre
(particdarly sinceexcept in grosscasesit would be highly unlikely thatany changsin tract pathways would be
discernilte visually). Arguably that requrementwould be fulfilled by the methoalogy that we have propcsed,
andwithout the needfor the spatialnormalisationrequiredfor the FA studies.
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Abstract. This paper describes a system to automatically register temporal retinal images. The aim was to
register two retinal images of the same region at different times in order to to measure changes potentially
associated with diabetic retinopathy (DR). The method used landmarks automatically detected from the blood
vessel structure. The curvature of the retina was taken into account by applying thin-plate splines algorithm to
the images. Subtraction of the two registered images reveals changes between them. Results of the application
of the system to a set of pairs selected from a diabetic retinopathy screening program are presented. Evaluation
of the system was achieved using visual inspection by an experienced clinician and by the error measured
against manually selected anatomical landmarks.

1 Introduction

Registration of two images requires an interpolation function that maps one image into the other. Applied to
retinal images, the curvature of the retina generates a complexity in finding a good interpolation. Temporal retinal
registration would allow a direct comparison of pixels in order to detect pathological changes. Diabetic retinopathy
(DR) is the most common cause of blindness in the working age population of the developed world, treatment is
available if the condition is detected in the early stages [1]. The aim of screening is to detect pathological lesions
that appear on the retina during a pre-symptomatic stage of the disease. Temporal retinal registration would allow
to track the development of the disease. The aim was to evaluate the progression of diabetic retinopathy in the eye.

An algorithm for temporal registration or retinal images was proposed by Zana et al [2], using a Bayesian Hough
transform based on point correspondence. Can et al [3] presented a hierarchical algorithm to construct a mosaic
from images of the retina, comprising translation, affine and quadratic approximations and using landmarks be-
longing to the blood vessel structure. Matsopoulos et al [4] presented a method for automatic retinal registration,
using Genetic Algorithms with an affine or bilinear interpolation. Besl et al [5] proposed a method to register
3-D shapes based on the iterative closest point algorithm. Bookstein [6] developed a thin-plate spline algorithm
to model curved surfaces, using a non-linear function to interpolate two sets of point-correspondence landmarks
modelled by a warp surface. A method for mosaicing two retinal images has been reported previously [7]. The
method used two images of the same eye taken at a single examination, one macular and one nasal view, and
merged them. A linear interpolation method was followed by a non-linear interpolation algorithm. Manual selec-
tion of landmarks was required. The use of thin-plate splines [6] applied to model the deformity of the retina and
a final weighted average of the two combined images demonstrated accurate registrations.

This paper presents an automatic method for temporal retinal registration. The method is based on the mosaic
retinal images method previously presented [7] applied for temporal registration. In addition, the method automat-
ically detects a set of landmarks from both blood vessel structures of the image pair, with no previous knowledge of
any correspondence between them. The landmarks are initially detected from the bifurcations of the blood vessel
structure, and along all the vasculature structure after linear approximation. When the registration is complete, the
final registered images are then combined and subtracted. The importance of the subtracted result is to evaluate
the potential differences between the images taken at different times.

2 Method

The images used in this work comprised pairs of fundus images of the same region of the eye, 45° macular centred
field of view, captured at different times. One image of the pair, the object image, is geometrically transformed to
map onto the other image, the reference image.

* Author for correspondence, anna.sabate{james.boyce} @kcl.ac.uk
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The images were first pre-processed to equalise contrast and illumination levels [8]. The main elements of the
retina were detected, the optic disc [9] and the blood vessel structure [10], being significant features to be used for
the registration technique. The blood vessel structure was then thinned to a width of one pixel by a skeletonization
algorithm [11]. Landmark points belonging to the bifurcations of the blood vessels were automatically detected by
using the skeletonized vasculature structure and a set of rules was established to reduce the number to select valid
points, producing two sets of landmark points per image pair. The size of each of the two landmark points set per
pair may be different, as no prior knowledge of any existing correspondence between the landmarks was assumed.

The registration method consisted of a Euclidean interpolation followed by a non-linear interpolation. An affine
transformation may be decomposed into components of translation, rotation, magnification and shear. Previous
observations led to reducing the affine transformation to components of translation and rotation, as there was
no significant change in magnification or shear [7], yielding a Euclidean transformation. As translation may be
significant, this first transformation was necessary in order to achieve the next stage of corresponding points search.
A point-correspondence search was performed based on closest distance. A correlation was then applied to further
validate the correspondences between the two sets of landmark points.

In order to increase the number of corresponding landmark points a further search was performed through the
skeleton of the vasculature structure using cross-correlation applied to a small window around potential landmark
correspondences. A threshold correlation value and a parameter based on the distances between any existing
landmark points were used to select new corresponding points. Given these two larger corresponding landmark
sets, a non-linear algorithm, thin-plate splines [6], was used to interpolate the two landmark sets and then applied
to the object image. This algorithm was able to model the curvature of the retina, and thereby produce a good
registration result which minimises the error, the Euclidean distance between corresponding landmarks.

The different parameter sets used to refine the initial landmark points and to increase the number of corresponding
points in the registration method as described above produced four solutions per image pair. A performance
measure based on the maximum number of pixels in the overlapping area of the two blood vessel structures of the
registered images was used to select the optimum of the four solutions. The images were then combined in order to
visually assess the accuracy of the overlapping area. In addition, the images were subtracted to display and further
analyse potential changes between the two images.

3 Evaluation

The images used in this work were acquired using a Topcon TRC-NW5S non-mydriatic digital fundus camera,
producing RGB colour images of 570 x 570 pixels, covering a 45° centred macular field of view and saved in
JPEG format. Image pairs comprised the same region of the eye taken at different times. Nineteen pairs were
randomly selected for this experiment.

In order to assess the performance of the system, validation techniques suggested by Woods [12] were used.
The validation and evaluation of the system consisted of measuring the performance of the landmarks and the
final registered images. The registered images were evaluated by visual inspection [12] by an expert clinician.
The performance of the registration method was measured by evaluation against anatomical landmarks manually
selected by an experienced technician [12]. Visual inspection consisted of visually analysing the registered images,
concentrating on the accuracy of the matching of the vessel structure in the overlapping area. Each pair registered
was considered as approved or rejected. The evaluation against anatomically corresponding landmarks consisted
of measuring the error, the mean of all the Euclidean distances between the corresponding landmarks of each
pair of registered images. The error was calculated by initially selecting corresponding anatomical landmarks and
applying the previously calculated registration interpolation function to the corresponding landmarks. These two
error measures enabled us to assess the performance of the registration.

4 Results

The visual inspection undertaken on the overlapping area of the registered images resulted in seventeen out of
nineteen pairs being successfully registered and two presenting an unsuccessful registration, producing a 89.5%
success rate. One unsuccessful image pair was of a very poor quality and presented a very small area of blood
vessels due to cataract in the eye, therefore the small number of landmarks detected was not suficient for the
registration process. The other image pair presented a good registration over the entire image, except on the top



edge area, due to a small mismatch between the two vessel structures. This may be explained by the proximity to
the edge of the image. Consequently, the warping applied to the registered image presented an artifact due to an
erroneous deformation. Translation was considerable in some cases and minor in others, and rotation improved
the previous interpolation before warping by thin-plate splines. The number of the automatically detected land-
marks throughout the different stages of the process, the mean of the total calculated, is as follows. The initial
automatically detected number of landmarks was 105.9, ranging from 3 to 196. After pre-processing, the number
of landmarks was reduced to 45.2, ranging from 3 to 78. After the first linear approximation followed by the cor-
responding anatomical landmarks search, the number increased to 143.5, ranging from 36 to 193, these were used
for the final warping interpolation. One of the unsuccessful registration pairs, that with a very small area of blood
vessels, was the only case with the minimum number of landmarks detected. The other cases followed a normal
distribution.

Results of the evaluation against anatomical landmarks manually selected by an expert technician are as follows.
The error of the manually selected anatomical corresponding landmarks measured before and after registration
interpolation are shown in Table 1, where the results are the mean of all distances per pair. The number of corre-
sponding landmarks selected manually was 15 per image pair. The mean of the initial error was 31.2 pixels and
the median was 9.4 pixels, with a minimum of 2.5 pixels and a maximum of 103.5 pixels. This was due to a big
initial translation between the image pair, even though the area and field had been set by the photographer to be
the same. After the interpolation results were calculated for the corresponding anatomical landmarks: the mean of
the error measured was 1.7 pixels and the median 1.3 pixels, with a minimum of 0.87 pixels and a maximum of
7.6 pixels. Four pairs had an error lower than one pixel, thirteen pairs had an error lower than two pixels, and the
two highest errors of 7.6 and 3.6 pixels correspond to the two cases where the registration was visually classified
as being unsuccessful. Therefore, we considered a good registration to be those cases with an error under 2 pixels,
obtaining a success rate of 89.5%. Subsequently, both methods of evaluation, visual inspection by a clinician and
evaluation of landmarks chosen by an expert technician, led to the same success rate of 89.5%. Figure 1(a)-1(f)
shows an example of temporal registration. The final overlapping area and image after subtraction are also shown.

| Imagepair [ 1 | 2 | 3 [ 4 [5]6 ] 7 [ 8] 9 | 10 ]
Error Initial || 2.57 | 10.3 | 103.54 | 7.71 | 89 | 9.26 | 48.35 | 87.9 | 95.06 | 10.27
measure | Final || 1.44 | 0.98 1.52 134 119|164 | 765 131 1.35 1.02

| Imagepair || 11 [ 12 | 13 | 14 | 15 [ 16 | 17 | 18 [ 19 |
Error Initial || 4.82 | 8.87 | 13.19 | 7.94 | 578 | 7.0 | 9.43 | 76.02 | 75.76
measure | Final || 094 | 1.26 | 3.68 | 1.13 | 1.19 | 0.92 | 1.25 | 0.87 1.37

Table 1. Error measured using anatomical manually selected corresponding landmarks: Initially detected, Final
(after the application of registration)

5 Discussion

An automatic system to accurately register temporal retinal images has been presented. The method was tested
with a data set from an existing diabetic retinopathy screening program, resulting in a successful registration
rate of 89.5%. The method consisted of a Euclidean interpolation followed by a non-linear approximation. The
method is landmark-dependent. Landmark points are automatically detected throughout the different stages of
the process. The first Euclidean interpolation was necessary in order to obtain corresponding landmarks for a
non-linear approximation.

The evaluation of the method was undertaken by visual inspection by an experienced clinician and against corre-
sponding anatomical landmarks manually selected by an experienced technician. The use of the iterative closest
point algorithm [5] could be effective on the application on retinal images. Further experiments on a larger data
set should increase the consistency of the system. Further analysis on the subtracted images would quantify the
changes potentially associated with diabetic retinopathy, and therefore assist in the early detection of significant
pathology.
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(a) original first visitimage (b) original second visit image

(d) pre-processed first visitimage (e) pre-processed second visit image (f) subtracted registered images

gure 1. Example of temporal registration: (a) Original first visit, (b) Original second visit, (d) Pre-processed
st visit image, (e) Pre-processed second visit image, (c) Combined registered images, (f) Subtracted registered
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Delineation of the prostate capsulein 3D-Trans Rectal Ultrasound
Images using image registration.
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Abstract: Detection of the penetration of the prostate capsule by prostate cancer is an important step in
staging and managing this disease.  Although the capsule cannot be directly visualised on 3D ultrasound
images it is usually adjacent to a fat layer which becomes echolucent when penetrated by disease. Automatic
detection of such regions requires firstly that the prostate boundary is automatically delineated. In this work
this is done by defining a reference image and marking out the prostate boundary manually on this image.
Patient images are then mapped to the reference and the inverse mapping used to map the reference boundary
on to the patient image. The accuracy of this approach is evaluated by comparing subsections of the
automatically generated boundary with equivalent manually defined boundary subsets generated on a small
set of patient data. The median success factors, a measure of the overlap between automatic and manually
defined boundaries, over 6 patients was 0.96 and the average linear displacement between the boundaries of
the automatic and manual regions was 1.05 in units of pixel dimensions.

1 Introduction

Prostate cancer is a major public health issue. It is the second leading cause of male cancer death both in the
USA and in Europe. Radical prostatectomy is a recognised and well-established treatment option for localised
disease. Accurate staging is critical to the management of patients with prostate cancer. While prostatectomy is
an appropriate procedure for patients in whom the disease is contained completely within the prostate capsule, it
is ineffective for patients where disease has penetrated the capsule. Identification of penetration is therefore
critical for effective management of the patient.. Current methods used for local staging include digital rectal
examination, serum prostate specific antigen (PSA), Trans-Rectal Ultrasound (TRUS) with image guided biopsy,
and endorectal magnetic resonance imaging (MRI). Trans-rectal ultrasound imaging is currently a standard
procedure within the urology clinic. As part of thisinvestigation biopsy samples are taken at various sites within
the prostate, either guided by the visual observation of disease in the images, or systematically at selected sites
within the prostate. Unless there is obvious disease external to the capsule prostate patients with disease
confirmed by biopsy are referred for surgery and the prostate is removed. Conventional TRUS uses 2-D imaging
to visualise a 3D anatomy and disease process and has had limited success in staging prostate cancer. The
introduction of 3-D TRUS offers a potentially improved way of visualising the prostate. 3D ultrasound imaging
is a new imaging modality with potential still being explored. Volume images can be produced which are
appropriate for post-imaging interpretation and manipulation through the use of appropriate image processing
and analysis techniques. 3D data collection is currently in the form of a sequence of 2D image planes. The
positions of these planes in space relative to each other needs to be determined. Methods of doing this include
mechanical scanning and magnetic and optical position sensors. Mechanical scanning currently represents the
most reliable form of data collection and using such a system good volume data sets can be obtained reliably and
quickly within the Urology clinic.

A recent study by Garg et al [1] showed the benefits of 3-D imaging. Thirty-six patients with newly diagnosed
clinically localised prostate cancer were studied.  All patients underwent conventional trans-rectal
ultrasonography (TRUS) with 3D reconstruction. Images were interpreted blindly, and the findings were
compared with histopathological staging following radical prostatectomy. Pathological staging of the specimens
revealed 15 sites of extra-capsular extension in 10 patients, 8 of whom had positive margins. 3D imaging
identified 12 sites of extra-capsular extension in 9 patients with a positive predictive value of 90%.

A key requirement in staging prostate cancer is to identify if disease has penetrated the prostate capsule. The
capsule itself cannot be visualised but is usually bordered by alayer of fat which shows up on the USimage. If
disease penetrates this fat layer it becomes locally echolucent. Accurate identification of such echolucent
regions along the prostate boundary could help to stage disease more accurately and prevent ineffective surgery.

The proposed method of detecting echolucent regions is to identify the boundary of the prostate on the 3D
TRUS image and then render local values of image intensity onto this surface. Statistical or other methods can
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be used to identify regions of abnormal intensity. To do this numerically the boundary of the prostate needs to
be delineated. Manual identification and delineation of the prostate boundary is not feasible for routine clinical
work. This paper describes a method being developed to locate the 3D prostate boundary automatically using
image registration. Houston et al [2] proposed the use of 3D registration to delineate the boundary of 3D
radionuclide cardiac studies. In their work the mapping function was an affine function, based on a previously
published approach by Barber et al [3] for 3D image registration of brain radionuclide data. In both these cases
the affine transform was adequate. However, registration of 3D-TRUS images of the prostate requires a non-
linear mapping. Non-linear methods have been proposed using global basis functions (Friston et al [4], Barber
[5]) but there are significant computational and other advantages in using local basis functions (Vemuri et al,
[6]). Image registration has not been widely applied to ultrasound images because of the limited availability of
3D image data but Shields [7] investigated its use in removing motion effects when imaging the carotid artery
though the cardiac cycle.

2 Methods

Six patients with proven prostate cancer without evidence of extra-capsular involvement were imaged using a
Briel and Kjae 2102 ultrasound scanner with 3D imaging capability. Image data was transferred to a
workstation for analysis. The data consisted of an angular sequence of 2D images, typically of dimensions 55 x
30 mm (pixel dimensions 0.13 x 0.13 mm) over an angle which could be selected by the user but was typically
125°. The angular spacing between images was 0.3°. Scanning took 20 seconds per data set. Data was stored
for analysis in raw form without conversion from angular to Cartesian co-ordinates, but could be converted to
Cartesian form for display purposes. Data was analysed in raw form. For the purpose of image registration data
at high resolution is not required and so the image data in raw form is packed by summing 4 x 4 x 4 voxels to
form a single voxel. The voxel dimensions are then 0.52 x 0.52 mm by 1.2°. Once the mappings have been
determined they can be applied to images of the original resolution, although this was not done here.

Figure 1. (a) Datain Cartesian form. (b) Datain raw form

Figure 1a shows a cross section through a 3-D scan of a prostate. Figure 1b shows the image data in raw form.
The image is noisy and in many images the prostate border is poorly defined. The method used to identify the
prostate boundary is to first construct a reference image, define a 3-D boundary on this image and then use
image registration to map the boundary image to the patient image. A 3D image registration algorithm (see
Appendix for brief details) is first used to construct the reference image. A suitable patient image is chosen asa
reference and the images from the remaining subjects registered to this reference image. The mean of the
registered images is then computed and this is used as the reference image. A third cycle can be run if required

i

Figure 2 (a) The reference image (b) The reference boundary

but this usually produces few further changes. Figure 2a shows the reference image generated in thisway from 6



subjects. A 3D reference boundary isthen drawn on the reference image by hand. This can be atime consuming
and potentially subjective process but only needs to be done once. Figure 2b shows a section of this boundary
superimposed on the image of Figure 2a.

To define the boundary on a patient image the patient image is mapped to the reference image and the inverse
mapping then used to map the reference boundary (defined as a binary image) back to the patient image. The
boundary is mapped in this way for two reasons. The first is that in the algorithm used here (see appendix) the
registration is driven by intensity gradients derived from the relatively low noise reference image rather than the
noisy patient image. The second reason is that if the boundary is defined as a surface mesh then this mapping is
in fact the correct mapping to map this mesh back to the patient image. In the present work the boundary image
is a binary volume image and the inverse mapping needs to be calculated and used. Figure 3 shows a patient
image with the mapped reference boundary (solid line) superimposed on the image.

The ‘gold standard’ is a manually generated boundary. Drawing full boundaries on a patient image is a time
consuming process. For this preliminary study we have confined ourselves to manually delineating a subset of 6
sections through each set of patient data. These were drawn for all 6 subjects without reference to the automatic
boundary. Figure 3 shows the manual boundary (dotted line) superimposed on the patient image along with the
automatic boundary.

Two indices are used to define the accuracy of the
segmentation. The first is the success factor (SF)
proposed by Houston et al [2]. Thisis the area of the
intersections of the corresponding regions divided by
the average area of the two regions. The second, and
for this project more appropriate, index is the average
linear displacement (ALD) defined as the area d the
differences between the two regions (the area of the
exclusive or of the two regions) divided by the average
of the perimeter lengths of the two regions. Thisis a
value, in units of pixel dimensions, which can be
interpreted as the average distance between the two
boundaries. As manua boundaries have only been
defined for a limited set of images in each data set i o )
these indices are calculated for each of these slices and Figure 3 A subject image with manual (dotted)
the values averaged. A fully 3D version of the ALD and automatic (solid) boundary superimposed

would be to divide the volume of the difference by the

average of the surfaces of the boundaries.

3 Reaults

The average SF taken over the six subjectswas 0.96. The average ALD was 1.05. Computation time to map the
full 3D boundary was just over aminute on a2GHz PC.

4 Discussion

The aim of this preliminary project was to see if image registration could be used to delineate the 3D boundary
of the prostate in a 3D TRUS image. Only a limited set of patient data has been analysed to date, but
preliminary results suggest that delineation to the accuracy required should be achievable. In the present work
only alimited amount of data was available and so the results must be interpreted with caution. In particular the
reference image will reflect the characteristics of the small data set used. As more data is used to define the
reference image this image will become more robust. It should also be possible to delineate the reference
boundary morereliably. Inthiswork the reference boundary has been defined manually on the reference image.
Even on this image visual delineation of the boundary is not always clear. A better approach, though more
labour intensive, is to delineate boundaries on a set of patient images, map these images, and hence the manual
boundaries, to the reference image, and then take an average of these mapped boundaries. In this way,
uncertainties in boundary delineation on individual subject may average out over a sufficiently large set of data.
As with al image registration methods the image data need to be reasonably aligned to ensure correct
convergence of the registration. It is simple to do this manually and in most images examine so far this does not
have to be done too accurately, but fully automating initial alignment is a subject for further research.

5 Conclusion
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Automatic delineation of the prostate boundary on 3D TRUS images seems feasible and could become a useful
tool in the staging of prostate cancer. The method proposed is fully generic in that the domain specific
knowledge required, the reference image and reference boundary, is independent of the computational algorithm
used, and therefore the method should be applicable to other situations where 3D object boundaries are required.
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Appendix
The aim of registration isto map an image m(x,y,z), the moved image, to an image f(x,y,z), the fixed image. We assume that
such a mapping is possible in that there is a one-to-one mapping which converts m(x,y,z to f(x,y,z) such that the intensity
values completely match (in the absence of noise). Then the moved and fixed images can be related by
m(x + Dx(X,Y,2),Y +Cy(X,Y,2), z+ Cz(x,y,2)) =f(X,Y,2)
where Dx(x,y,z), Dy(x,y,z) and Dz(x,y,z) together constitute the mapping function.

We modify the above equation by adding an extraterm

m(x+ Bx(x,y,2),y + By(x,y,2), 2+ Bz(x,y,2)) - D(x,,2) =f(x,y,2)

which deals with the residua differences between the two images. In this form, the mapping function (including the
Ds(x,y,z) term) is clearly non-unique. However, if smoothness constraints are imposed on the mapping functions unique
solutions are possible. One such constraint is to expand the mapping functions in terms of a set of basis functions f;(x,y).
We can show that, for images close together

F(x,,2)- M(X,y,2) = D<(x y,z)g%ﬂ—mg ;Dy( vz )%+@”+1Dz(, J%}?‘é D(xyz) @

and by expanding the components of the mapping function in terms of basis functions f;(x,y,z)
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which can be solved for the parameters a. Additional smoothing constraints in terms of minimising the magnitude of the
Laplacian of the mapping function can also be added. The basis functions used in thiswork are local bilinear functions.

Inclusion of the Ds(x,y,z) without constraint results in a trivial solution in that Ds(x,y,z) can be set to f — m. However,
consider equation 1. The difference between f and m is made up of contributions from four tems. |f each of these terms
contributes equal amounts to the differences between f and m then since the gradients are relatively non-smooth functions Dx
and Dy will be smoother than Ds. The smoothest way of accounting for the difference between f and mis asfar as possible to
utilise the first two terms and then evoke Ds when all else fails. This is what appears to happen in practice. The Laplacian
smoothness constraint is not shown in the above analysis but is added in the context of solving the a in the usual way. The
mapping functions are computed using image data within a registration region around the prostate.



2D/3D Registration Using Shape From Shading Information in
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Abstract. This paper presents a new pg-space based 2D/3D registration method for camera pose estimation in
tracking endoscope images. The proposed technique involves the extraction of surface normals for each pixel
of the video images by using a linear shape-from-shading agorithm that is derived from the unique
camerallighting constrains of the endoscopes. We show how to use the derived pg-space distribution to match
to that of the 3D tomographic model, and demonstrate the accuracy of the proposed method by using an
electro-magnetic tracker and a specially constructed airway phantom. Comparison to existing intensity-based
techniques has aso been made, which highlights the major strength of the proposed method in its robustness
against illumination and tissue deformation.

1 Methods

The basic process of the proposed technique is based on the following major steps: the extraction of surface
normals for each pixel of the video images by using a linear local shape-fromshading a gorithm derived from the
unique camera/lighting constrains of the endoscopes; extraction of the p-q components of the 3D tomographic
model by direct z-buffer differentiation; and the construction of a similarity measure based on angular deviations
of the p-q vectors derived from 2D and 3D data sets. For this study, a p-q vector is defined as
(p,q) =(1z/T%, 1z/1y) which represents the rate of change in depth along the x and y directions.

1.1 Shape From Shading for Endoscope I mages

Shape from shading is a classical problem in computer vision that has been well established by the pioneering
work of Horn [12-14]. It addresses the problem of extracting both surface and relative depth information from a
single image. However, his main analysis is based on the assumption that the angle between the viewing vector
V and the Z-axis, a , is negligible when the object size is small compared to its distance from the camera. In the
case of endoscope images, both the camera and the light source are close to the object and the direction of the
illuminating light coincides with the axis of the camera, thus no assumption can be made on a being negligible
and lighting being uniform. Furthermore, the intensity of the imageis also affected from the distance between the
surface point and the light source. Rashid in [15] modelled this dependency by adding one more factor, which
was a monotonically decreasing function f(r) between the surface point and the light source. Therefore, the

imageirradiance, E ,can be formulated as:

E(x y)=s, % (x y)>cos(i)xf (r) @

where s, isaconstant related to the camera, r isthe surface albedo and cos(i ) isthe angle between the incident

light ray and the surface normal ni= [p. q,- 1] . Within the context of this study, our main interest is focused on
estimating the normal vectors but not to reconstruct the whole surface. Therefore, the above technique was
adapted because it can approximate well the gradient vectors p-q by using a linear local shape-fromshading
agorithm. It has been proved that under the assumptions of light source being close to the viewer and surface
being smooth and Lambertian, the following two linear equations with unknown p, g components can be written

as:

{fd301.ajchung.gzy} @doc.ic.ac.uk




34

2

A= (&R+3)*(1+x02+y02)-3»<0
B.l: R< +Xo +y0 0'3XXOXYO

i
i
T
i +B +C =0
[AXP +BoG G where]  C:7 X +Zjo +3%, @
i A, Xp, +B,>q, +C, =0 T A= ROLHX + Yy X - 3% XY,
:Bz ( yoxR/"'S) ]_+)(02+y02)-3xy02
f C, =R A{L+x, +Y, | +3%y,

In the above equation, R, =E,/E and R, =E,/E are the normalized partial derivatives of the image intensities,
E istheintensity of the pixel under consideration and X, and y,, are the normalized image plane coordinates.

1.2 Extraction of p-g components from the 3D model

The extraction of the p-q components from the 3D model is relatively straightforward as for tomographic images
the exact surface representation is known. Since p =1z/1x andq = /1y, differentiation of the z-buffer for the

rendered 3D surface will result in the required p-q distribution, which also elegantly avoids the tasks of occlusion
detection. The effect of perspective projection has been taken into account during the rendering stage. The
perspective projection parameters have been defined in order to match those of the video camera.

1.3 Similarity Measure

One would expect to use the angle between the surface normals extracted from shape-fromshading and those
from the 3D model for constructing a minimization problem for 2D/3D registration. This, however, is not possible
because the p-q vectors in the shape-fromshading algorithm have been scaled. The similarity measure used in
this paper depends on the p-q components alone and the cross correlation between the two p-q distribution are
used.

Analytically, for each pixel of the video frame, a p-q vector corresponding to nImg [n i, J]T was
calculated by using the linear shade-fromshading algorlthm shown above. Similarly, for the current pose of the
rendered 3D model, the corresponding p-q vectors n3D [pﬂ:J qt ]r for al rendered pixels were also

extracted by differentiating the z-buffer. The similarity of the two images was determined by evaluating the dot
product of corresponding p-g vectors:
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By applying aweighting factor that is proportional to the norm of N, , the above equation can be reduced to
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By incorporating the mean angular difference and the associated standard deviations (s) of j |, , the following
similarity function can be derived
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By minimizing Equation (5), the optimum pose of the camera for the video image can be determined. The reason
for introducing a weighting factor for Equation (3) is due to the fact that p-q estimation from the 3D model is more
accurate than that of the shape-fromshading algorithm, as it is not affected factors such as surface texture,
illumination, or surface reflective properties. The weighting factor therefore reduces the potential impact of
erroneous p-q values from the shape-fromshading algorithm and improves the overall robustness of the
registration process.



2 Results

In order to assess the accuracy of the proposed algorithm, an airway phantom made of silicon rubber and painted
with acrylics was constructed. The inner face of the phantom was coated with silicon-rubber mixed with acrylic to
give it realistic colour and texture. It was left to cure in the open air and gave the surface a specular finish that
looked similar to the surface of the lumen. A real-time, six degrees-of-freedom Electro-Magnetic (EM) motion
tracker (FASTRAK, Polhemus) was used to validate the 3D camera position and orientation. The EM -tracker has
an accuracy of 0.762 mm RMS. The tomographic model of the phantom was scanned with a Siemens Somaton
Volume Zoom four-channel multi-detector CT scanner with a slice thickness of 3 mmand in-plane resolution of 1
mm.

_ S, i b)
Fig. 1. @) A sample bronchoscope video frame from the phantom used to reproduce the airway structures. b) The p-q vector
distribution derived from the linear shape-from-shading algorithm by exploiting the unique camerallighting constraints.

Fig 1(a) demonstrates an example video frame of the bronchoscope phantom used to validate the proposed
algorithm. The derived p-q vector distribution by using the linear shape-fromshading algorithm is shown in Fig
1(b). The p-q vectors have been superimposed on the sample bronchoscope video frame of Fig 1(a). To assess
the accuracy of the proposed algorithm in tracking camera poses in 3D, Figs (2) and (3) compare the relative
performance of the traditional intensity based technique and EM tracked poses against those from the new
method. Since the tracked pose has six degrees-of-freedom, we used the distance between the first and
subsequent camera positions and inter-frame angular difference as a means of error assessment. As expected, the
intensity-based technique is highly sensitive to lighting condition changes, and with manual intensity
adjustments, the convergence of this method isimproved, as evident from the much-reduced angular errorsfor all
the image frames tested. The proposed pg-space registration, however, has much more consistent results which
were very close to those measured by the EM tracker.

3 Discussion

In this paper, we have proposed a new pg-space based 2D/3D registration method for matching camera poses of
bronchoscope videos. The results indicate that by using the proposed pg-space approach, reliable bronchoscope
tracking can be achieved. The main advantages of the method are that it is not affected by illumination conditions
and does not require the extraction of feature vectors. The intrinsic robustness of the proposed technique is
dependent upon the performance of the shape-fromshading method used, and the use of camera/lighting
constraints of the bronchoscope greatly simplifies the 3D pose estimation of the camera. There are, however, a
number improvements can be introduced for enhancing the accuracy of the proposed framework. For example, the
effect of mutua illumination, inter-reflectance and the specular components was not explicitly considered in this
study. Further investigation is needed to assess their relative impact to the accuracy of the algorithm.
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Fig. 2. Euclidean distance between the first and subsequent camera positions as measured by four different tracking
techniques corresponding to the conventional intensity based 2D/3D registration with or without manual lighting adjustment,
the EM tracker and the proposed pq space registration technique.
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describedin Fig. 2.



A new method for Validation of Non-Rigid Registration

Paul P. Wyatt®*and J. Alison Noble?
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Abstract. Validating non-rigid registration is difficult as the techniques which work for rigid registration,
for example methods based on fiducial markers, utilise only a small set of correspondences; providing little
information on the deformation elsewhere. A new method for validating registration, based on the alignment of
segmented contours and the registered images’ intrinsic properties is described. It is modality independent and
does not require special image acquisition. Registration of echocardiographs is used to illustrate the approach.

1 Introduction

In medical imaging the validation of segmentation and registration methods is hard, primarily as it is difficult to
establish ground truth [1]. Although metrics can be devised that compare two entities, any comparison metric must
either obtain an exact ground truth, or be able to assess and allow for the inherent errors. Validation of non-rigid
registration is more difficult than rigid registration. The small number of parameters involved in rigid registration
ensure that a comparison with fiducial markers will provide reasonable confidence in a method’s accuracy. The
situation is not clear cut for non-rigid registration. Landmark based validation via fiducial markers [2] provides
an indication of accuracy at certain, hopefully key, points but has no information on the general correctness of
the field. Although it is often assumed that the deformation field will be smooth, this is not correct where objects
are of varying elasticity. Indeed, this difference is being used in new methods of tissue imaging [3,4]. The
numerous parameters involved in a non-rigid registration also imply the existence of multiple, potentially plausible,
solutions. Tagged-MRI allows a larger section of the field to be followed, but still suffers from the aperture
problem and it is difficult to use this method in validating other applications (i.e. cardiac ultrasound). The result
is that many applications lack a reasonable method of validating non-rigid registration. Previously, validating non-
rigid registration has been attempted through visual inspection of the difference between images before and after
registration. It is assumed the remainder should be an unstructured noise field. Such a comparison fails to address
variation in contrast and changes in imaging parameters. Validation of registration must analyse two things. Firstly
the accuracy with which important geometric features in the images have been aligned and, secondly, whether the
transformation is consistent with the imaged objects’ known properties. We define a method for examining feature
alignment using the principle that it is expected that segmentations from two images will align once the images
are registered. The transform itself is examined using statistics of the image strain. This method is modality and
application independent. An example is given, for cardiac ultrasound, using popular methods of registration [5,6].

2 Probabilistic Accuracy of Segmentation M aps

Segmentation, manual or automatic, is prone to error. For instance, the effect of partial voluming in MRI and an-
gular loss of resolution with distance from the probe in ultrasound are errors induced by a finite spatial resolution.
These lead to boundaries being delocalised from their precise positions even discounting other factors. Addition-
ally, validation to a ‘gold-standard’ clinician segmentation poses problems, as there exists significant variation
between the clinicians themselves. A recent approach addressing these limitations has been proposed by Warfield
et al [7]. This estimates the most probable segmentation given a number of expert segmentations using an Ex-
pectation Maximization (EM) algorithm. In this paper the concept is applied to contours, to estimate the optimal
border position and the varying degree of uncertainty present. With modalities such as contrast agent ultrasound
imaging, data varies considerably in quality through the image. Where the data is good experts vary less than
where it is poor. In comparing an algorithm’s estimate of a contour to an optimal contour it is desirable to weight
the algorithm’s estimate against the experts’ by some measure of how significantly experts themselves vary. In
order to estimate the optimal contour, we begin with a number of expert results; D 1, D5, - - -, Dp, each containing
aset of points 1 < 7 < J. We assume that there exists a small finite error associated with these contours, resulting
from finite pixel size, image noise and differing opinions, which we model as a Gaussian with equal initial variance
o? = 1. This simulates a likely error in the range +3 pixels. This variance is measured orthogonal to the tangent to
the contour. Note that it is not necessary to make the probability functions Gaussian. If experts can be persuaded
to specify a confidence boundary on their own results then this can be used to fit more appropriate, assymetric,
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non-infinite extent, probability functions. Defining the image Z as the set of pixels i € A the probability of a
particular pixel being the edge location for some structure or line, (L) is calculated;

R N2
. wq 1(i—yg
Vie N Pi(L) = E AI’gJ-Vé‘fYz ——exp | —= ( - > (D
= J vV ZWU%d 2 U%)d

An EM algorithm iteratively estimates the expert variability, as encapsulated in the model parameters. From
the converged estimates an optimal contour position can be calculated. Figure 1 shows an example on a sam-
ple echocardiogram. The weights measuring the relative belief in each expert, w 4, and the standard deviations

(a) (Overlayed) contours (b) Converged EM probability field (c) EM estimated optimal contour
Figure 1. Example optimal contour estimation results overlayed on cardiac ultrasound image.

perpendicular to the curve at each point of each expert contour, o %d’ 1 <5 < J4, can then be re-estimated;

N

P e X
wd_Zp,(L) Op, = de”Z J |l /de (2)
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where ) .| 5,; is the sum in the direction perpendicular to the contour’s tangent. The optimal contour can be
obtained from the probability field generated from the converged EM parameters using a modified watershed
algorithm [8]. The converged EM probability map consists of a set of discrete probabilities P,0 < p < 1.which
will be closed contours. The subset of P, P,;,, = P(p < T ), where T is a threshold, provides the initial seedpoints.
These points are assigned labels such that all which are contiguous have the same label. These labels represent the
wells from which the watershed is then grown. ThenVp, 7 < p < 1 at each step the subset P(p = p;) is obtained.
Each point is assigned to the nearest well assessed as the Euclidean distance to a well’s boundary at the previous
step. The maximal probability contour is defined by the wells’ edges when the watershed transform is complete.

3 Localization of Region Boundaries

To assess a registration field’s validity two properties must be checked. Firstly, mathematical correctness; the
edges between the classes in the two images must align perfectly under transformation by the registration field.
Secondly, transform plausibility; the field must be consistent with the material properties of theregion it provides
flow information for. The first criteria can be examined using the alignment of segmentation maps or contours
after one has been projected into the other’s reference frame. Using the estimated optimal contour, described in
section 2, distances between the contours can include a measure of local deviation. The localization of borders
indicates the registration accuracy. Two measures which have proved useful in assessing the accuracy of curve
matching are the Least Squares Error(LSE) and Hausdorff Distance [1]. These are modified to use the estimate
of local differences in expert agreement. The point-by-point error is weighted using the standard deviation of the
optimal contour; W; = (U;-’"‘)_l. This reflects the belief that error is more important where experts are in close
agreement than where they differ significantly. Mathematically, if two sets of points correspond to two curves
P ={p1,p2, - ,pn}and Q = {q1,q2," -, qn} then the o-weighted Hausdorff distance £7; and o-weighted LSE

are';
N

. 1 )
En = Mg PVAG ™ 1 Pi= QI Euse =7 D VA 1 Pi— Q5 ] 3

i=1
4 Comparing Image Strain

The second criterion to evaluate in order to determine the accuracy of registration is the plausibility of the transform
field. In addition to aligning image structure, it is reasonable to expect that the registration should conform to the

I The variance in both of these measures can also be calculated and other modified measures can be defined using uncertainty in ground
truth.



properties of the materials whose deformation it represents. In practise such conformity is difficult to measure.
Properties of biological structures exhibit significant variation with age, health and sex of an individual as well as
tissue orientation within a structure, even though in-vitro values may be reasonably well known from biopsies [4].
Solutions estimated from Finite Element Methods [3] vary according to the boundary conditions and element shape
used. Therefore, although we would like to be able to validate the transform field directly it is currently impractical
to do so. Instead, the registered images can be used. In principle, Iff the transformis correct then there will be no
strain between the reference image and an image registered to it. The caveat is that the imaging modalities must
be capable of responding to the same structural information; i.e. bone, muscle, skin etc... The plausibility can be
assessed using a hypothesis test to compare an estimate of the distribution of image strain to the predicted strain
distribution. Strain, %, is closely related to the local change in phase, Ag, (% = ﬁ—f); it is this observation
which underlies strain imaging [9]. Image phase is a strong indicator of structure and may be estimated using the
Monogenic Signal [10]. Using this representation, an image Z may be analysed using a bandpass filter,f g p, and
generalized Hilbert transform ﬁ Theoretically, any centre frequency may be specified for fpp, though as the
registered image has been obtained using bicubic spline interpolation on the intensity, it is sensible to restrict the
filter to frequencies below half the image width/height owing to the low-pass effect of this. Applying the Riesz
transform and denoting the two orthogonal filtered components obtained by A, + ny, Ay + ny, where n,(,) is
noise, the phase is obtained,;

A +n I>i<pr>i<|uT2|
t = (¥ Yy ——" " 4
an g (Aﬁnz) <I*f3p*|%| o)

In addition to estimating the strain in the images, from phase information, it is necessary to predict the strain
distribution that would result for an accurate registration. If all structure is correctly aligned (the goal) then strain
will take a distribution solely dependent upon the noise properties of the imaging modality and tissues being
imaged. Consider the case of isotropic Gaussian noise, with variance o 2. The signal components A, +n,, A, +n,
will form a 2D Gaussian distribution with mean p1 = [A,, A,]. The phase can be shown to be the following pdf;

L[Sin(ﬁ}T{ A2 —AmAy][sind)} e v
Pr() = 1 e 207 | cos¢ —A A,y A2 cos ¢ / e—ﬁ(z—ﬁ) "
0

2mo?

For A,, A, such that %W > 30, the integral evaluates to v/270 . The phase pdf is then a Gaussian, with
variance (A3 + A2)o, 2. The slight difficulty is that the variance is not constant, but depends upon A4 ,, A, which
we can only estimate. Note that, as A,, A, — 0 the distribution tends to white noise and the phase is dependent
solely on the noise. As such, validation of plausibility through strain is restricted to points with significant energy.
The noise variance (02) can be estimated as the local variance of the difference between the reference image
and itself after median filtering. The phase difference can then be normalized using estimates of A ,, A, and o;

yielding the test distribution A/(0, 1).

Using the estimates of image phase and the predicted strain distribution from the noise analysis, plausibility is ex-
amined through a one tailed hypothesis test using the x 2 statistic [11]. Accepting the hypothesis that the estimated
distribution agrees with the theoretic indicates an acceptable level of plausibility for the transform. The Random
Variable x is assumed to be AV (i, o). Under hypothesis Ho : 0 = oy the test statistic ¢ will be x*(n), where n is
the number of data points. To accept H ¢ at confidence level (1 — «) the inequality of equation 5 must be true. For
a confidence level of 95%, zg .05 = 1.645.

lq =3 (X" _“)2] < [x%a(m ~ %(zm +Van—1)%| |, n > 50 5)
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5 Results

The proposed method was applied to the validation of ultrasound registration fields. Two registration criteria
were used, the Correlation Ratio [5] and Normalized Mutual Information [6]. A set of candidate matches were
regularized using MAP estimation with an isotropic prior. A dense field was fitted using a standard isotropic cubic
B-spline. Intensity interpolation was also performed using a cubic B-spline. Segmentation of the endocardium
for 2 long and 1 short axis cardiac ultrasound sequence(s) (~ 60 images) was performed by 3 experts and 1
individual familiar with cardiac imaging. These 4 contours were amalgamated into a single optimal estimate for
the endocardium as described in section 2. Experts opinions were given, arbitrarily, 3 times the weighting of a
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non-expert. These segmentations are transformed using the registration fields and the proposed metrics calculated.
For the x? test on strain between the reference and registered images, a Gaussian rotationally invariant bandpass
filter was used with three different frequencies (fo/fmax) and constant relative bandwidth of 2 octaves. Table
1 shows the comparison. At higher frequencies the localization is poorer and the transform less believable as
indicated by the greater failure rate of the y 2 test. The o-weighted metrics show that the transforms are generally
consistent with the expert variance being within £30. As expected the correlation ratio slightly outperforms NMI.
The o-weight also copes with differences in data quality. Lower dataset quality increases inter-expert variation.

Correlation Ratio p (£0) Normalized MI p (£0)
LSE in Boundary (pizels) 2.6(1.06) 2.71(0.94)
Variance in Boundary (pizels®) 2.31(0.86) 2.40(0.88)
Hausdorff Distance (pixels) 8.24(2.93) 9.52(2.64)
o weighted Boundary LSE (stnd.dev) 1.44(0.43) 1.33(0.44)
o weighted Boundary Variance (stnd.dev)? 0.98(0.37) 1.02(0.53)
o weighted Hausdorff Distance (stnd.dev) 4.65(2.10) 3.86(1.18)
Fraction of H(y Accepted | Fraction of H( Accepted
x>(n)o.os  (fo/fmaz = 0.12) 0.983 0.983
x2(n)o.905s  (fo/fmaz = 0.20) 0.850 0.666
X2 (n)o.905  (fo/fmaz = 0.40) 0.600 0.467

Table 1. Error metrics for registration using two popular criterion.

6 Conclusion

A method has been proposed to provide an automated quantitative analysis of the performance of non-rigid reg-
istration algorithms. It validates registration using localization of region boundaries and plausibility of the image
strain between the registered and reference images. The proposed metrics weight error according to the local ex-
pected expert error and appear more sensitive to local deviation than current alternatives. Improvements could be
made by cascading the hypothesis tests and improving the strain model for non-Gaussian noise.
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Skin Lesion Classification Using Curvature of Skin Pattern
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Abdtract: A new feature extracted from curvature of skin pattern is developed. The difference
in skin pattern curvature over the skin and lesion areas is identified as a measure of skin
pattern disruption caused by the lesion. Test results show that the skin pattern curvature
combined with skin line direction is promising for distinguishing malignant melanoma from
benign lesions.

1 Introduction

Since detection of malignant melanoma at an early stage considerably reduces its morbidity and mortality,
computer automatic diagnosis (CAD) of skin lesions using early symptoms would be particularly useful as
an aid in primary care. In order to implement this, a feature set enabling accurate differentiation between
benign and malignant skin lesionsis required. One of these features may be derived from a consideration of
skin pattern.

Most areas of the human skin surface are covered with a network of segmented skin lines (glyphic pattern)
[1]. Thisskin patternis clearly disrupted when a malignant melanoma disturbs the structure of the dermis[2].
This suggests that a measure of skin pattern disruption can be used as part of a feature set to distinguish
malignant from benign skin lesions [3]. In a previously published procedure [4] the skin pattern was
extracted from normal white light clinical (WLC) images by high-pass filtering and the profile of loca line
strength at different angles was used for lesion classification. However the computational complexity of this
process was high and the number of skin line features for lesion classification is large. In order to simplify
the classification algorithm, skin line direction was suggested for lesion discrimination and a method for
generating a skin line vector field was developed [5]. Potential classifiers using first-order differentials of
skin pattern, namely rotation and divergence were investigated [6]. However second-order differentiation of
skin pattern has not been utilized yet.

In the work described in this paper skin pattern curvature is computed from the second differentials of the
skin pattern vector field. The disturbance of this curvaturein alesion areais chosen for lesion classification
and the result of a classification test on a set of clinical skin lesions including 8 malignant and 14 benign
lesionsis encouraging.

2 Curvature of Skin Pattern

Skin pattern can be produced by high-pass filtering [4]. Firstly the skin image is smoothed by convolving
with a9 9 window with a value of 1/81 and then this smoothed image is subtracted from the original. The
result is further enhanced by histogram equalization and finally the output is inverted so that the skin lines
are seen as high intensity.

The skin pattern image is a flow-like pattern that can be locally represented by a skin line vector [5]. There
are three steps to estimate this vector: (1) a line-strength vector is formed from the local line direction and
the local line coherence which is determined over a sub-image with a size of 16" 16; (2) the small-scale
variation is reduced by smoothing the line-strength vectors over a 3 3 window; (3) the smoothed skin line
vector field is normalized to amagnitude of unity giving the final skin vector field V (1, |) .

In differential geometry theory [i, j,V (i, J)] is known as a Monge patch surface in three-dimensional
space. At each point P with co-ordinate (i, j) two principal curvatures exist. They are the largest curvature
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K e (1, ]) and the smallest curvature K . (i, ]) . One curvature measure is often used because of its
useful invariant property. It is the Gaussian curvature K (i, j) = K. (I, ])K . (i, ]) . For a Monge
patch surface representation, the Gaussian curvatureis given by [7]
<y = Va0 DV, 0, VEGD)

[1+VE(L §) +V G, D12
where V (i, ), V, (i, ]), V; (i,]) .V, (i,]) and V; (i, |) arethe partial derivativesof V (i, ]) .

@

Figure 1 shows, from top to bottom, the original image, skin pattern, and skin vector image with lesion
boundary. The left image is that of a benign naevus. The right image is that of a malignant melanoma. It
indicates the disruption of skin pattern by a malignant rather than abenign lesion.

3 Feature Extraction

The skin pattern curvature represents the variation of skin line direction and the disruption of skin pattern
should be apparent from the change of skin pattern curvature. We therefore take the difference of the
average skin pattern curvature in the skin and lesion areas as a straightforward measure of skin pattern
disruption produced by the lesion. A snake-based edge detection technique is used to determine the lesion

boundary [8]. The detected boundary segments the image into skin area A, and lesion area A . The
average skin pattern curvatures in the skin and lesion areas are calcul ated by

1 o ..

m,=— a K(i,j) )
s (i) As

and
1 o ..

m =— a K(i,]), €)
(LD A

respectively, where N and N, are the number of sub-images in the skin and lesion areas. The absolute

difference between M, and M, is used for lesion differentiation. Table 1 shows the mean of skin pattern

curvature over skin and lesion areas and their difference for the two examples of skin lesion as shown in
figure 1, suggesting that the difference in skin pattern curvature between skin and lesion might well be a
useful classifier.

4 Classification Results

The image set used in the experimental test of this technique contains 8 melanomas and 14 compound or
junctional naevi. The original images were in 24-bit full colour digital format and were converted to grey-
level to produce 230" 350 pixel source images.

The means of skin pattern curvature for skin and lesion areas and their difference were calculated and the
distribution of the skin pattern curvature difference is shown in figure 2. As expected, there is atendency to
agreater skin pattern curvature deviation in the maliganant melanomaimages compared to that in the benign
lesion images leading to the conclusion that this could be a useful addition to a diagnostic feature set.

Feature of skin pattern curvature is combined with that of skin line direction [5] to enhance the classification
accuracy. The scatter-plot of 22 skin lesions in the two-dimensional feature (skin line direction and skin
pattern curvature) spaceis given in figure 3 which demonstrates that malignant lesions usually have greater
disturbances in skin line direction and skin pattern curvature and thus they can be discriminated from
benign lesions. A receiver operating characteristic (ROC) curve using skin pattern direction and curvature
was shown in figure 4 where the area under the curve is approximately 0.92, indicating an encouraging
classification result.



5 Conclusions

A new skin pattern characterisation, skin pattern curvature, has been developed and suggested as a means
of measuring the disruption of skin pattern caused by a lesion. It makes use of the first and second
differentials of skin pattern. Results comparing average skin pattern curvature within alesion to that of the
surrounding skin indicate that the skin pattern curvature tends to be disrupted significantly by malignant
lesions but not by benign lesions suggesting that thisis apromising feature for lesion classification. Future
work isto find out the histological explanation of skin pattern curvature.
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Figure 1 Top to bottom: original, skin pattern, and skin vector image. Left, benign naevus and right,
malignant melanoma
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Abstract

A system to acquire 3D ultrasound datasets of a patient’s breast is under development. Sets
of in vivo images have been acquired by capturing images from radial planes as a
conventional transducer is mechanically rotated about a cone encapsulating the breast
tissue. Each set corresponds to rotating the transducer at a different, fixed, distance from
the apex of the cone, chosen so that the volume of tissue imaged at one position overlaps
slightly with the next, to allow for subsequent image registration. This paper addresses the
problem of registering pairs of these datasets, accounting for tissue motion during the
acquisition.

The technique developed is applied to the acquired data at reduced resolution. The dataset
from closer to the apex of the cone is divided into non-overlapping subsets. Each subset is
composed of narrow image strips perpendicular to the skin surface, taken from several
adjacent images. The normalized cross-correlation between each of these subsets,
displaced to possible positions in the dataset further from the apex, is calculated.
Correlation information for each subset is combined with knowledge of the relative locations
of the subsets, within an iterative Bayesian framework, to estimate the most likely
displacement of each subset. In the region of overlap, all the subsets from one location
across the width of the original images are selected. The displacement of each subset in
this line is used to define the seam between the two datasets, and this information is used to
join the two sets together, without overlap, at full resolution.

1. Method

Present 2D ultrasound imaging technology generates cross sectional images of limited area. In
order to build extended 3D datasets from such 2D images accurate registration techniques based
upon the image content will, in general, be required. This work addresses this problem in a
specific anatomical and geometrical context, but the techniques developed are applicable to the
general problem of reconstructing 3D ultrasound datasets. The advantage of a 3D dataset of the
complete patient’s breast is increased tissue interaction and localisation information. Automation
reduces operator dependence and increases repeatability. It is crucial that the imaging system
achieves high quality images, and also important that the breast tissue is not significantly
distorted from its natural shape as this would disguise tissue architecture changes which can
discriminate different disease states. These reasons underpin our choice of a conical scanning
geometry, with the transducer held parallel to the skin surface.

A mechanical system has been designed and
built to allow automated acquisition of .
ultrasound images of a patient's breast® (fig. —constraimng cone *
1). The system requires the patient to lie  |hreyer S
prone, and a cone is fitted around the breast,
to stabilise the mobile tissue. The cone is
positioned to hold the nipple at the apex, with  transducer --=-
the breast walls pushed gently against the
sides, and a coupling medium preventing any
air gaps. The cone contains a Cling film Figure 1. |mage acquisition System
window running from the apex to the rim. A

conventional ultrasound linear array is held at a fixed position along this window, its scan plane
in the radial direction. The entire mechanism, including cone and transducer is rotated by a

image plone ~ ;

rolation aboul breas)
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stepper motor about the cone's central axis. In order to investigate the whole of the breast using
ultrasound, several sets of images are acquired from complete revolutions, with the transducer
held at a different height for each revolution. Two
adjacent heights are chosen so that a small volume of

— f—— tissue is imaged both times, allowing for subsequent
. image registration.

- The number of images in a complete revolution is used
to provide a first estimate of the geometrical origin of
each image, using which the data may be reconstructed
into the 3D conical volume. The same angular speed is
used, whatever the height of the transducer, so the
angular separation of the planes is constant (fig. 2). When the image sets from the two heights
are combined, movements of the tissue that occurred during the acquisition result in visible
discrepancies between the two sets of images. Visual inspection indicates the tissue movement
is primarily parallel to the surface of the cone (directions r and @), with only small movements
normal to this (direction h). Therefore registration between the two datasets is required, allowing
for movements in these directions, and this must the performed prior to reconstruction into the
conical volume, as this step involves the non-reversible process of averaging, when converting
to a Cartesian dataset, in the denser regions of data towards the central axis.

Figure 2. Image plane locations

Firstly the tearing artefact present in the ultrasound images, caused by the lack of
synchronization between the images and the video output, is reduced by selecting only alternate
lines comprising a single interlace field.

Cross-correlation techniques have been chosen for registering the data. This is because
ultrasound images are noisy and features are difficult to segment, having different characteristics
parallel and perpendicular to the beam direction. Evidence from the literature suggests that the
most successful techniques in ultrasound are those which use all of the pixel information
available. The normalized cross-correlation does this, and can either be used with the pixel
values, or the magnitude of 3D gradient vectors®, which have been used interchangeably in this
work.

Since the images have the same angular separation, those in the upper dataset represent more
widely separated planes than those in the lower dataset, hence a technique to match the lower
dataset to the upper dataset was chosen. Initial attempts to register large image areas from the
top and bottom datasets were unsuccessful in identifying a well defined peak in the correlation.
This is likely to be due to different tissue deformations at the two acquisition times preventing a
good fit across a large area. Therefore the data is subdivided into smaller subsets for analysis.

The resolution of the data is reduced by median filtering within the image plane and between
consecutive images, (to reduce effects of speckle noise), and then subsampling from 5x5 pixel
patches across five consecutive images. The lower dataset, now consisting of 1/5 as many low
resolution images, is divided into non-overlapping subsets. Each subset is composed of narrow
image strips, perpendicular to the skin surface, taken from several adjacent images, cropped to
remove the very top and bottom rows of the strips (fig. 3).

Each subset is then translated to possible positions in the

reduced resolution upper dataset, and the normalized cross-

correlation calculated, using either pixel or gradient values. - o T e, $ 0 -
The allowed translations of the subset are displacements . "f
parallel to the surface of the cone, (direction r and @), and :

small displacements normal to the cone surface (direction

h), to match the observed errors. This 3D displacement (r,
@and h) correlation information is saved for each subset. Figure 3. Volume subsets



The repeating nature of structures within the breast tissue result in small datasets fitting in
several different places. Therefore there is a need to incorporate the knowledge of the relative
positions of each of the subsets. This is done within a Bayesian framework, following the
example of Noble etal.® and Hayton et al.”.

Firstly the rigid displacement between the two datasets is calculated, by averaging together the
correlation information from all the subsets. This is taken as the initial estimate for the
displacement of every subset.

The knowledge that a particular displacement is unlikely unless adjacent
subsets also show a fit at a similar position is incorporated. Therefore ther,
h and @ displacement correlation information for each subset is taken, and
modified according to the last estimates of the displacement in that subset
and in the four immediately adjacent subsets (fig. 4). Gaussian distributions
(r, h, and @ steps taken as unit steps for the Gaussian), centred at each of
these five current estimated fit positions, and weighted by the cross-
correlation at that position, are added together, along with a non zero Figure 4.
background probability. This summed probability is used to multiply the Adjacent subsets
central subset's 3D displacement correlation information. A new estimate of

the displacement for the central subset is taken as the most likely value in this modified
correlation information. This process of updating the correlation information according to the
current estimated displacements, and then updating the estimate, is iterated through until the
greatest change in the estimated displacement for any subset is less than a threshold value.

In the region of the overlap the subsets have well defined estimated
displacements. All the subsets from one location across the width of the
original images in this region are selected, i.e. a circle of subsets around the
cone. The displacement of these selected subsets are used to define the
seam between the two datasets (fig. 5). The pixels up to this seam from the
lower datasets are joined with the pixels in the upper dataset above this
seam. Interpolation is used to estimate the displacements for the full
resolution images and then the nearest radial plane selected.

Figure 5. Seam fit ]jne+

2. Results

The algorithm has been run on a small sample of
patient datasets, and promising results obtained.

Figure 6 shows an example of the output of the
algorithm, showing the registered images on the left,
and just the upper image from an adjacent radial plane
on the right. It demonstrates that overall there is a
good fit, although small discrepancies are visible
along the fit line.

T

3. Discussion Figure 6. Registered images

The use of the iterative Bayesian approach has made a technique which is noise tolerant and
robust, and able to non-rigidly register the two sets of ultrasound data together.

Low resolution images have been used in this work. One aim of this is to reduce the effects of
speckle noise. The speckle is a high amplitude high frequency noise artefact, inherently present
in ultrasound imaging. The precise pattern is critically dependent on the path of the ultrasound
through the tissue, and so exactly the same pattern would not be expected when imaging the
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same tissue region on the two separate occasions. Therefore we wish to decrease the effects of
speckle, but without losing sharpness. The approach taken uses a median filter and then
subsamples the data. An additional advantage of this is the reduction in the size of the datasets
and hence the computational requirements.

Further simplification has been added to limit the degrees of freedom of movement allowed
when fitting the data. Inspection of the datasets indicated that movement of tissue between the
two scanning times generally occurred parallel to the surface of the cone, with only small
movements perpendicular to this. Therefore the subsamples are allowed to move more widely in
the former plane, with separate datasets being defined every five pixels in the r and @ directions,
and only small movements in the latter direction, (h), with no division into separate datasets in
this direction.

The calculated displacements between the datasets are based on the low resolution images, and
so errors of the order of five pixels are expected. Therefore the two sets of data are cropped and
joined at a seam, to avoid the blurring effect which would be created if the data was overlapped
and averaged (compounded). This is an unusual approach to take in ultrasound where
compounding is popular due to its value in reducing noise and artefacts.

The next step will be to implement a similar technique on the higher resolution images, starting
from the fit position determined from the low resolution data. To remain robust against noise,
especially speckle noise, a similar iterative Bayesian technique will be appropriate. However,
when aiming for the higher level of accuracy, deformation in the h direction will become
significant. This could in principle be allowed for by extending the technique to subdivide the
data in the h direction, although this would increase the complexity significantly.

Currently the performance of the algorithm has to be assessed by visual inspection. However,
the correlation information measured during the processing will provide a good source of data
from which to determine how successful the registration has been. A quality factor could be
automatically derived from this data to indicate confidence in the processing for a specific pair of
image datasets. This will be available to the clinician, for whom it is crucial to know how much
they can rely on the accuracy of the data presented to them. This is especially the case in breast
disease, where if the registration has been performed incorrectly a small diseased region could
be entirely excluded from the image.

In the context of this project there are two remaining registration challenges. The first is to
register data from the start and end of the transducer revolution. The second is to correct for
refraction and depth errors, caused by sound speed variations, which result in a misalignment of
the images where they overlap each other around the central axis of the cone. The capability of
the registration technique described to resolve these discrepancies will be explored.
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Abstract. The development of a nationwide eye screening programme for the detection of diabetic retinopathy
has generated much interest in automated screening tools. Currently most such systems analyse only intensity
information — discarding colour information if it is present. Including colour information in the classifica-
tion process is not trivial; large natural variations in retinal pigmentation result in colour differences between
individuals which tend to mask the more subtle variation between the important lesion types. This study inves-
tigated the effectiveness of three colour normalisation algorithms for reducing the background colour variation
between subjects. The normalisation methods were tested using a set of colour retinal fundus camera images
containing four different lesions which are important in the screening context. Regions of interest were drawn
on each image to indicate the different lesion types. The distribution of chromaticity values for each lesion
type from each image was plotted, both without normalisation and following application of each of the three
normalisation techniques. Histogram specification of the separate colour channels was found to be the most
effective normalisation method, increasing the separation between lesion type clusters in chromaticity space
and making possible robust use of colour information in the classification process.

1 Introduction

Diabetic retinopathy is currently the major cause of blindness in the UK working-age population. The fact that
blindness can usually be delayed and often prevented, providing the disease is caught sufficiently early, has recently
prompted the establishment of a nationwide screening programme. Since approximately 2% of the population
are diabetic, and annual screening has been recommended, the screening programme will generate a very large
number of images for analysis. It is therefore not surprising that interest in automated screening techniques [1-3]
has increased rapidly in the last few years. However, despite high resolution colour cameras being the accepted
standard for screening programmes, automated software tends currently to base its analysis on intensity information
alone, either from ‘red-free images’ or using the green channel of RGB colour images. More than a decade ago
Goldbaum et al. (1990) [4] showed significant differences in the colour measurements of lesions in retinal images.
Since then little interest has been shown in colour classification of retinal images. In practice, while models exist
to identify abnormal coloured objects within the retinal image [5, 6], without some form of colour normalisation or
adaptation for the background pigmentation the large variation in natural retinal pigmentation across the population
confounds discrimination of the relatively small variations between the different lesion types.

The human visual system is a poor spectral analyser; our perception of colour is based on the responses of only
three receptor types sensitive to three bands of wavelengths. The consequence of this is that widely differing
spectra produce the exactly the same colour perception. Colour cameras also use only three receptors, since this
is all that is required to match human perception of colour. Given the remitted spectrum it is possible to calculate
the red, green and blue colour channels values. However the inverse problem is hugely under-determined, hence
changes which may be deduced using a multi-channel spectrum analyser will not necessarily be detectable using
only three colour sensors. A feature of human vision is that it adapts automatically and subconsciously to relatively
large changes in the illuminating spectrum so that white objects are still perceived as being white. A similar effect
is seen, for instance, if an image is projected onto a screen which is cream coloured; white objects in the projected
image are still perceived as being white. This process is known as colour constancy. In contrast to human vision,
colour cameras do not adapt automatically to changes in illumination. The lesion colour measured by the camera
depends on:

1. Lesion composition: All the lesions are composed of different materials with different reflection, absorption,
and scattering properties.

2. Lesion density: All lesions vary in their size and thickness. The density of the lesion controls how much
light is transmitted/reflected by the lesion (i.e. the colour can vary from the pure lesion colour to almost the
retinal background colour).

*Email: k.a.goatman@biomed.abdn.ac.uk
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3. Scattered/reflected light: The colour and intensity of light scattered and/or reflected within the retina itself
(probably negligible in a healthy, bleached retina) and the orbit.

4. Lens colouration: The lens becomes increasingly yellow (absorbing blue wavelengths) with age above
around 30 years.

Note that all the lesions, except drusen, are positioned in front of all the pigmented retinal tissue (i.e. in front of
the RPE, choroid and photoreceptors). All the lesions are of a similar colour and occupy a relatively small area of
the complete colour space.

2 Method

Three colour normalisation algorithms originally intended for making colour images invariant with respect to the
colour of the illumination were investigated for their ability to make the retinal images invariant with respect to
background pigmentation variation between individuals. Colour normalisation does not aim to find the true object
colour, but to transform the colour so as to be invariant with respect to changes in the illumination — without
losing the ability to differentiate between the objects of interest. The three methods tested were:

1. Greyworld: The greyworld normalisation assumes that changes in the illuminating spectrum may be mod-
elled by three constant multiplicative factors applied to the red, green, and blue channels. Since the mean
values of the red, green, and blue channels will be multiplied by the same constants dividing each colour
channel by the respective mean value removes the dependence on the multiplicative constant. An itera-
tive variation of the greyworld normalisation [7] (which includes intensity normalisation) was not found to
perform significantly better.

2. Histogram equalisation: Histogram equalisation of the individual red, green, and blue channels represents
a more powerful normalisation transformation than the greyworld method [8]. It is based on the observation
that for each colour channel pixel rank order is maintained under different illuminants, i.e. if under one
illuminant the red values of two pixels are r| and r,, where r; < r,, then under another illuminant, although
the magnitudes of r; and r, may change, r; should still be less than r, (there are, however, some conditions
where this will not be true). Histogram equalisation is a non-linear transform which maintains pixel rank
and is capable of normalising for any monotonically increasing colour transform function. The proportion
of the different tissue types must be similar in all images to be normalised. Equalisation tends to exaggerate
the contribution of the blue channel (the normal retina reflects little blue light).

3. Histogram specification: Histogram specification [9] transforms the red, green, and blue histograms to
match the shapes of three specific histograms, rather than simply equalising them. This has the advantage of
producing more realistic looking images than those generated by equalisation, and it does not exaggerate the
contribution of the blue channel. For this study the reference histograms were taken from an arbitrary normal
image with good contrast and coloration. Histogram specification has been used before for normalising
retinal colour to aid the detection of hard exudates [10].

In order to compare the normalisation methods a dataset of 18 colour retinal fundus camera images was com-
piled, where each image was known to contain at least one of the following lesion types which are important for
retinopathy screening:

e Cotton wool spots (CWS): Swelling of the nerve fibre layer axoplasm in response to retinal ischaemia,
transforming it from transparent to highly reflective, appearing bright (slightly blue) white. They can be very
dense (for instance they may completely block fluorescence emanating from beneath them in an angiogram).
They have ill-defined edges (hence their name). They usually disappear spontaneously after around 8 weeks.

o Hard exudates (HE): Lipid deposits in the inner nuclear layer as a result of vascular leakage. They are
highly reflective and appear bright yellow, often with a distinctive spatial distribution.

¢ Blot haemorrhages (BH): Leakage of blood in the inner nuclear layer. They appear dark red.

e Drusen: Debris deposited below the retinal epithelium layer (RPE) and collected in Bruch’s membrane due
to the turnover of retinal receptor pigments. They appear yellow. Although not related to diabetic retinopathy
(they are more commonly associated with age related macular degeneration) they have a similar appearance
to HE and are therefore a confounding factor in the identification of HE.



The images were acquired using a Topcon fundus camera and recorded on 35 mm colour slide film. The images
were digitised (approx. 1000dpi) using a Nikon Coolscan 4000ED slide scanner, producing RGB colour images
with 8 bits per colour channel. The retinal images are circular; masks were generated automatically by simple
thresholding of the green colour channel followed by 5 X 5 median filtering to exclude the dark background from
the colour normalisation calculations. Regions of interest were drawn around the different lesions for all the images
and masks produced with a specific greylevel value representing each lesion type. Five of the images contained
CWS, fourteen contained HE, and six contained BH. Only two of the images contained drusen. The same region
of interest masks were used to analyse the images before and after normalisation.

Colour may be represented independently of its intensity by dividing the red, green and blue channel values by the
sum of the three channels, i.e.

r=R/(R+G+B), g=G/R+G+B), b=B/(R+G+B)

This reduces the three-dimensional RGB colour space cube to a two-dimensional triangular space (since the third
ordinate is always one minus the sum of the other two). The resulting intensity normalised coordinates are known
as chromaticity coordinates. For each image the average chromaticity coordinate for each lesion type present was
calculated. In the chromaticity space, a line between any two points passes through all the colours which may be
formed by mixing the colours represented by the end points. In this application the lesion colour may vary from
pure lesion almost to the background colour so the different lesion types are expected to radiate from the region of
the chromaticity space which represents the background colouration.

3 Results

Figure 1(a) plots the average lesion colours in each image without any normalisation. The ellipses shown are
centred on the mean position for each lesion type, with the major axis aligned with the direction of maximum
variance (found using the Hotelling transform). The radius of the major axis represents two standard deviations in
the direction of that axis. The minor axis length represents two standard deviations in the orthogonal direction. All
four lesion chromaticity values are seen to overlap. Figure 1(b) shows the effect of the greyworld normalisation,
which partially separates the lesion clusters, in particular differentiating the haemorrhages. Figure 1(c) shows the
result of equalisation, which also differentiates the haemorrhages, but appears to increase the overlap in the other
lesion types. Finally the result following histogram specification is shown in figure 1(d), which shows the clearest
separation of the lesion clusters.

4 Conclusions

Three normalisation techniques were tested on a set of retinal images. Histogram specification was found to be the
most effective normalisation method, improving the clustering of the different lesion types, removing at least some
of the variation due to retinal pigmentation differences between individuals. Colour classification is not intended
to replace existing intensity-based classification but to augment it and improve overall classification accuracy.

It was not anticipated that histogram specification should perform so much better than equalisation. One possible
explanation is the exaggerated contribution of the blue component following equalisation, which possibly loses
subtle but important differences in the blue values due to equalisation quantisation.

An important question is whether the differences in retinal background pigmentation are modelled acceptably as
a variation in the colour of the illumination. While this is a safe assumption for changes due to lens colouration
(since all the incident and remitted light are so filtered), it is less so for background pigmentation changes since
not all retinal tissues are equally affected (i.e. the only contribution for non-pigmented tissues such as the optic
disc and highly reflective lesions is from scattered and reflected light from pigmented tissue). Clearly the model
is inadequate for dealing with local pigmentation variations across an individual retina. However, despite these
reservations the results appear to show that an average correction is much better than applying no correction to the
images.

Variation in colour due to scattering in surrounding tissue and reflections within the orbit can be greatly reduced by
imaging using a confocal scanning laser ophthalmoscope (SLO) rather than a fundus camera. Early results using
our colour SLO [11] appear to show much less variation in lesion chromaticity, resulting in less overlap between
lesions even prior to normalisation.
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Figure 1. Chromaticity plots: (a) No normalisation, (b) Greyworld normalisation, (c) Histogram equalisation, (d)
Histogram specification.
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Abstract. The image quality of Digital Subtraction Angiograms (DSA) is limited by high image noise and poor
contrast of smaller vessels. In this paper we present a nonlinear data fusion system that combines the temporal
and spatial information contained within a set of consecutive DSA frames, to provide an output which displays
enhanced contrast between vessel and background regions of the vascular tree. Results are compared against
the mean and median averages of the set and the method is found to increase vessel contrast.

1 Introduction

Digital Subtraction Angiography (DSA) allows the visualisation of blood vessels via injection of contrast media.
Often it is desirable to obtain a reference image which displays the vascular tree morphology, e.g. for use during
image-guided catheter surgery. Images extracted from DSA sequences suffer from low signal-to-noise ratio and
small blood vessels may appear particularly faint. In this paper we present a nonlinear data fusion system that com-
bines information from a set of consecutive frames in a DSA sequence to provide an output frame with enhanced
contrast between vessel and background regions. This provides a better reference image and can also be used as a
precursor to subsequent segmentation.

Put simply, data fusion is the process of combining multiple sources of data. A good example of a data fusion
architecture is provided by the brain. Data from several physical sensors (eyes, ears, haptic sensors etc.) are
combined with abstract information such as past experience, and processed to create a description of the local
environment. Much research on data fusion has been carried out, e.g. for autonomous control for robots [1]
[2], automobiles [3] and other vehicles [4]. Data fusion is also being used for geoscience & remote sensing
applications [5] and medical imaging applications [6]. Image data for this work was obtained from a Philips
Integris fluoroscopy system, recorded onto DVCPRO format digital video tape via sampling of the video signal
input to the fluoroscopy system monitor. Our data “sources” are a set of frames (469 x 509 pixel, 8-bit) taken
from a DSA sequence showing the injection of contrast media into the bloodstream. The information extracted
represents the distribution of X-ray transmission over the 2D imaging plane.

The methodology behind this fusion approach is based on the nonlinear fusion system proposed by Steinhage and
associates [7] [8] [9] [10]. The basis of the system is to represent physical measurements of the system (i.e. sensor
readings) as local stable points or “attractors” of a dynamic system [7]. The dynamics are solved iteratively using
the Euler method to yield a representation (or “estimate”) of the physical state of the system. Prior to computation,
we simplify the system by converting each 2D image into a one dimensional sequence using a Hilbert [11] scan
path.

2 Methodology

Nonlinear dynamics uses the principle of “attractors” [7], a local stable point in the derivative of the state variable
Y with respect to position 7. An attractor has 2X° = 0 and negative gradient %2;’2’ < 0 such that if an attractor is
pushed slightly along the r axis, the negative gradient will push the system back towards the stable point, correcting
for the slight perturbation. Conversely, a point with a positive gradient %%” > 0 is called a “repellor”, an unstable

point where a small perturbation will cause the state variable to move in the direction of the displacement.

oY _ls=yp?
By SAS-Y()lem @

where %—Y defines the attractor for a sensor which takes a measurement S (pixel intensity value) of the system at

T
position r. Y (r) is the state variable for which the derivative is being calculated, the X-ray transmission. r is
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the position along the one dimensional sequence, thus Y (r) is a function that describes how the pixel intensity
fluctuates along the 1D sequence. A is a weighting factor which can be assumed to be unity. o is the “width” of the
attractor and determines the size of the basin of attraction created by the stable point. Because the width is finite,
attractors have a finite region of influence, hence the term “local” stable point.

Computation uses a sliding window of n = 30 frames, taken from the DSA injection sequence. Each 2D frame
is converted into a one dimensional sequence using a Hilbert scan path [11]. This path maximises the time spent
in local neighbourhoods within the image and so preserves spatial information more so than, for example, raster
scanning. Each position, r, along the sequence records the value of X-ray transmission (via the grey-level intensity)
at a certain location (z,y) and time.

As the 1D sequences are traversed, a potential well function % is computed at each pixel location. % tells us
how quickly the value of Y; will move away from Y; ; if » changes by ér away from r; 1. This is formed on
the basis of sensor data (over the time period of n frames) and also a priori knowledge. From initialisation with
Y (r¢) = Median[S(ro)1, S(70)2, ---S(ro) ], the Euler method is used to solve the dynamics and yield an estimate
for Y at each location within the frame.

oY -
W = ’YSensorpsensor + ’yAprioriFApMO” (2)

YSensor &N Yaprior: CONtrol the relative strengths of sensor and a priori knowledge contributions. The ratio 10 : 1

between these two terms was empirically found to provide the best image contrast. We now discuss the formation
of FSensor gand FApriori terms, the contributions from sensor readings and a priori knowledge.

2.1 Sensor contributions

The sensor contribution term (F5¢™°7) in equation 2 takes the same form as equation 1,

[S(ri)s ;U};(ri—l)]z (3)

FSensor(n) — Z As [S(Tz)s — Y("'z’—l)] exp |—

where S(r;)s is the reading of sensor s at position r;. Y (r;_1 ) is the nonlinear estimate for the state at the previous
position, ;1. o, is the width of the attractor for sensor s and A is its individual weighting. Given n frames, we
have n measurements at each position r;, with an attractor representing its grey-level intensity. These are summed
to produce a potential at each pixel that is determined by the distribution of grey-level intensities at that location
in each frame. The summation process generally reduces the number of local stable points in the system. Which
of these points is selected at each iteration depends upon the previous estimate for the system. Thus the weakest
attractor could be selected if it had the same location as the attractor from the previous step. However, if other
sensors continued to add together to form a stronger attractor, this would soon influence the output more forcibly.

2.2 A priori knowledge contribution

The fusion scheme can be thought of as a weighted election, each frame effectively “voting” for a certain intensity
value at each pixel. Given a set of frames in which contrast agent is flowing, pixels can have a range of values.
High intensities correspond to background regions, low intensities may represent the presence of contrast agent
- i.e. blood vessel. For a certain pixel location, if all frames record similar intensity values, the output will be
a similarly valued estimate. However, consider the case where contrast agent reaches a pixel location within the
time period of interest. The set of n frames will therefore have a mixed population of intensities. To enhance the
visibility of vessels we must favour low over high intensity values. This is achieved by using an a priori knowledge
term that favours intensity values that are lower than the median,

Apriori(,. \ — < [S(ri)s - M(’I‘,)] : S(ri)s < M(’I‘z)
F (ri) = 2_4: { 0 : otherwise “)
S(ri)s is the grey-level intensity value for pixel position r; and frame s. M (r;) is the median pixel intensity at
position r;, M (r;) = Median [S(r;)1,5(r:)2, ...S(7:)n]-

The S(r;)s < M (r;) condition is required to avoid favouring intensities higher than the median and consequently
failing to trace vessels where the majority of the frames contain contrast agent. The term provides a sliding scale



of emphasis, the greater the distance from the median, the greater the influence. However, the system does not
jump from one low intensity outlier to the next due to the calculation strategy which relies upon the past history of
the system to help make decisions.

2.3 Resultsand Discussion

The right hand column of figure 1 shows the nonlinear output results produced from running the system with
1 = 30, Vsensor = 1.0, Yapriori = 0.1, widths o, = 50 and normalised weights, increasing towards the end of the

set. These parameter values were found to provide the best image contrast defined by [2£63nvessct—Meannackgroundl

Mean;image

We compare these results with the mean and median averages, displayed in the left and centre columns of the
figure. Figure 2 plots vessel contrast (defined as against frame number. To produce this contrast measure, pixels

Mean Median Nonlinear

frame
10

frame
25 A

frame as 4 as 4 L 4
40

' 1 i 1 i ‘. i
Figure 1. Mean, Median and nonlinear output frames for a set of n = 30 frames, starting at frames 10, 25 and 40.
For display purposes, only a centrally placed 150 x 150 pixel window is shown. All images are displayed using
the same colourscale.

are classified as either vessel or background by a manually segmented mask. Figure 2 shows that for starting
frames fs < 30, the nonlinear method produces increased vessel contrast by enhancing each vessel as soon as it
appears. The mean and median averages only increase the contrast significantly once the majority of frames in
the set record a high concentration of contrast media. Beyond f, = 30, contrast within the nonlinear output falls
below that of the averages due to the contrast agent bolus moving out of the main vessel segments - see the lower
right image of figure 1.
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Figure 2. Contrast measure versus frame number for nonlinear (A), median (x) and mean (o) frames.

Conclusions

In this paper we have presented a nonlinear fusion system designed to enhance the contrast of vessels in DSA
images. Results presented are contrasted against the mean and median averages. The method is found to enhance
the visibility of blood vessels during the infusion of contrast agent.
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Characterising pattern asymmetry in pigmented skin lesions
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Abstract. In clinical diagnosis of pigmented skin lesions asymmetric pigmentation is often indicative of
melanoma. This paper describes a method and measures for characterizing lesion symmetry. The estimate of
mirror symmetry is computed first for a number of axes at different degrees of rotation with respect to the
lesion centre. The dtatistics of these estimates are the used to assess the overall symmetry. The method is
applied to three different lesion representations showing the overall pigmentation, the pigmentation pattern,
and the pattern of derma melanin. The best measure is a 100% sensitive and 96% specific indicator of
melanoma on atest set of 33 lesions, with a separate training set consisting of 66 lesions.

1. Introduction

In clinical diagnosis of pigmented skin lesions a lack of symmetry in the pattern of pigmentation deems the
lesion suspicious. This association between asymmetry and malignancy is reflected in a number of scoring
schemes in dermatology, such as the Seven-Point Checklist [1] and the American ABCDE list. In dermatoscopy
clinicians are instructed to look out for asymmetry in the pattern of pigmentation and to distinguish it from
asymmetry in lesion shape which is supposed to have little diagnostic value in this technique [2]. Most existing
computer methods (e.g. [3]), however, concentrate on shape symmetry measures.

Human observers are known to be able to detect symmetric patterns with great ease, but are not so good at fine
grading of the asymmetry [4]. They also tend to respond more to symmetry of shape than to symmetry of a co-
existing pattern [4]. Our earlier study has shown that both the inter-observer and intra-observer repeatability are
moderate (both around 65%) when assessing the symmetry of skin lesions [5]. These facts have motivated us to
develop objective symmetry measures for pigmented skin lesions and to evaluate how well they correlate with
histological diagnosis of a lesion as malignant melanoma and also with clinical assessment.

2. Methods and measures

Image analysis research has produced a number of methods for finding either the best or all axes of symmetry in
images of potentially symmetric objects and patterns [6]. Many of these algorithms incorporate a means of
comparing the degree of symmetry amongst a number of putative symmetry axes in order to select the best one.
In this work we do not reject those inferior axes, but instead compute statistics related to all the putative axes.
These statistics are then used as an indicator of the degree of symmetry. The hypothesis is that normal lesions
would show the higher degree of symmetry than abnormal ones.

2.1 Finding the best symmetry axis

A measure by which the best symmetry axis can be found is based on the Smith & Jenkinson’s symmetry score
[6]. Their algorithm also provides a method for finding and evaluating a number of putative symmetry axes.

For all possible orientationjg of the reflective symmetry axis, &

For all lines B(r) perpendicular to thed)), placed at a distance r from the start of the axig)A(
Compute symmetry scores, s(x), for each point x along B(r)
Find the best centre of symmetry on B(r), i.e. pajmhich has the best symmetry scorés
Add the best symmetry scorg(Xg)) to the total score $(*) for axis A@)),

i.€. Shi, Xp) = SOi, o) + 5 (%)
Find the maximum of all the scores ipS);
The anglep; for which $= max(S(®;,*) is the best axis of symmetry.

The symmetry score is computed using the following formula:
> abs(ki + bei) - yabs(l - ha) * ¢
zabs(l(+i + |x-i) + zabs(l(+i - |x-i) +g

where |, is the image value at position x along B(r). Parameters gfaack derived from global and local
contrast respectively and their role is to compensate for otherwise excessively high values of s(x) in uniform

s(X) 1)
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areas of the image. Symmetry measures S(¢;,*) are computed for 16 discrete orientations, i.e.i=1, ..., 16.

The original algorithm is designed to find thest axis of symmetry. In this work we are interested in estimating
the degree of symmetry for the lesion. Therefore, in addition to choosing the axis with the largest scoréhé be
symmetry axis, all the scores &e retained, their features extracted and combined into a number of measures
which characterise the lesion symmetry.

2.2 Symmetry scores and their properties

A useful analysis of the symmetry scores is carried out in the original article (figure 2 in [6]). The following
features are associated with a good symmetry axis (see Figure 1, left):

(1) the plot of the scores is unimodal, i.e. there is a single major peak ix) S(

(2) the higher the peak the better the underlying symmetry

(3) the smaller the spread of the peak the better the underlying symmetry

(4) the less skewed the peak, the better the underlying symmetry.

y
/
\ / .
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poor symmetry good symmetry 0 2 4 6 8 10 12 14
Axis number (phi)

(a) (b)
Figure 1. (a) Two plots of S{J x) exemplifying poor and good symmetry scores; (b) The plot of one of the
global symmetry indicators, ¢l = stdev( S§, x) ).

Quantitative indicators corresponding to the above characteristics can be computed as follows:
(1) u=|mediaf{ S@, x) ) - averagd S@, x) ) |

(2) m=max(S@, x))

(3) d=stdey S@®, x) ) (computed as though S(*,x) were a probability distribution)

(4) k=] skew( S{, x)) | (computed as though S(*,x) were a probability distribution)

In the above expressions, the perfect symmetry will yieldu=0,m=1,d=0and k=0.
2.3 Global symmetry measures

In the design of global symmetry measures the maximum score is assigned to a pattern showing “the repetition
of exactly similar parts facing a centrelhe Concise Oxford Dictionary], i.e. a pattern with perfect rotational
symmetry. In terms of the quantitative indicators u, m, d and k computed for eaclp anglauth), m(@®), d@®)

and k), such pattern will attain the perfect symmetry scores for all the apglespartures from symmetry

will decrease the scores, thus the more symmetric the image, the more angles will show high scores. Based on
this reasoning, the following global symmetry measures have been defined as follows:

av_m= average,( m) the higher av_m, the higher is the average symmetry score across al the angles, the better the
overall symmetry

sd_m= sds(m) the higher sd_m the more variability in symmetry for different angles, the worse the overal
symmetry
max_m= maxy( m) the higher max_m the better the single mirror symmetry

av_d = averagey( d) the higher av_d the greater the average spread of S(*,x), the less symmetric the pattern

min_d=ming(d) the higher min_d the less symmetry shown by the best symmetry axis and thus by the pattern as
awhole
max_d = maxg(d) the higher max_d the less symmetry shown by the worst symmetry axis; low value indicates the

overall good symmetry.

sd_d=sdy(d) the higher sd_d the more variability in spread of S(¢,x) across different angles ¢; this may
indicate a highly asymmetric pattern if sd_mis high or max_mis low; or a pattern with at least
one good mirror symmetry if max_mis high.



3. Experiments

Images of the lesions were acquired at Addenbrooke’s and Norwich hospitals using a SlAscope [7]. This
dedicated imaging device takes a number of images of the same area of the skin at different wavelengths. In
addition to this “raw” data, a number of parametric maps are computed showing the distribution and levels of
melanin, haemoglobin and collagen [8]. The data set comprises 99 pigmented lesions which include 15
histologically confirmed melanomas and a variety of other non-malignant cases. 51 lesions show the presence of
dermal melanin — a highly sensitive (96%) but not so specific (57%) sign of melanoma [5]. Image resolution is
40 microns per pixel. All the symmetry computations are restricted to the body of the lesion, ignoring the
surrounding skin. In this study the lesions were delineated by a clinical expert (JP).

The performance of the global symmetry measures was tested for three classes of lesion imagamelitye

of lesion pigmentation was assessed on 99 images representing the “raw” blue band (Fig.2, Left). In this part of
the spectrum there is strong absorption by both melanin and blood and these images represent best the overall
lesion pigmentation. Theymmetry of pigmentation pattern was assessed on 99 images (Fig.2, Right) in which

the underlying low-frequency changes (Fig. 2, Centre) were subtracted from the lesion image in the blue band.
This was to remove variations associated with typical pigment distribution where lesion is thickest at the centre
and thins out towards periphery. These underlying trends were found by modelling of radial lesion profiles using
the edge model defined by the equatigrr, A, T, s) = B+ A/ (1 + s~ "), where B is the skin tone, A
corresponds to amplitude, s — to edge sharpness and T is the mid-point edge location [9]syiraetry of

dermal melanin pattern was assessed on 51 images showing dermal melanin and computed by a method
described in [10]. In these images pixel values are related to depth at which dermal melanin is found.

Figure 2. Left: original image; Centre: reconstructed underlying pigmentation; Right: pigmentation pattern.

For each image class all the symmetry measures listed in 2.3 were computed and preliminary ROC analysis was
carried out to establish the best performing measures. The lesions were then divided into the training and test sets
at ratio 2:1 and the ROC analysis was performed for the three best performing measures. Using a standard
procedure, ROC curve was computed on a training set for a number of different threshold values, each yielding a
given sensitivity and specificity. The best threshold value was deemed to be the one with the minimum distance
to the ideal classification point (sensitivity and specificity both at 1.0). This threshold was then applied to the test
set and values for sensitivity and specificity recorded.

4. Results and discussion

The initial ROC analysis has identifieal_d, sd_d and min_d as the best melanoma indicators. All these
measures are related to the shape of distribution of the symmetry S¢oxesThe measures derived from the
magnitudes of the symmetry scores were similarly specific but much less sensitive.

4.1 Correlation with diagnosis

Table 1 lists the results showing how well the three selected measures served as the indicators of melanoma. It
can be seen that all the measures listed above are fairly good melanoma predictors. Many show a very good
balance between sensitivity and specificity and as such are good candidates for subsequent lesion classification.
The best melanoma predictor nsn_d derived for the overall lesion pigmentation. In fact, all the measures
performed best on this image data. The measures derived for the pigmentation pattern data do not show the
improvement hoped for over the results for the overall pigmentation.

4.2 Corréation with clinical assessment

An expert clinician visually assessed the symmetry of distribution of dermal melanin. ROC analysis showed a
very good correlation between this assessment and melanoma (sensitivity 0.92, specificity 1.00). It was
interesting to investigate how well the computed measures of symmetry correspond to this visual assessment.
Table 2 shows the results and it can be seen that the correspondence is very good. Further detailed analysis
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indicated that all the patterns considered highly asymmetric were also judged as such by the clinician. The same

was the case for the least asymmetric patterns. In the “grey” area in between, computer measures tended to grade
patterns as being more symmetric than the clinician did. This needs to be investigated further, for example to
reject the possibility that the clinician would subconsciously assess the pattern less symmetric if there was other
evidence indicating melanoma.

| avd | | sdd | | mnd |
Symmetry of lesion pigmentation as melanoma predi ctor
Sens. Spec. Sens. Spec. Sens. Spec.

training 0.70 0.78 0.60 0.71 0.80 0.80
test 0.80 0.75 0.80 0.75 1.00 0.96
al 0.73 0.78 0.67 0.71 0.80 0.82

Symmetry of the pigmentation pattern as melanoma predictor
Sens. Spec. Sens. Spec. Sens. Spec.

training 0.80 0.79 0.70 0.78 1.00 0.73
test 0.80 0.71 1.00 0.61 0.80 0.67
al 0.87 0.76 0.80 0.71 0.93 0.69

Symmetry of derma melanin as melanoma predictor
Sens. Spec. Sens. Spec. Sens. Spec.

training 0.67 0.68 0.56 0.92 0.67 0.80
test 0.75 0.61 0.75 0.77 0.52 0.70
al 0.69 0.66 0.62 0.89 0.62 0.76

Table 1. Sensitivity and specificity of various measures as melanoma predictor for three types of image data.

Symmetry of dermal melanin

av_ d sd d min_d
Sens. Spec. Sens. Spec. Sens. Spec.
training 0.79 0.80 0.88 0.90 0.67 0.80
test 0.91 0.67 0.82 0.83 0.50 0.70
all 0.80 0.75 0.86 0.88 0.62 0.76

Table 2. The degree of correspondence between the clinical and the computer assessment of symmetry.

5. Conclusions
The measures designed to evaluate the overall symmetry of the lesion have been shown to perform well as
melanoma indicators. They were also shown to correlate well with the clinical assessment of asymmetry of

dermal melanin. Work is in progress to incorporate these measures into a classification scheme for
differentiating between melanoma and other pigmented skin lesions.
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Abstract. Proteomics research relies heavily on electrophoresis gels, which are complex images containing
many protein ‘spots’. The identification and quantification of these spots is a bottleneck in the proteomics
workflow. We describe a statistical model of protein spot appearance that is both general enough to represent
unusual spots, and specific enough to introduce constraints on the interpretation of complex images. We propose
a robust method of automatic model construction that is used to circumvent manual model construction which
is subjective and time-consuming. We show that the statistical model of spot appearance is able to fit to image
data more closely than the commonly used spot parameterisations which are based solely on Gaussian and
diffusion formulations.

1 Introduction

Proteomics is the study of the complete set of proteins in a cell or organism throughout the entire life-cycle. It is hoped that
this research will enhance understanding of cell function in general and, more specifically, it will also identify proteins that
can be used as drug targets and disease markers. The main barrier to proteomics research is complexity. It is estimated tha
total number of proteins in a human cell could be as large as 500,000. Key to any analysis are separation and detection
technologies. A well-established and widely used technology is 2-Dimensional Electrophoresis (2-DE). This process
separates protein mixtures by iso-electric point (pl) and molecular weight (MW). Separation results from two separate
diffusion processes which are driven along orthogonal axes in a polyacrimide gel, resulting in a grid of protein strains.
The separated proteins are visualised by pre or post staining, yielding an image, containing protein ‘spots’. A segment
from such a 2-DE gel image is shown in figure 1. In practice, 3,000-4,000 spots can be visualised on a single gel image,
each representing an individual protein strain. The analysis of these complex gel images is a significant bottleneck in the
proteomics research workflow [1].

Image analysis of 2-DE gels requires the identification of a large number of individual spots. These must be characterised
for further analysis of the sample. One of the first steps in any spot detection algorithm is the segmentation of individual
spots from the background. After the segmentation step, spots are quantified and represented as a list of parameters ove
which further analysis can be carried out. Commonly, protein spot models are used to aid quantification by imposing
constraints, which in turn improves the robustness of the solution. The most commonly used spot model is a Gaussian
function [2]. Figure 1(a) shows an example of a typical protein spot with a Gaussian profile. This model is assumed to
provide a good representation of most spots present in most gel images. However, it has been shown that Gaussian model:
produce an inadequate fit to some protein spots, most notably large volume, saturated spots [3]. Figure 1(b) shows an
example of a high volume protein spot exhibiting a saturated, ‘flat-top’ shape. Bettens [3] addressed this shortcoming by
proposing a model based on the physics of the spot formation. Protein spots are formed by a diffusion process, which is
only adequately represented by a Gaussian when the initial concentration distribution occupied by the sample has a small
area. Bettens’ diffusion model more adequately represents spots in the gel when this assumption is not met.

Both the Gaussian and diffusion models assume perfect diffusion across the gel medium. Spots created by a perfect
diffusion process will be regular and symmetric. In practice, the diffusion process is not perfect and spots can be formed
with unpredictable, unusual shapes. An example of such a spot is shown in Figure 1(c). To represent more adequately the
full range of observed spot shape, we have developed a new protein spot model that is both flexible enough to represent
irregular shape variation and specific enough to retain usable constraints on the interpretation of gel images. The physical
process by which irregular spots are formed is extremely complex. It would be daunting task to directly estimate all the
physical variables affecting spot formation. Instead, we have used a Point Distribution Model (PDM) [4] to represent
observed variation in spot shape. Gaussian convolution simulates the diffusion process and forms a full model of spot
appearance. In section 2 we describe the model, together with an automatic method for model construction. Results of an
evaluation of the model and a discussion are presented in sections 3 and 4.
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Figure 1. A segment from a silver stained 2-DE gel image. Each visible ‘spot’ is an individual protein strain. Examples
of individual protein spots are shown with contour lines and as a 3D surface. (a) Gaussian, (b) ‘Flat-top’, (c) Irregular.
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Figure 2. Spot model formation. A flat shape is convolved with a bi-variate Gaussian kernel, which is equivalent to a
diffusion process.
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Figure 3. Robust model construction. (a) The first 3 of 10 mode2 §td.dev.) of a PDM built using a standard PCA. (b)
The first 3 of 6 modes of a PDM built using Robust PCA. Both models were trained with the same data. (c) Four examples
of boundary shapes that were down-weighted to 0 by the robust PCA.
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Figure 4. (a) Mean residual after model fitting to 403 spots in the silver image and 573 spots in the fluorescent image. (b)
62 and (c) mean residualof model fit plotted by increasing spot volume for each model. Spot volume group 1 contains the
smallest 10% of spots by volume, rising to group 10 which contains the largest 10% of spots by volume.



2 Modelling Protein Spot Shape and Appearance

To represent observed variation in protein spot shape we have used a PDM trained with a set of protein spot boundaries.
The PDM only represents shape, but we require a full model of spot appearance. Protein spot formation in 2-DE gels
is a diffusion process which is equivalent to convolution of an initial concentration distribution with a 2-D Gaussian
kernel. We have assumed the initial concentration distribution can be represented as a flat 2-D shape within the boundary
represented by the shape model. This flat shape is convolved with a bi-variate Gaussian kernel giving a full model of spot
appearance. Figure 2 shows an example of the full spot appearance model. We define our model using the parameter
vectorp’ = (B, I, zo,Y0, 04,0y, S, Es) , whereB is an additive background ternh,is spot intensity;zq andy, control
location,o,, ando, control the spread of the Gaussian along the two directions of diffusiem scaling for the spot shape

(from the alignment procedure) and s a vector of PDM shape parameters. This model is equivalent to the bi-variate
Gaussian wher = 0, and is equivalent to the diffusion model when the shape paramétersepresent an elliptical

shape.

2.1 Automatic Spot Model Construction

Section 2 described the basis of the models we use. Here we address the practical issue of building the model: determining
the training shapes from spot images and calculating the distributions of parameter values. In many applications of PDMs,
manual marking of landmark points has been used. Due to the complexity of the images, and the number of spots required
to build a model, this is an impractical strategy in this case. We proceed by segmenting the spots in the training images,
smoothing the boundaries obtained using a general shape representation and making the landmark points evenly spacet
round the resulting boundary. As the boundaries are extracted from real image data, a number of overlapping spots will
be represented. These need to be detected and excluded from the training data, as their inclusion would bias the model
and result in reduced specificity.

2.1.1 Generating the Training Set

Raw spot boundaries are obtained by thresholding the Laplacian of Gaussian transform of the training gel images (Gaus-
siano = 5). The resulting boundaries are smoothed using a Fourier shape descriptor [5] resulting in a parametrisation
of the spot shape by the Fourier coefficients (5 harmonics). Spot appearance is modelled by convolving this smoothed
shape with a Gaussian kernel, in the same way described in section 2. The parameters of this spot appearance model ar:
then optimised to improve the fit to the original image data using a Levenberg Marquardt gradient descent algorithm. This
provides an adjusted parametrisation of the shape matched to the image data. In this way the shapes used to build our
statistical model are derived from our model of spot appearance, rather than the somewhat arbitrary data-driven segmen-
tation. Using a Fourier representation in this strategy does not impose any explicit shape constraints on the boundaries
extracted. The PDM landmark representation is obtained from the resulting spot shapes by placing 25 evenly spaced
points around the boundary.

2.1.2 Robust Model Building

Automatic generation of training shapes will include incorrect shapes in the model. These shapes are the result of un-
separated overlapping multi-spot groups. The Fourier shape representation imposes no explicit shape constraints, other
than smoothness, so it is not possible to filter these incorrect segmentations at that stage. We could filter the resulting
shapes by hand, but this would be a highly time consuming and subjective process. Rather, we have chosen to reduce the
influence of such shapes by using Robust Principal Component Analysis [6] in the model building. We expect the number
of incorrect shapes to be small and their shape to be unusual, and therefore they can only influence the model as outliers
in the shape distribution. Robust PCA iteratively reduces the influence of outliers on the resulting model. The effect of
the robust PCA can be seen in Figure 3. The figure shows two PDMs, one built using standard PCA (Figure 3(a)) and one
built using robust PCA (Figure 3(b)). The models were generated from the same training data. Both models represent
the spots by principal components that retain 99% of the observed variance, in the robust case this is 99% of the variance
remaining after the iterative weighting procedure. The standard model represents the retained variance in the training data
using 10 modes, whereas the robust model requires only 6 modes. The contribution of each mode to the total variance of
the training set is shown for each model. The first mode of the standard model represents a large variation in aspect ratio
with an apparent 'waist’ becoming visible at the extremes of the mode. This mode would allow the model to represent
multiple overlapping spots, which is undesirable. There is no mode in the robust model that allows shapes with waiste’,
Figure 3(c) shows examples of shapes that have been treated as outliers by the robust analysis. They all rep hly
uncharacteristic shapes and several are clearly multiple spots. 63
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3 Evaluation of Models

We have compared the results for fitting the statistical spot model to image data with those achieved using the Gaus-
sian and diffusion models. The experimental procedure was as follows: spot regions were detected in a test image
using a watershed algorithm. Each of the spot models was fitted to each spot region using a Levenberg-Marquardt
non-linear optimisation algorithm to determine the best model parameters, minimising the following residgal:

> eweR [(S(%y\ﬁ) —I(z,9))*/ (nr(IF** — Ig””))} where R is the region of the image over which fitting takes

place,z,y € R are the coordinates of the pixels within the fitting regid(w;, y) are image values§(x, y|p) are the

model values given the parameter vectdsg?®, I'7" are the maximum and minimum image values within the region,
andnp, is the number of pixels within the region. This residual provides a measure of model fit error that is normalised
with respect to the intensity of the spot (which we have approximatd¢'as — 17'") and the size of the fitting region

(the number of pixelsg). This residual form allows direct comparisons of fit quality to be made between high and low
volume spots. The three models were fitted to 403 watershed delineated spots from a silver stained E.coli gel (375x228
pixels, 8 bit) and 573 spots from a gel stained with a fluorescent dye (2896x2485 pixels, 24 bit). The silver image is
low-resolution and contains many saturated and overlapping spots, whereas the fluorescent image is much higher quality
and contains fewer saturated or overlapping spots.

The mean residualsfor each model after fitting to all regions in both images are shown in Figure 4(a). In general the
fitting results for the fluorescent image are better due to the higher resolution of the image data. The statistical model
results in the smallest average residual after fitting for both images. Figure 4 also shows the mean residual for each spot
model and image, grouped by volume. Group one contains the smallest 10% of spots by volume, rising to group 10 which
contains the largest 10% of spots by volume. In both cases, the largest improvements in fit made by the statistical model
are associated with the largest spot volumes. We have assumed that high volume spots are more likely to produce unusua
spot shapes, which, we have argued, are the best represented by the statistical model. For the silver image, small and
medium volume spots (groups 1-6) give fits for the Gaussian, diffusion and statistical diffusion models that are almost
equivalent. However, the statistical model results in reductions in residual for all volume groups of the fluorescent image.
This suggests that in the fluorescent image all spot groups contain shape variation away from Gaussian assumptions, ever
the smallest spots by volume. This trend is not visible in the silver image data and this may be due to the low-resolution
of the image preventing full convergence. For all spot volume groups the statistical model results in fits that are better
than or equivalent to the fits of the other two models. This is achieved in both images despite large visual and resolution
differences. These results demonstrate that the statistical model is able to fit well to a wide variety of gel image types.
This is to be expected, as the model has the most degrees of freedom. We have demonstrated elsewhere [7], that the mode
achieves this increase in fit accuracy without an associated decrease in model specificity.

4 Concluding Remarks

In this paper, we have described a statistical model of protein spot appearance, together with a automatic construction
algorithm which takes into account the complexity of the image data. This model is both flexible and specific enough
to represent the true range of protein spot appearance found in complex 2-DE gel images without the need to develop a
sophisticated theoretical model of the physical processes driving irregular spot formation.
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Modelling an average planar shape
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Abstract. A new methodology for the generation of an average shape from images is presented. It aims to
represent standard shapes of internal organs. Most existing methods have used landmarks in describing a shape.
The new method does not rely on landmarks but accommodates global structure of a shape. It is based on
measure theory via a stochastic process. We consider 2D shape in this paper. The proposed shape model is for
a deformable object and uses a Gaussian distribution in the theory, which characterises the point distribution
over a continuum. A number of examples of synthetic and real data for average shape estimation are presented
to illustrate the approach.

1 Introduction

There is an important relationship between shape of a biological structure and its function. This paper focuses
on representing a standard shape of an internal organ such as a heart. The representation of a standard shape is
of importance; a standard shape of a normal subject (so-called atlas) can be used to assess a diseased subject.
Particularly, in this paper we are interested in deformable shapes.

In modelling a shape we consider three subproblems: identifying a shape, describing shape variations, and defin-
ing an average shape. The new methodology does not depend on landmarks but seeks a global description of a
feature-based model exhibiting local deformation.

In modelling a shape space, various methods have been proposed. Kendall's approach [8] using the Procrustes
metric defines a shape is what remains when location, size, and rotational effects are filtered out by similarity
transformations. It forms a manifold with the Procrustean metric, where a shape is represented by a point on a
sphere. This model concerns only similarity transformations. Bookstein's shape space [1] is also built on a dif-
ferential manifold. A triangular shape (characterised by three points) is represented by a point in the complex
plane and so on a sphere; but differs from Kendall’s method in the choice of metric. Those models are built on

a strong theoretical foundation but are not flexible enough to represent a biological object. Pennec et al's [10]
view geometrical features as a combination of a feature (such as a point or curve) with a transformation. Both the
feature set and the transformation set constitute differential manifolds, respectively, with relevant invariant metrics.

In their model, transforming a feature in the Euclidean space is regarded as a pair. Hence, transforming can be
clearly formulated in the model. However, the transformations involved in this model can currently only explain
rigid body transformations. They adopt theeEhet mean and have applied their model to data fusion [10].

Deformable models defined by an energy minimisation mechanism [7] [2] have been an active area of medical
imaging and shape analysis. Bookstein’s [2] decomposition of deformation, by affine and non-affine transforma-
tions, accelerated research of related topics. Bookstein expresses the displacement between two sets of landmarks
using the fundamental solution of a biharmonic equation. He adopts bending energy, a bit differently from [7] and
formulates a warp function. The whole warp of the displacement is visualised as a thin-plate spline. This method
has been widely applied in many areas. Cootes et al's model [4], for an average shape, a Point Distribution Model

is efficient and easy to apply and test. In particular, shape variations are described by eigenstructure in a com-
prehensive manner. Their model called Active Shape Model is currently popular and widely adapted. However,
the intrinsic linearity of the model sometimes results in an average shape that deviates from a population where
samples have few clear landmarks. There were a number of methods trying to represent anatomical atlases, e.g.,
[5] [9]. However, these are not formal, theoretically sound models of a standard shape. The methods introduced
above mostly characterise a model in terms of landmarks. The manual landmarking process for these methods is
tedious and automated process often has limited accuracy.

We propose a new approach adopting measure theory (including probability) to account for a shape represented by
a point setin 2D. The point set is assumed to be dense and can be regarded as a continuous curve in its model. The
new methodology does not look for individual landmarks, but global structure of a shape accommodating various
types of deformation. The new method for modelling a shape space is introduced in the section 2 and the resulting
average shape of some examples generated from the methodology is presented in section 3. Section 4 presents a
discussion of the new methodology and conclusions of the current work.

*jgkim@robots.ox.ac.uk.
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2 A 2D shape space based on measure theory

Representation of a shape from uncertain medical images has its foundations upon partial knowledge about im-
ages. Probability theory is a proper tool for estimating whole from partial knowledge. Measure theory provides

a generalisation of the concepts of size to arbitrary sets and provides the basic framework for probability theory.
These are relevant, especially, for random features not composed of formulated shapes.

In this paper, a shape diffused in the plane is regarded as Brownian motion and the Wiener measure space is em-
ployed for generation of an average shape of samples and to account for their deformation. A deformation model
should be able to accommodate the range of variations found in the samples. The deformation is described by
cylinder sets in the Wiener space. The Wiener measure is a Gaussian probability distribution function (pdf). The
average value of curves at a point where a cylinder set is defined is evaluated using the Wiener measure.

A number of methods in shape analysis use a point distribution, mostly a uniform distribution. The distribution
may explain small deformations. These are relevant for models with clear landmarks. However, it does not explain
shape variation well where large deformation occurs and may produce an average deviated from populations for a
model having few or no clear landmarks. The new approach in this paper uses a point distribution of samples but
differs from conventional methods in that it accommodates a distribution of continuum simultaneously.

We consider a point-set as a sample, which in our case is data extracted from images. We assume that samples are
dense. In the model, a shape is identified by a continuous curve, more strictly, by a continuous and real-valued
function defined on a bounded interval. All samples are first aligned using affine transformations. For a shape
represented by a closed curve, the proposed method is restricted to the cases where curves and their interiors form
a simply connected set in 2D. The set may not be convex because the method can be applied to star shaped objects,
but it is not applicable to a shape of spirals or with self-intersection.

2.1 Wiener measure space

The Wiener measure space originates from Brownian motion. Some notations are indispensable in introducing the
new method. For a brief introduction of the Wiener measure space employed in the model, see [6]. We mostly
follow notations from [6] here.

Let Cyla, b] be the set of real-valued continuous functions @rb] with z(a) = 0. N. Wiener demonstrated the
existence of a countably additive probability measuren Cj[a, b] such that ifrn is a natural number = t5 <

t1 <...<t, <bandaj, ; are extended real numbers such that < o; < 3; < oo(j =1,2...,n), then

ﬁn 61
m({z € Cola,b] : a; < z(t;) < B5,j =1,2,..,n}) = / - W, (t,U)dU 1)

where

n (ujfuj’_l)z
Wa(t,U) = . ¢ 2ot oty 2)
VTt —to) ... (tn — tn1)
andt, = a. The resulting measure formulated by equation (1) is callef\fiemer measureSubsets of Cy[a, b]
in the expression in equation (1) is calleglinder setsand illustrated in Figure 1(a). The s€f|a, b] with the
Wiener measure is called theNiener measure spager Wiener spacge
A stochastic process defined on the Wiener space is used in modelling a shape spmohastic proceswith

Figure 1. (a) An illustration of 3 cylinder sets (expressed by thick vertical bars) &b, andts on continuous
curves (b) Synthetic data (curves) to be given in section 3.1 and cylinder sets (expressed by radial bars) on them

parameter sef’ and underlying probability spade is a functionX : T' x Q — R such thatX (¢, -) is a random
variable (i.e., a measurable function) for evergndT is a linearly ordered set. We follow the notatiah for a
stochastic process rather thAf{t, -) to distinguish the parametefrom the variablex for integration.
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(a) Average with Gaussian distribution (b) Average with uniform distribution
Figure 2. Synthetic data expressed by 5 curves (continuous lines) andatreximgeoverlaid as a dotted curve

2.2 Model description and an average shape

Let us assume we are given a setoturves (point-sets) representing data, say. . ., 2™, wherex € Cy[a, b]

and choose a linearly ordered subsetaf], sayT = {t1,1s,...,t,}. A cylinder set at each poinf € (a,b] is
defined as follows. The boundaries; and3;, of cylinder sets are determined by the §et(¢,),...,2™(;)},

so that the deformation over alls att; is quantified. The cylinder sets are represented by theZsets {x €
Cola,b] : a; < x(t;) < B;} for everyt; € T. The cylinder set in equation (1) at eaghin the model is one-
dimensional. As the cylinder sets are defined at éachll the curves included in the cylinder sets are represented
by a stochastic process defined on the Wiener space.

The stochastic process expressing the modgKis : Xy, (z) = x(t;),t; € T'}. The distribution of eackX; is

a GaussianV(0,t — a) [12]. As eachXy,(x) in the stochastic process is a measurable function on the Wiener
space, we can evaluate an average valu&ofx) over allz’s, an average value of the measurable function (for
the definition, see [11]) as follows:

Bj w2
[ ——t—ue* i du
_ a; V2r(tj—to)
Xiy = Bj —u2 (3)

f 1 e2(tj—a) du

a; A/ 27’I’(tj—t0)

Both the numerator and denominator correspond to the case-ofl, t, = a anduy = 0 in equation (2). The

value notated by_(tj, in equation (3) is the average of allt;) over the set of ali’s, the set of all curves involved

in defining the cylindeZ;. The value is assigned gtand the pointt;, X, ) is always located within the cylinder

set. Hence, it is always located within the scope of deformation in the sample. In the model based on the Wiener
measure space, an average valug & evaluated with an independent distribution for each cylinder set and this is
done successively alorig In the new methodology, we define a curve in the plane represented by discrete values
and notated by the sé{t;, X;,),t; € T} as the average curve over the samples. The average curve explains
deformation very well.

3 Results

3.1 Application to Synthetic data

An example of applying the approach to 2D synthetic data is shown in Figure 2. This example is to account for
how the model explains the variety of shapes in the case of dissimilar shapes because shapes acquired from medical
images of an internal organ are similar. Each of 5 curves (samples) consists of 100 points and represented by a
continuous curve. A series of global affine transformations is applied to the curves so that they are centred on
the origin and notated by!,...,z°. Then cylinder sets are defined at equally spaced a bounded interval,

(0, 27] in this example. The smallest and biggest values(of) at¢; are then determined, defining andj;,
respectively. In this example, they are determined on a neighbourhogdi@faccommodate all deformations
existing in the curves. These values represent the range of deformation which is depicted by radial bars in Figure
1(b). The average curve of the data evaluated from the formula (6) is illustrated in Figure 2(left). An averaae
calculated by a uniform distribution is in Figure 2(right) for comparison. The latter shows that its average tend:
follow the majority of a population but does not accept large deformations embedded in a population. On the o 6
hand, the former well explains large deformations as well as small deformations.
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4 cardiac curves, raw data tranformed curves and their average (dots)

300

250

150

100

50

Figure 3. Raw cardiac data;', - - -, z* (left) and theiraverageoverlaid (right).

3.2 Application to real data

A set of data was acquired using automated echocardiographic image tracking softwareQealeds™ ™ de-

veloped by Mirada Solutions Ltdl Data is depicted in Figure 3 (left) as 4 curves; each curve consists of 300
points. The images used in the example are long axis 4-chamber images of 4 different subjects. These are for the
same point in the cardiac cycle, at the end of diastole. The aligned curves are drawn in Figure 3 (right) with their
average curve using formula (6) overlaid.

4 Discussion

We have presented a new methodology employing a stochastic process on the Wiener space. This methodology is
dealing with information about the distribution for points extracted from images. The set of curves are dealt with
by a stochastic process whose distribution is Gaussian. In particular, the model expresses deformation embedded
in samples regardless of the deformation being small or large. Current methods for extracting data from medical
images depend on landmarks (one notable exception is the work of Pennec). Even those bearing other forms can
be regarded as variants of landmarks; one fundamentally has to rely on distributed points over images in medical
image analysis. Considering this, the adaptation of Wiener measure fits the nature of our purpose because the
Wiener measure employed in the shape space provides a point distribution over a continuum. In the examples
presented in section 3, the positions of cylinder sets are chosen uniformly. However, an optimal way of the choice
of the positions, according to some intrinsic property of an object, must be involved to make the method robust.
The proposed model could be applied to the problem of registration and developed to a 3D model. It could be also
improved with a matching method for unlabelled point sets [3]. Theses topics are the subject of on-going work.
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Abstract.

Sub-millimetre changes in articular cartilage thickness over short time-scales are too small to be detected by
individual pairs of MR scans of the knee joint. This paper presents a method for corresponding and comparing
changes in a population of patients. Continuous surfaces are constricted from parallel slice segmentations of
the femoral bone and cartilage in knee in a set of patients at two time-points; 0 and 6 months. An optimised
Statistical Shape Model of the bone provides a set of corresponding locations across the set of bone surfaces
from which 3D measurements of the cartilage thickness can be taken. The method is illustrated by applying it to

a small set of patient whose corresponding cartilage thickness measurements can be aggregated and compared
between two time points. This approach could be employed to investigate and quantify the effect of debilitating
diseases such a osteoarthritis on articular cartilage.

1 Introduction

Osteoarthritis is a major cause of suffering and disability which causes degeneration of articular cartilage, although
characterising cartilage and bone changes during disease progression is still the subject of current[research [10].
MR imagery of the knee can be used to monitor cartilage damage in[Vivo|[2, 12]. Most studies suggest that total
cartilage volume and mean thickness are relatively insensitive to disease progfession [7,3,14]. There is evidence to
suggest that osteoarthritis causes regional changes in cartilage structure with some regions exhibiting thinning or
loss of cartilage whilst swelling may occur elsewhere on the articular surface. For this reason, localised measures
of cartilage thickness are likely to provide a fuller picture of the changes in cartilage during the disease process.
In healthy subjects knee articular cartilage is, on average, dnly. thick [4,[6] and thickness changes over the

short time scale useful in drug development (6—12 months), are likely to be in the sub-millimetre region. It is
unlikely that such small changes will be detected in individual pairs of MR scans given practical scan resolutions
and segmentation accuracies. Previous work has shown that small but systematic changes in thickness between
two time points can be measured in a group of subjects by registering the set of cartilage segmentations and
computing mean change at each point of the cartilage surfa¢e [16]. These studies used elastic registration of
the segmented cartilage shapes in normal volunteers. This has two obvious problems: there is no guarantee that
anatomically equivalent regions of cartilage are corresponded, even in normal subjects, and the correspondences
become unpredictable when the cartilage shape changes during disease (particularly when there is loss from the
margins).

In this paper we propose using the underlying bone as an anatomical frame of reference for corresponding cartilage
thickness maps between subjects over time. This has the advantage that anatomically meaningful correspondences
can be established, that are stable over time because the disease does not cause significant changes in overall bone
shape. We find correspondences between anatomically equivalent points on the bone surface for different subjects
using the minimum description length method of Davies el al. [5] which finds the set of dense correspondences
between a group of surfaces that most simply account for the observed variability. This allows normals to be fired
from equivalent points on each bone surface, leading to directly comparable maps of cartilage thickness.

2 Method

MR images of the knee were obtained using T1 weighted fat-suppressed spoiled 3D gradient echo sequence to visu-
alise cartilage and a T2 weighted sequence to visualise the endosteal bone surface, BRI 615 x 1.6mm

resolution. Semi-automatic segmentations of the femoral cartilage and endosteal surface of the femur were per-
formed slice-by-slice using the EndPoint software package (Imorphics, Manchester, UK). These slice segmenta-
tions were used to build continuous 3D surfaces, an MDL model of the bone was constructed and standardised
thickness maps were generated as described in some detail below. The data used contained images of both left and
right knees. To simplify subsequent processing, all left knees were reflected about the medial axis of the femt

they could be treated as equivalent to right knees. 69
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2.1 Surface Generation

Continuous surface representations of the bone and cartilage parallel slice segmentations are required in order to
allow 3D measurements to be taken at any point. To provide a common reference across all examples, each bone
segmentation was truncated to include a length of femoral shaft proportional to the width of the femoral head.
Where adjacent segmentations differed significantly, additional contour lines were inserted at the mid line of the
two segmentations. Surface construction from the cartilage segmentations proved challenging due to significant
variation between neighbouring slices and the thin, curved shape of the cartilage. Various documented approaches
proved unable to produce plausible surfa¢es [B, 13] so an alternative surface construction method specifically for
articular cartilage was developed. During cartilage surface constriction, regions of the segments were categorised
as eitherspans(connecting two segments) oidges (overhangs where the surface is closed and connected to
itself). Surface generation was performed by triangulation of these regions. Fjgure 1 illustrates the resultant bone
and cartilage surfaces for one patient.

2.2 Bone Statistical Shape Model

We adopted the method of Davies et al. [5] to find an optimal set of dense correspondences between the bone
surfaces. They were pre-processed to move their centroids to the origin and scaled so that the Root Mean Square of
the vertices’ distance from the centroid was unity. This initial scaling facilitated model optimisation by minimising

the effect of differences in the overall size of the examples on the shape model. Additional pose refinement is
incorporated in the optimisation process. Each bone surface was mapped onto a common reference; an unit sphere
is chosen since it possessed the same topology as the bone and provides a good basis for the manipulation of the
points by reducing the number of point parameters from the three Cartesian points of the shape vertices to two
spherical coordinates. The diffusion method of Bredilbr [1] was used to produce the spherical mappings .

A set of equally spaced points were defined on the surface of the unit sphere and mapped back onto each bone
surface by finding their position on the spherically mapped surfaces — the triangle on which they are incident
and their precise position on this triangle in barycentric coordinates — and computing the same location on the
corresponding triangle on the original surface. This provided a first approximation to a set of corresponding points
across the population of bone surfaces. At this stage there is, however, no reason to expect anatomical equivalence
between corresponding points

The automatic model optimisation method of Davies at al. [5] is based on finding the set of dense correspondences
over a set of shapes that produce the ‘simplest’ linear statistical shape model. A minimum description length
(MDL) objective function is used to measure model complexity, and optimised numerically with respect to the
correspondences. The basic idea is that ‘natural’ correspondences give rise to simple explanations of the variability
in the data. One shape example was chosen as a reference shape and the positions of its correspondence points
remained fixed throughout. The optimisation process involved perturbing the locations of the correspondence
points of each shape in turn optimising the MDL objective function. Two independent methods of modifying the
positions of the correspondence points were used: global pose and local Cauchy transform perturbations on the
unit sphere. Global pose optimisation involved finding the six parameters (x y z translation and rotation) applied
to the correspondence points of a shape that minimise the objective function. Reducing the sizes of the shapes
trivially reduces the MDL objective function so the scale of each shape was fixed throughout the optimisation.

Local perturbation of the correspondence points on the unit sphere, guaranteed to maintain shape integrity, is
achieved by using Cauchy kernels to locally re-parametrise the surface. Each kernel has the effect of attracting
points toward the point of application. The range of the effect depends on the size of the kernel. One step in the
optimisation involved choosing a shape at random, optimising the objective function with respect to the pose, place
a kernel of random width (from an interval) at random points on the unit sphere and finding the amplitude (size of
effect) that optimised the objective function. This was repeated until convergence.

2.3 Measuring Cartilage Thickness from the Bone

Different measures of cartilage thickness have been proposed, all taking their initial reference points from the
exosteal surface of the cartilage/[4,9/11,15]. Our work differs in that the reference points for the measurements are
taken from the endosteal surface of the cortical bone along 3D normals to the bone surface at the correspondence
points determined as described above. On firing a normal out of the bone surface, the expected occurrence is to
either find no cartilage, as is the case around regions of the bone not covered by any articular cartilage, or intersect
with the cartilage surface at two points, on its inner and outer surfaces. The thickness of the cartilage is recorded as
the distance along the bone normal between its points of intersection with the inner and outer cartilage surface. By
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Figure 2. (colour) A sub-set of the correspondence points shown on 4 of the population of bone surfaces. The
objective is for the corresponding points to reside on the same anatomical regions of the bone across all the shapes.
These plots illustrate that the model has been able to provide good correspondence across the population of shapes.

(a) TP1 (0 months) and TP2 (6 months) (b) TP2-TP1 viewed from two different angles

Figure 3. (colour) Mean cartilage thickness from the time-point 1 and time-point 2 (0 and 6 months) segmentations
and the difference all represented as cartilage thickness mapped onto the average bone shape. Regions where
swelling of the cartilage occurs are coloured red while blue indicates thinning.

taking a cartilage thickness reading at each correspondence point a cartilage thickness map can be drawn onto the
bone surface. Sets of cartilage thickness readings taken at the corresponding points, defined by the MDL model,
can be combined for sets of patients and compared between different time-points.

3 Results

18 sets of bone segmentations for 6 at risk patients were processed. The data was equally divided between two
time-points (0 and 6 months). With this small set of data the intention was to demonstrate the feasibility of the
approach rather than deduce any characteristics of cartilage thickness change during arthritic disease progression.
Figure[2 shows a proportion of the resultant correspondence points projected onto a sub-set of the population. It
can be seen that the correspondences are anatomically plausible. Only a proportion of the bone correspondence
points reside on regions of the surface which are covered by cartilage. Typically, 950 of the 4098 corresponding
measurement points resulted in cartilage thickness readings. For a cartilage endosteal surfactr2areanof

this represents coverage 0201 thickness readings penm? and an average separation D23mm between

readings; sufficient coverage and number of points to perform statistical analysis of the data[ JFigure 3 illustr: 71
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how populations of results can be combined and compared. Mean thickness measurements for each corresponding
point are displayed as colour maps on the mean bone shape. The results for time points 0 and 6 months scans are
illustrated together with the difference between these aggregate maps. The difference map demonstrates thinning
of cartilage in the load-bearing regions such as the patellofemoral (middle left) and medial tibiofemoral (upper
right) compartments which is analogous to the finding reported in a diurnal study [16]. A larger study will be
required to draw firm conclusions.

4 Conclusions and Further work

We have demonstrated the feasibility of using the underlying bone as a reference for cartilage thickness measure-
ments. The bone provides a stable reference for examining surfaces built from segmentations of cartilage scans
taken at different time points. Inter-patient comparisons can be achieved by building and optimising a Statisti-
cal Shape Model of the femoral head. Cartilage thickness measurements are taken over all bone examples at the
resultant corresponding locations which allows for the aggregation of results from a population of patients and
comparisons between sets of patients.

The approach was illustrated by applying it to a small population of 18 bone segmentations divided between
two time-points. Two sets of measurements were combined to produce mean thickness maps which were then
compared to each other to illustrate a comparative cartilage thickness map illustrating regional cartilage thickness
changes. The immediate requirement is to complete larger scale experiments and extend the approach to the other
(tibial and patellal) articular surfaces of the knee joint. Further refinement of the surface construction and image
registration of the bone and cartilage scans could yield greater accuracy in cartilage thickness measurements.
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Abstract. Defective pelvic organ support due to injuries of the levator ani is a common problem in women
and its intervention requires a thorough understanding of its morphology and function. To this end, accurate
delineation of three-dimensional surfaces of the levator ani plays an important part. In this paper, we propose
to build a statistical shape model (SSM) of the levator ani and describe a segmentation technique based on
the optimised control point arrangement and the SSM. The SSM was derived by the use of harmonic shape
embedding with the MDL objective function for parameter optimisation, whilst segmentation was performed
by fitting the model to a user defined set of control points. The value of the technique was demonstrated with
data acquired from a group of 11 asymptomatic subjects.

1 Introduction

Pain, urinary or faecal incontinence, or constipation can be the results of injuries to the levator ani due to
childbirth [1]. Locating the injuries is of prime importance for the prescription of suitable treatment such as
pelvic floor exercises or surgery. Due to its clear tissue contrast, conventional 2D MR imaging techniques have
been used relatively extensively for the assessment of the levator ani [2], with diagnosis made on the position of
the organs such as the rectum and bladder, with respect to structural landmarks. 3D representation of the levator
ani is a recent approach [3-5] that has yielded findings that differentiate between symptomatic and asymptomatic
patients. Visual comparison has shown a continuum in levator volume degradation, loss of sling integrity and
laxity in the order of asymptomatic, genuine stress incontinence and prolapse. It has also been found that the lack
of volume of the levator ani can be an indication of pelvic floor dysfunction [6, 7]. In both studies, the levator ani
was manually segmented from a set of image slices which is a time consuming process. Reducing the amount of
data required to segment the entire levator surface would significantly simplify the process.

The purpose of this paper is to propose a method of segmenting the levator surface by using a user defined set of
control points and a statistical shape model (SSM). Cootes et al [8] have investigated shape models and their use
in automatic segmentation of images. Model based segmentation requires the entire set of control points to be
deformed under the constraints of predefined heuristics describing the shape in the images. With SSM, a smaller
set of points can be used to characterise the shape, therefore users can quickly determine landmarks associated
with primary features of the surface. As the surface of the levator is topologically homeomorphic to a compact
2D manifold with boundary (sheet topology), the statistical shape model was built by using a method by Horkaew
and Yang [9].

2 Methodology

The image data for this study were acquired with a Siemens Sonata 1.5T scanner. Eleven nulliparous, female
subjects (22.6+1.4 years of age) were recruited for the study with informed consent and all subjects were scanned
in the supine position. A turbo spin echo not-zone selective sequence (TR=1500ms, TE=130ms, slice
thickness=3mm) was used to acquire 32-36 T,-weighted, transverse images for each of the eleven subjects
studied. The levator ani was manually segmented from each data set by using an in-house developed 3D Slicer
that allows for interactive visualisation in any arbitrary plane. The control points (also selected in the 3D Slicer)
selected for shape restoration were the two most anterior points and one most posterior point on the levator
surface in 4 image planes.

Triangulated surfaces (each forming a mesh M) were generated for the eleven levators and each was
parameterised onto a unit quadrilateral base domain [10]. Each vertex was uniquely defined in the internal
mapping by the minimisation of metric dispersion — a measure of the extent to which regions of small diameter
are distorted when mapped. The harmonic map [11] corresponding to the minimisation of the total energy of the
configuration of the points over the base domain was solved by computing its piecewise linear approximation
(12],
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A sparse linear system was solved for the values ¢(i ) at the critical point to find the unique minimum of equation

(1). A B-spline surface patch was constructed from each mesh by reparameterising the harmonic embedding over
uniform knots. The approximate tensor product B-spline was calculated from a set of distinct points in the
parameterised base domain. Given the minimal distortion map, the least squares approximation by B-spline with
a thin-plane spline energy term bore well defined smooth surfaces. The uniform model was composed of these B-
spline surfaces. Correspondences in the training set of B-spline surfaces were found by reparameterising the
surfaces over the unit base domain. This was defined by a Piecewise Bilinear Map (PBM), to which multi-
resolution decomposition can be applied. This resulted in a hierarchy representation of the parameterisation
spaces.

The Minimum Description Length (MDL) was used to select the parameterisation for building the optimal SSM
similar to the work by Davies et al [13]. The MDL principle was designed to choose the model that provides the
shortest description of both the data and model parameters. At each level of iteration in the algorithm, the
parameterisations were refined and the PBM parameters optimised according to the MDL objective function. The
sampling rate on each B-spline surface was also increased, resulting in a concurrent hierarchy on both the
parameterisation domain and the shapes, thus leading to reliable convergence. Polak-Ribiere’s conjugate gradient
optimisation [14] was employed.

All but one of the levator ani surfaces were used in each training set (for a leave-one-out error analysis). Twelve
control points were selected on the surface of each levator ani and each model was fitted to the set of points by
minimising the distance from the model surface to the points. The error was calculated as the mean distance
between corresponding control points in the fitted model and the original shape. The control points of the model
were automatically manipulated until the error between the points was minimised. Simulated annealing was used
for defining the pose parameters of the model.

3 Results

Figure 1 shows a set of example magnetic resonance images of the pelvic floor with the levator ani indicated by
the white arrow. From left to right, the images progress from the feet to head in direction. The statistical shape
model was first built with all 11 levator ani surfaces. Figure 2(a) demonstrates the shape changes corresponding
to the first three principal modes of variation. The first mode varies the height of the levator ani. The second
mode corresponds mostly to the variation of the “hump”, caused by the presence of the anal canal/rectum. In the
optimal model, the first three modes of variation provide 84.8% of the total variance whilst the equivalent value
in the uniform model is 82.0%. A non-normalised graph of this quantitative comparison is shown in Figure 2(b).

Figure 3(a) shows the position of the selected control points used to reconstruct the 3D surface from the SSM,
overlaid onto the original surface. Figure 3(b) is the 3D representation of the two surfaces, one derived from the
complete 3D data (blue) and the other from the user defined control points (yellow). It is evident that most of the
error is at the edges and at the extremes of the original shape, where the control points were not located.

Figure 1. Magnetic resonance images of the pelvic floor (with the levator ani
indicated by the white arrow)
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Figure 2. (a) The first three modes of variation captured by the optimal statistical
shape model. For each mode, the shape parameters have been varied by 26. (b) A
comparison of the compactness of each model. The results are not normalised.
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Figure 3. (a) Two views of the control points on the original surface. (b) Two views of the
model segmented shape (yellow) overlaid on the original shape (blue). (c) Scatter plots for the
control points on the original and model segmented shapes.
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For the assessment of these errors, Figure 3(c) is a scatter plot (original shape points versus fitted model points)
of all the B-spline surface control points in 3D space for one shape during a leave-one-out exercise. The
regression line has also been plotted (average regression ratio 0.86893).

4 Discussion and Conclusion

With this study, the number of control points used was limited to twelve and were placed within 4 image planes.
These can be increased if time permits to allow additional features to be prominent. Overall, there are no
limitations to the proposed technique with regard to number of control points and their positions on the surface.
Our future work will be focussed on applying the modelling technique to the investigation on muscle dynamics,
where spatial correspondence of optimal control points of the SSM will need to be established.

In summary, we have proposed a segmentation method based on a statistical shape model. The statistical shape
model was created with the use of harmonic shape embedding and an objective function based on MDL.
Quantitative results from the 11 subjects demonstrate the potential of this method. We believe that statistical
shape modelling is the way forward for studying the levator ani and that the proposed segmenting technique is an
effective means of delineating its morphology from the anatomically complex pelvic floor region.
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Abstract. Segmentation of the prenatal heart can be used to examine the cardiac function and to aid in the
assessment of congenital heart disease. This paper presents an active contour model to segment the ventricles
of a temporal sequence of long-axis sliced foetal cardiac data. The algorithm uses image energy in the form
of a Generalised Gradient Vector Flow (GGVF) field to drive a contour initialised as a circle towards salient
features in the first frame of the sequence. The motion of the ventricular wall was modelled by rigid-body
deformation between frames to enable the contours to remain within their respective chambers before the
snake was allowed to capture the non-rigid deformation. The algorithm was compared to manual tracings of
the chambers by a foetal cardiologist. Preliminary results from application to an eleven frame sequence
spanning one cardiac cycle produced a correlation coefficient of 0.92 and 0.91 for the left and right ventricles
respectively. Root mean square errors of the perpendicular distances between the automatic contours and
expert tracings vary between 1 and 4.5 pixels over the cardiac cycle. Future work will involve moving
towards a three dimensional (3D) approach to the snake to segment the chambers.

1 Introduction

Congenital heart disease occurs in 8 out of 1000 live births [1] and can be diagnosed in-utero by real-time
echocardiography [2]. Segmentation of foetal cardiac chambers can be used to measure their size and shape as a
function of time and serve as a diagnostic aid into the state of the myocardium when there are functional and or
structural abnormalities present. In the past few authors have addressed segmentation of foetal cardiac data.
Interactive grey-level thresholding was applied to the entire dataset by Deng et al 2001 [3] to extract the cardiac
chambers but can lead to dropout of structures below the user-defined threshold level. Lassige et al 2000 [4]
developed a snake to look for septal defects (pathological holes in the inter-atrial or inter-ventricular septum)
using the level-set approach that allows the contour to occupy multiple foetal cardiac chambers simultaneously.
An alternative approach to segmentation of the foetal cardiac chambers without deformable models can be found
in a paper by Siqueira and co-workers [5], in which a cluster-based segmentation of temporal foetal slices was
produced. The algorithm was constructed around a self-organising map that analysed the probability density
functions of patterns found in foetal heart images. These maps were post-processed by k-means clustering and a
neural network examined the mean and variance of randomly sampled areas in the image and identified the most
significant regions. Their method measured foetal cardiac structures which showed agreement with the manual
measurements made by physicians.

In recent years deformable model approaches to segment and track the motion of the cardiac walls in ultrasound
data have been in the form of fitting elastic contours or a membrane to the structures. Several cardiac contour
finding algorithms involve the use of the previous contour as initialisation for the next frame as in Sdnchez and
co-workers [6]. This may involve a mesh or contour to be guided by predictions in the motion between frames as
it follows the endocardium [7]. It is becoming increasingly common in snake models applied to cardiac datasets
to use in addition to spatial shape constraints, some temporal continuity between frames [8, 9].

This paper presents an active contour model paradigm applied to a temporal sequence of long-axis slices of the
foetal cardiac ventricles. The segmentation results from the algorithm are then presented and compared with
manually drawn curves by a foetal cardiologist. Finally the results of the algorithm and future work are
discussed.

2 Materials and Methods
2.1 Data acquisition

The volumetric foetal heart dataset was acquired using paired Acuson scanners (Acuson Corporation, Mountain
View, CA) with a phased-array transducer operating at a frequency range of 5-8MHz [10]. The image resolution
was 256x256 pixels at 8-bit quantisation; with a pixel size of 0.26 millimetres (mm) in the fan beam plane and
0.5mm between slices. An automated online-triggering procedure developed by Deng et al 2001 [3] enabled the
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datasets to be motion-gated online. Long-axis slices of the heart were used since these were acquired between
the intercostal spaces and so shadowing artefacts in the images were at a minimum.

2.2 Classic snake formulation

A snake is a deformable elastic curve capable of evolving from an initial shape to fit features in the image and is
regularised by its internal forces. The snake model was devised by Kass et al 1988 [11] and its energy is defined
in parametric form by the following equation

E =

snake

E,.(()+E, (v(s)+E,, (v(s))ds (1)

© o —

where Ej, represents the internal energy of the snake and is a means of spatially regularising the contour due to
local stretching and bending effects, E,,; controls the interaction of the snake with salient features within the
image and E,,, arises from external constraint forces.

Useful image features in an ultrasound data are the edges since boundary information is inherent in the ultrasound
imaging process. In our application E,, is an attractor towards edges between the blood pool and the
myocardium and in the classic formulation is often defined as the gradient of a low pass filtered version of the
image. The main problems with this term are that it is only effective over short ranges and does not allow the
snake to move into regions within the image that are encompassed by highly concave boundaries.

2.3 Generalised Gradient Vector Flow snake

We replace the E,,, term in equation (1) with a GGVF (Generalised Gradient Vector Flow) force developed by
Prince and Xu in 1998 [12] so that the snake would be drawn to the myocardium in the absence of local edges if
initialised within or across a cardiac chamber. This term is defined in equation (2) where Vf'is the gradient of the
Gaussian filtered image and u is the vector field of a map that shows all the edges in the image (edgemap). The
vector field was created by applying the steady-state diffusion equation to the edgemap so that edge influence is
propagated throughout the entire image and thus overcomes the two main problems with the classical E,,, term.
In the ultrasound images the myocardium appears brighter in intensity than the chambers therefore the edge
polarity was used in combination to the edge magnitude to exploit the echogenic characteristics of both regions.
In the absence of local edges the vector field drives the contour towards the edges in the pre-computed edgemap.

Egovr = ngfDVZZ_thﬂXE_Vf) 2
The weighting functions for equation (2) are defined in (3) and serve to reduce the amount of smoothing on an
edge that is in close proximity to another edge [12].

g(vr|)= e[VKf]z
n(VED)=1-g(vr])

3)

Since we are mainly interested in the size of the chambers over time the search space of the snaxels was restricted
to the path along the normal vectors of the contour in order to reduce the likelihood of clustering.

The snake was initialised as a circle placed roughly centred on the chamber in the first frame (in diastole) of the
slice since the endocardiac boundary information within this frame appeared relatively distinct when compared to
the systolic phases over the cardiac cycle. For each snaxel if the mean image intensity was brighter along the
outer normal than along the inner the edge position was accepted as a possible edge candidate and rejected if
otherwise.

The GGVF snake can be used to track edges over time by initialising the snake C,,; in the current frame (n+1)
with the snake C, from the previous frame (n). However, the four cardiac chambers are often separated by thin
walls that are not always well resolved in echocardiography and so it was possible for a single contour to occupy
multiple chambers during segmentation over the cardiac cycle. In the images where a shadowed region appears
beside a ventricle the contour is presented with an opportunity to leak out of its chamber. To combat these
effects each ventricular contour was constrained by allowed rigid-body transformations of the snake from the



previous frame. After the snake C, segmented frame n the positions of the snaxels within the curve were stored
as well as the grey-level profiles that run along the normals to the contour. The C, contour was then used to
initialise C,,; and was iteratively scaled and translated to fit the chamber. The absolute difference of the grey-
level profiles from the current curves in frames n+/ and n was used as a cost function to determine the optimum
rigid-body transformation to apply to the initial C,,, contour. After modelling this rigid-body motion, the snake
was allowed to evolve and capture the non-rigid deformation of the chamber. Although this approach computes
the transformations solely based on the segmentation results of the first frame, we found that diastolic phases
provided the most undemanding chambers for the GGVF snake to segment unaided. Towards end-diastole the
motion of the heart is at a minimum; captured frames around this cardiac time point within the dataset are more
likely to appear similar and can be used to confirm the initial segmentation.

3 Results and Discussions

Manual drawing of contours on the images by a foetal cardiologist was used as a gold standard to assess the
quality of the segmentation process. The algorithm was applied to long-axis slices of the heart and a selection of
the segmentation results for an eleven-frame sequence within one cardiac cycle is shown in figure 1 and overlaid
manual curves in figure 2. The endocardial surface of the foetal heart comprises a complex interwoven muscular
structure and so is highly irregular in appearance [13] unlike the comparatively smooth epicardium. It is clear
that the automated contours appear less complex in shape when compared to the expert tracings. This is due to
the appearance of the fine surface structure of the endocardium as weak reflectors in the ultrasound images. In
this instance it is possible for E;, to overcome the E,, term and impose smoothing constraints on the contour.
Future work will address this problem of unnecessary smoothing by incorporating a priori knowledge of the
endocardium into the snake model. Linear regression by least squares was calculated on the manual and
automatic segmented areas and the Pearson correlation coefficient (R-value) was determined. This showed that
the computer-segmented areas are linearly correlated with the manually defined regions with coefficients of 0.92
and 0.91 for the left and right ventricles respectively. The slopes of these lines are 1.19 for the left and 1.15 for
the right ventricle. These values are greater than 1 and positive indicating that the algorithm over-segments the
required area when compared to the manual curves. This is confirmed in Bland-Altman plots in figure 3 where
the bias is positive signifying over-segmentation for both left and right ventricles. The spread is roughly centred
about the mean and most if not all of the points fall within the 95% confidence interval. These plots shows that
by comparing areas defined by the manual and automatic curves, the algorithm produces less fluctuation and
systematic bias in segmentation of the left ventricle when compared to the segmentation of the right (mean 26
with standard deviation 15 and mean 84 with standard deviation 46 for the left and right ventricles respectively).
Since comparison of areas is not an accurate assessment of shape matching, perpendicular distances that separate
the automatic and manual curves were computed to obtain a measure of the error in segmentation of the
ventricular boundaries. The root mean square value of these perpendicular distances was found to vary between
1 and 4.5 pixels over the cardiac cycle for both left and right ventricles.

Figure 1 (a) Some results of endocardiac segmentation by the algorithm on a single long-axis slice showing the
phases of one cardiac cycle in raster scan order starting from end-diastole. In this four-chamber view the top
cavities are the left and right atria and below these are the left and right ventricles. (b) The corresponding
endocardiac segmentation by a foetal cardiologist.

4o IO W

Figure 2 Some examples of segmentation of the ventricles by the algorithm with overlaid manual contours. The
automatic contours are in black and those drawn by the expert in grey.
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Figure 3 Bland-Altman plots of areas generated by the automatic segmentation compared with areas derived
from manual segmentation for a temporal sequence of a single slice within the dataset. Figure (a) corresponds to
the left and (b) the right ventricles respectively. For the left ventricle segmentation the bias is 26 with standard
deviation of 15; and for the case of the right ventricle a bias of 84 and standard deviation of 46.

4 Conclusions

This paper presents a method to segment foetal heart ventricles by an active contour model. The approach
models the deformation in the cardiac cycle, by both rigid and non-rigid means and arrives at a segmentation that
is correlated with manual tracings of the endocardium. Although correlation coefficients in the literature for the
adult heart may be superior to the results in this paper, direct comparisons may be difficult to make since the
small size, rapid motion of the foetal heart and unpredictable movement of the foetus lead to a dataset with higher
noise content. Future work will involve the conversion of the algorithm into a true 3D environment and
segmentation of the atria.
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Automated assessment of digital fundusimage quality using
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Abstract. An automated method for the assessment of digital fundus image quality is presented. The method
used an image quality metric based on the area of automatically detected blood vessels. Matched filtering cou-
pled with directional region growing was used to identify blood vessels within fundus images. The performance
of the metric was determined using the grading of 800 images of 400 patients by three clinicians. Average a-
greement between the system and the individual clinicians was equivalent to average inter-grader agreement.
For the detection of patients with at least one ungradable image the system was able to achieve 100% sensitivity
with specificity of 94%. When the performance of the system was compared to a single clinician using a larger
data set of 1746 images the system to clinician agreement remained relatively constant. It is proposed that
the system could be used to reject ungradable images within a screening environment or incorporated within
automated diagnostic methods.

1 Introduction

Diabetic retinopathy (DR) is a retinal vascular disorder affecting patients with diabetes. It is the most common
cause of blindness in individuals between the ages of 20 and 65 years. The Department of Health now include a
requirement DR screening in their set of minimum standards for diabetes care [1]. Screening for DR necessitates
regular examination of all patients with diabetes by fundus examination to detect sight-threatening disease, so that
early treatment can be instigated. The National Screening Committee (NSC) has recommended digital photography
as the preferred modality for any newly established DR screening program [2]. Although digital fundus cameras
operate to assured quality, inconsistencies still occur in image quality. Biological factors such as lens opacities or
poorly dilated pupils, and non-biological factors resulting from operator error, can combine to reduce contrast to a
level where grading of an image is unfeasible. It is important that patients with such images be identified and either
called for repeat screening or sent directly to an ophthalmologist for review. Recent research has aimed to develop
methods for the automated screening of patients with DR. It is essential that such systems identify ungradable
images and do not erroneously classify them as images without DR.

Image quality measures have long been studied but most methods are used to compare image processing techniques
using reference and processed images [3]. The case when an image quality measure is needed for a single image
poses difficult questions. Image quality is an abstract quantity, is highly subjective and strongly dependent on the
requirements of a given application. Perhaps as a consequence, only two papers are published that are devoted to
automatic measurements of fundus image quality. Both use models of a high quality image derived from a number
of examples. Lee et al. [4] compared the histogram of an image with that of the derived model, Lalonde et al. [5]
used the distribution of edge magnitudes and local intensity measerments. Manual techniques by definition rely
on subjective assessment. The NSC has recommended image clarity assessment using the visibility of small blood
vessels [2]. When small vessels across 90% of an image are clearly visible the image is defined to be of good
quality.

In this study an automated assessment of image quality based on the automatic detection of blood vessels was
evaluated. The aim was to discriminate between ‘gradable’ and ‘ungradable’ images. The selection of blood
vessels as an indicator of image quality was founded upon several factors. Firstly, blood vessels should be present
in every fundus whether diseased or normal. Secondly, the stereo-spatial geometry varies little on a macro scale
and major vessels have similar topographical distributions. Thirdly, regardless of ethnic origins the vessels are in
contrast with the background pigmentation of the fundus. Thus if significant proportions of vessels are missing and
can be shown to fall below a preset threshold value then this could form a useful measure for rejecting an image
as ungradable. To evaluate the system three clinicians were required to view images and decide whether they were
‘gradable’ or ‘ungradable’. The automated system was then measured against the clinician classifications.

* Correspondence to david.usher@kcl.ac.uk
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2 Methods

Digital retinal images of 2546 eyes from 1273 consecutive patients were obtained from a DR screening program.
The screening centre employed a Topcon TRC-NW5S non-mydriatic digital fundus camera and stored images in
JPEG format. All images were of 45° field and centred on the macula. Their resolution was 570 x 570 pixels
equating to a pixel width of 20 pm.

2.1 Automated detection of blood vessels

An automated method for the identification of blood vessels was applied to each of the images. This method has
been previously described in detail by Himaga et al. [6]. The method initially used the technique of matched

filtering. Two Gaussian-shaped kernels were applied to each image, one designed to match a small section of a
large vessel while the other was smaller and was designed to match sections of smaller blood vessels. The kernels

were applied rotated through 12 angles ranging from 0° to 165°, each at 15° intervals, in order to reflect the range

of orientations of blood vessels. A direction dependent recursive region growing algorithm was then applied to

extract the blood vessels using the results of the matched filtering. Finally an applied threshold classified pixels as
representing areas of vessels or otherwise. It has previously been shown that this method achieved a sensitivity of

81% and a specificity of 91% for the detection of blood vessels in a total of 20 digital fundus images [6].

The total count of pixels classified as ‘vessels’ within each image then became the image quality metric score, V. A
threshold, ¢,,, was then set such that images with blood vessels metric scores above ¢,, were classified as ‘gradable’,
while images with counts below ¢,, were classed as ‘ungradable’. Patients were identified as ungradable if the image
of either eye were classified ‘ungradable’. The metric was applied at various sensitivity levels by varying ¢,.

2.2 Validation

The automated classification results were then compared to two separate gold standards. The first was the collated
results from three clinicians, A, B and C, who classified the images of 400 patients, Gold standard 1 (GS1). A
majority decision was used to combine the results of the clinicians. The second gold standard was formed by

clinician A who classified the eyes of a further 873 patients, Gold standard 2 (GS2). The diagnostic performance
of the image quality metric was then measured using sensitivity (true positive rate) and specificity (1 - false positive
rate). Results recorded at each applied value of the threshold, ¢,, were combined to produce a Receiver Operator

Characteristic (ROC) curve. Agreement between the clinicians and the proposed method was calculated using

kappa statistics, , where values within the ranges of 0.41 - 0.60, 0.61 - 0.80, and 0.81 - 1 correspond to moderate,

substantial, and almost perfect agreement respectively [7].

3 Reaults

The results of the first gold standard grading, (GS1), are shown in Table 1. Clinician A accepted the highest number
of images as ‘gradable’ while clinician C accepted the least. Calculated agreement between each of the clinicians
in terms of grading images can be seen in table 2.

Image classification | Clinician A | Clinician B | Clinician C
‘ungradable’ 41 (5.1%) 51 (6.4%) 70 (8.8%)
‘gradable’ 759 (94.9%) | 749 (93.6%) | 730 (91.2%)

Table 1. Gold standard grading # 1 (GS1) between ‘gradable’ and ‘ungradable’ images.

Clinician B Clinician C
Clinician A | 0.67 (0.55-0.79) | 0.66 (0.54 - 0.78)
Clinician B - 0.63 (0.51-0.75)

Table 2. Inter-grader agreement between the three clinicians for the classification of images (GS1). Values shown
correspond to calculated « values with the corresponding 95% confindence interval in parentheses.

The average inter-grader agreement was x = 0.63 (95% Confidence Interval: 0.53 — 0.77), demonstrating sub-
stantial agreement. Within the GS2, clinician A classified 104 (5.8%) images as ‘ungradable’. Figure 1 shows
example results of the blood vessel detection method as applied to three primary images of varying quality. Image
A (Figure 1(a)) was classified as ‘gradable’ by all three clinicians. Image B (Figure 1(b)) shows a large region near



(a) Image A (b) Image B (c) Image C

(d) Blood vessel detection: A (e) Blood vessel detection: B (f) Blood vessel detection: C

Figure 1. Examples of blood vessel detection results for three primary images of varying quality.

the centre of the image within which little detail can be seen, this image was rejected as ‘ungradable’ by all three

clinicians. Image C (Figure 1(c)) shows poor contrast over the entire image, however, only two of the clinicians

classified this image as ‘ungradable’. Binary images, corresponding to each primary image, within which pixels
classified as areas of blood vessels are shown in black can be seen in figures 1(d)-(f). In the case of primary image
A the automated method successfully identified the majority of the blood vessel network. The result corresponding
to primary image B shows that the system did not identify any blood vessels within the central area of poor con-

trast and within primary image C only incomplete sections of the largest vessels were identified. The blood vessel
metric scores calculated for each primary image were 34402, 14083 and 5433, respectively. The mean vessel met-

ric scores calculated for “gradable’ and ‘ungradable’ images as defined within the majority gold standard grading
(GS1) were 34600 (95%CI: 21400 - 47800) and 12900 (95%CI: 500 - 19200) respectively.

The ROC curve as calculated using the applied range of ¢, for the automated detection of ‘ungradable’ images
measured against the majority diagnosis within GS1 is shown in figure 2. The classification results of the individual
clinicians measured against the majority diagnosis are also shown.
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Figure 2. ROC curve for the detection of ‘ungradable’ images, (GS1).
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When the threshold was set to 20600 this achieved a 100% sensitivity for the detection of patients with any ungrad-

able images with a specificity of 94.0%. At the same setting sensitivity was 91.7% and specificity 95.5% for the
detection of ungradable images. The agreement between the system and the individual grading of each clinician

and the majority classification is shown in Table 3. It can be seen that, in terms of images, the automated system
demonstrated moderate agreement with clinician A and substantial agreement with clinicians B and C. With an

average agreement between the system and the individual clinicians of 0.64 (95%CI: 0.53 — 0.74). This was equiv-

alent the corresponding « value calculated for the inter-grader agreement. Agreement in terms of the classification
of patients was higher in each case with an average value of k = 0.71 (95%CI: 0.57 — 0.83).

Clinician A

Clinician B

Clinician C

Majority

System(Patients)

0.67 (0.53 - 0.81)

0.70 (0.58 - 0.82)

0.75 (0.65 - 0.85)

0.73(0.61-0.85

System(Images)

0.59 (0.47 - 0.71)

0.66 (0.56 - 0.76)

0.70 (0.60 - 0.80)

0.67 (0.57-0.77

Table 3. Agreement between the automated system and each clinician and the majority diagnosis. Values shown
correspond to calculated « values with the corresponding 95% confindence intervals.

When the system was applied to all images within GS2 the mean metric scores for ‘gradable’ and ‘ungradable’
images were 34000 (95%CI: 20800 - 47200) and 12600 (95%CI: 0 - 28000) respectively. When the threshold, ¢,,,
was set to 20600, (the value giving 100% sensitivity for the identification of ‘ungradable’ patients derived using
GS1) a sensitivity of 91.4% and specificity of 92.4% was achieved for patients within GS2 with k£ = 0.62 (95%Cl:
0.54 — 0.70). In terms of images this corresponded to sensitivity and specificity levels of 84.3% and 95.0%, with
Kk = 0.61 (95%CI: 0.53 — 0.69). This  value was equivalent to the system to clinician A agreement measured
using GS1 (Table 3).

4 Discussion

The measured variation between the results of the clinicians demonstrated the subjective nature of their decisions.
Tolerance to poor quality images varied with clinician A willing to grade a higher proportion of images. The
differences between the mean blood vessel metric scores for ‘ungradable’ and ‘gradable’ images suggested a
high level of separation between the relative distributions. This translated to a good classification performance.
Comparison between the inter-grader agreement (Table 2) and the measured agreement between the clinicians and
the system (Table 3) suggested equivalent performance levels. The higher performance level of the clinicians when
compared with system as measured using the majority diagnosis (Figure 2) may be explained by the bias of the
majority grading towards the grading of the clinicians. When the derived threshold value of ¢, was applied to a
large set of unseen images (GS2) similar performance levels appear to be maintained as judged by the similar «
values. However, due to the risk of missing sight threatening DR, refinements to achieve near 100% sensitivity
may be needed. In conclusion, the system could be used as part of an automated diagnostic system if used as an
image quality filter. Additionally the blood vessel metric could be used as a prompt for repeat photography at the
point of image capture.
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3D Markov Random Field Binary Texture Model:
Preliminary Results

Lilian Blot*and Reyer Zwiggelaar
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Abstract. Texture analysis and synthesis is an important field in computer vision. Since the late sixties,
numerous techniques have been developed for the synthesis and analysis of texture in 2D images. However,
only a few models have been presented to synthesize 3D texture images and in most cases 2D texture mapping
is used to emulate this process. In addition, most of the techniques used for the analysis of texture in 3D medical
images, such as CT and MRI, are based on 2D models applied to each slice followed by reconstruction of the
volume. This approach does not use all available information contained in the data. A more robust solution
is given by solid texture modelling. The paper describes a novel approach to solid texture modelling based on
Markov random fields.

1 Introduction

Texture analysis and synthesis is an important field in computer vision. Since the late sixties, numerous tech-
nigues have been developed for the synthesis and analysis of texture in 2D images. The synthesis and analysis
of 2D texture have always been closely related and many techniques like Markov random fields [1], grey-level
co-occurrence matrices [2], auto-regression modelling [3] and fractal modelling [4] can be applied in both do-
mains. Unfortunately, in 3D the relation between the two domains is less exploited (a short review on 3D texture
modelling can be found in [5]).

In medical imaging (see Fig. 1 for examples), the most common techniques to deal with volumetric images is to
slice the volume in 2D cross-sections and subsequently apply a 2D texture analysis model on each slice. Subse-
guently the volume is interpolated from the stack of analyzed slices. However, such an approach is less satisfactory
as most of the embodied information along the axial direction of the stack is not taken into account. Fig. 2 shows
two volumetric texture which can not be differentiate if seen fromstrexis. When the volume information is

taken into account the two textures are clearly different.

(b) (©

Figure 1. Examples of three volumetric image acquisition modalities which are slices of (a) a brain MR, (b) a
chest CT and (c) a breast ultrasound.

The aim of this project is to develop a common model to synthesize and analyze volumetric texture. Our initial
approach to the problem is to synthesize texture based on an approach that can be used to analysis. Solid texture
modelling is the most suitable approach if we are concerned with the synthesis of complex textured objects or the
analysis of volumetric texture.

2 Texture Modelling

In this section we describe a solid texture model based on Markov random fields. We are interested in generating
texture based on a stochastic process to ensure micro-texture. The grey-level values of thecygxejsre the
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(b)

Figure 2. Two texture volumes (top and bottom rows) decomposed into slices taken along faatise (b) the
y-axis, and (c) the--axis. These grey-level images have been synthesized with the Markov random field model
described in this paper.

random variable and are notggl,.. In our approach the grey-levgl, . of a voxel is not independent of the grey-
level values of neighboring voxels. We aim at modelling the correlations between the set of grey{leygls,
We first deal with the binary problem before extending the model to grey-level texture.

We need to define the notion of neighboring voxels. In our case two voxels are neighbor if they are connected. The
order of the Markov random field (MRF) is determined by the distance between two neighbors. Fig. 3 shows two
neighborhood configurations. Grey voxels form the first order neighborhood while white and grey voxels form the
second order (relative to the voxel in the center of the cube).

Figure 3. Neighbors of the poing,,.. Grey represents  Figure 4. Description ofC, the set of connected points.

the first order neighborhood and white represents theThe setC is composed of pair of points linked by a

second order neighborhood. straight line. In this figure seven elements(fare
shown. The eighth element @fis the set of all the
second order neighbors of the center point.

The probability of a voxe{z, y, z) having the grey-level valuedepends on its neighbors and is dendtd,,,. =
k|neighbors}. This probability is binomial with parameté(T) = 1_?”2’;;%) andG is the number of grey-levels.
When consideringz > 2 we have

. T k 1 G—-1—k
P{&,,. = k|neighbors} = (Gk 1> (1 ng(p()ﬂ) (1 K emp(T)> ke{0,1,...G—-1}

For the binary model we have

exp(T)

P{&y. = klneighbors) = ———~
{g Y |TL6’Lg OTS} 1 —l—exp(T)

ke{0,1}
whereT is neighborhood dependant.
2.1 First Order Texture Model

The texture properties are defined by the funcfibgiven by

T(gxyz) - bO + bz(ngl,y,z + £m+1,y,z) + by(gx,yfl,z + gm,erl,z) + bz(gz,y,zfl + 5z,y,z+1)

where{bg, b, by, b. } is the set of parameters of the model. The MRF is isotropig i= b, = b., anisotropic
otherwise.



2.2 Second Order Texture Model

When considering first order MRE neighborhood configurations are possible comparezftdn the second
order case. For sampling reason we need to reduce the number of configurations. To each neighborhood configu-
ration we assign a potentiél(neighbors) given by

i=|c|

U(é-:rlylzlv 59321/2227 ceey gxmymzm) = Z V<cz) 2i

i=1, c;€ C

andV(¢;) = 0 if all voxels in¢; have valug, 1 otherwise.

Fig. 4 shows the elements of the setC. C is composed of eight ordered elements (the order has no influence on
the model), seven elements are pairs of voxels and the eighth element contains all the neighbors of the center voxel.
In doing so we have reduced the number of configuration f2dfrto 28. The correlation between neighboring

voxels is expressed by

exp(T
P{gmyz = k|U(§w1y1217 5&’2!/2227 ceey fwmymzm) = q} = ( )

= — k 1 ey 2
1+€l’p(T> € {Oa }a q € {07 ) 55}

Similarly to the first order, the parametdyis } of the model are embodied in the functidrgiven by

i=|C|
T(§w1y121 »Saayazay oo gw'rny'rnz'm,) =bo + Z bi V(cl)

i=1, c;e C

3 Results

To synthesize the MRF texture we use the algorithm developed in [6] and used by Cross and Jain [1]. We start
from a uniform noise (see Fig. 5) and then iteratively swap two random voxels with different grey-level values
if the obtained texture has a higher probabiliyY") than the original texturd®(X) (P(X) and P(Y") are the
product of the conditional probability of all voxels). We proceed until a stable state is reached. In pseudo-code this
is represented as:

while not stable do
choose two voxels vy and vy with &, # &,
if P(Y)>P(X) then switch v, and vy
else
u=uniform random on [0, 1]
if (P(Y)/P(X))>u then switch  v; and v,
end else
end while

Samples of synthetic binary textures are shown in Fig. 5. The textures are generated according to various settings
of the Markov random field. The volumes are representative of typical texture properties that can be obtained such
as isotropic textures (Fig. 5b,d), anisotropic textures (Fig. 5c,e,f) and strong directionality (Fig. 5f). We have not
tried to simulate realistic textures as the extraction of the MRF parameters will need the analysis of the real medical
data which is an area of future development .

4 Discussion and Conclusions

As shown a large variety of texture can be generated where 2D information is not sufficient to described their
properties. This demonstrates the limitation of approaches considering only textural features from 2D slices. This
emphasizes the necessity to develop novel approaches to the analysis of medical modalities such as CT or MRI.

A first attempt to the synthesis of grey-level solid texture shows good results (see Fig. 2 and 6). Unfortuna
the increased complexity prohibits its direct use to the analysis of such texture. One of the possible directior
the analysis of grey-level texture is the thresholding of the image followed by the analysis of the obtained bin_..,
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Figure 5. Sample of binary textures where (a) noise, (b-c) first order MRF and(d-f) second order MRF. From top to
bottom are display cross section slices taken along:thgis,y-axis andz-axis respectively. For the second order
texture (d-f), the parametég for the seic; containing all neighbors of the current pixel is set to 0. The setting for
the texture synthesis are () = —2, b6, = b, = 0.5,b, =3, (C)bg = —2, b, = b, = 1.25,b, = —1.25, (d)

bo = =2, (b;)i=1.7 = 1, (€)bo = —2, (bi)i=1..6 = 1, by = 0and (bg = 4, (bi)i=1..5 = 1, (b;)i=1.5 = —2.

(@)

Figure 6. Example of an isotropic 16 grey-levels MRF texture volume whgre —2 and(b;);~o = 1. The slices
are taken perpendicular to (a)axis, (b)y-axis and (c)-axis.

texture. It is our belief that this is not a satisfactory solution and we are currently investigating new forms of the
potential function/ () to reduce the exponential complexity of grey-level solid textures.

In summary, we have presented a novel approach to volumetric binary texture synthesis. Our first experiment to
extend the model from binary to grey-level texture were not conclusive and need further investigation. However,
the model is promising and future work will be directed to the analysis of binary texture and the extension to
grey-level modelling.
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Abstract. We examine the ways that readers make sense of mammograms in context, showing how a
consideration of the social aspects of this work might illuminate practice and suggest ways for the building of
computer-based tools to support such work. We show how sense-making is a situated activity and raise some
concerns as to the ways that technologies have been developed to support reading may impact negatively
upon the very practice they were intended to support. We show how it is important to consider technologies
in use and discuss how they might be developed to support real world use, as opposed to some idealised
formulation of it. We conclude with some outline suggestions towards better user interfaces for computer-
aided detection systems, in particular, and for digital imaging systems in general.

1 Introduction

The practice of breast screening calls for readers to exercise a combination of perceptual skills to find what may
be faint and small features in a complex visual environment, and interpretative skills to classify them
appropriately — i.e., as benign or suspicious. Current UK NHS breast screening practice is for each mammogram
to be ‘double read’, i.e., assessed independently by two readers [1]. Because of the growing shortage of trained
readers, there is interest in using computer-aided detection (CADe) systems to replace double reading with a
single reader using a CADe system. We report here ethnographic studies of readers using a CADe system which
we conducted during clinical trials.

2 Method

As a complement to the quantitative emphasis of the conventional clinical trial, we used ethnographic
investigative and evaluative techniques [7]. Ethnography argues for understanding the situatedness of individual
activities and of the wider work setting, highlighting the interdependencies between activities, and stressing the
‘practical participation’ of individuals in the collaborative achievement of work. For the purposes of designing
and developing computer-based tools, the advantage of applying ethnographic methods lies in the ‘sensitising’
they promote to the real-world character of activities in context and, consequently, in the opportunity to help
ensure that systems resonate with the circumstances of use. This is, we argue, particularly important to medical
work, where the lack of attention to work practice has been responsible for many failures of IT systems.

3 The Trial

The CADe system being trialed was the R2 Imagechecker. In order to assess the system’s impact on reader
performance, a conventional clinical trial design was used. Prompted and unprompted conditions were prepared
using three sets of 60 historical cases [9]. In both conditions, readers were shown ‘current’” mammograms (but
not previous mammograms, or any patient notes) for each case in turn, and asked to indicate areas of concern
and to make a decision as to whether the case should be recalled for further investigation using a four point
decision scale: 1. Recall; 2. Discuss but probably recall; 3. Discuss but probably no recall; 4. No Recall. In the
prompted condition, readers additionally examined the prompts generated by the system before making their
decision. Before the trial was run, each reader was given a brief explanation of how the CADe system worked,
emphasising that it was intended to be used for detection rather than for diagnosis. Readers were told that the
system ‘spotted’ masses and calcifications and about the appropriate prompts. They were also advised that the
threshold of sensitivity of the system had been set such that there would inevitably be a lot of false prompts; and
warned that since this was a trial set there would be more cancers than in a ‘normal’ reading session.

4 Observations

As part of the trial, readers were observed doing the various test sets and then asked about their experiences of
using the prompts. Readers were also taken back to cases identified in the test set where they had appeared to
have had difficulty or spent a long time making their decision and asked to talk through any problems or issues
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to do with the prompts and their decisions. Although there were variations in how readers approached the trial,
the fieldwork extract below gives some idea of the process observed:

Case 10: Looking at film — using a blank film to mask area outside that of immediate interest. Magnifying
glass. Looking at booklet prompts - looking back at film. “This is a case where without the prompt I'd
probably let it go ... but seeing the prompt I'll probably recall ... it doesn’t look like a mass but she’s got
quite difficult dense breasts ... I'd probably recall ...” Marks decision.

The main strengths of the CADE system in supporting this kind of work seemed to lay in picking up subtle signs
— signs that some readers felt they might have missed — and stimulating interaction between reader and the
available technology by motivating them to re-examine the mammogram. As one reader said:

“Those micros that the computer picked up ... | might have missed it if | was reading in a hurry ... I'd
certainly missed them on the oblique ... This one here the computer certainly made me look again at the
area. | thought they were very useful, they make me look more closely at the films ... | make my own
judgement ... but if the prompt is pointing things out | will go and look at it again.”

There was also a perception that the CADE system was more consistent than readers might be:
“... it's just the fact that it's more consistent than you are ... because it's a machine.”

Readers also frequently express the opinion that they are better at ‘spotting” some cancers — as having skills or
deficiencies in noticing particular types of object within films. This was another area where the CADe prompts
were seen as useful, as both compensating in some (consistent) way for any individual weaknesses of the reader
and as a reminder of ‘good practice’:

“My approach tends to be to look for things that | know I'm not so good at ... there are certain things that
you do have to prompt yourself to look at, one of them being the danger areas.”

Amongst the weaknesses identified by readers was the distracting appearance of too many prompts:

“This is quite distracting ... there’s an obvious cancer there (pointing) but the computer’s picked up a lot of
other things ... there’'s so many prompts ... especially benign calcifications ... you've already looked and
seen there are lots of benign calcs.”

The CADe system was also seen to prompt the ‘wrong’ things — benign features or artefacts of the mammogram
generation process: “... what the computer has picked up is benign ... it may even be talcum powder ... I'm
having trouble seeing the calc its picked up there ... (pointing). I can only think its an artefact on the film.”

At the same time, the CADe system was seen to be missing obvious prompts that raised wider issues to do with
trusting and ‘understanding’ the system:

“I'm surprised the computer didn’t pick that up ... my eye went to it straight away.”

Our wider studies of breast screening show how reading mammograms is a thoroughgoingly social enterprise
and is achieved in, and through, the making available of features that are relevant to the community of readers as
opposed to some idealised individual cogniser [6]. It is for this reason that we turn to the work of Goodwin and,
in particular, his notion of ‘professional vision’ [4], to explicate the social, intersubjectively available nature of
doing reading. In mammography, a reader has to learn how to interpret the features on the mammogram and
what they mean, as well as how to find them. We have described how readers ‘repertoires of manipulation’
make features visible [6]. Methods for doing this include using the magnifying glass and adopting particular
search patterns:

“Start at top at armpit ... come down ... look at strip of tissue in front of armpit ... then look at bottom ...
then behind each nipple ... the middle of the breast.”

Readers also attempt to ‘get at’ a lesion by measuring with rulers, pens or hands from the nipple in order to find
a feature in the arc; comparing in the opposite view; aligning scans; looking ‘behind’ the scans; “undressing
lesions’ by tracing strands of fibrous tissues into and out of the lesion area and so on. A magnifying glass may
be used to assess the shape, texture and arrangement of calcifications or, where the breast is dense, the
mammogram may be removed and taken to a separate light box. These repertoires of manipulations are an
integral part of the embodied practice of reading mammograms. Such features are not work arounds, but an
integral part of the ecology of practice built up in and as a part of doing reading mammograms.



The positioning of an object in a particular area of the breast renders it more suspicious than if it had been
elsewhere. At the same time, certain areas within the mammogram are regarded as more difficult than others to
interpret and readers particularly orient to them in their examinations. As one reader noted:

“I'do ... | have areas where | know I'm weak at seeing ... you know ones that you’ve missed ... one is over
the muscle there ... its just because the muscle is there ... if you don’t make a conscious effort to look there
you tend not to see that bit of breast and the other area is right down in the chest wall — breast and chest
wall area ... because in older women the cancers tend to be in the upper outer quadrant so | look in that
area very carefully ... it depends on the type of breast really.”

We would also stress the self-reflective nature of readers’ behaviour. Readers know about their own strengths
and weaknesses (in one centre, a reader is referred to as ‘the calcium king’ because of his ability to detect
calcifications; a member of another centre is referred to as ‘Mrs Blobby’ because of her ability to detect lesions
in dense areas). Readers are sensitive towards the set of criteria for correctness and what is required for the
satisfaction of the maxims that constitute it.

5 Discussion

It is important to note that the CADe system should not be taken to make reading mammograms less uncertain —
decisions still have to be made and these fall to the readers. Prompts are ‘docile’ in that their character is simply
to draw the reader’s attention to candidate features as opposed to say what should be done with them. That a
prompt occurs is a meaningful thing, but what to do about it is still a readers’ matter. In other words, the system
still requires the professional vision of the reader to remedy prompts as what they accountably are. A reader
makes what is seen or prompted accountable in, and through, the embodied practices of professional vision. That
a mammogram feature or a prompt is there is not of itself constitutive of a lesion or other accountable thing, it
must be worked up through these embodied practices and ratified in the professional domain of scrutiny. The
CADe system knows — and can know — nothing of what it is to be a competent reader and what it is to look for
features in a mammogram beyond its algorithms, and the reader must ‘repair’ what the system shows, making it
accountable in, and through, their professional vision. This is, as we have argued, a thoroughgoingly social
procedure and, as such, something that the CADe system cannot be a part of. Beyond its algorithms, the CADe
system cannot account for what it has and has not prompted, and it cannot be queried as a colleague can.

Readers used prompts to develop some understanding of the CADe system’s scope and function. However, they
occasionally held incorrect notions about, e.g., the system prompting for asymmetry and were often baffled by
the high level of false positive prompts. In part, this ability to make sense of how the system behaves also
impacts on issues of dependability and trust in the system. We have argued elsewhere that how readers use
prompts to inform their decision-making, and how they make sense of a CADe system’s behaviour, may be
important for maximising effectiveness [5]. We find that readers rationalise false prompts by devising
explanations or accounts of its behaviour that were grounded in the properties of the mammogram image. This
points to general issues concerning trust — users’ perception of the reliability of the evidence generated by such
tools — and how trust is influenced by users’ capacity for making sense of how the system behaves. The need to
account for a prompt — even if it is dismissed — distracts the reader. In other words, its docile prompts often call
attention to features that the readers have decided are not important enough to merit attention.

The CADe system prompts features that are not cancers, as well as missing features that may be obviously
cancers to the reader. For example, normal features in the breast such as calcified arteries or crossing linear
tissues can be prompted as micro-calcifications, while other normal features such as ducts and tissue radiating
from the nipple or inadvertent crossing of parenchymal tissue can produce a prompt for a cancerous mass. That
the system prompts features other than the cancer is regarded as problematic but still in need of account. It might
be said that the system works too well, providing not just too many prompts, but prompting features that a
skilled reader would not accept as promptable. In part this is a feature of the technology that the readers (at least
in this trial) effectively ‘forget’, but which might be incorporated into readers’ ‘biography’ of the system in time.

How do readers construct, achieve or make sense of the system? Following Schutz, we might argue that readers
render mammograms intelligible using a mosaic of ‘recipe knowledge’: “a kind of organisation by habits, rules
and principles which we regularly apply with success.” [8]. While the common experiences and rules embodied
in the ‘mosaic’ are always open to potential revision they are, nevertheless, generally relied upon for all practical
purposes as furnishing criterion by which adequate sense may be assembled and practical activities — reading the
mammogram — realised. Of course, in everyday interaction with colleagues any breakdown in sense is rapidly
repaired and ‘what is going on’ readily understood. But, when the other participant in the interaction is a

computer, difficulties can arise as readers (in this case) characteristically rush to premature and often mistaken
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conclusions about what has happened, what is happening, what the system ‘meant’, what the system is
‘thinking’, and so on. The problem is, of course, that the CADe system is not capable of reciprocating the
perspective of the skilled practitioner.

It would therefore seem desirable to increase the scope for a CADe system to be ‘self-accounting’ [2] through
the provision of richer and more sophisticated user interfaces. It is certainly possible to conceive of richer
representations of a CADe system’s behaviour, but it is an open question as to whether such representations
could be sufficiently contexted in a manner that would enable readers to use them easily and in any meaningful
sense. It seems to us that such representations are not accounts in themselves, but resources for the realisation of
accounts in context. We argue that even a series of representations from which readers could choose may not
provide sufficient detail to answer all conceivable ‘why that now’ types of questions.

6 Conclusions

The current generation of CADe systems are designed with user interfaces that presume that all readers need to
see is the bare and unadorned prompt. Our ethnographic investigations of the CADe system on trial show,
however, that this presumption is false. Indeed, we would argue that as digital imaging systems, in this and other
medical work domains, evolve from performing basic image rendering to incorporate increasingly sophisticated
image processing, then users’ interactional requirements become more demanding.

It is clear from our study that readers need an understanding of what the CADe system has prompted and why.
The key problem we observe is that the system does not provide accounts of its behaviour. The docile nature of
the prompts generated requires the reader to formulate ad hoc an explanation for their presence. Thus, there is a
need for the reader to engage in some kind of retrospective search for what it is that the CADe system might
have ‘meant’ or ‘intended’. Without the possibility of being able to assemble an account from the source, so to
speak, the reader has to develop some notion of the potentialities of the system — which, as we have seen, may or
may not be consistent with what the CADe system actually does.

If readers are to ‘trust’ CADe systems, they need accounts of why prompts come — or come not — to be there. It
is also important to consider how far accounts of prompts might be intrusive and thereby impact negatively on
the work of readers. We therefore need to consider what these accounts would look like and for whom they
would be intended. In other words, these accounts must be designed to relevant to readers’ concerns. We suggest
that one way of moving towards assembling readers’ accounts is for CADe system developers to work with
closely with readers as the latter become acquainted with the system’s performance characteristics over time.
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Automatic generation of Regions Of Interest for Radionuclide
Renograms

David C Barber

Department of Medical Imaging and Medical Physics
Central Sheffield Teaching Hospitals, Glossop Road, Sheffield S10 2JF

Abstract. Automatic generation of kidney regions of interest for radionuclide renograms is possible by
defining a reference image and reference regions, using a non-linear image registration algorithm to map a
totalised image from a patient to the reference image and using the mapping produced to map the predefined
reference regions back onto the patient image. The accuracy of the automatically derived regions is evaluated
by comparison with regions drawn independently by experienced operators. The median success factors, a
measure of the overlap between automatic and manual regions, over 49 kidneys was 0.95 and the average
linear displacement between the boundaries of the automatic and manual regions was 0.43 in units of pixel
dimensions.

1 Introduction

One of the principal uses of image segmentation, in terms of the number of patients involved, is the use of
regions-of-interest (ROI) in Nuclear Medicine. These are invariably drawn manually, although there is evidence
that ROI drawn on the same subject can be quite operator dependent. White et al [1] compared two operator
drawn regions of interest using a success factor, defined as the area of the intersection of the regions divided by
the average area of the regions and obtained intra-operator variability of 0.94 and inter-operator variability of
0.93. A reliable and automatic method of drawing ROI would be useful clinically and would help to standardise
analysis between clinics. In the analysis of radionuclide renograms an ROI is drawn around each kidney to
allow the total activity in the kidney to be estimated as a function of time. Background regions, often
automatically derived from the kidney regions, are drawn to allow background subtraction. In spite of the
widespread use of ROI analysis in clinical practice in Nuclear Medicine there is still no general method of
drawing ROI automatically. The images are low resolution compared to many other modalities and are noisy,
both of which makes identification and delineation of edges difficult. Other approaches to renogram analysis
using factor analysis have been explored. The aim of this approach is to extract curves representing the variation
in activity with time in various homogeneous structure in the study, such as the kidney and bladder, from a low
dimensional factor space derived from the study. Although extensively researched there is little evidence that
these techniques have made much impact clinically. Indeed Martel [2] showed that there was little gain over
using optimal ROI. Jose [3] has proposed a method for generation of ROI for kidneys which uses a combination
of dynamic information, multi-level intensity segmentation, neural network identification of segments associated
with the kidneys and morphological operations to generate kidney ROIs. However, this approach is specific to
kidneys and as far as we are aware has not been extended to other areas of the body. Jose [3] reports median
success factors of 0.9 for a 30 renogram clinical test set.

In this paper we propose the use of image registration to generate reliable and robust ROI for radionuclide
renograms. Houston et al [4] described the use of image registration to generate automatic ROI for cardiac
studies using an affine transform. However, the affine transform is in general too restrictive and non-linear
transforms are required. ROI generation using registration is generic, in the sense that the domain knowledge is
completely separated from the algorithm and trainable, in the sense that exemplar data can be used to define how
the ROI is drawn. It does not rely on any assumptions about organ boundaries being defined by appropriate
intensity levels or gradient values.

2 Theory

The aim of registration is to map an image m(x,y), the moved image, to an image f(x,y), the fixed image. We
assume that such a mapping is possible in that there is a one-to-one mapping which converts m(x,y) to f(x,y)
such that the intensity values completely match (in the absence of noise). Then the moved and fixed images can
be related by

m(x +Ax(x,y),y +Ay(x,y)) = f(x,y)

where Ax(x,y) and Ay(x,y) together constitute the mapping function.
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In the current work we modify equation (1) by adding an extra term
m(x +Ax(X,y),y +Ay(x,y)) = As(x,y) = f(x,y) M

which deals with the residual differences between the two images. In this form, the mapping function (including
the As(x,y) term) is clearly non-unique. However, if smoothness constraints are imposed on the mapping
functions unique solutions are possible. One such constraint is to expand the mapping functions in terms of a set
of basis functions ¢;(x,y). We can show that, for images close together

f(x,y,z)-m(X,y,z) = %Ax(x, y)[g + ern} + %Ay(x, y)[gfy + (2[;1} —-As(x,y) )

and if the mapping function is expanded in terms of the basis functions
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where each of the summations is a component of the mapping function expanded in terms of the basis functions
and this equation can be written in vector matrix form as

f-m=Ta

where a is a vector of the coefficients of the basis function expansions of the mapping functions. Provided the
number of pixels is greater than the number of elements in a, we have an over-determined set of equations and
can solve for the elements of a and hence obtain the mapping.

Simple linear basis functions define an affine mapping. In the present work local (bilinear) basis functions are
used. In this case the elements of a represent the mapping values at points on a grid defined by the central
points of the local basis functions. We can sensibly apply additional smoothness constraints to the values in a.
Computation of a is an iterative (gradient descent) process. If a, is the current estimate of a the next increment
Aa is given by

Aa=[T'T(B)+AL'L]" (T (f —m(a,)) - AL'La, )

where A is a parameter controlling the overall force of the smoothing constraint, 3 is a separate and independent
parameter controlling the relative importance of the amplitude term compared to the spatial terms and L is a
Laplacian operator. [T'T(B) + AL'L] is a sparse matrix and the above equation can be solved very efficiently
using gradient descent methods.

Inclusion of the As(x,y) in equation 1 without constraint results in a trivial solution in that As(x,y) can be set to
— m. However, consider equation 2. The difference between f and m is made up of contributions from three
terms. If each of these terms contributes equal amounts to the differences between f and m then since the
gradients are relatively non-smooth functions Ax and Ay will be smoother than As. The smoothest way of
accounting for the difference between f and m is as far as possible to utilise the first two terms and then evoke As
when all else fails. The total smoothing value is given by

L(Ax)+L(Ay)+BL(As)
where 3 controls the relative importance of the smoothness of the spatial and intensity mappings. Values of A
and B can be found which minimise the condition number of [T'T(B) + AL'L] and these are the values used in this

work.

The mapping functions are computed using image data within a registration region around the kidneys.



3 Methods

A renogram consists of a sequence of gamma camera images which follow the passage of a radiotracer through
the kidneys. In our clinic the initial phase of the study
consists of 20 images each of 2 seconds duration to
capture the vascular phase of the investigation and then
a second phase consisting of a further 70 or so images
each of 20 seconds duration. The ROI are generated
using the first 10 images of the second component.
These are summed together and (apart from the
vascular phase) represent approximately the first three
minutes of the study. The activity in the kidney is
normally increasing over this phase of the study and the
totalised images show, when there is uptake, both
kidneys. A summed image from a normal study is
taken as the starting point and a set of normal patient
images registered to this image. The average of these
registered images is computed, and this becomes the
temporary reference image. The set of images is now
registered to this temporary reference and the again the
average of the registered images is computed. This image forms the reference image. The reference image used
in this study is shown in Figure 1, along with the rectangular registration region used.

Figure 1. The reference image, the reference
regions and the registration region.

Regions of interest around the kidney are drawn for each of the normal images. The regions used in this study
were those produced during routine clinical analysis and have been drawn by a variety of users. The ROI can be
in two forms. The first is as a vector of boundary points and the second is as a binary image. To generate a
reference ROI each normal image is registered to the reference image and the same mapping is then applied to
the corresponding ROI in binary form. All the registered binary ROI are then averaged, the average converted to
binary form using a 50% threshold and then converted to vector form using a contour following algorithm. The
resulting reference region is also shown in Figure 1.

To generate an ROI automatically for a new patient the patient image is registered to the reference image, and
then the mapping used to map the reference ROI back to the patient image. In this work an initial registration of
patient image to standard image was performed. This was then followed by a registration of each kidney
separately to the corresponding reference. Computation time for generation of the automatic regions was under
0.5 seconds per study.

a

.........

Figure 2. Four studies from the set of 25. See text for details.
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The reference image and region were generated using data from 25 normal images. The method was evaluated
using an additional 25 subjects, which included a mixture of 6 subjects with visually normal patterns of uptake
and 19 subjects with abnormal patterns of uptake (including one study with a non-visualised kidney). The
automatically generated regions were compared to the manual regions by dividing the area of the intersection of
the two regions by the average area of the two regions. The ratio is the success factor (SF). If the regions
completely overlap the value of this measure is 1, if they do not overlap at all the value of this measure is zero.
A second measure of the overlap of the manual and automatic regions was obtained by dividing the area of the
exclusive or of the two regions by the average of the perimeter of the regions. This length, in units of pixels, is a
measure of the average linear displacement (ALD) between the two boundaries.

4 Results

Figure 2 shows four studies from the 25. The solid contours represent the automatically generated ROI, the
dotted contours the manually generated contours. Figure 2a has the largest success factor averaged over both
kidneys (SF = 0.97). Figures 2b and 2c show the worst cases from this data set. Figure 2b has very poor
function in the left kidney (SF = 0.84 for the left kidney), and Figure 2c shows a study with overall reduced
function in both kidneys (SF = 0.86 and 0.87 for the left and right kidneys). Figure 2d shows a study with a
completely non-functioning kidney. The median SF was 0.95 over all kidneys (excluding the non-visualised
kidney. The smallest value corresponds to the left kidney region in Figure 2d. The next smallest value
corresponds to the left kidney in Figure 2c. The median ALD, again excluding the non-visualised kidney, was
0.43 pixels.

5 Discussion

This method for generating automatic ROI required no manual intervention, which made it a fully automatic
method. Jose [3], using a combination of dynamic information, multi-level intensity segmentation, neural
networks for segment identification and morphological operators, achieved a median SF of 0.9 over both
kidneys (excluding dramatic failures). In the present work the reference image and the reference ROI are
generated by a process of training with exemplars. In the present case the exemplars are the ROI generated by
manual operation. We do not know if these are the best that can be produced, but clearly if a better set of ROI
can be produced they can form the basis of a training set.

The cost function minimised is a sum-of-squares cost function, modified to include an amplitude term. Use of
this function is limited to registering images of the same modality. Although less general than methods based on
information theoretic measures the approach described in this paper does have the advantage of computational
efficiency and robustness which means that it can be operated unsupervised in a clinical environment. We have
deliberately not used any dynamic information in this work, but clearly images could be produced which
combined both spatial and dynamic information (for example parametric images of temporal gradient) and these
may produce even better results. However, in its present form the method is generic in that the domain
knowledge (reference data) is separated from the computational component of the method. The same approach
has been used (Barber [5]) to segment MUGA images, with a reported SF of 0.93, so the method looks
promising for the generation of ROI for dynamic nuclear medicine studies.

6 Conclusion

Automatic and reliable generation of kidney regions of interest on radionuclide renograms in a clinically useful
timescale is possible.
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Abstract. A previous publication [1] described the use of a transportation method to improve point to point
correspondences in the construction of three-dimensional point distribution models (PDMs). Using PDMs
created in the described manner, we have carried out morphometric analysis of the lateral ventricles of a group
of schizophrenic and control subjects to investigate possible shape differences associated with schizophrenia.
Applying discriminant analysis to the most important shape parameters obtained from the PDM, the means
of the schizophrenic and control groups are significantly different (p0~'3). The shape changes observed

were localised to three regions : the temporal horn (its tip near the amygdala, and along its body near the
parahippocampal fissure), the central part of the lateral ventricles around the corpus callosum, and the tip of the
anterior horn in the region of the frontal lobe. The differences in the temporal region and anterior horns are in
regions close to structures thought to be implicated in schizophrenia.

1 Introduction

Schizophrenia is a serious brain disorder which is accompanied by altered brain structure. Interest in investigation
of shape changes of the lateral ventricles due to schizophrenia can be attributed to the work of Johnstone et al. [2]
who showed that schizophrenia is accompanied by an increase in the volume of the lateral ventricles. Several
groups e.g. [3] [4], are currently developing methods to investigate whether specific localised shape changes occur
in the lateral ventricles and other neuroanatomic structures due to schizophrenia and other brain diseases.

Because of the wide range of natural variability in the shape of structures in the human body, statistical approaches
to measuring differences in shape are desirable. Statistical shape models (SSMs) use samples from control and/or
disease populations, the training set, to learn the variability in the structures being modelled. They can therefore
allow separation of shape changes due to disease in the presence of natural variation, and provide better charac-
terisation of differences between populations than volumetric techniques. A diverse number of SSMs have been
described. However, these all need a method of representing shape, establishing correspondence across the training
set and obtaining shape differences qualitatively and/or quantitatively.

The particular SSM we use here is the point distribution model (PDM) [5], which characterises shape by a small
number of “modes of shape variation”, providing a compact parameterisation. We apply linear discriminant anal-
ysis (LDA) to the shape parameters to characterise inter-group differences.

2 Related Work

Buckley et al. [6] use 48 manually defined landmarks corresponding to curvature extrema on the surface of the

ventricles of 20 schizophrenic patients and 20 control subjects to investigate shape differences. They considered
the whole ventricular system and reported no overall shape differences between the entire patient group and the
entire schizophrenic group. However, when only the males of both groups were considered, significant shape

differences were identified in the proximal juncture of the temporal horn and in the foramen of Monro.

Gerig et al. [3] performed shape analysis on the lateral ventricles of 5 pairs of monozygotic and 5 pairs of dizygotic
twins. Ventricles were mapped to a unit sphere and decomposed into a summation of spherical harmonic functions.
The first order harmonics were used to impose correspondence between points and the measure of shape differ-
ences was the mean squared distance between corresponding points on the surfaces. They showed that, without
normalisation for ventricular size, no significant differences were seen between the two groups. However, after
normalisation using the volumes of the ventricles, the right lateral ventricles of the two groups are significantly
different. They concluded that shape measures reveal new information in addition to size or volumetric differen:

which might assist in the understanding of structural differences due to neuroanatomical diseases. 97
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Narr et al. [4] obtained average maps of anatomical differences based on voxel values of the limbic structures
and the lateral ventricles of 25 schizophrenic and 28 control subjects. Their analysis showed significant shape
differences in the left lateral ventricles. In particular, there was enlargement of the superior part and the posterior
horn. There were also noticeable differences in the part of the lateral ventricles in the vicinity of the caudate head.

Our approach has aspects in common with [6] and [3]. We build PDMs based on corresponding landmark points
across a training set. The landmark points are used to generate a small number of shape parameters controlling
the modes of variation of the shapes. The use of this parametric description distinguishes our approach from that
of [6]. However, the parameters are devised from the training data, unlike those of [3].

3 Materials and Method

3.1 Data

Volumetric T2 MR scans of 30 controls (14-45 years, 13 female, 17 male) and 39 age and sex matched schizophren-
ics (14-45 years, 9 female, 30 male) were used in this study. The scans were independently acquired in the sagittal,
coronal and axial orientations. Each slice had 256 x 256 voxels, with in-plane size of 0.86mm by 0.86mm for
sagittal and axial orientations, and 0.78mm by 0.78mm for the coronal orientation. For all orientations the slice
thickness was 5mm and the intra-slice gap was 1mm. All images were corrected for MR inhomogeniety [7], and
the three views of each subject were combined by rigid registration and interpolation to give 3D images with
effective resolution of 0.78mm x 0.78mm x 0.78mm. The lateral ventricles were segmented using a 3D edge de-
tector [8] and edge segments were manually linked to form closed contours in each slice with the guidance of a
neuroradiologist. The contours of the left lateral ventricles were reflected to give the same pose as those of the
right, giving an evaluation set of 138 ventricles for this study.

For each subject, brain size parameters were obtained as follows. Skull stripping was performed on each MR
image [9], and ellipsoids were fitted to the resulting brains. The lengths of the three principal axes of the ellipsoids
were stored as the brain size parameters. The ventricular surfaces were aligned to a canonical coordinate system
using their centroids and the three principal axes obtained from the distribution of the coordinates of their surface
points. The brain size parameters were then used to scale each object centred ventricle independently in the three
orthogonal directions for normalisation for brain size with respect to the brain size of an arbitrarily chosen template
brain. This was necessary to remove the influence of brain shape on ventricular shape.

3.2 Point Distribution Models

A PDM [5] reparameterises a shape described by surface landmark points to a smaller set of shape parameters
using equation 1
x=X+Pb. 1)

x is the vector of the coordinates of surface landmarks of a particular skapehe average of these vectors
over a training setP is the matrix whose columns are the eigenvectors corresponding to the laeigshvalues
of the covariance matrix of the shape vectotsis a vector of weights of dimensidh Due to correlations in
point positionsk can be much smaller than the number of landmark pointien becomes a vector kfshape
parameters which are equivalenti@s a description of the shape.

It is necessary to locateorrespondindandmark points on all the surfaces in the training set. In the case of 2D
PDMs this can be achieved by manual annotation. However, in 3D this becomes difficult and prohibitively labour-
intensive. Davies et al. [10] have shown that the specificity of a SSM depends critically on finding accurately
corresponding landmark points. Several approaches have been made towards automatic landmark generation in
3D, including the use of spherical harmonic parameterisation [3] and optimisation of the shape models [10]. Here
we identify landmarks from the set of “crest points” on the ventricle surface using a modification of the method
due to Subsol [11]. Correspondence is established using non-rigid registration of the surfaces and minimisation of
Euclidean distance expressed as a transportation cost.

3.3 Construction of the 3D PDM of the Lateral Ventricle

Crest points, which are curvature extrema on the ventricles, are used as automatically derived anatomical landmarks
here. According to the definition of [11] they are points where lines of principal maximal curvature on a surface



have maximum values. Crest lines are the locus of crest points and impose an ordering on crest points. The use
of crest points and crest lines in the creation of 3D PDMs of the ventricles has been described previously [1].
This also gives details of the transportation algorithm used to improve the correspondences obtained from the crest
points, showing it gives a greater number of matches and greater symmetry of matches when compared with an
Iterative Closest Point (ICP) method.

To create the 3D PDM, one ventriclg was used as a template and its surface represented by vertices and vertex
faces defined by triangular triplets of the vertices. The initial triangulation produced about 10,000 vertices, but
for computational reasons these were decimated to give about 1,000 vertices. Crest lines were obtained for each
ventricle and normalised with respect to the template as described in section 3.1. The crest lines of each of the
remaining 137 ventricles; € {vy,...,vi37} were matched in a pairwise manner to those of the chosen template,

v;. The matches were in both directions ive. — v, andv; — v, using the transportation method and a post-
processing step to enforce monotonicity. Matching was performed over 30 iterations: ten iterations each of rigid
alignment, affine alignment, and spline warping successively as described in [11].

Although the transportation-based method gives symmetric results for matches in both directions when the number
of crest points are equal, the results are not guaranteed to be symmetric when the number of crest points are not
equal, which in general is the case with matching ventricles. Therefore, from each matched pairy; and

v; — V), a subset of matches occurring on parts of crest lines that were symmetrically matched in both directions
were extracted. Although this decreases the number of matched points used in the subsequent transformation, it
gives greater confidence that they are valid matches. For the present caset- 1,68&rest points (79% of the

total number matched) were on symmetrically matched crest lines for the transportation-based method;tand 964
160 (70% of the total number matched) for the ICP-based method. The symmetric subset of matched points are
used to obtain coefficients defining a final spline based warp allowing transformation of the vertex peints of

onto the surface of each. The spline based warps are defined in [11].

3.4 Shape Analysis

The parameters of thie vectors are used to define a shape space using th& érgenvalues in the PDVKE30

in the present case, explaining over 99% of the observed variance). Each member of the training set is a point
within this k-dimensional space, represented by a vebiorTo characterise shape differences between the groups

we conducted a LDA (see e.g. [12]) using Fisher’s criterion. This provides a “discriminant vector” in shape
space along which the difference between the groups is most marked. We can quantify the shape differences
by projecting the individual shape vectors onto the discriminant vector to provide a scalar value representing the
individual shapes. The nature of the shape differences between the groups can be visualised by reconstructing the
shapes corresponding to the group means. Specific differences correspond to locations on the shape where large
movements occur between the reconstructed shapes.

4 Results

Figure 1(a) shows the results of projection onto the discriminant vector. The difference in the means was statisti-
cally significant (p< 10713 by a t-test). Figure 1(b) shows the difference between the means of the schizophrenic
group and that of the control group colour-mapped onto a ventricular surface. The greatest differences were in the
region of the tip of the anterior horn (8mm), in the region of the temporal horn (between 2mm and 6mm), around
the central part of the main body of the ventricle in the region of the corpus callosum (between 4mm and 6mm).

5 Discussion

The results of the morphometric analysis are similar to those of [4] in that they show differences localised to the
temporal horn in the region of the parahippocampal fissure, and in the anterior part of the lateral ventricle near
the frontal lobe. However, we also found differences in the central part of the lateral ventricle in the region of the
corpus callosum. Although [6] also report differences in the temporal horn of male schizophrenics, they did not
find differences in the pooled groups of male and females as we have reported here. Schizophrenia is a complex
disease and, as the results of the linear discriminant analysis shows, there is a considerable overlap in the ventricles
of schizophrenics and normals. Hence we do not propose we have a method that allows the discriminatio~ ~f
lateral ventricles into schizophrenic and none schizophrenic groups. However, studies of this sort may hel
understanding and monitoring schizophrenia. In this study we combined left and right ventricles of both me 99
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Figure 1. Results of shape analysis

and females. We have also removed all overall volume effects by isotropic scaling of the ventricles prior to shape
modelling. The observed differences are residual differences in shape in addition to any volumetric differences.
Future work will include investigating age and gender effects as well as comparing left and right asymmetry.
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A Non-Euclidean Metric for the Classification of Variations in
Medical Images
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Abstract. The analysis of deformation fields, such as those generated by non-rigid registration algorithms, is
central to the quantification of normal and abnormal variation of structures in registered images. The correct
choice of representation is an integral part of this analysis. This paper presents methods for constructing multi-
dimensional diffeomorphic representations of deformations. We demonstrate that these representations are
suitable for the description of medical image-based deformations in 2 and 3 dimensions. We show (using a set
of 2D outlines of ventricles) that the non-Euclidean metric inherent in this representation is superior to the usual
ad hoc Euclidean metrics in that it enables more accurate classification of legal and illegal variations.

1 Introduction

Non-rigid registration algorithms [1, 2] automatically generate dense (i.e., pixel-to-pixel or voxel-to-voxel) corre-
spondences between pairs and sets of images with the aim of aligning analogous ‘structures’. The deformation
fields implicit in this correspondence contain information about the variability of structures across the set, and in
order to analyse quantitatively this variability, we need to be able to analyse the set of deformation fields. Such
analysis must be based (either implicitly or explicitly) on a particular mathematical representation of the deforma-
tion field. Previous work on modelling dense 2D and 3D deformation fields has either used the densely-sampled
deformation vectors directly (e.g., [3,4]), or has employed a smooth, continuous representation of these (e.g., [5]).
However, neither of these methods guarantees that the deformation field is diffeomorphic.

We contend that the appropriate representation should be continuous and diffeomorphic. Where such a correspon-
dence is not actually physically meaningful (e.g., in the case where additional structures such as tumours appeatr),
this should be indicated by the warp parameters assuming atypical values. When we are considering the correspon-
dence between discrete and bounded objects such as brains, it is also desirable that the warps themselves should
be discrete and bounded. This leads us to suggest that a suitable representation is that of the group of continuous
diffeomorphisms with some appropriate set of boundary conditions. Such a representation can be constructed us-
ing an approach based on Geodesic Interpolating Splines (GIS) [6]. In previous work [6, 7] it has been shown that
this approach also allows the construction of a metric on the diffeomorphism group.

In this paper we demonstrate the construction of these diffeomorphic representations using a variety of spline
bases. We show that these representations generate warps that are suitable for the task in hand, giving biologically
‘plausible’ warps in both two and three dimensions, whilst being of a relatively low dimensionality. We further
study the significance of the metric (geodesic) distances between warps, and show that using it provides a measure
of atypical variation that has greater discriminatory power thamneneneasures based on the ad hoc use of a
Euclidean metric on the space of warp parameters.

2 The Geodesic Interpolating Spline

We consider a vector-valued spline functigﬁhf), Z € R™ that interpolates between data values at a set of
knotpoints{Z; : i = 1to N}, wheref(Z;) = f;, that can be expressed as the minimiser of a functional Lagrangian

of the form: 5 N
B(f] = [az|ci@| + Lon (Fiz - F). (1)
i=1

Rn
whereL is some scalar differential operator. The first term in the Lagrangian is the smoothing term; the second
term with the Lagrange multiplier§\;} ensures that the spline fits the data at the knotpoints. The choice of
operatorL, and boundary conditions defines a particular spline basis. The general solution can be written in the
form: N

f@ =g@)+ > @G &), 2

i=1
where the affine functionis a solution ofLg(#) = 0 and the Green'’s functiof¥ is a solution of:(LTL) G(Z, §)
§(& — ¥), with LT is the Lagrange dual df. For more details, see [8]. The choice of Green’s function depends on
the boundary conditions and smoothness appropriate to the problem considered. Suggestion of different possible
Green'’s functions are given in [8], here we focus on the Clamped-Plate Spline (CPS), which has the boundary con-
ditions that it is identically zero on and outside the unit ball [9]. We contend that such boundary conditions are the
appropriate choice forimages of discrete objects such as brains; other types of images may require different bound-
ary conditions. The biharmonic CPS{L = (V?)2) in 2 dimensiong53, and the triharmonic{'L = (V?)?)
CPS in 3 dimension&'3, have Green’s functions ( [9, 10]): 101
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The CPS is only guaranteed to be diffeomorphic for infinitesimal deformations. The standard approach to con-
structing larger deformations is to build them up as an infinite sequence of infinitesimal deformations [6, 11] by
introducing a flow time, so that the knotpoints follow patHg;(¢); ¢ € [0, 1]} with the associated energy:
1

Elax(t)] = /dtG (@i (2), Z5(8)) (@) - @; (1)) - 3)

We no longer have an exact solution, sir(l)ce the knotpoint paths are only constrained at their end-points, so that
we have to numerically optimise equation (3) over the knotpoint paths between their end-points. For more details,
see [7]. It was shown in [6] that the optimised energy is the squaregyebdesic distance functi@hon the group

of diffeomorphisms, so thd’ﬂopt(w) = d?(e,w), Wheree is the identity element of the group. This metric gives us

a principled way of defining warps that interpolate between any two given warps [10]; the optimal flowpath in the
group of diffeomorphisms gives a geodesic on the space of warps, and the geodesic distance allows us to calculate
a warp on this geodesic halfway between the two initial warps.

3 Representing Diffeomorphisms in Two and Three Dimensions

When considering warps of 2D biological images, it is obviously important that the generated warps are not
only diffeomorphic, but also biologically plausible. To investigate this, we considered a set of 2D MR axial
slices of brains, where the slices chosen show the lateral ventricles. For each image, the positions of the lat-
eral ventricles and the skull were annotated by a radiologist using a set of 163 points. We took a subset of 66
of these points to be the positions of our knots (see Fig. 1). Given a pair of images, the knotpoint positions
on the images gave us the initial and final positions for our knotpoint paths. We then calculated the geodesic
interpolating spline warp corresponding to these positions using the 2D clamped-plate spline as Green'’s function.
We did not affinely align the knots before calculating the warp; hence
the algorithm had to deal with a non-trivial pseudo-affine part. Affine
alignmentcould have been performed first, but we did not in order to
make the problennarder. Example results are shown in Fig. 2. The
warped images are not resampled — the images are instead plotted as
coloured surfaces, so that the size and position of each warped pixel is
retained. It can be seen that the warps are indeed diffeomorphic, and ap-
pear to be very smooth — each of the brain slices still looks biologically
plausible, despite the relatively low dimensionality of the representation
Figure 1. Left: Annotation (white line) and Used — structures other than the labelled ones have been brought into
knotpoints (white circles) on the original brain  @pproximate alignment. This suggests that a dense correspondence (for
slice. Right: The same knots positioned on  iNstance, one given by a non-rigid registration using maximisation of
another brain slice. mutual information) could also be represented by these warps without

an inordinate increase in the dimensionality of the representation.
We now show that the GIS can also generate biologically warps in 3D, and that, given a warp, we can choose the
knotpoints appropriately using a set of segmented hippocampi, each of which consists of a triangulated surface
with 268 vertices; examples are shown in Fig. 3. The vertices have been manipulated to give the optimisal corre-
spondence [12]. Pairs of hippocampi were chosen at random, and the 2 shapes aligned using generalised Procrustes
analysis. We used the triharmonic clamped-plate siglifias our GIS basis [8]. The required warp between source
and target was calculated iteratively — the warp was optimised for a given set of knotpoints, then new knotpoints
added and the warp recalculated. New knotpoints were selected from the vertices using a greedy algorithm: the
discrepancy between the vertices of the warped source and the target were calculated and new knotpoints selected
from those vertices that have the largest discrepancies.
Fig. 4 shows the distribution of the discrepancies between the aligned source and target, and the final warped
source and target, for a set of 70 knotpoints. It can be seen that the distribution of discrepancies as a whole has
been shifted towards smaller values. In Fig. 5, we show the maximum, median and mean square discrepancies
for non-knot points only as a function of the number of knots for 4 random pairs of hippocampi. The nature of
our greedy algorithm for selecting knotpoints means that the maximum discrepancy is not guaranteed to decrease
monotonically. However, all three graphs show that the algorithm quickly reaches to a reasonable representation
of the required warp, for a number of knotpoints that is approximately 25% of the number of vertices.

4 Using the Geodesic Distance to Classify Variations

We now consider the role of the geodesic distance in classifying legal and illegal variations in real biological data.
We take as our dataset the annotated outlines of the anterior lateral ventricles, as used in section 3 in the axial brain
slices. Each example consists of 40 knotpoints (see Fig. 6). The set of training examples was Procrustes aligned




Figure 2. Two examples of warp interpolation using the clamped-plate
spline. Pixel intensity is unchanged, but note that the image structures are Figure 3. Target (top) and source (bottom)
approximately aligned. Left: Source image, Centre: Warped image, Right:  hippocampi with knotpoints (black circles).
Target image. Source and target images are undistorted images from 4 normal ~ The correspondence between the shapes is

subjects. indicated by the shading.
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Figure 4. Distribution of point discrepancy ~ Figure 5. The maximum, median and mean square discrepancies, for non-
between source and target (grey bars), and  knot points only, as a function of the number of knots. Data is shown from 4
warped source and target (white bars). randomly selected pairs of hippocampi.

and then scaled to fit inside the unit circle. A linear Statistical Shape Model (SSM) was built from this training set

in the usual way. We then used this SSM to generate random example shapes. These examples were classified as
legal if the outlines of both ventricles did not intersect either themselves or each other, and illegal otherwise (see
Fig. 6). The training set of shapes are, by definition, legal.

We then calculated the GIS warps, using the biharmonic CPS basis, between the classified set of shapes and the
mean shape from the model. The geodesic distance from the mean is compared with the Mahalanobis distance
from the mean in Fig. 7. It is immediately obvious that we cannot separate the legal and illegal shapes by using
the Mahalanobis distance from the mean. However, using the geodesic distance, it is possible to construct a
simple classifier (shown by the dotted grey line) that separates the two groups, with only one example shape being
misclassified (the grey circle just below the line). Given that the Mahalanobis distance for the SSM is equivalent

to a Euclidean metric on the space of point deformations, this again demonstrates the superiority of the GIS metric
over an ad hoc metric. Note that the correspondences used in this example are a subset of the correspondences
that we would expect to be generated by a successful non-rigid registration of the images. Increasing the density
of points on the training shapes would have left the result for the Mahalanobis distance essentially unchanged.
However, the result for the GIS warp would have improved, giving a greater separation between the two sets of
shapes. This is because, in the limit where the lines become infinitely densely sampled, it is actually impossible to
construct a diffeomorphism for which the lines cross, which would mean that the geodesic distance for the illegal
shapes would approach infinity as the sampling density increased. We can now extend this argument to the case
of modelling the deformation fields for a non-rigid registration; a linear model of such deformation fields would
suffer the same problem as the linear SSM, where now the overlapping structures would correspond to a fol

of the warp. The GIS cannot, by definition, generate such a folding since it is guaranteed to be diffeomorphic. 103
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5 Conclusions

This paper has introduced a principled diffeomorphic representation of deformation fields with an inherent non-
Euclidean metric; the spline basis of this representation is defined by the choice of Green’s function and boundary
conditions, which can be altered to suit the particular task in hand. We have demonstrated that this representation
method can accurately represent real biological variations in both two and three dimensions. Conventional linear
modelling strategies impose a Euclidean metric on the space of parameters (in our case, the knotpoint positions).
The Mahalanobis distance that we have used for comparisons in this paper is derived from such a metric. The
example in section 4 clearly shows the superiority of the non-Euclidean metric in quantifying variation.
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Abstract. Deformation-basednorphometryenableshe automaticquantificationof neuroanatomicatliffer-
encedy measuringegional shapeandvolumedifferencesetweeranatlas(or referencespacegndthe popu-
lation underinvestigation.In this paperwe usedeformation-basethorphometrianethodgo studyvolumetric
differencesbetweenpreterminfantsat term equivalentageandterm born controlsusing high-resolutionMR
imaging. We investigatethe influenceof the choiceof atlason resultsobtainedusingdeformation-basethor-
phometry For this purposene constructedhreedifferentatlase®f termborninfantsandusedthemto compare
the brainsof the preterminfants(at term equivalentage)andthe term controlgroups.A non-rigidregistration
algorithmwas usedto mapall 3 atlasesinto a commoncoordinatesystemand volumetric differenceswere
extracted. Our resultsdemonstrateignificantvolumedifferencesbetweerpreterminfants(at term equivalent
age)andthe control groupin the ventricularsystem,cerebrospinafluid spacesanteriorlyandthe basalgan-
glia. Volumetricchangesareconsistenbetweerall threemapsof volumechangeandindicatethattheresults
obtainedusingdeformation-basethorphometryarelargely independentf the choiceof thereferencespace.

1 Introduction

Pretermdelivery affects5% of all deliveriesandits consequencesontributeto significantindividual, medicaland
socialproblemsglobally. The principle morbidity amongsurvivorsis neurological resultingfrom the profound
effect of pretermbirth on the developingbrain: half of all infantsborn at lessthan 25 weekshave neurodeel-
opmentalimpairmentat 30 monthsof ageandin lessimmatureinfantsneuropsychiatrigroblemsare common
in theteenageyears[1, 2]. This groupof infantscanbe studiedto evaluatethe neuroimagingcorrelatesof cog-
nitive and behaioural impairments. Most imaging studiesof the pretermbrain have usedultrasoundand have
shavn that major destructve lesionssuchasperiventricularleucomalaciaand haemorrhagiparenchymainfarct
areassociatedvith motorimpairment,but theselesionsdo not occurcommonlyenoughto accountfor the high
prevalenceof neuropsychiatricisordersseenin this group[3]. However, high resolutionmagneticresonance
(MR) imagingdetectanoresubtleabnormalitiesandshows thatearlyfocal lesionsarecommonin preterminfants
at birth andcanchangeor resole with time, andthat subsequentiffusewhite matterandcortical abnormalities
arecommonattermequialentage[4]. Theanatomicaphenotypeof thesechangesandhow they relateto adwerse
neuropsychiatrioutcomehasnot beencharacterised.

2 Methods

Computationaimorphometryhasbeenusedin a numberof neurological[5-8] and neurodeelopmental9-12]

disordersto capturenovel informationaboutnon-focalbrain changes.However, mostof theseapproachesave
beenappliedto the maturebrain. In this paperwe usea high dimensionalnon-rigid registrationalgorithm[13]

to examinemorphometridifferencedbetweerpretermandtermborninfants,andinvestigateheinfluenceof the
choiceof atlasonresultsobtained.For this purposene have analyzedhe MR imagef 66 preterminfants(median
29.6,range26-34weekspost-menstruahge)at termequivalentage(38to 42 weeks) togethemwith thosefrom 11
termcontrolinfants(median39.6,range38-42weekspost-menstruahge). Ethical permissiorfor this studywas
grantedby theHammersmittHospitalResearchethicsCommitteeandinformedparentaktonsentvasobtainedor

eachinfant. Infantsweresedatedor the examinationbut nonerequiredmechanicabentilationat thetime of MR

imaging. Pulseoximetry, electrocardiographiandtelevisual monitoring were usedthroughoutthe examination
which wasattendecdby a paediatrician.For someanalysesve defineda subgroupof 36 individualswith a post-
menstrualageof lessthan30 weeks. A 1.5T EclipseMR system(Philips Medical Systems Cleveland, Ohio)
wasusedto acquirehigh resolutionT1 weightedimages(TR=30ms,TE=4.5msflip angle= 30°). In additionto

corventionalT1 and T2 weightedimageacquisition,volume datasetsvere acquiredin contiguoussagittalslices
(in-planematrix size256 x 256,FOV = 25cm)with avoxel sizeof 1.0 x 1.0 x 1.6 mn?.
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2.1 Non-rigid Registration

In orderto mapthe anatomyof eachsubjectS into the anatomyof theatlasR it is necessaryo employ non-rigid
transformationsuchas elasticor fluid transformations.We are using a non-rigid registrationalgorithm which
hasbeenpreviously appliedsuccessfullyto a numberof differentregistrationtasks[14,15]. Local deformations
T}ocqr (x) aremodelledusingfree-formdeformationgFFD),

3 3 3

Tiocal (X) = Z Z Z B (U)Bm(U)Bn(w)ci+l,j+m,k+n (1)

=0 m=0n=0

wherec denoteghe control pointswhich parameteris¢he transformation.The optimal transformatioris found
by minimising a costfunction associatedavith the globaltransformatiorparameteraswell asthelocal transfor
mationparametersThe costfunctioncompriseswo competinggoals:thefirst termrepresentshe costassociated
with the voxel-basedsimilarity measurein this casenormalisedmutualinformation[16], while the seconderm
correspondso a regularisationterm which constrainghe transformatiorto be smooth[14]. The resultingtrans-
formationT mapseachpointin theanatomyof thereferencesubjectR to the correspondingpointin theanatomy
of thesubjectS.

2.2 Deformation-based morphometry

To comparethe neuroanatomicgbhenotyesof the two groupswe selectedVIR imagesof threeinfantsborn at
term which formed three differentreferencespacego which T1 weightedvolume datasetdrom 66 pretermat
term equivalentage (PAT) and 11 term born controlswereregistered. In the first step,we calculatedthe global
transformatiorbetweenthe subjectsandthe atlascorrectingfor scaling,skew, rotationandtranslation.We then
appliedthenon-rigidregistrationalgorithmusingamulti-resolutionschemewith controlspacingof 20mm,10mm,
5mm and 2.5mm. The resultingcontrol point meshdefinesa C? continuousand analytic representatiof the
deformationfield which describeghe point-wise3D displacementectorsthatarerequiredto warp eachdataset
to thereferencémage.

Theregistrationshetweersubjectsandreferencesubjecthave beencarriedout for all threereferencesubjectsand
all registeredimageswere checledfor artefactsandaccurateanatomicalocalisationby visualinspection.In all
casegegistrationachieveda visually plausiblealignmentof anatomicaktructures.

2.3 DataAnalysis

To calculateregional volumechangeghe determinanbf the Jacobiarof the deformationfield is usedto quantify
differenceshetweenregisteredimagesandreference.The determinanbf the Jacobiarfor any givenlocationin
thereferencecoordinatesystemfor eachindividual providesan estimateof the point-wisevolume changeof that
individual with respecto the atlas. Valuesabove 1 indicatetissueexpansionandwhile valuesbelow 1 indicate
tissuecontraction.To evaluatethe consisteng of the deformation-basedpproachye calculatedvolumechange
mapsbetweeneachsubjectS andall threereferencesubjectsR.41, R42 andR 3. We alsoregisteredR - and
R 43 to R41 whichallows usto transformeachvolumechangemapinto the coordinatesystemof R 1. To correct
for possibleregional volume differenceshetweenthe referencesubjects the volume changemapsare scaledby
the Jacobiandeterminaniof the transformatiorbetweenthe two referencesubjects. If the registrationshad no
associatecerrors, the resulting volume changemapswould identical regardlessof the choice of the reference
subject. In addition, we have calculatedthe effect size to detectregional volume differenceshetweenthe two
groups|6,8,17]:

e(x) = 14 (x) — pB(x) 2

0 AUB (X)

Here pa(x) and p4(x) denotethe meanJacobianvalueat x for group A and B while o4up(x) denotesthe
standardieviation of the Jacobiarvaluesatx for the pooledgroup.

3 Reaults

A quantitatve comparisorof theresultsof theregionalvolumetricdifferencedetweerthe pretermandtermborn

infantsis shown in table 1: while areassuchasthe basalgangliaare smallerin the preterminfants,otherareas
includingthe ventriclesarelargerin the pretermgroup. Table1 alsoshaws the effect of usingdifferentreference
subjectsaasthestandardpacdn whichto comparghevolumechangesBoththeeffectsizeandthevolumechange
shav alargedegreeof consisteny regardlessf thereferencesubjectused.A qualitative comparisorof the effect

sizeis shawvn in Figure 1: theisolinesrepresentegionsof equaleffect sizeandin thetop row (a)-(c) thetissue
containedwithin theisoline,aregionwithin thebasalganglia,is morecontractedn the pretermat termequivalent



(d) (e) ®

Figure 1. This figure shavs examplesagittal,axial, and coronalslicesillustrating the spatialdistribution of the
effect sizeof the Jacobiardeterminantn both groupssuperimposedn areferencemage. Theisolinesrepresent
regionsof equaleffect sizeandin thetop row (a)-(c)thetissuecontainedwithin theisoline (effectsizee < —1.3),
aregion within the basalganglia,is morecontractedn the preterminfantsgroupcomparedo thetermcontrols.
Theisolinesin figures(d)-(f) shov areasof relative tissueexpansionin the pretermgroupcomparedo theterm
infants. Theseareasarelocalisedto the lateralventricularsystem(effect sizee > 0.9) andthe interhemispheric
fissureanteriorly andcerebrospinafluid spacesaroundthe frontal lobes(effect sizee > 0.7) (not shown in this
figure). Thesetissuedistributionsof morphometricchangewerereplicatedusingthreedifferentreferencémages.

Effectsize Volumechange
Ru1 | Rya | Ras | Raa Ryus | Raus
pre-term> 30weeks| -0.89 | -0.76 | -0.87 | 79% | 84% | 75%
pre-term< 30weeks| -1.04 | -0.84 | -0.99 | 72% 79% | 74%
pre-term> 30weeks| 0.47 | 0.46 | 0.41 | 123% | 129% | 122%
pre-term< 30weeks| 0.75 | 0.70 | 0.68 | 127% | 131% | 127%

Table 1. Comparisorof the effect sizeandthe volumechangemeasurements the ventriclesandbasalganglia
for all referencesubjectR 41, R42 andR 43 (notethatthevolumechangemeasuremenreexpressedelative to
the coordinatesystemof referencesubjectR 41).

ROI Subjectgroup

Basalganglia

Ventricles

agegroup comparedo theterm controls. The isolinesin row (d)-(f) shov areasof relative tissueexpansionin
the pretermgroupcomparedo theterminfants. Theseareasarelocalisedto thelateralventricularsystemandthe
cerebrospindluid spacesaroundthefrontal lobes.

4 Discussion

We have useda high dimensionahon-rigid registrationalgorithmin a deformation-basethorphometricstudy of
alarge datasebf neonataMR brainimages.Thetechniquehasidentifiedmorphometricchangesassociatedvith
pretermbraininjury thatpersistat term equivalentage. We have obsenedrelative ventriculomealy, widening of
theinterhemispheridissureand cerebrospinafluid spacesanteriorly andlocalisedtissuecontractionwithin the
basalganglia. Theseobsenationsareconsistentvith previsouly reportedresults:ventriculomegaly andwidening
of theanteriorinterhemispheridissurehave bothbeenreportedn preterminfantsattermequivalentage but these
change$ave notbeenquantified[3]. In separatstudiesusingdiffusionweightedMR imagingwe have foundthat
the apparentiffusion coeficient (ADC) valueof frontal lobe white matter(adjacento anteriorinterhemispheric
fissure)is higherthanADC valuesin otherbrainregions. In future analyseshis tool couldbe usedto explorethe
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relationshipbetweenADC valuesandmorphometricchange.lt is possiblethatthe resultsareaffectedby errorin
theregistrationprocesavhichis currentlyafeatureinherentto all non-rigidregistrationalgorithms andrepresents
an areafor future development.A secondareaof investigationwithin our groupis concernedvith definingthe
optimalmethodof parametrior non-parametrianalysigo determinesignificantdifferencesn effectsizebetween
groups.We arecurrentlyexploring the datafor violationsof the assumptionsequiredby eachtypeof analysis.

In conclusionthis study demonstrateghe utility and consisteng of a non-rigid imageregistrationalgorithmin
defining the morphometricphenotypeof pretermbrain injury. We have demonstratedhe consisteng of these
biologically plausiblefindingsusingthreedifferentreferencesubjects.The identificationof regionsof tissueex-
pansion(lateralventriclesand cerebrospinalluid spacespandtissuecontraction(within the basalganglia)seems
largely independenbf the choiceof referenceanatomyused. Other metricsof shapechangecould be extracted
andstatisticalanalysesppliedin orderto further characterisé¢hesechangesspecifically studyinginfantslongi-
tudinally throughoutthis period of brain development.andexploring datasetdor associatedocationsof volume
changewill furtherknowledgeof the neuroanatomisequencef injury. Definingthe phenotypeof pre-termbrain
injury will enablerelationshipsvith collateralclinical, imaging,biochemicabr geneticdatato beexplored. There-
fore thetechniqueprovidesan opportunityto relatestructureto functionaloutcome andoffersa quantitatie tool
for testinghypothesesoncerninghe aetiologyof injury, andthe efficacy of preventatve stratgjies.
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Image-based ghost reduction of amplitude discontinuities in
k-space by method of generalised projections (MGP)
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Abstract. Previously, we have described the use of projections to correct for k-space phase discontinuities in
single- and multi-shot echo-planar imaging (EPI). This work extends the method to k-space amplitude disconti-
nuities. We tested the algorithm by simulation for Fourier and radial k-space with ghosting arising from regular
and random discontinuities. We find that amplitude ghosts in Fourier k-space require an a priori model to
reduce the number of degrees of freedom to approximately 7, equivalent to an 8 interleaved EPI image. On the
other hand, radial k-spaces do not require such constraints and random amplitude variations can be successfully
corrected by MGP.

1 Introduction

Single-shot EPI covers the entire k-space in a single acquisition but suffers from field inhomogeneity artifacts
due to low bandwidth in the phase-encode direction (PE). Interleaved EPI was proposed by McKinnon [1] to
overcome these artifacts, but it suffers from ghosting artifacts in the PE direction due to amplitude and phase
discontinuities in k-space. The former can arise due to insufficient 7} recovery between interleaves, while the
latter arises due to gradient reversal [2]. Amplitude discontinuities are also present in other interleaved acquisitions
such as GRASE and FSE [3]. In general, k-space lines are no longer collected sequentially, and in an n-shot
acquisition the discontinuities occur after n k-space lines giving a complex ghosting pattern [4]. In multi-shot
EPI, amplitude discontinuities are usually minimised by adjusting flip angle [1]. Other solutions are the use of
phase-encode ordering and or reference scans without phase-encoding to provide a template for normalisation [3].
We have reported the use of the method of generalised projections (MGP) as an image-based method for phase
correction [5,6]. We found that MGP works only if we impose constraints through some a priori model of phase
variation in order to reduce the degrees of freedom. In this paper, we ask: Does MGP also work for amplitude
discontinuities in interleaved EPI? Does it also require a model of ghosting to reduce the degrees of freedom? We
also investigate how well the method works with radially acquired k-space.

2 Method
2.1 Outline of algorithm

Let the uncorrected k-space be S’(k,, k). The iterative algorithm is started with
Gi(ky, ky) = S'(kz, ky) (1)
The ghosted image, gy, is reconstructed by inverse Fourier transform
gn(@.y) =F H{Gn (ks ky)} 2

Our first piece of a priori knowledge is that ghosts should not be present outside the parent. With a manual or
automatic mask, a region of support (ROS) is defined around the parent image in the ghosted image, and the pixels
outside the ROS are masked to zero. This constitutes a projection operation P; onto the set

Ci =A{g(z,y) : g(z,y) = Ofor (z,y) ¢ £} ©)
where ¢ is the region of support. We write the resulting masked image as
gn' (z,y) = Prgn(z,y) ©)
The Fourier transform of the masked image,
G (ko ky) = 3{g7' (z,9)} )

*k.j.lee@sheffield.ac.uk
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is taken as the model k-space. Now we make the hypothesis that the magnitude of the k-space lines in the model
is more correct than the original k-space, so we multiply the original k-space with the ratio of the magnitudes of
model line:original line for each &, line, keeping the phase unchanged.

Gri1(kay ky) = Gn(ka, ky) o(ky) (6)
where the scalar o(k,) is the ratio of intensities of &, lines,

_ S GR (ke ky)dEa |

7)== TG, ks By )| @
We obtain an estimate of the corrected image by inverse Fourier transform:
Int1(2,y) = § {Gnsa (e )} @®)
Because we keep the phase unchanged, equations (6) to (8) constitute a projection P, on to a set:
Co ={g(z,y) : arg[Gn(ke, ky)] = arg [S" (ku, ky)] V (Kas ky) } ©)

Is C5 a convex set? If f and g are two elements of Cs, then their Fourier transforms, F' and G, have the same
phases, and therefore their linear combination:

H(ky, ky) = pF(ka, ky) + (1 — )G (kz, ky) (10)
also has the same phase. Taking the inverse FT:

h(z,y) = pf(z,y) + (11— pwg(z,y) (1)

must also be an element of C» and so the set is convex, and convergence to a deghosted solution is assured with
the iterative projections algorithm: g, +1 = P> Py g, [7]. Unfortunately the two constraints represented by C; and
C-, i.e. specification of a region of support and phase, do not yield a unique solution. In fact there are an infinite
number of solutions. Without loss of generality we consider one column of k-space grid. The constraints are
equivalent to an equation:

o(ky) ' (ky) = F{t(y)I()} (12)
where t(y) is the top-hat function of the ROS, o(k,) is an arbitrary amplitude modulation, S’(k,) the original
k-space with the correct phase. The function I(y) can always be found from

3 Ho(ky) S'(ky)}
t(y)

In summary, for any o(k,), a solution can always be found which is zero outside the ROS and which after Fourier
transform has the same phase as the original k-space. The convex constraints mean that projections can be used
to find this solution. We now make the hypothesis that in interleaved EPI, as with phase variation, we can impose
additional constraints by using a priori knowledge to model the amplitude variations, and that this will allow the
algorithm to converge on a solution which is also the desired uncorrupted image. The simplest model assumes
that the amplitude of echoes in each interleaf differs from those of other interleaves by a constant fraction only.
The additional constraint does not change the convexity of the modified set as the argument above applies to
any arbitrary amplitude modulation, and therefore we can expect convergence of a projections algorithm. The
number of variables the algorithm needs to find is reduced from NPE, the number of phase encode lines, to
(number of interleaves — 1).

ly) =

13)

2.2 Interleaved EPI

We performed simulations on a test axial human brain image (see Fig 1(a)), acquired with a spin-echo EPI sequence
with 128 phase encode lines, with centre of k-space on the 33" line. To test the algorithm without constraints,
each phase encode line in raw k-space was multiplied by a random fraction to generate the corrupted k-space.
The algorithm was run until the change in consecutive amplitude corrections was < 0.1%. The mean absolute
difference between final and test image within the ROS, m, was used a measure of success. To test the algorithm
under model constraints, all lines belonging to the same interleaf were multiplied by the same randomly chosen
fraction. The highest intensity line corresponding to a particular interleaf was used to find the normalisation factor
for all other lines in that interleaf. The ROS and other measures were as above. Simulations for 2, 4, 8, 16, and 32
interleaves were performed.



2.3 Projection reconstruction

We performed simulations on data from a real phantom (Fig 2(a)) which comprised 128 radial lines over 180°.
All lines in the complex k-space was multiplied by a random fraction. Reconstruction from complex radial k-
space was by 1d inverse FT, to give a sinogram. The phase information was removed by taking the magnitude of
the sinogram. The streaked image is reconstructed from the sinogram by filtered backprojection using MATLAB
iradon function. The ghosted image is then masked manually and the resulting image reprojected to a sinogram
(using the MATLAB radon function), and 1d FT to give the model k-space for MGP correction. All magnitudes
were expressed as a ratio relative to an arbitrary line. Assessment was qualitative.

3 Results

3.1 Interleaved EPI

The algorithm converged in all cases to solutions with reduced ghosting outside the ROS. Fig. 1(c) shows the
resulting severely corrupted image after correction without constraints. With model constraints, Figs. 1(d) to 1(m)
show images before and after correction, with simulated number of interleaves n =2, 4, 8, 16, 32. The algorithm is
able to correct for low numbers of interleaves only, up to approximately n = 8. With large n, the ghosting outside
the ROS is suppressed, but the parent image becomes very blurred with loss of detail. In general, the number
of iterations before convergence increased with increasing number of degrees of freedom, ranging from around 5
iterations for 2 interleaves to over 50 iterations with 32 interleaves.

3.2 Projection reconstruction

Figs 2(b) and 2(c) shows the streaked image before and after correction with 5 iterations, showing good image
restoration and suppression of artifacts.

4 Discussion

Results with interleaved EPI show that the method works only if the amplitude variation is modelled to reduce
the number of variables in the problem to approximately 7 for our test image. Modelling reduced the space of
solutions so that the algorithm found the original image, or else images very near it. However, with more degrees
of freedom, the convergence point becomes increasingly dependent on initial conditions and made the algorithm
ineffective. With radial projections, amplitude modulation is not usually a problem because views can always be
normalised to the central k-space data point, which is sampled by all views. Here, MGP was able to recover the
amplitude corrections without requiring a model of ghosting. We hope to apply MGP to other sequences which are
affected by both amplitude and phase discontinuities e.g. GRASE.
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Figure 1. (a) deghosted slice for simulation. Each following pair of images shows simulated ghosting and result
of MGP correction. m = mean absolute difference between figure and test image. (b),(c) no model constraints;
(d),(e) 2-interleaves; (f),(g) 4-interleaves; (h),(i) 8-interleaves; (j),(k) 16-interleaves; (1),(m) 32-interleaves.

(@) (b) ©

Figure 2. Real phantom (a) original test image (b) Streaked (c) MGP corrected.
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Abstract. A method to automatically plan acquisition of images aligned with the cardiac axes is presented. The
average short axis orientation of images acquired from a group of fifty adult patients is calculated. Localiser
images are acquired with this mean orientation. These images are automatically segmented using the Expecta-
tion Maximisation (EM) algorithm. The borders of the left and right ventricle blood pools are then found by
analysing the properties of the segmented regions. Data points on these borders are used to provide an estimate
of the orientation of the cardiac axes.

1 Introduction

1.1 Motivation : Cardiovascular magnetic resonance imaging (CMR) is now regarded as a reference standard
for analysis of left ventricular ejection fraction and volume estimation [4]. Correct alignment of the imaging
planes with the cardiac planes is very important and a challenge, as previous studies using planes aligned with
the axes of the body were shown to be suboptimal [2]. Alignment of the imaging planes with the cardiac axes
requires specialist knowledge of cardiac anatomy and many radiologists and technicians find it difficult to plan
these images in a time-efficient and reproducible manner [4]. To our knowledge, there has been little research
in this area. Lelieveldt et al. proposed a method to automatically orient short axis CMR images using fuzzy
implicit surface templates [4] [5]. The work presented here differs from the work done by Lelieveldt in the choice
of localiser images and the method used to orient the cardiac axes. Lelieveldt used localiser images which were
aligned with the axes of the scanner. However, in this work, the localiser images are already approximately aligned
with the short axis of the heart (in a pre-analyse step). Unlike Lelieveldt’s localisers, they are breath-hold scans,
providing images which give more accurate cardiac positions. Lelieveldt used fuzzy implicit surface templates
of all the organs in the thorax to locate the cardiac axes. Our investigations of this method found it to be very
computationally intensive, which is a serious problem for rapid feedback to the scanner, so we have not followed
that route.

1.2 Manual Planning of Cardiac MR Images: In manual planning, a sequence of localiser and pilot images
are acquired which become increasingly closer to the true axis orientations. A typical procedure is described here,
based upon the document by Francis [3] which follows Pennell’s guidelines for assessing ventricular volume and
mass by CMR [6] and the published cardiac imaging standards [1] This manual planning procedure typically takes
a specialist five minutes from the acquisition of the first set of localiser images to the acquisition of correctly
aligned short axis images. All the acquisitions are breath-hold at end expiration and end diastole. Briefly, first
a localiser protocol is used to obtain transverse, coronal and sagittal views of the chest These images are then
used to position vertical long axis (VLA) and horizontal long axis (HLA) pilot images The short axis (SA) pilot
is positioned using the HLA and VLA pilots. Three slices are acquired with the basal slice parallel to the atrio-
ventricular (AV) valve plane. The SA pilots are then used to plan the acquisition of HLA and VLA cine images.
SA images are then positioned using the end-diastolic frames from the VLA and HLA cine images. The first slice
is positioned through the AV groove seen on both views. Parallel slices are then acquired until the entire ventricle
is covered. It should be noted that SA orientation mainly depends upon the position of the AV groove and not on
the shape of the left ventricle. Example HLA, VLA and SA images can be seen in Fig. 1.

2 Methods

The ideal method for automatic acquisition of cardiac MR images would involve just one localiser sequence.
The images from this sequence would be segmented (ideally with no user input) to give left and right ventricle
endocardial contours. The SA, HLA and VLA orientations would then be calculated from these contours in three
dimensions. These orientations would then be used to acquire correctly aligned images. This is the approach
adopted here.

2.1 Localiser Sequence: In this work a multiple slice imaging approach is used with slices oriented with the
average SA slice orientation (calculated in Section 2.3). A 3D acquisition was not used as we are presently unable
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Figure 2. Segmentation using the EM-MRF algorithm

original image

to acquire isotropic voxels of high resolution in the required imaging time. The acquisition is optimised for edge
sharpness, high contrast between blood and myocardium and to be compatible with a single breath-hold. All
images are acquired using a 1.5 Tesla Siemens Sonata. A 20 slice acquisition is used with a 280x340mm field
of view, a 1.8x1.8mm in-plane resolution and a 7.5mm slice thickness with a 7.5mm gap between slices. A
“true FISP” sequence is used with a 60° flip angle. The RF reception is on 2 elements of the spine array coil
and 6 channels of the anterior phased array coil. ECG gating is used and breath-hold commands are issued via
the intercom system. The location of the heart can be estimated with sufficient accuracy to guarantee that this is
covered by the slices used.

2.2 Segmentation of Left and Right Ventricle Blood Pools: A Gaussian mixture model is fit to the central
(10th) image in the localiser sequence using the Expectation Maximisation (EM) algorithm as described in Ye et
al. [7]. We use five Gaussians for the mixture model. Ye improved the segmentation by applying a Markov Random
Field (MRF) prior model. The results of applying the EM algorithm then the MRF model to a localiser image can
be seen in Fig. 2. Although the MRF model does improve the segmentation, it was decided that the degree of
improvement did not justify the extra processing time required for the work presented here.  The pixel values
which correspond to the points of overlap between each Gaussian in the model are then calculated. The image
is smoothed by replacing each pixel value with the average value of its eight neighbours. Pixels are classified as
belonging to one of the five models depending on their value. A set of morphological filtering operations were
constructed using empirically determined parameters derived from a training set of images. These operations are
used to identify the left (LV) and right ventricle (RV) regions. This process is illustrated in Fig. 3. This process
is repeated for all the images in the localiser sequence using the parameters of the Gaussian mixture model found
by fitting it to the 10th image. Boundaries of the regions found for a localiser sequence can be seen in Fig. 4.
The positions of the centroids of both the left and right ventricle regions are compared to their means over all 20
images. Images where the positions of the centroids are less than one standard deviation from their means are then
displayed. The user can then choose to reject images where the regions have not been correctly located.

The normal to the SA is then found by fitting a straight line to the centroids of all the LV regions. The centre of
the middle SA slice is set to lie on this line and to be in the middle of the points used for the fit. The SA, VLA and
HLA are set as being at right angles to each other, although, as was discussed in Section 1, this is not necessarily
the case when this procedure is performed manually. The centres of the HLA and VLA slices are also defined as
being in the same position as the centre of the middle SA slice. This point will be the origin of the heart axes. The
position on the RV boundary which is furthest away from this SA and its angle around the SA vector are then found
for each image. The normal to the VLA is defined as passing through the heart axes origin, being perpendicular
to the SA and at the average of these angles. The normal to the HLA is then easily found as it is perpendicular to

both the SA and the HLA normals.

area>0.01 x image size chooseregion with fill il pixelsinside
and solidity>05 min eccentricity convex hull = LV region area>0.0Lx imagesze erosi centroid of LV region on

all blood pool regions

Figure 3. Location of the LV and RV using mathematical morphological operations
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Figure 4. Boundaries of left and right ventricles on all 20 localiser images
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Figure 5. Deviations of SA orientations from the mean SA (SA) for 50 patients. (a) shows unit vector normals
perpendicular to the SA images, a section of the unit sphere and a plane tangential to this and perpendicular to the
SA normal. (b) shows the positions at which the SA vectors would intersect this plane. The coordinates (U,V)
represent the distance from the point where the SA normal intersects the plane. Iso-contours show the difference
in angle between the SA normals and the SA normal

2.3 Calculation of the Mean SA Orientation : Recall that in our approach we acquire one localiser sequence
with an approximate SA orientation. This is found as follows. Unit normals to SA images for a group of fifty
adult patients selected at random from the data stored on the scanner were used (these were for acquisitions where
manual alignment was done). These patients had a variety of heart conditions representative of a cross-section of
cases seen in a CMR unit. The orientations of the axes were converted into spherical polar coordinates. The mean
polar angle (angle from the z axis) and mean azimuthal angle (from the x axis in the zy plane) were found and
the mean SA normal was taken as a normal vector in the direction given by the two mean angles. The difference
in angle between the SA normals and the mean were then found. The mean polar angle was 115° and the mean
azimuthal angle was -37°. This can be written as the “Siemens double oblique slice orientation” S>C37.4>T25.0.
This orientation is a sagittal (S) slice tilted toward coronal (C) by 37.4° and then toward transversal (T) by 25.0°.
The average deviation of the axes from this mean is 10.2°. The SA normals and the angle differences are shown
in Fig. 5. An illustration of the magnet coordinate system and the directions perpendicular to sagittal, coronal and
transversal images can be seen in Fig. 6(a).

3 Experimental Evaluation

A patient was positioned with their heart in the centre of the magnet in the z direction. A first set of 20 localiser
images was acquired with the calculated mean SA orientation (SA) S>C37.4>T25.0 and then a further 8 sets of
localiser images were acquired with variations from this mean orientation to simulate different heart positions. The
usual manual alignment was then done so the actual HLA, VLA and SA orientations were known for comparison

Table 1. Automatic alignment results

Angle from axis (degrees) Angle from axis (degrees)
Siemens Localisers Calculated Siemens Localisers Calculated
orientation SA SA| SA SA VLA HLA orientation SA SA| SA SA VLA HLA

S>C37.4>T250 0.0 99| 39 135 175 15.1| C>S37.6>T-25.0 13.6 21.6|12.1 21.1 23.7 146
T>C-43.4>827.9 195 20.7|12.2 21.9 236 17.5|S>T26.84>C20.0 136 8.7| 21 7.8 250 83
5$>C22.4>T10.0 20.7 22.4| 3.1 125 238 13.0| T>S43.4>C-27.7 150 108| 6.3 9.6 20.2 84
C>S37.6>T-10.0 20.7 30.6| 4.3 10.3 26.5 115| S>C37.4>T-10.0 15.0 22.9| 6.1 15.6 24.2 15.6
S>T42.2>C17.0 195 100 29 74 246 7.6
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Figure 6. Magnet coordinate system and variation of calculated SA, VLA and HLA

purposes. The angles of the different localiser sequences as shown in Table 1 together with the angles between
the calculated orientations, SA and the manually aligned SA, HLA and VLA orientations. Figure 6 shows (b) the
SA orientations of the localisers and the corresponding calculated SA, (c) VLA and (d) HLA orientations. The
orientations are displayed as intersections of the normals to the images with three planes in a similar way to Fig. 5.
The planes are centred on the mean calculated SA, VLA and HLA orientations and, therefore, show the variability.
The average variations of the calculated orientations from their means were 5.6, 4.6 and 4.2° for the SA, VLA and
HLA respectively. (b) illustrates that very similar axes orientations were calculated from all nine sets of localiser
images. The angle between the mean calculated SA angle for the 9 cases and the manually aligned SA was 12.8°.
This angle was 22.8° for the VLA and 11.9° for the HLA. This shows that the method is reproducible but that
the axis orientations, especially that of the VLA, differ from those found manually. The average variation from a
“reference standard” of the SA orientations automatically found by Lelieveldt was 12.2° [4].

4 Discussion and Further Work

We have developed an approach to automated cardiac axes alignment which uses one localiser sequence and
automated image processing. The current approach is semi-automatic and gave results which were reproducible
but showed some inconsistencies with the manual approach. As was described in Section 1, although the manually
aligned long axis does align with the long axis of the heart in the mid-plane, it does not align with the axis toward
the apex. Similarly, the SA would be expected to be perpendicular to the long axis. This is not always the case
as, in the manual approach, there is a tendency to align the SA slice with the AV groove (which may or may
not be perpendicular to the long axis as defined previously). There are reasons for all these “tweaks”, which are
either historical (e.g. that is the approach that cardiologists use for ultrasound), or due to other analysis steps (i.e.
determining the cardiac volume through summing the volumes of multiple slices). Another point is that the VLA
is not necessarily perpendicular to the HLA, as might have been expected by those definitions. It highlights that
anatomical definitions can differ from computational model definitions. This is discussed in [6]. However, for this
application, it appears that a simple computational definition is adequate. Further work will focus on assessing
the significance and relevance of axes that are not mutually orthogonal. The variability of manually aligned axes
positions between specialists will also be investigated further. An important next step will be to integrate this
planning capability into the running of the MRI system and automating remaining steps which presently require
interactivity.
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Abstract. Research into fibre tracking within the brain has been prominent in recent literature. Several studies
have found fibre structure that is consistent with known anatomy in the major tracts. We present a model of fibre
connectivity using a weighted graph. In this initial investigation, we examine consistency of the connectivity
graph among individuals by modelling their variation with Principal Component Analysis. We assess the quality
of the model by the goodness of fit to unseen data, for a range of graph vertex sizes. We conclude that the brain
should be divided into no more than 32 vertices to achieve reasonable inter-subject consistency with our fibre
tracking algorithm.

1 Introduction and Background

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) allémsivoimaging of diffusing water molecules

as they interact with microscopic cellular structures. Many studies have used the Diffusion Tensor (DT) [1] to
model the statistical properties of diffusing water molecules within the brain. Within brain white matter, the
organized fibre bundles impose anisotropic restrictions on the mobility of water molecules, which are consequently
likely to diffuse farther along the fibres than across them. White matter can be contrasted with other brain tissue
using conventional MR modalities, but DW-MRI is uniquely able to probe the fibre orientation.

Several studies have used DT-MRI to perform “tractographyri-wivo reconstruction of the trajectory of white

matter axonal fibres. Tractography aims to determine the path that these fibres follow between their synaptic
junctions. The anatomical connectivity within the brain is interesting for studies of brain function, and also for
the investigation of white matter abnormalities. Detailed reviews of the published tractography techniques can
be found in [2] and [3]. The tractography techniques described to date have produced results that are consistent
with the known anatomy of the major fibre pathways in the brain, but these results cannot be validated sufficiently
for clinical applications. It is important to note that present DT-MRI images are restricted to resolutions of a few
millimetres, which is much greater than the diameter of individual white matter fibres (about 0.001 mm) [4]. The
“fibres” recovered from tractography are not fibres themselves but the estimated path of organized fibre bundles.

Jones, Griffin, Alexander, et al [5] studied the inter-subject coherence of fibre orientation within DT-MRI images

on the voxel scale, in ten healthy subjects. The images were registered into a common space to align the anatomical
features of the brains for comparison. Using a quantitative measure of eigenvector coherence, Jones showed that
the angular coherence within the group was stronger in some areas of the brain than in other areas.

The long term goal of our research is to develop a robust technique to model the fibre connectivity information
embedded in DW-MRI images. Statistics of such a model could be used to quantify the variation in connectivity
among individuals. This is interesting both to the study of natural anatomical variations, and for the study and
diagnosis of diseases where white matter abnormalities may be present. Scalar indices derived from DT-MRI have
been used to study white matter diseases such as multiple sclerosis [6] and schizophrenia [7], but these studies do
not address the patterns of fibre connectivity. The study of connectivity disorders is a potential future application
of our model.

In this study, we use a weighted graph to represent the connectivity between evenly segmented volumes of brain
tissue in the space of a DT-MRI image. We use Principal Component Analysis (PCA) to find the most significant
modes of variation in these graphs using a training set of seven healthy volunteers. We reconstruct images from four
other healthy volunteers from the principal components of the training set. We show that the principal components
of the training set can closely approximate the non-training data when the brain is divided into a cubic grid of 0.1
litre vertices.

*email: p.cook@cs.ucl.ac.uk
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2 Method

2.1 Outline of connectivity graph algorithm

1. Define the vertices of the graph in a reference image.
2. For each subject image:

(a) Compute a registration warp from the image to the reference image.
(b) Place tractography seeds in the centre of all voxels in the unwarped image.
(c) While there are unused seeds:

i. Attempt to track a fibre from the next seed.

ii. Ifafibreis found:
A. Remove any remaining seeds along the fibre path.
B. Apply registration warp to fibre.
C. Add fibre to subject’s graph.

We used the fourth order Runge-Kutta method to track fibres. This method has the advantage of being reasonably
simple and fast to compute. After a fibre was computed, we removed the seeds along the fibre trajectory so that
it would be counted only once. Each fibre was ended when it reached a point where diffusion anisotropy was
below a level consistent with white matter. This method was shown by Basser, Pajevic, Pierpaoli et al [8] to
produce anatomically plausible results. We discarded tracked fibres shorter than 30mm. Such fibres do exist in
the brain but tractography performs best in the longer, wider fibre tracts, where the results can be compared to
known anatomy. The value of 30mm represents a subjective threshold and quantitative validation of tractography
is required to establish which fibres can be reliably tracked in the brain.

The connectivity graph is a weighted graph where the vertices are volumes of brain tissue. The graph is a symmet-
ric, sparsely populated (most pairs of vertices have no fibre connections) adjacency gn&aish entryy;; of the
adjacency matrix is the number of fibres that pass through vertimedj. We normalize the graph (see equation

1) to remove variation in the absolute size of the fibre tracts.

We defined twelve graphs by covering the brain with a cubic grid of vertices, rangingfso®—* litres to 0.39
litres. The vertices were defined in the space of a reference image from a healthy male volunteer. We registered
the subject images to the reference image using software from the FSL suite, (Oxford University, UK [9]).

2.2 Modelling connectivity variation

In the absence of errors, variation in inter-subject graphs would be caused by variation in position of the fibre
bundles (different vertices connected), or variation in the relative sizes of the tracts (different weights). With real
data, some of the variation will be errors introduced during the registration and tractography processes. Increasing
the vertex size absorbs some of the errors in the fibre trajectories at the expense of reducing the descriptive power
of the connectivity graph.

We used PCA to model the variation in a space of much smaller dimension than that of the data. We consider the
adjacency matrix as a vector i8-dimensional space (equation 1), wheris the number of vertices:

U

1

X = 7 (911,912 - - - G1d, 921 - - -gdd)T ,whereZ =

no

-

Z 9i; (1)

j=1i=1

Any n points ind?-dimensional space (whei# > n) define a subspace of maximum dimensior 1, and all of
these points can be described as a linear combinatian-of orthogonal basis vectors. PCA finds an orthogonal
basis for the data as well as the variance in the position of the training data along each basis vector.

We used seven principal componentfemale subject images as the training set for our experiment. Images from a
further four subjects (three male, one female) were transformed into the Principal Component space to test how
well the principal components can describe the variation outside the training set: Withtraining samples there



Figure 1. Two-dimensional slices of an anisotropy image, with vertex boundaries shown as dotted lines.
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Figure 2. Plot of residual error versus vertex volume for the four non-training graphs, and the mean residual error
of the training graphs, when reconstructed from the first 5 principal components. The numbers next to the data
points are the number of vertices used to construct the graph at the corresponding graph volume

can be at most — 1 = 6 nonzero principal components. The residual effas the euclidean distance between
the actual data poink and the closest point in principal component spatgewhich is a linear combination of the
principal componentp;:

/

X = ( P1 P2 Pn-1 )TX @)

E=|x"—x| 3)

3 Results and conclusion

The residual error falls significantly as the vertex size increases, as shown in figure 2. The data in figure 2 is
reconstructed from 5 principal components that together account for approxiraafelef the variance of the

training set. Graphs with hundreds or thousands of small vertices are poorly represented by the training set, but the
residual stabilises once the vertex volume reaches 0.1 litres (32 vertices of this size are needed to cover the brain).
It is possible that with a larger training set, graphs with vertices smaller than 0.1 litres could be reconstructed \

the same residual error. 119
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4 Discussion and future work

This work is at an early stage and several problems remain to be solved. The cubic grid covers the whole brain,
which means that fibres anywhere in the brain can contribute to the graph but guarantees that erroneous fibre traces
can find vertices to connect. A sparse set of vertices, placed along known white matter fibres, would exclude some
parts of the brain from analysis, but might provide better results because random fibre trajectories would be less
likely to connect two vertices. This may allow us to use smaller vertices without incurring such large errors.

We are currently developing a replacement for the vertex grid with a smaller set of vertices defined by anatomical
landmarks. We are also investigating probabilistic tracking algorithms, which may provide a more robust estimate
of fibre connectivity.
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Abstract. Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been
extended to the field of dermatology, as an attempt to algorithmically reproduce clinical evaluation. Accurate
image segmentation of skin lesions is one of the key steps for useful, early, and non-invasive diagnosis of
cutaneous melanomas. In this paper, a new segmentation technique has been developed to extract the true
border that reveals the global structure irregularity (indentations and protrusions), which may suggest
excessive cell growth or regression of a melanoma. The algorithm is applied to the Blue channel of the RGB
colour vectors to distinguish lesions from the skin and proceed with grey scale morphology and background
noise reduction to enhance and filter the image of lesion. The algorithm also does not depend on the use of
rigid threshold values, because the isodata algorithm that is used determines an optimal threshold iteratively.
Preliminary experiments are performed on digitised clinical photographs and also pigmented networks
captured with the ELM technique. We demonstrate that we can enhance and delineate pigmented networks in
skin lesions visually, and make them accessible for further analysis and classification.

1 Introduction

Trained dermatologists in the use of dermatoscopy or epiluminescence microscopy (ELM) can improve their
diagnostic accuracy of melanoma from about 65% using the unaided eye to approximately 80% with the benefit
of ELM [1]. However, even with ELM, a trained dermatologist can be deceived at least 20% of the time by the
appearance of a melanoma. Low rate of correct classification of clinical diagnosis [2] calls for the development
of both digitised ELM (DELM) and automated image analysis systems. For example, a recently developed PC-
based pilot system by Binder et al. [3] promises to automatically segment the digitised ELM images, measuring
107 morphological parameters. A neural network classifier trained with these features is able to differentiate
between benign and malignant melanoma.

This paper demonstrates the use of an iterative segmentation algorithm as a tool for determining the borders of
real skin lesions as an aid to skin lesion diagnosis. The algorithm has been developed and compared with other
developed Neural Network techniques and also the automatic segmentation method by Xu et al [4]. Initial
experiments have been done on synthetic lesions, and the work has been written up in a paper [5]. The next
section shows the method applied. This is followed in section 3 by results and discussions demonstrating the
segmentation method. Conclusions are drawn in section 4.

2 Method of Processing Pigmented Networks

The weak contrast within the pigmented network does not allow colour-based segmentation to extract pigmented
networks directly. However, extracting homogeneous and differently coloured regions within the lesions is a
robust method for separating lesions from surrounding skin [2]. As an example of analysing pigmented network,
Fisher et al. [2] develop a colour based segmentation algorithm, which is applied to Karhunen loeve
transformation of the RGB colour vectors. Because the pigmented network and the background do not have
homogeneous luminance, the result of segmentation is enhanced in a circular region to limit the problem of
heterogeneous regions.
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In this work the following processing steps are followed to delineate pigmented networks and make them
accessible for further statistical analysis and classification. We suggest the processing of lesion images using the
Blue channel of the RGB colour space followed by the grey scale morphology and intensity mapping to enhance
and filter regions containing a pigmented network. Assuming that the previous steps assist to provide equal
region probabilities then a simple iterative scheme would segment the image into binary regions containing the
lesion and the background. This process is depicted in Table.l. In contrast with the above example of
segmentation, the region processed is equal to the full size of image.

Stepl: {Source image}
Source image = Blue channel of {R,G,B} colour image
Step2: {Noise reduction}
Grey morphology
Subtract median background noise
Step3: {Lesion enhancement}
Map intensities with appropriate function
Smooth
Step4: {Optimal thresholding)}
Optimal thresholding
Step5: {delineate object}
Outline binary object
Step6: {Object analysis}
Set the minimum object Diameter and Area
Scan the binary image Until
MinSize < Area < MaxSize

Table 1. General algorithm steps to delineate colour lesion.

Step 1. We use the blue channel of the intensity of an RGB colour skin lesion image as the first step. This
approach has been demonstrated to provide the best results in global and dynamic thresholding algorithms [6].

Step 2. Because real skin images often contain features such as hair and other small objects, we have added a
grey scale morphological opening operation followed by a close operation as the first step of data reduction
without destroying the morphological structure of the pigmented network [2,6]. The opening operation is
expected to smooth objects and removes isolated pixels and the close operation performs smoothing and filling
in small holes. For optimum use of the algorithm it is useful to remove the background intensity of skin
surrounding the lesion. This is estimated by calculating the median of two strip windows from the top and

bottom of an image, each of size Wx 10 pixels, where w is the full image width [4].

Step 3. A mapping function F(®) is used here to map the intensities / to enhance features at the boundary;

F(@) =k (1-expl- 2 /252)) (1)
where
O(I)=cI’ +c'I +¢'T ()
where
c=1/k 3)

F(®) achieves less redundancy in the colour map than the Gaussian transformation used in [4] which makes it
more suitable to map a wide range of intensities so that the lesion can be distinguished from the background.
Another advantage here is that when mapping images of low noise variations, small o, in the background (e.g.
ELM images) then the function tends not to magnify that noise. The selection of the standard deviation (o) of
this mapping function is automatically determined according to the estimated standard deviation of the
background surrounding the lesion; in the same manner when subtracting background median noise (Step 2).
Small smoothing Gaussian kernels are adopted at this stage for two reasons: (i) to assist the extraction of
morphological structure of the pigmented network, (ii) large smoothing is not necessary because the
preprocessing steps of morphological operations already provide the robust noise reduction.



Step 4. The thresholding algorithm described by Madisett et al as an isodata algorithm [7] is used here to find
an optimum auto-threshold value T for an image. This value would segment the image into binary regions
containing the lesion and the background. The histogram is initially segmented into two parts using an initial
threshold value of 7,=2%" where B is the number of bits. For an 8-bit intensity image B=8 and T;,=128. The
sample mean of the gray values associated with foreground pixels (m ;) and the sample mean of the gray

values associated with the background pixels are (m, ) computed. A new generated threshold value T} is

computed as the average of these two sample means. The process is repeated, based upon the new generated
threshold, until the threshold value does not change any more:

T, z(mf,k—l +m,,, )/2 until T, =T, “4)

Step 5. Delineation is applied to binary objects that result from optimal thresholding (step 4). The logic rule in
this binary process simply follows “any foreground pixel with at least one background pixel in the 3x3
neighbourhood is left unchanged, otherwise it is changed to the background colour” [8].

Step 6. This process is useful to analyse an image with multiple lesions or to correct errors caused in the
delineation process such as the delineation of thick and dark hair. Scanning across the image is performed and a
condition or a set of conditions reached. For example, a condition to check the area of the object between
minimum and maximum size would eliminate unnecessary size of object: MinSize < Area < MaxSize .

3 Experiments and Discussion

We have processed thirty images of skin images. The first twenty images are captured by digitised clinical
photographs [4]. We have chosen these low quality images to test the robustness of the algorithm to delineate
images with clear skin texture. The other ten images are captured with the ELM technique. Successful delineated
of the most noisy clinical photograph colour lesions are achieved. This preliminary test experiment demonstrates
the robustness of the algorithm against wide range of noise such as skin texture, light reflections, and noise

artefacts (see fig.1).
' (©)
(®

el S

< -
®
(e)

(d)

Figurel. Demonstration of iterative segmentation algorithm. (a) Gray intensities of blue channel. (b)
Morphological operations followed by noise subtraction of median background. (c) Intensity mapping by
function F(®). (d) Edge outline of binary segment at an optimal threshold. (¢) Analysis of the resulting objects
and eliminating the small objects. Labels are also used to check the success of the process, MinSize=0. (f)
Excluding small objects, which are labelled as No. 1 to 6.
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Another run of the algorithm has been applied to the inversion of the blue intensities (Eqn. 5) to delineate the
inner-pigmented network (in this case the inner-pigmented region would represent the most brighter intensities).
To avoid any possible growth of brighter intensities for regions surrounding the lesion, the median subtraction
process (Step 2) is suppressed. Furthermore, a reverse order of the two successive morphological operations is
used.

B(i, j) = MaxBrightness — B(i, j) ®)]

Fig.2 demonstrates the ability of the algorithm to delineate three regions: inner-pigmented network with
globules and pigmented network in poor contrast, outer light brown ring, and the surrounding skin. Fig2a is
available in [9].

(@) (b)

Figure 2. (a) Original lesion with pigmented network. (b) Demonstrate the use of the algorithm to
delineate the dark centre of the lesion with globules pigmented network (black border region).
The light brown ring with pigmented network is delineated by white border region.

4 Conclusion

In this paper we have discussed the development of the new algorithm to delineate skin lesions. A combination
of moles and pigmented networks of ELM skin lesion images are chosen here to provide preliminary tests of the
algorithm performance. We have demonstrated the ability of the algorithm to delineate both the dark centre of
the lesion with globules and the light pigmented network in poor contrast. Visual enhancement and delineation
of pigmented networks in skin lesions can make them accessible to further analysis and classification.
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Segmentation of Mammograms Using a Weighted Gaussian Mixture
Model and Hidden Markov Random Field

Keir Bovis and Sameer Singh

PANN Research, Department of Computer Science, University of Exeter, Exeter, EX4 4PT, UK.

In this study we evaluate the relative utility of four approaches to statistical model-based image segmentation of 200
digitised abnormal mammograms from the Digital Database of Screening Mammograms (DDSM). Each model is con-
structed by employing combinations of a Weighted Gaussian Mixture Model (WGMM) and a Markov Random Field
(MREF) in a supervised and unsupervised manner. Maximum likelihood estimates of model parameters are obtained us-
ing the Expectation-Maximisation (EM) algorithm. The segmentation performance is evaluated by calculating the area
under the Receiver Operating Characteristic (ROC) curve, Az. The main contribution of this paper is the specification
and evaluation of the relative utility of each model in segmenting a data-set of mammograms comprising the complete
spectrum of varying mammographic breast density. We show that that the adoption of a supervised WGMM/MRF
approach gives the best result over all test mammograms (Az=0.73).

Keywords: Mammography, image segmentation, Gaussian Mixture Model (GMM), Markov Random Field (MRF).

1 Introduction

The aim of image segmentation is to divide an image into parts that have strong correlation with objects of the real
world contained in the image. Region based segmentation methods attempt to find border between regions. Statistical
approaches label pixels according to class conditional probabilities based on the distribution of the input feature data.
Extensive research has focused on the use of a Gaussian Mixture Model (GMM) to model such conditional probabilities.
The performance of a GMM as a model of the observed data has been shown to give good results as long as the different
classes are well separated in the input feature space. This though is not always the case and several studies have addressed
this problem by incorporating a Markov Random Field (MRF) hidden model capturing the spatial constraints of pixel
class labels [7, 8].

Within this study we evaluate a supervised and unsupervised approach to the segmentation of a test image using a
Weighted Gaussian Mixture Model (WGMM) and a WGMM regularised with a MRF [2]. The aim of the segmentation
is to label pixels as belonging to one of two classes, normal or abnormal. This study offers novelty in two areas:

1. The specification of four different combinations of WGMM and MRF models adopting a supervised learning and
unsupervised strategy for the segmentation of mammograms images.

2. An evaluation of the relative utility of the four segmentation approaches on a large set of mammograms taken from
the Digital Database of Screening Mammograms (DDSM) [5] covering the complete spectrum of mammographic
breast densities defined by the American College of Radiology (ACR) Breast Imaging Reporting and Data Systems
(BI-RADS). This lexicon identifies four mammographic breast density types: 1.) the breast is almost entirely fat;
2.) There are scattered fibroglandular densities; 3.) The breast tissue is heterogeneously dense; 4.) the breast
tissue is extremely dense.

2 GMM and MRF Modelling

The observed image model uses a GMM to model the Probability Density Function (PDF) of an input feature space x,
given that each sample belongs to one of L independent class labels I = {1,..., L}, using J Gaussian functions f (),
mixed with a set of mixing coefficients , thus p (z | I, 0%,5,) = 25:1 m;f (x| 1,60;). We combine the PDF’s for
each class using a WGMM to model the unconditional density such that each class distribution, p (ac | 1, G)lG M M), is
weighted by P (1) thus, p (z, Ogmm) = ZlL:l P()p(z|1,0% ). The WGMM allows us to model the PDF’s of
each class independently with 1 or more Gaussian centres. The parameters (6;) of the j’th component Gaussian comprise
the mean (), covariance (o) and mixing coefficient 7;. The Expectation-Maximisation (EM) algorithm provides an
estimate of a maximum likelihood solution for the complete set of parameters for all Gaussian functions of a given class
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distribution, /, (@’G M M) together with the class weights P (I). This is achieved by iteratively maximising a likelihood
function across all data samples for each class, normal and abnormal.

Within this study we propose the use of an MRF to regularise the resultant observed model. This reduces classification
error associated with classes that are poorly differentiated in the input feature space when using the WGMM. The MRF
is used to model the spatial constraints of the pixel class labels in the segmented image. The class labels associated
with a pixel are assumed to be a realisation of a random process where the probability that pixel /,, belongs to a given
class, depends on the class labels of neighbouring pixels I,,, from a given neighbourhood Ny, thus, p (I, | I, n # m) =

p((ln | Im € Nn))

We evaluate four strategies for the use of a WGMM in the segmentation of a test mammogram. Two of the methods are
supervised such that the model parameters for the WGMM are learnt from an independent training set (WGM Mg, W GM MY EF),
the others are unsupervised (WGM My, W GM MM EF). Two of the approaches constrain the WGMM with a MRF in

an attempt to improve the resultant segmentation (WGM MM RF WGM M}HEE).

3 Materials and Methods

The segmentation evaluation is performed on 200 mammograms each containing lesions taken from the Digital Database
of Screening Mammograms (DDSM). Each mammogram has been assigned to one of the BI-RADS mammographic
breast density groupings by an expert radiologist. There are fifty mammograms for each breast density grouping. We
have previously proposed a method to predict the mammographic breast density [3], but in this study the partitioning has
been performed manually on the basis of the DDSM ground-truth. Additionally, a further fifty normal mammograms are
selected for each breast type, although the performance of each strategy in their segmentation is not reported here, their
use being limited as training images only. Results for each segmentation strategy will be reported using ROC analysis,
quoting the mean Az value over all test images, within a given breast density grouping.

The grouping of mammograms by breast density type is only applicable to the supervised approaches. Supervised
approaches segmenting a mammogram with a specific breast density type, use a trained observed intensity model con-
structed with only training samples from that same breast type. Thus, each trained observed intensity model will be
specialised in the segmentation of a mammogram with a specific breast type.

As each breast type group comprises of 100 images (n=50 abnormal, n=50 normal), in order that an unbiased evalua-
tion can be presented, and such that all 50 abnormal image can be segmented, a 5-fold cross-validation strategy [1] is
adopted. Normal mammograms appear in training sets only and no abnormal image appears in a test and training set
simultaneously. For each of the five folds, equal numbers of normal and suspicious pixels are used to represent training
examples from each respective class. Evaluation of the performance on test of each strategy is determined using the
expert radiologist ground-truths, although an a posteriori probability estimate is only given for pixels lying within the
previously segmented breast profile generated using a technique proposed by Chandrasekhar and Attikiouzel [4]. By
doing this, the computational complexity of the test image segmentation is reduced.

A cross-validation approach is used to determine the optimal number of component Gaussians, m, for each class and for
each breast type. The determined value of m is then used for all training folds comprising each breast type. To determine
the optimal value of m, models with a different number of components are trained and evaluated with a WGM Mg
strategy, using an independent validation set. Model fitness is quantified by examining the log-likelihood resulting from
the validation set. Training files used are created by taking 200 samples randomly drawn with replacement from each
normal and abnormal image for each breast type. The data-set contains fifty training images per breast type, (n=25
abnormal, n=25 normal) giving a training set size of 10,000 samples per breast type. Repeating the procedure for the
fifty remaining separate validation images, results in a validation set of 10,000 samples per breast type. Figure 1 shows
the log-likelihood obtained by applying each trained model of order m, to the independent validation set for each class.
The selected model order is indicated by a circle for each breast type in each graph. Using the trained WGMM, each
test image is segmented according to each of the four different segmentation strategies WGM M S WGMM_MRFS,
WGMMY and WGMM_MRFVY.

4 Results

The performance of the segmentation strategies are evaluated on the basis of being able to differentiate abnormal pixels
from normal. A high performing segmentation strategy will be therefore judged as the one that has a high sensitivity
in the correct detection of abnormal pixels whilst minimising the number of false-alarms, i.e. normal pixels incorrectly
labelled as class abnormal. MAP segmentation is not performed but the a posteriori probability estimates for each pixel
in the test image are used to construct a ROC curve. By calculating the area under the curve, Az, as an indicator of the
quality of the segmentation [6], a mean Az value is quoted for each strategy over all 50 abnormal test images for each
yreast type. These results are presented in Table 1. An example of the resultant segmentation using each strategy is
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Table 1. Mean Az for each breast type and segmentation strategy, winning strategies shown in bold.

| Breast Type || WGMMs | WGMM¥EY | WGMMy | WGM MHEY |

1 0.68 0.70 0.66 0.59
2 0.66 0.66 0.66 0.60
3 0.72 0.80 0.75 0.75
4 0.66 0.76 0.68 0.74
| Mean || 068 | 0.73 | 068 | 0.67 |

shown in Figure 2.

Reviewing these results, it can be seen that the supervised strategy combining an observed and hidden MRF model out-
performs all others for each breast type. The performance of this method, WG M M é\/f RF can interestingly be observed
to be worse for the fatty breast types (types 1 and 2) compared with the denser types (types 3 and 4). This is in contrast
to the clinical observations that the former breast types are deemed easier to interpret by an expert radiologist. A simple
explanation for this phenomenon might be attributable to the model order selection where m=1 for the abnormal class
of the fatty breast types. A more sophisticated approach to determining model order might improve the segmentation
of these breast types, but this is outside the scope of this thesis. Without the hidden model the supervised strategy is
inferior to the corresponding unsupervised approach on the denser breasts. These results justify the utility of a super-
vised paradigm utilising a hidden model compared with other approaches in the segmentation of abnormal digitised
mammograms.

5 Conclusions

The motivation for the use of a statistical image model has been presented based on a Gaussian Mixture Model (GMM)
as an observed intensity model, and a Markov Random Field (MRF) as a hidden image model. By extending previously
proposed algorithms utilising the Expectation-Maximisation (EM) algorithm for parameter estimation, a novel imple-
mentation in the form of a Weighted Gaussian Mixture Model (WGMM) constrained with a Markov Random Field has
been evaluated. Four approaches to segmentation using the WGMM model have been evaluated on synthetic, composite
textured and mammographic images

By combining a hidden model of class labels using a MRF within the WGMM, the results presented give evidence that
a more robust segmentation is produced together with regions that are more homogeneous. The use of a supervised
learning paradigm in estimating the parameters of the observed model, circumvents initialisation problems occurring in
the unsupervised approach and that may lead to degraded segmentation performance.
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Figure 1. Selecting model order for grey-scale distribution (a) normal and (b) abnormal classes (mm=number of compo-
nents).

(a) (b)
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Figure 2. Examples of segmentation strategies on DDSM image R0147_R_MLO; (a) original, (b) ground_truth, (c)
WGM Mg, (d) WGMMMYEE () WGM My, (f) WGM MMEF,

(a) (b) (c)
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Abstract. To segment the prostate in Magnetic Resonance (MR) images is an important task whilst diagnosing,
staging and treatment of prostate cancer. Due to its anatomical location and its similarity to surrounding tissue,
the prostate is difficult to segment. Manually outlining the gland is time-consuming and tedious, so more effec-
tive methods, which should be (semi-)automatic, become essential. In this paper, we discuss two approaches
which are based on Active Shape Modelling (ASM) [1, 2] and a Polar Transform approach (PTA) [3]. Both
approaches are compared to manual segmentation.

1 Introduction

Prostate cancer is the second leading cause of death from cancer in men, exceeded only by lung cancer. Prostate
cancer accounts for 27% of all male cancers and 13% of male cancer related deaths [4]. In Western populations, the
incidence of the disease has increased significantly over the last 35 years, making its diagnosis and management a
major health issue. In the UK, 13,500 new cases are currently diagnosed annually [5].

Magnetic Resonance Imaging (MRI) is a very important modality for the diagnosis, staging and follow-up of
prostate diseases. The prostate is anatomically divided into peripheral, central and transitional zones. For a normal
prostate, there are increased signal intensity in the peripheral zone and decreased signal intensity in both central
and transitional zones on T2- weighted MR images. When diseases are developing in the prostate, the size and/or
the signal intensity of these zones will change, which makes it possible to make a diagnosis from image data.

In this paper, we concentrate on the automatic segmentation of the prostate in MR images. The shape and the
signal intensity of the prostate can vary both with time, as some diseases are developing, and between individuals.
Due to the variability, the interpretation of prostate disease from image data is difficult. A number of authors
have described possible approaches to medical image segmentation. Kass et al. [6] desakibsdhich em-

ploy a deformable contour to fit the shape of interest. Yezzi et al. [7] described a geometric snake model for
segmentation of medical imagery. Dryden and Mardia [8] described statistical models of shape. Ladak et al [9]
used model-based Discrete Dynamic Contour (DDC) for prostate segmentation from ultrasound images. Active
Shape Modelling (ASM) [1, 2] provides another approach to the segmentation of the prostate in MR images. A
parameterised shape model can represent shape variability in the training sets. With enough representative training
examples, such a model is able to represent any variations of the prostate. Moreover, when the best fitting in-
stance is generated, its parameters can be used for further processing, such as staging and classification of prostate
diseases.

2 Data

Our data set includes 24 male pelvis transverse MRI sequences, totalling 532 images. All images were obtained
on a 1.5 Tesla magnet (Sigma, GE Medical Systems, Milwaukee, USA) using a phased array pelvic coil, with
24 x 24cm field of view, 256 x 512 matrix, 3mm slice thickness and 0.5mm interslice gap. Different types of
prostate abnormalities are included. Fig. 1 shows two typical examples from the data set. In Fig. 1 on the left
there are minor benign hypertrophic changes in the central zone. The peripheral zone architecture is generally
preserved, with some patchy loss of the normal high T2 signal, in keeping with some malignant infiltration. There

is no extracapsular extension present. In Fig. 1 on the right there are marked benign hypertrophic changes within
the central zone, with resultant compression of the peripheral zone to a thin rim of tissue. However, the visible
peripheral zone does return reduced signal, suggesting that some tumour is present. Evidence of extracapsular
spread is present within the MRI volume (but not on this slice).

Allimages were manually annotated by an expert radiologist and shapes are represented by landmarks. A landmark
is defined as a point of correspondence on each object that matches between and within populations [8]. Thirty-
two landmarks are used to depict the outline of the gland. For training purpose, all the slices from three randomly

*email: yz@sys.uea.ac.uk
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Figure 1. Axial view prostate MRI examples.

selected volumes were chosen from the complete data set (only slices containing the prostate were used).The
remaining volumes form the test data.

3 Methods

3.1 Active Shape Models

Using a shape model, the shape variability in a training set can be represented. The images in the training set are
labelled so that the shape of each object of interest is marked with some key landmark points. The shapes from
the training examples are aligned in order to be able to compare equivalent points from different shapes. Tangent
space projection is used to reduce the dimensionality. Once a set of aligned shapes is available, we can generate a
statistical model of shape variation by applying Principal Component Analysis to the landmark vectors describing
the shapes in the training set [1]. With the deformable shape model we can generate a basic shape and fit it to the
object of interest in an unseen image. Image interpretation or segmentation is treated as an optimisation process
that examines a region around each landmark to find a better match for this landmark and calculate the adjustment
to the shape parameters to best fit the new found landmarks. In practise, to segment prostate MR images, the
prostate central zones on all the example images are manually outlined and 32 landmarks are used for each. Since
the central gland is nearly oval-shaped, we choose the four intersection points of the outline and the vertical and
horizontal axes through the centre of gravity as the key landmarks. On each of the four outline sections, seven
landmarks were redistributed evenly. Subsequently the ASM algorithm is applied to the annotated training images.

3.2 Polar Transform Approach

A second, semi-automatic, approach to segment the prostate in MR images, based on Polar Transform space has
been developed [3]. To segment the prostate, the gland and the surrounding tissue are extracted into a polar
transform using

x = x.+ rcos(f)

Yy =y + rsin(f) @

where(x, y) is a position in the original imagér, ) represents the polar transform space, @ndy.) represents

the centre with respect to which the polar transform is obtained. Bilinear interpolation is used to sample the original
data and the result is inversed so that a dark boundary in the original image is shown as a bright ridge in the polar
transform. Lindberg’s approach [10] was used to extract ridges in the polar transform. Since the centre of the polar
transform is within the prostate, it was assumed that the boundary of the prostate will appears as a band across all
the orientations in the polar transform. Curvilinear structures were tracked across the image to find the longest one
which should represent the prostate boundary. An inverse polar transform is used to project the tracked curvilinear
structure back onto the original prostate image.



4 Results

For comparison purposes, we have applied the ASM and PTA segmentation to the same data. Some initial results
are shown below. Fig. 2 demonstrates the ASM and PTA segmentation results for the slices shown in Fig. 1. In
both cases the ASM and PTA based segmentation results are similar and show a good correlation with the expert
annotations. However, in both cases it seems that the deviation from the annotated segmentation shows common
aspects for the (semi-)automatic segmentation approaches. It should be noted that the PTA based segmentation
shows more local detail, in line with the annotations, than the ASM based results. This can be explained by the
limited number of landmarks used in the ASM approach.
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Figure 2. Comparison between manual (dotted lines), active shape modelling (continuous lines) and polar trans-
form based (dashed lines) segmentation for the slices shown in Fig. 1, (wheleare pixel positions.

To quantify the comparison, we employ the measure of overlap [11]. The overlap mEaswy&en as

0 TP
TP+ FP+FN

)

whereT P stands for true positive (area correctly classified as prostatE)for false positive (area incorrectly
classified as prostate) adtdV for false negative (area incorrectly classified as non-prost&e}. 1 means that
the segmentation result of both have exactly the same result @hited means there is no intersection between
the segmented regions.

The overlap measure for all the slices from two volumes (slice number 13 of each volume can be found in Fig. 1)
are shown in Fig. 3. This shows the overlap measure for both ASM and PTA versus manual segmentation. In
addition, we have included the overlap results for the ASM versus the PTA based segmentation. It should be noted
that ASM results have only been included for those slices where the method converged.

These results indicate that the ASM approach, when it converges, tends to provide a better correlation with the
manual segmentation. For both (semi-)automatic segmentation approaches good results have been obtained for
most of the central prostate slices. However, a poorer performance is obtained for slices at the base or apex of the
prostate. For the PTA segmentation this is shown as a low overlap measure whilst for the ASM segmentation this
is represented as a hon-convergence and hence no overlap measure.

With reference to the ASM and PTA segmentation overlap measure, in most cases the PTA results show a closer
correlation with the ASM segmentation than with the manual segmentation results.

5 Conclusions and Discussions

Indicated by comparison with semi-automatic and manual segmentation results, the ASM approach produces
favourable segmentation results of the prostate. However, for some particular cases, in which the variation of
the gland is extremely large, this approach failed to converge. The failure might be caused by: 1) the insufficient
number of training examples, 2) the anatomical structure difference between individuals (this might be overcome
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Figure 3. The overlap, Eqg. 2, between the annotated and polar transform based segmentptammptated and
active shape modelling based segmentatioy) &énd active shape modelling and polar transform based segmenta-
tion (<).

by using additional surrounding anatomical information), or 3) when disease is developing within the gland, not
only the shape but also the intensity will change, e.g. a serious cancer in the peripheral zone will present low signal
intensity and makes it difficult to distinguish the peripheral and central zone, even for an expert radiologist (Active
Appearance Modelling [12] might provide a solution).

The PTA segmentation results are comparable to the ASM based results. The advantage of the PTA is its capability
to produce segmentation results at the base and apex of the prostate although these results show a poor correlation
with manual segmentation.

Moreover, both PTA and ASM tend to fail at the apex and base of the prostate where the prostate surface is far
from perpendicular to the slices. Thus 3D ASM will be a promising approach to extract the 3D boundary of the
prostate when sufficient training samples could be achieved.
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Abstract. Specificcoloursobsened in imagesof the ocular fundus dependon the architectureof its layers
and the optical propertiesand quantitiesof ary pigmens present. Thesecolourscan be predictedfrom the

parameterslescribingthe oculartissuecompgsition usinga physics-basg¢ modelof light transport.This paper
reportspreliminaryresultsof the applicationof the inverseprocessy which the parameterganbe estimated
from imagecolours. Thisis achiezed by relatingthe colour of eachimagepixel to the closestmatchingcolour

predictedby thelight transportmodel,andhenceto the parametersvhich generatedt. The spatialdistribution

andestimatedquantity of eachparameteis shavn in a separatémagecalled parametriomap. Thefirst para-
metric mapsof RetinalPigmentEpithelium(RPE)melanin,choroidalmelaninand choroidalblood computed
by this methodshow a distribution of pigmentswhich is generallyconsistenhwith physiolagy.

1 Introduction

The pupil of the eye providesan openirg through which theinterior of the eye (the ocularfundus)canbe exam-
ined. This is clearly usefulfor the diagrosis of eye disorders.However, the fundus is alsoa unigue locationat
whichbloodvesselanbedirectly obsened andthis makesit valuablefor the diagrosisof diseasesaffecting the
vascularsystem suchasdiabetesMany abnamal corditions aremanifestedhrowgh local changsin the fundus
colouation or throwgh the app@ranceof unusal colous. Thelong term objective of this work is to relatethe
colous seenin thefundusto its conditian andto ary patholaical changs.

The colour of the fundus deendson several factorsincludng the archite¢ure of its layersandthe natue and
densityof ary pigmeris presen{l1]. Quantitatve charactesationof thesefeatuesshouldbe possiblef a oneto-
onerelatiorshipexistsbetweerthesephysiologicd factors,andthespectraintensitydistribution (SID) of thelight
remittedfrom thetissue[2] under a givenincidert light. This appoachhasbeenshovn to work for the skin [3].
In thiswork, it is apgied to the ocularfundusto createparanetric mapsof thekey ocula pigmens. Although this
researctwork is at preliminary stage the early resultsfor the healthyfundus look promising It is hopel thatin
thelong termthe resultsof this researctwill be usedto helpwith the diagrosisof diabeticretinopahy, whichis
themostcommoncauseof blindnessin the UK’ s working popuation [4].

2 Outline of the method

The methodinvolves threemain steps. The first stepis to determire the compsition of the oculartissueand
specificallythe propertiesof its optically active compnents their spatialarrargemen andtheir physiologically
plausibleranges. This informationis usuallytaken from the previously publishedliterature. The next stepis to

predid the entire rangeof colourswhich canoccurin the healthytissueandto relatethemto tissueparaneters.
Thisyieldsamodelof tissuecolouationbasednamathenaticalmodelof the opticd radiation transpat. Finally,

thetissueparanetersfor a particularcaseareestimatedrom its colours.Thisis dore by relatingthe colou of each
pixel in a colou imageto the histologicalparametes usingthe mockl of colouration compued previously. The

distribution of eachparameteris showvn in aseparatenorochraneimagecalleda paranetric map.A collectionof

thesemapswasshaowvn to bevaluablein diagrosisof skindisordes [5].

3 Methods

3.1 Thestructure and optical properties of the ocular fundus

The human ocularfundus compisesa numter of optically andanatonically distinctlayersasshovn in Fig. 1.
Its colou is determine primarily by the bloodin the chordd andfurther significantly modfied by the amourts
of pigmert melaninin the RPEandin the Choroid The internalretinais transparenexceptfor a few vessels,
thusreflectinglittle light. Light is highly scatteredy the collagenin the choradal layer The colour of blood
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is deternined by the chramoplorespresentin it. The mostimportant is the haemotpbin which can exist in
oxygenatedand de-ocygeratedform [6]. The two forms have slightly different absorpion propertiesand for
moddling purposesare usuallycombned in the ratiosapgopriatefor a giventissue. Melaninis a dark browvn
pigmert thatis presennotonly in thefundus of the eye but alsoin the skin, in the hair andin theiris. Within the
fundusit canbefound in the RPEandin thechorad. In the RPEhighe concetrationsof melaninoccurin the
fovealregion, wherea in the chomwid thedistribution is normally fairly even Thelevelsof choradal melaninvary
with racialgroup andwith eye colour[7]. Macularpigments,includingXanthogyll [8], arelocalisedin thefoveal
region. They make asmallcontritutionto thecolou of thefundus[7]. Althoughthelensandtheintraocuar media
do not belongto the eye fundus, they affect the obsered fundus colouration. Lenseshecomeyellowish with age,
thusredicing theamoun of light remittedin the blueregion of the spectrum{9]. Theintraocula medialosesits
transpagng/ andmayincreasehescatterthusdecreasig thevisibility of fine detailin thefundus[7].

3.2 Mode of colouration for the fundus

Theforward Monte Carlo (MC) modelof fundus colowationusedin this work wasoriginally proposedandvali-

datedby PreeceandClaridge[10]. Its constriction requresinformationaboutthe structue andoptical properties
of thefundusanda modé of light transpot. Thefundus structureis shavn schematicallyn Fig. 1. This structure
is valid only for young Caucasiarsubjectsandfor the perifoveal areasof the fundus. Pigmens in eachlayerare
charactdared by an absorpion coeficient 1, (), a scatteringcoeficient 45 (\) andananisotroy factorg. The
absorpion coeficients for melaninandblood arewell studiedandwidely available (e.g.[10] [11]). The avail-

ability of scatteringcoeficient datais morelimited andhasbeentaken herefrom Hammeret al [12]. Giventhe

Incndent light Remitted Light

"/

Inner Liminting

Membrane
Neural Retina \ // / Receptor laye

RPE

Choroid
Posterior
Sclera fundus

Figure 1. A modelpathway of light remittedfrom the ocula fundus. Figurerepralucedfrom [10].

above information,a mathematicamodelof light transpot, hencecapableof solvingthe generaladiative transfer
equatiam (RTE), is requred to predct all the potentialspectraresultingfrom the differentcombnation of param-
etervalues.MC simulation[13] providesthe mostaccuratestochasticsolutionto RTE, andit hasbeenshavn to
geneatespectravhich agreewell with experimentalobsenrations[10]. This processcanbedendedby amappng
function from the paraméer space P, to the remittedspectraspace S. The paraneterspaceP mustbe suitably
discretised.

f:P—S 1)

Theimageacquisitionprocessis thensimulatedoy applying opticalfilter fundionsto the predcted spectra.This
canbedendedby afunction from thespectraspaceSto theimagespace), whosevaluesarecolour vectas, such
asfor example[R G B].

b:S—1 (2)

Figure 3.2 depids the two stagesof the forward modcelling processwhich gen@atesa colour vector for every
possiblecomhbnationof histologicd paraméers.In thisway a systematicgelationshipbetweerimagevaluesI and
paranetersP canbeestablishedThis relationslip is knowvn asthe mocel of colouration.

3.3 Inverson process

Theobjective of theanalysiscannow bere-statedsfollows. Givenacolou imagel andthemodelof colourtion
determire the paranetervalues P. Thecorrespnding mappng function is
d:T— P 3

Thisinversion prodem doesnot have to be solvedalgebraicly. Insteada discreteook-up tablecanbeused.For
thosecolourvectos for whichthelook-up tabledoesnot have directentries parametevaluescanbeinterpdated.
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Figure 2. ParameterSpaceo ImageSpace

4 An experiment

Thissectiondescribes preliminary expeimentcarriedoutto getaninitial indication of themethods perfamance.
An imageof ahealthyfunduswasscannedrom a35mmslide. Theimagewasuncalitratedandnothing wasknown
abou the phaograplic processeshathadproducedit. Thisrepesents majorproddem for the algoithm becase
the inversion process assumeshe calibrateddata. Calibrationis the subjectof further work. In an attemptto
redue the illumination depedence,the origind imagewas normalisedby the average local brightress,but in
future work the useof calibrateddatais ervisaged. Theimagewascropped to shaov only the part of the fundus
which receiedfairly uniform illumination. This includesthe fovealregion in which the mappng is expectedto
fail, sincethecurrert modé is only valid for the perifovealregion (theadditioral pigmers in thefovealregion are
notmocelledat preset). TheparaneterspaceP wasvety coarselydiscretisedo asetof 5 x 5 x 5 equdly spaced
valuesbetweerthe plausiblerangesof concefrationsof the histologicalcompneris shavn in Tablel.

LowerBound | UpperBound
RPEMelanin 4.0 7.5
Blood Haemodpbin 4.0 7.0
Choroidal Melanin 0.8 2

Table 1. Plausiblerangesof concetrationsof the histologicd compaents(mmol/l) [10].

Figure 3. Modelof colowation. Themainaxescorrespadto thestandad RGB opticalfilters applied whereaghe
sparsityof points revealthevirtual axesfor thethreeparaneterscorsidered Any pointin themodelof colouation
is linkedto a unique setof parametes, or concantrationsof the histologcal compmentsconsideed by themodel.

StandardRGB optical filters weremodelledas non-ovellapping Gaussiarfunctions with centralwavelengtts lo-
catedat 650 550 and 450 nm respectiely and full width at half maximum(FWHM) of 40 nm. A schematic
represetation of the modelof colouationis shavn in Figure3 asa cloud of pointsin the imagespacel. The
individual pointsarelocatedat the RGB coordnatescomputedby applyirg the opticalfilters definedabove to the
spectrgpredcted by the mocel. Eachpoirt in this spacehasanassociatedectorof parameteralues,indicating
the original setof concatrationsthathave yieldedthat point in theimagespace.It canbe seenfrom the figure
(Figure3) thatthe mocel of coloumationformsa volumewithin theimagespace.The sparsityof pointsshavn in
thefigure helpsoneto obsene the threevirtual axescorrespondimgy to quantitiesof the threehistologicd compo-
nents.Oncetherelationslip betweerestimatef the parametes from the imagedatahave beenestablishedthe
variationof eachparaneteracrosshe funduscanbe displayedin the form of a grey level image. Suchimageis
calleda paraméric mapandmay be computedvery simply. The RGB valuesof eachpixd in the fundusimage
provide the index to the modelof colouation. The parametes at this locationarelooked up in (or interpdated
from) themodel.A setof new grey levelimagess createdn whichthecolou of thepixel is substitutedy avalue
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represeting themagnitwle of thegiven paraneter

5 Resultsand discussion

Preliminaryresultsare shavn in Figure4. Although the mappng is very crude, the mapsexhibit a distribution
of pigmentswhich is geneally consistenwith physiology The RPE melaninlevelsincreae towardsthe foveal
region. In the centralfoveal areathe incorrectly low levels of melann aremostlikely causeddy the presene of
macularpigments which are not representedy the model. The levels of choradal melanindo not shov much
spatialvariation acressthe fundus, asexpeded. Blood levels areshovn in two maps,onefocusing on large and
mediumretinalvesselstheotheron blood level variatiors in the chomwid. It canbeseerthattheretinalvesselsare
pickedupwell. Whencortrastis stretchedsomevariatiansin thechorddal blood startshaving up, however, their
interpretationwould be prematue because¢helack of imagecalibraion certairly introducedlarge mappng erross.
Both mapsshawv high levelsof bloodin the centreof fovealregion, whichis incorrect. Thisis likely to have been
causedy themacuar pigments,similarly to the RPEmelaninmapdiscusse@bove.

s o

/ 3 "
LT

Figure 4. Fromleft to right: Original Image; RPEMelaninParametricViap; Choroidd Melanin Parrametrid\/lap;
Blood Paraméric Map (Main vessels)Blood Paraméric Map (Chowidal variatiors).

6 Conclusion

Thepreliminag resultsrepatedin this paperindicatethataphysics-basethterpretationof thecolousin theocular
fundusis feasible.Thefirst paranetric mapsof RPSmelanin,chorddal melaninandchoradal blood computedby
this metha geneally shaw thedistribution of the above pigmeris consistenwith physiology. Furtherwork is in
progessto include addition& ocularpigmentsin themodel,to calibrateor normalisetheinput imagedata,andto
increaseaheresolutionwith which the physiologicalparanetersarediscretised.
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Abstract. We have investigateda combinationof statisticalmodelling and expectationmaximisationfor a
texture basedapproachto the segmentationof mammographidmages. Texture modellingis basedon the
implicit incorporationof spatialinformationthroughtheintroductionof a set-permutation-occurrenoeatrix.
Statisticalmodelling is usedfor dimensionalityreduction,datageneralisatiorand noiseremoval purposes.
Expectatiormaximisatiormodellingof the resultingfeaturevectorprovidesthe basisfor imagesegmentation.
Thedevelopedsggmentatiorresultsareusedfor automatianammographicisk assessment.

1 Introduction

Textureis oneof the leastunderstoodareasin computervision andthis lack of understandings reflectedin the
ad-hocapproachesaken to datefor texture basedsegmentationtechniques.Although no generictexture model
hasemepgedsofar a numberof problemspecificapproachebave beendevelopedsuccessfully1]. Althoughthe
describedhpproachs developedwith oneparticularapplicationin mind, we do believe thatit is genericwithin the
field of medicalimageunderstanding.

Since Wolfe’s [2, 3] original investigationinto the correlationbetweenmammaographiaisk and the perceved
breastdensitya numberof automaticapproachesave beendeveloped[4-6]. Examplemammogramsireshavn

in Fig. 1. Someof thesemethodsare basedon grey-level distributions whilst othersincorporatesomeaspect
of spatialcorrelationor texture measure.While all thesemethodsachieze somecorrelationwith manualvisual

assessmeirinh generathey arenotasgoodasexpertintra-obsereragreementTheaccurateandrobustestimation
of mammographiaensitycan be usedfor risk modellingand possiblyto determinescreeningntervals within

breastscreeningprogrammes.

(b)

Figure 1. Fatty (a) anddensgb) mammographiimages.

It is our thesisthatthe relative size of sgmentedmageregions, representinglistinctanatomicatissueclasses,
is correlatedvith mammographicisk assessmenStatisticalmodellingin combinationwith expectatiormaximi-
sation(EM) [7] is usedfor the sggmentationof mammographiémages. To our knowledge,we introducea new
conceptthe set-permutation-occurrenoeatrix, asa texturefeaturevector Realistictexture modellingis possible
asspatialinformationis implicitly incorporatedTo achierze sggmentatiora numberof stepsarerequired:a)infor-
mationgatheringwhich transformshe original datain a multi-scalerepresentation) texture featureextraction
whichusegheset-permutation-occurrenogatrix concepto generate featurevectorata pixel level; c) statistical
modellingto provide a more compactandgeneralisedepresentationf the data;d) EM clusteringto divide the
datain anoptimalsetof classesande)imagesegmentatiorwhich usesheclassegor eachpixel. Therelative size
of thesggmentedmageregionsis used,n combinatiorwith a nearest-neighbouwlassifier to estimatethe density
for eachmammogram.

*email:rz@sys.uea.ac.uk
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2 Methods

In generalthe usageof the EM approacH7] for imagesegmentationis basedon the grey-level information at
a pixel level with no direct interactionbetweenadjacentpixels. However, it is well known that texture based
segmentationshouldincorporatespatialcorrelationinformation. This meansthat our modelling shouldnot be
basedn asinglegrey-level valuebut incorporatespatialinformationimplicitly.

Thefirst stepin obtainingthe texturefeatureds the generatiorof animage-stackvhichis a scale-spaceepresen-
tation. At the smallestscalethe original grey-level valuesare usedandto obtainthe larger scaleimageswe have
usedarecursve mediarfilter [8], denoted, anda circularstructuringelement,R (the diameterof the structuring
elementncreasesvith scales). Theresultingimage-stacks a setof images

U {1} = U {I®R,}, 1)

ocel oel

wherel is anorderedsetof scales.This effectively represents blurring of the original dataandat a particular
level in theimage-staclonly featuredargerthano canbefound. An alternatve representationf theimage-stack
is givenby

U {70} = U {I® R 1 —1I® Ro}; (2)

oel oel

whereTl is a setof scales. This representshe differencesbetweentwo scalesin I, andhencethe datain the
image-stachat a particularlevel will only containfeaturesata particularscalecs. It shouldbe madeclearthatthe
representatiogivenby Eq. 2 doesnotresultin agradientimage.

To capturethe texture informationover a setof scalesa featurevectorwill needto be extractedfrom theimage-
stack. Smallsizeaspectglik e noiseandsmall objects)arerepresentedt the top (leastamountof smoothing)of
theimage-stackOntheotherhand largesizeaspectglargeandbackgroundbjects)arerepresentedtthebottom
(aftersmoothingat theappropriatescale)of theimage-stack.

The developedmethodusesa modelthat canbe seenasa generalisatiorof normal co-occurrencenatrices[9].

Indeed,if we justlook atthe co-occurrencef grey-level valuestheinformationcanbe capturedn matrix format,
wheretherows andcolumnsrepresenthe grey-level valuesat two samplepoints. This processanincludea set
of pointsS,,. An exampleof thepointsusedis shovn in Fig. 2. In theexperimentsiescribedelor we have used

Sey = J{(@,y +2), (@ +e,9)} ©)

e€ED

whereD = {-32,-16,—-8,—-4,-2,0, 2,4, 8,16, 32}. In the casedescribecherewe generate¢he co-occurrence
betweenall the pointsin the setof samplepoints;i.e. a permutationof all pointsin the set. This is illustrated
in Fig. 3 for oneparticularpoint, but it shouldbe notedthatthe sameapproachs usedin a round-robinway or
in otherwordsthe pointsarefully connected Whenusing{I, } (a similar notationcanbe obtainedwhenusing
{I,}), thisrepresentationf thetextureinformationin theform of amatrixis givenby

V (z,y) = [ ’gj]z',jeNg )

and

"p;'f,j = #{(papl) € Szy X Sy | Ta(p) =1, Ta'(pl) = .7} (5)



where# denoteghe numberof elementdn asetand N, denoteghe setof grey-level values.It shouldbe noted
that this approachprovidesa differentdescriptionthanthat would be provided by usinga setof co-occurrence
matrices.

Figure 2. SamplepointsS,,. Figure 3. Samplepointsconnecivity.

Insteadof usingthe co-occurrenc®f the grey-level valuesit is possibleto usethe occurrenceof the grey-level
difference.Again, this is usingthe samesetof samplepoints S, (seeFigs 2 and3) at eachscale(i.e. levelin
theimage-stack)As we areusingthe occurrencef the grey-level differencevaluesour grey-level co-occurrence
matrix reducedo avector Effectively thisis analignmentof thecolumnsof the co-occurrencenatrix with respect
to thediagonal(i.e. wherethe differencein grey-level valuesis equalto zero)anda subsequersummatiorover
therows. Whenusingthe differenceimage-stackepresentatiofseeEq. 2) the featurevectorat a singlescaleis
givenby

& (2,9) = (670, ©)

whereN, is thesetof grey-levels,o agivenscaledy, is thesetof grey-level differencesand

07 = #{(0:7') € Suy X Say | Lo(p) — I, (p') = i} (@)

where,again,# denoteghe numberof elementsn aset.

Thetexturefeaturedescribedboveis extractedat a pixel level andcombiningthetexturefeaturesoverall possible
scalesresultsin a featurevector We have usedprincipal componentanalysis[10] to provide a more compact
representatioof thefeaturevector

3 Resaults

The EM approacli7] is usedto determinea setof classedrom the featurevectorswhich canbe usedto segment
theimages Althoughof interest,t is computationallympracticalto basehe EM modellingontheoriginaltexture

featurevectorasthis hasalargenumberof elementga high dimensionality)andtendsto be sparseAll theresults
presentedn this sectionarebasedon a PCA reducedeaturevectorwherewe typically capture95% of the data
variation (the dimensionalityof the datawas approximatelyreducedby a factorof ten). The EM andstatistical
modellingprocesgake only thebreastareainto accountwhilst excludingthe pectoraimuscleandthebackground.
For the EM approachthe numberof classesvassetequalto six [11].

To testour thesisthatthe relative sizeof the segmentedegionsis linkedto mammographicisk a small subsebf
the MammographidmagesAnalysis Society(MIAS) databasavasused[12,13]. All theimageswereassessed
by mammographiexpertswho provided an estimateof the proportion of densetissuein eachmammogram.
The sgmentatiorresults basedon EM andstatisticalmodellingusing{, } or {I, }, canalsobe usedto obtain
the relative size of the segmentedregionsfor eachclass. This featureis usedasour classificationspace. The
correlationbetweertherelative region sizedistribution andthe estimatedroportionof denseissue whenusinga
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nearesheighbourclassifieron a leave-one-oubasisfor {1, }, canbefoundin Tablel. This shavs anagreement
for 86% of themammograméthis decrease® 66%whenusing{I, }. Thiscomparesvell with aninter-obserer
agreemenbf 45%. Theintra-obserer agreemenbn the useddataseis 89%. In addition,whenusingthe same
datasetandclassificatiorapproachresultsbasedn the approachedevelopedby Byng [5] andKarssemeijef4]
shav anagreemenof 67%and81%,respectiely.

ExpertClassification
0-10% | 11-25% | 26-50% | 51-75%
oS 0-10% 6 0 0 0
g8 [ 11-25% 0 5 2 0
o2 [726-50% 2 1 8 0
<5 [B5175% | 0 0 0 12
Table 1. Comparisorof thedensityestimateasgivenby anexpertradiologistandautomaticsggmentation Based

on{l,}.
4 Conclusions

We have shovn thatacombinatiorof EM andstatisticaimodellingresultsin arobustapproacho thesggmentation
of mammographiémages. We have introduceda texture featurevectorbasedon a set-permutation-occurrence
matrixwhich capturedothspatialandlocal grey-levelinformation. Theuseof thistypeof matrixwill needfurther
developmento exploreits limitationsandfull potential.lt shouldbe notedthatsomefundamentatjuestionssuch
asthe influenceof the size and shapeof the distribution of samplepoints S,,, needfurther investigation. In
addition,thedevelopedtexture segmentatiorapproactwill befully evaluatedon syntheticandnaturaltextures.

We have shown that the sggmentationresultscan be usedto provide valuableinformationin the estimationof
mammographialensityand thereforpossiblyfor mammographigisk assessmentThe developedapproachis
comparabldo expertintra-obserer variation,shavs considerablémprovementon the inter-obsener agreement
andcomparegavourablewith existing techniques.
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ABSTRACT

We report a new method for recording multiple-exposure holograms in order to synthesize a monochromatic
3D image from a series of medical tomograms. The object was to produce high-resolution images with a
wide viewing angle and a high diffraction efficiency, which could be viewed unaided in white light. A spatial
light modulator is the key component of the holographic system, and this is used to display a sequence of
two-dimensional views that can be recorded sequentially on holographic plates.

1. Introduction

A number of researchers have attempted to produce volume multiplexed holograms from medical data with
varying degrees of success. Perhaps the best known of these are the researchers at Voxel, who developed their
method for producing high-resolution holograms and put it on the market by the end of 1994. The Voxel
holograms exhibit monochromatic images with 256 levels of grey scale, and over 200 slices combined in an
image. Although they are effectively synthetic holograms made up from a number of 2D images, all the basic
depth cues are available with the reconstruction of the third dimension, with the rear images being visible
through the images at the front.

Now, in Doncaster, we have developed a new setup for recording holograms that can be viewed directly in white
light, are easier to produce and can be viewed from different perspectives without distortion or ambiguity.

2. Method

This technique is designed to incorporate cross-sectional images of a three-dimensional object such as those
produced by computerised tomography (CT) and magnetic resonance (MR) scans. An expanded and collimated
laser beam is transmitted through the image of a tomographic slice displayed on a high-resolution, 1024*768
XGA LCD. The image is then projected on to the rear of a diffusing screen, thus representing the “object” in
traditional holography. Once the first slice has been exposed, the next slice can be displayed, the screen having
been repositioned at a new distance from the holographic plate incremented by the scan slice interval. Again an
exposure is made and the process continued until the entire subject volume is recorded as an integrated
holographic image. The images are stacked one on top of the other within the thick emulsion of the plate, and
this is essentially the same principle as that employed by Voxel.

2.1 Voxel’s Method

The optical setup used by Voxel involves splitting the beam into two separate paths, one to illuminate a spatial
light modulator, (SLM) and the other to act as a reference beam. In order to achieve this, Voxel have used a
voltage-adjustable wave plate under computer control, to split the beam and thus adjust the beam ratio [1]. This
allows them to both keep the beam ratio as low as possible and at the same time at a constant level for every slice
used. When using a high beam ratio, the holographic plate is repeatedly exposed to the plane wave from the
reference beam and this can limit the number of exposures possible before the emulsion becomes saturated.

This can make it necessary to increase the exposure time so that subsequent exposures receive more energy than
the first. This is to increase the number of multiple-exposures that can be superimposed, without the problem of
holographic reciprocity law failure, (HLRF). HRLF is the chronological decrease in diffraction efficiency when
multiple exposures are recorded with equal energy. A twofold decrease in diffraction efficiency has been
experimentally observed, [2], when six holograms were superimposed on the same holographic plate.
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The Voxel holograms are transmission holograms and as such cannot be viewed in white light without the aid of
a dispersion compensation unit. This idea was developed by Kaveh Bazargan, [3] and uses a compact light
source, diffraction grating, collimating element and direction selective filter to eliminate the chromatic
dispersion produced when viewing transmission holograms by white light.

Voxel use transmission holograms because the spatial frequency of the fringes recorded is lower than those
found in a reflection hologram, and this places less strain on the resolving power of the emulsion [4]. They also
suggest that the apparatus used for producing transmission holograms is less susceptible to vibration.

2.2 Plane and Volume Holograms

In order to explain the difference between our technique and the one used by Voxel it is first necessary to explain
the differences between a plane hologram and a volume hologram, Figl). As the angle between the object beam
and the reference beam changes, so does the spacing between the fringes in the emulsion. A plane or surface
hologram has the image only on the surface. This means that the fringes are almost perpendicular to the plane of
the emulsion.

If the angle is between 45° and 90° the fringe spacing becomes small enough for the recording process to be
taking place throughout the volume of thickness of the emulsion. As the emulsion becomes thicker and/or the
angle increases, the Bragg condition becomes more dominant and the fringe planes are more nearly parallel to
the emulsion surface. This type of hologram is called a volume hologram.

In a volume reflection hologram, the reference beam strikes the plate from the opposite side to the object beam.
A reflection hologram can be viewed very satisfactorily in white light. The distance between the fringes is a
function of the wavelength of the light used to produce the hologram and is constant. Only the wavelength of
light that matches the fringe spacing will be reflected towards the viewer.

OB RB<45°
PLANE TRANSMISSION HOLOGRAM

RB>45°
HOLOGRAPHIC PLATE — VOLUME TRANSMISSION HOLOGRAM

RB=180°

IN-LINE VOLUME REFLECTION HOLOGRAM

Figure 1)
2. Optical Set-up Used

Very few reflection holograms are made in-line or with 180° difference between the object and reference beams.
This is because in order to reconstruct and view the image, you have to look directly into the light source you are
using to playback the hologram. With a reflection type hologram you can get around this by using angle 10° less
than 180° in-line format.

It is this in-line format that we are using as part of our setup, with a reference beam created by light reflected
back from a mirror positioned just behind the holographic plate. Because a lens is used to collect and collimate
the light projected on to the diffusing screen, the image of the object reflected back towards the plate directly
coincides with the image of the object incident on the emulsion. Fig 2)
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3. Results

3.1 Advantages of the Set-up Used

Because the reflected image that acts as a reference beam is exactly the same size as the object image produced
for each two-dimensional slice, only that part of the emulsion that covered by that image is exposed for each of n
exposures. Also, the ratio of the object beam (OB) to the reference beam (RB) is constant for every slice and
should remain close to the ideal 1:1 ratio required for multiple-exposure holograms.

If you add to this the increased stability provided by using a single beam rather than a split beam set-up

and the white light viewing, then the advantages are very exciting, but the diffraction efficiency and sharpness of
the images produced using this technique have been inferior to those produced using the Voxel method.

3.2 The Spatial Light Modulator

Tests of the quality of our SLM have shown inherent problems with a device of this type. The pixels of an LCD
are constantly being refreshed and their effective optical distances may thereby fluctuate. The LCD modulates
by absorption of the rotated polarisation of light and LCDs typically waste up to 90% of the available laser light.
The LCDs structure has a number of surface interfaces, which back-reflect and absorb light. Also the fill factor
for a LCD is typically only 70%, [5].

The fill factor for our SLM is unknown. The measured transmittance as around 20% and it may be that our
spatial light modulator is inefficient and requires more laser power to overcome its deficiencies.

A small residual “twitching” of each pixel as the array is electrically scanned will reduce the diffraction
efficiency of a hologram created using an LCD due to degradation of laser beam coherence.

With our SLM there is a clear degradation in diffraction efficiency when comparing a hologram made with a
transparency with one made with the SLM using similar exposure and geometry.

The contrast ratio is given by the manufacturer as 150:1 and is low because the LCD’s black base line is not
completely opaque. At the black level the power density level measured was typically 0.21 uW.

3.3 Hologram Recording Materials

We have been able to make small format holograms with a degree of success, initially on Agfa 8E75HD film
emulsions that require an exposure of about 60 to 100 pJ.cm®. We have also used Birenheide BB-640, 2.5 inch
square glass plates, that require at least 3-4 times the exposure. These have a grain size that is a great deal
smaller than the Agfa film, which is 20 to 25 nm. The results have been promising. It is obviously easier using
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plates than film and the small plates can be illuminated with an adequate power density when using a 30mW
laser. Using a 30 mW He:Ne laser limits the amount of light available for making holograms. This situation
does not improve when using the SLM, as typically only 21% of available light is transmitted through the
display.

Unfortunately the Birenheide plates are no longer available from the original source and we have now switched
to 4 by 5 inch Slavich PFG-01 plates. Up to now we have not managed to use these successfully, due to the
longer exposure times required with our current laser. This is because the area of the projected laser image used
to fill the larger format plates has increased.

3.4 Pyrochrome Processing

High spatial frequencies are required with reflection holography and a typical resolution between 4000 and 6000
cycless/mm is required. By using Pyrochrome processing it is possible to produce bright, low noise high-
resolution reflection holograms without having to be over critical with respect to exposure and development
times [6]. It is also possible to control the colour of the final hologram by adding a controlled quantity of
sodium sulphite to the developer.

Discussion

We have developed a new method for making volume-multiplexed holograms and in the future we intend to
explore the following ideas:

e The effects of using a 50 mW diode laser (650nm) instead of a 35 mW He:Ne laser.
e  Making our own silver bromide holographic recording materials with different emulsion thicknesses.
e The use of image processing to produce high contrast images that are segmented and rendered.

e  Using area partitioning to display volume multiplexed holograms from different perspectives.
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Abstract:

A technique is described which enables quantitative histological data to be recovered from conventional
digital images. Methodology is developed around the concept of image ratios, which are shown to be
invariant to scene geometry and illumination intensity. Key to the success of this technique, is a function
which maps uniquely from a vector if image ratios to the corresponding vector of histological parameters.
The existence of this function is established using mathematical techniques drawn from differential geometry.
The methodology is formulated generally then applied to a two-parameter model of human skin. A function
relating image ratios to concentrations of melanin and blood is established and used to process a standard
RGB image. The technique successfully maps out the distribution of blood and melanin across the entire
image.

1 Method

As light optical radiation propagates through skin it is both scattered and absorbed. Scattering primarily occurs
from the underlying tissue structure whilst absorption tends to result from the tissue pigments. Healthy skin can
be considered the two-layered structure, depicted in figure 1. Incoming light first passes through the epidermis.

Incoming Remitted
light light
Epidermis
Dermis

Figure 1: Tissue structure of normal skin

No scattering occurs in this layer but the presence of the pigment melanin causes a fraction of the incoming light
to be absorbed. The light then passes into the dermis where it is scattered by the underlying collagen as well as
being absorbed by the pigment haemoglobin. It has been argued [1,2] that the Kubelka-Munk theory [3] is
sufficient to model radiation transport within skin. If scattering coefficients for collagen and specific absorption
coefficients for haemoglobin and melanin are known, then is it possible to apply the Kubelka-Munk theory at a
specific wavelength. This allows the corresponding fraction of remitted light to be predicted. By applying this
theory at discrete wavelengths, across an appropriate spectral range, a remittance spectrum can be constructed.

In healthy skin three parameters are required to describe all histological variation: concentration of epidermal
melanin, concentration of dermal blood and thickness of the dermal layer. It is convenient to think of the
variation in terms of a 3-D parameter space, with axes: melanin, blood and dermal thickness. As the three
parameters have differing effects on the remitted spectrum, every point within the parameter space corresponds
to a unique spectrum, which can be obtained by using the Kubelka-Munk model of light transport. By
convolving the spectrum with the spectral response curves of the image acquisition system, it is possible to
obtain RGB values that correspond to a given point within parameter space. By constructing a mapping, relating
RGB vectors to corresponding points in parameter space, it is possible to recover parameter values across a
given image. This information can then be displayed in the form of grey-scale image, or parametric map. This
fundamental principle has been used by Cotton and Claridge [4,5] to develop a system capable to analysing
pigmented lesions. This application uses a four-parameter model of human skin, the three parameters already
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described, with the addition of melanin in the dermal layer. This system has been developed into a commercially
available system by Aston Clinica and is proving to be of immense value to clinicians in their diagnosis of
melanoma. Although proving effective, the system requires exact calibration of the illuminating light source and
does not take into account any variation in surface geometry. This latter assumption can result in inaccuracies
when skin is imaged in the vicinity of a joint. In the following section a technique is described for recovering
histological parameters from image data in a way that is insensitive to scene geometry and illumination intensity.
This method is then applied to a two-parameter model of skin.

1.1 Achieving invariance to surface geometry and illumination intensity

The dichromatic reflection model, first proposed by Shafer [6], states that light remitted from an object is the
sum of two components, the ‘body’ component and the ‘surface’ component. The body component refers to
physical processes occurring after penetration of light into the material and the surface term to reflections that
take place at the surface of the object. By using a system of cross-polarised filters on the illuminating source and
the image acquisition system, it is possible to eliminate the surface component of reflection. This leaves only the
body term, which is the product of a geometric factor and a colour term. The technique described here is
applicable to problems, in which the spectral characteristics of the illuminating light source are known a priori.
For such a system the illuminating light may be written as

E(2) = )Ey(4)

where £, is a wavelength independent scaling factor determined by the intensity of the light source but which

does not change with wavelength. This allows the dichromatic reflection model to be written as
i"=¢ j E,(A)S(A)R"(A)dA

where & = §,K and K is the geometric factor in the body term of the dichromatic reflection model. The

function R"(A) defines the spectral response of the nth filter and S”(L) the remitted spectrum of the illuminated
tissue. If an image acquisition system measures an N+1 dimensional vector of image values, then a vector of
image quotients can be defined as

i, i i
r=(2b reR

where R denotes the N-dimensional space of image ratios. All components of this vector will be independent of
the constant & and thus independent of illumination intensity and any geometrical factors in the imaged scene.
The situation in which K histological parameters are required to describe all histological variation is considered
and an appropriate parameter vector defined as

p=<p19p2"">pl<> pEP

where P denotes the K-dimensional space of parameter variation. If a function exists which maps uniquely from
any vector of image ratios to the corresponding vector of scene parameters, then it is possible to recover
histological parameters from image data in a way that is insensitive to scene geometry and illuminating light.
This idea, of dividing two image values, has been used successfully by Healey [7] who was able to identify metal
and dielectric materials in a segmented image independently of scene geometry.

1.2 Establishing Uniqueness

Any function, which is to map from the space of image ratios to parameter space to must be 1-1. If this is not the
case, ambiguity will arise as it could be possible to recover more that one set of parameter values from a given
vector of image ratios. To establish this condition, it is first necessary to consider with the function f, which
maps from points in parameter space to points in the space of image ratios. This function is a vector valued
function of a vector variable and is defined as



r=f(p).

To implement this function, it is first necessary to compute the spectral reflectance of the material of interest for
the given set of parameter values, or point in parameter space. This is done using the Kubelka-munk model of
light transport with the appropriate parameter values. Using the computed spectral reflectance, along with the
spectral responses each of the filters R"(A) in the image acquistion system, a vector of image values can be
calculated. From this vector a corresponding vector of image ratios can then be computed. To establish whether
the function f'is 1-1, the determinant of the Jacobian matrix, defined as,

of, of, of, or, or, or,
op, Op, Opg op, Op, Opg
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must be analysed [8]. If the determinant is non-zero at a point in parameter space then there exists a
neighbourhood around this point where the function f can be approximated linearly. This means that any point
within this region will map under a 1-1 mapping to a unique point in the space of image ratios. By discretising
parameter space into suitably small intervals and establishing that the Jacobian is non-zero across the whole
space, it is possible to establish the 1-1 condition for all possible parameter values. This can be thought of as
analogous to the one-dimensional case where the absence of a zero derivative ensures no turning points and thus
a 1-1 condition over a defined functional range.

With this condition established a function, g, can be defined as

p=2g(r)

which relates the vector of image ratios to the corresponding vector of parameter values. This is best achieved
using some form of interpolation technique. This allows a piecewise continuous function to be constructed which
is valid across the whole of parameter space. Using this function, parameter values can then be obtained at every
pixel and corresponding parametric maps produced.

2 Results

Figure 2: (a) RGB facial image (b) parametric map of melanin (c) parametric map of blood

The technique was applied to facial images acquired using a standard RGB digital camera. As it is necessary to
measure the same number of image ratios as histological parameters, a two-parameter model of skin was used.

147



148

The dermal thickness was measured using the system developed by Astron Clinica [9] and assumed to be
constant across the face. This is thought to be a reasonable assumption as, although thickness varies between
individuals, it is fairly constant for a relatively small area of an individual.

Using the responses of the imaging acquisition system along with the spectral characteristics of the illuminating
light source, a 2-D vector of image ratios was computed for every point in a discretised parameter space. From a
consideration of the determinant of the Jacobian, uniqueness was established. Using this discrete data was
constructed using a triagle-based cubic interpolation method which was implemented in matlab. This function
was used to process the image shown in figure 2a to produce the parametric maps of melanin and blood. These
have been shown in figures 2b and 2c respectively.

The images show that the method is able to differentiate between melanin and blood born pigments. The melanin
image demonstrates how moles are detected, there being two under the left eye which do not show in the blood
parametric map. The images also demonstrate the uniform distribution of melanin across the face. This is in
contrast to the uneven distribution of blood, which tends to have locally increased concentrations, for example in
the lips and where spots are present.

3 Discussion

Preliminary results suggest that the technique described in this paper could enable parametric maps to be
produced independently of curvature in an imaged scene. With an invariance to illumination intensity, it will not
be necessary to accurately position the camera and illuminating light source before image acquisition. This will
allow much wider application of the system developed by Cotton and Claridge [4,5].

Work is now underway to increase the number of histological parameters in the model to allow analysis of more
complex skin lesions. This should enable the development of a system that can assist clinicians in the diagnosis
of non-melanoma skin cancer, such as basal cell carcinoma that tends to occur on the face. It will also allow for
the assessment of wounds where it is not possible to make contact with the imaged tissue, such as with diabetic
foot ulcers.

It is envisaged that this methodology will be applicable to imaging other tissues. Two potential applications have
so far been identified. These are imaging the ocular fundus [10,11] and the gastrointestinal tract. Success in both
these applications requires a system which is able to recover histological data in a way which is invariant to
surface geometry and illuminating light. Thus, the methodology presented in this article could prove key to their
success.
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Abstract. This paper describes a computer based system for the acquisition and analysis of images from
nailfold video microscopy. It uses video frame registration to facilitate integration of information over time,
averaging out noise and temporal variability in the appearance of the capillary loops. The system is now in
routine use and a clinical study has shown improved inter and intra observer reproducibility when compared
with results from a previous system based on single digitised VHS video frames.

1 Introduction

Primary Raynaud’s phenomenon [1] is a temporary interruption of the blood supply to the extremities triggered

by exposure to cold. It can usually be dealt with by protecting the affected areas with warm clothing and is not
thought to be linked to any underlying disease. However, a more severe version of Raynaud’s, sometimes leading
to amputation, can be associated with the connective tissue disease scleroderma [1]. Scleroderma is a progressive
disease and treating the reduction in peripheral circulation is a major concern of clinicians. To measure the progress
of the disease and assess the effectiveness of any potential treatment requires an objective quantification of the
condition of the circulation in the extremities. A widely used technique is to measure the size of the capillaries

at the base of the fingernail (nailfold) from images obtained via an optical microscope - as disease progresses the
long thin loops of the normal patient become thickened and distorted in shape.

Previous techniques have relied on measuring the capillary loop dimensions from single video frames - a major
drawback to this approach is that the loops can appear incomplete at any one instant since the capillary walls
themselves are transparent and there can be gaps in the flow of red blood cells. To overcome this limitation we
have developed a method in which several video frames from a sequence can be integrated into a single image,
averaging out temporal variability and allowing the user to build up a mosaic of the whole area under study in much
higher resolution than could be achieved by resorting to lower magnifications. Central to this is robust video frame
registration since there is some movement of the finger during image acquisition. Previously we have described
the registration process in detail [2], discussed its robustness and accuracy [3], and its extension to fluoroscopy [4].

Here we describe a data acquisition system based on this method integrated with a capillary loop measurement
interface. The performance of the whole system is assessed in a clinical study, and the results are compared with
those from a previous study using single video frames.

2 Data Acquisition System

2.1 Hardware

Figure 1 shows the experimental set-up now in use at Hope Hospital. The optical microscope was developed by
KK Technologie$ specifically for the examination of blood vessels in the skin and is essentially a CCD video
camera with X300 objective lens surrounded by a ring of green LEDs to provide high contrast illumination of the
blood vessels under the skin. The finger is lightly constrained on a platform at the base of the microscope, and the
position of the microscope is adjusted via three orthogonal micrometer screws. The output from the microscope’s
CCD camera is fed to a Snappér8deo digitiser board inside a standard PC.

2.2 Software

Video frame registration is based on a binary ‘skeletal’ representation of the images created using linear feature
detection, in which the majority of remaining white pixels represent the center-line of the capillaries. This ensures

*philip.allen@man.ac.uk.
Iwww.kktechnology.com 149
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Figure 1. Schematic diagram of the system e
hardware. Figure 2. Screen-shot of the data acquisition interface.

that the registration process is based on the capillaries and not influenced by noise artifacts whose motion do not
reflect that of the finger. Image combination is done by taking the mean value at each pixel position in the registered
scene, and subtracting one standard deviation as previous research showed this to give optimal signal to noise in
video sequences containing intermittent features [2].

Figure 2 shows the user interface of the data acquisition system. The bottom left window displays a live image
from the microscope with contrast and brightness controls available. The objective is to pan across the finger,
building up a composite image of the whole nailfold area and so to begin with the user moves the microscope
to one end of the distal row of capillary loops. Once optimum focus is achieved the user presses the ‘capture’
button - 16 video frames are then captured at a rate of 5Hz by the Snapper8 video digitiser board and stored on
the PC. These 16 video frames are then automatically registered to compensate for movements of the finger during
the capture period, and combined into a single image which is displayed in the window at the bottom right of the
interface.

The user then adjusts the microscope position so that the next area of interest is visible, maintaining an overlap
with the previous area. The capture button is pressed as before and a further 16 video frames are digitised, only
this time the resulting composite image is itself registered with the previous composite image and the resulting
panoramic composite is displayed in the window in the middle of the interface.

This process is repeated across the finger until the whole area of interest has been covered. If the patient has been
examined before, the previous panoramic mosaic can be displayed in the window at the top of the interface allowing
the user to ensure that the same region is captured on subsequent visits. This is very important in studies that
attempt to monitor the progress of disease over time as the condition of the capillaries, and hence their appearance,
can vary greatly across the nailfold of a single finger.

3 Measurement System
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e i Figure 4. Schematic diagram of a capil-
Figure 3. Screen-shot of the interface through which capillary lary loop showing the positions of the ves-
dimensions are measured. sel thickness measurements.

Figure 3 shows the interface created for manual loop measurement from data collected via the system described in
section 2. The full resolution panoramic mosaic is displayed in the window in the middle of the interface and an



enlarged view of a portion of this mosaic is displayed in the window on the bottom left of the interface. This is the
window in which the user makes the measurements and the region which it displays can be chosen by clicking on
the current mosaic window above.

Figure 4 shows the capillary dimensions measured in previous studies [5] and also adopted in this system. The user
selects the appropriate dimension from a set of radio buttons and then, using the mouse, clicks either side of the
capillary at the desired points - the left button beginning the measurement, and the right button closing it. A line

is drawn between the two points, using a different colour for each of the dimensions. To distinguish which side
of the loop is arterial and which is venous, the user must be able to see which way the blood was flowing through
the loop and so the original 16 frames that made up the scene containing that particular loop are played back in a
movie sequence in the window at the bottom right of the interface. This movie view is also zoomable since it is
necessary to be able to see the individual blood cells. If data from a previous visit is available it can be displayed
at the top of the interface with the previous measurements superimposed on the mosaic image, so that the same
capillaries can be measured at the same measurement points.

4 Clinical Study

To asses the above system as a practical clinical tool a study was carried out to quantify the inter and intra observer
reliability and explore any possible relationship between the size of the capillaries and disease group. A patient
group consisting of 48 healthy controls, 21 Primary Raynaud’s (PRP), 40 Limited scleroderma (LSSc - skin disease
restricted to extremities) and 11 Diffuse scleroderma (DSSc - skin disease affecting proximal limbs and/or trunk)
were examined using the method described above. An observer reproducibility study was performed on a sub-set
of the data containing 10 controls, 10 Primary Raynaud’s, and 10 SSc. For each patient, five capillary loops were
measured from the ring finger of the non dominant hand and the mean across the five loops was taken for each of
the four dimensions measured (figure 4).

For both inter and intra observer reliability, two studies were made - a ‘blind’ study in which the observer had

no access to the previous measurements so that neither the same capillaries nor the same measurement positions
could be guaranteed, and a second in which the obseowdd see the previous mosaic with the measurement

points visible.

These results were compared with those of a study by Bukhari et al [5] using a previous video capillaroscopy system
at Hope Hospital. In this system a video microscope was connected to a VHS video recorder and measurements
were made from single video frames digitised from the video tape. This did not allow any reference to previous
measurement positions to be made during the data acquisition or measurement phases. Bukhari’'s study was similar
in its patient group to ours but used the mean of all the visible capillaries in a 3mm length of the distal row, which
translates to roughly 15 loops for controls and about 10 for scleroderma.

For all inter/intra-observer studies the bias and limits of agreement [6] were calculated and all dimensions were
log transformed to achieve normality in both studies.

4.1 Observer Reproducibility
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Figure 5 shows the results of the inter observer study and figure 6 shows the results of the intra observer < 151
for both this and previous work. For our ‘non-blind’ intra observer test there was a relationship between obsel
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difference and measurement size for the Apex and Venous dimensions and so the figures shown represent an
upper limit on the limits of agreement. When no reference is made to the previous measurement, both this and
Bukhari's study show similarly poor reproducibility, whereas being able to refer to the previous measurements
greatly improves reproducibility.

4.2 Disease group separation

Figure 7 shows the mean and standard deviation of the loopof
apex width for the four disease groups included in this andsor
Bukhari’s study. Similar patterns are exhibited in the othegof
loop dimensions; a detailed analysis of this data along Wi'@so,

its clinical significance will be presented elsewhere. Suffic§

to say here that there is considerable overlap between the.| +

groups, but with an increasing trend in the means and cof- {' +

responding decrease in loop density with increasing severity +

of disease. In both studies comparing scleroderma patients —convas PRP Desc Tssc

with controls and PRP showed a statistically significant difsjgure 7. Mean and standard deviation of the

ference. Bukhari found a significant difference between LS@gex loop thickness for the four disease groups.

and DSSc but not between Controls and PRP, whereas 1@igrrent study - circles, Bukhari - squares.

study found the opposite. There appears to be a systematic

difference between the two sets of measurements across the disease groups, this may be due to a consistent subjec-
tive difference in deciding where the measurement points are placed with respect to the capillary edge, however,
this has no impact on observer reproducibility or disease group separability studies.

5 Conclusions

As expected, access to the previous measurement positions on subsequent examinations greatly improves repro-
ducibility as it allows the same capillaries and similar measurement points to be chosen. However, this also
suggests that measuring a sub-set of capillaries, five in our case and even fifteen in Bukhari’s, is not always
representative of the patient because of the high capillary loop variability that can occur within an individual, a
conclusion borne out by the relatively large limits of agreement exhibited in our ‘blind’ reproducibility tests. Thus,

the above method can improve the accuracy of studies into the progress of the disease over time, but will nhot nec-
essarily improve the sensitivity of studies into disease separability. The latter would presumably require a much
greater number of capillary loops to be measured and this will never be practical in a manual system. To address
this limitation we are currently investigating the possibility of automatic measurement of the capillary loops.
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A Novel Method for Simulating Soft Tissue Deformation

Mohamed A. ElHelw, Adrian Chung and Guang-Zhong Yang
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Abstract. This paper describes a novel method for simulating soft tissue deformation with image-based
rendering. It is based on the association of depth map with colour texture and the incorporation of micro-
surface details to generate photo-realistic images representing soft tissue deformations. In a pre-processing
step, the depth map describing the surface is separated into two distributions corresponding to macro- and
micro-surface details. During user interactive simulation, deformation resulting from tissue-instrument
interaction is rapidly calculated by modifying a coarse mass-spring model fitted to the macro-surface model.
Micro-surface details are subsequently augmented to the modified model with 3D image warping. The
proposed technique drastically reduces the polygonal count required to model the scene, whilst preserving
deformed small surface details and offering a high level of photorealism.

1 Introduction

Over the last ten years there has been a strong movement towards improved techniques of minimal access
surgery. Endoscopy, including bronchoscopy and laparoscopy is the most common procedure in minimal access
surgery, which is carried out through natural body openings or small artificial incisions. If handled properly,
endoscopes are completely harmless to patients. Diagnostic endoscopy can achieve its clinical goals with
minimal inconvenience to patients. Compared with conventional techniques, patient trauma and hospitalisation
can be greatly reduced and diagnostic accuracy and therapeutic success increased. However, the complexity of
instrument controls, restricted vision and mobility, difficult hand-eye co-ordination and the lack of tactile
perception require a high degree of manual dexterity of the operator. Consequently much attention has been paid
to new training methods for these skills. Computer simulation provides an attractive possibility for certain aspects
of this training, particularly for hand eye co-ordination. The benefits of endoscopic training through computer
simulation, rather than the traditionally performed one-to-one apprenticeship schemes, are now well accepted in
the medical community. It has been proven to be an economical and time saving solution for acquiring, as well as
assessing basic surgical skills.

Hitherto, a significant amount of research has been carried out in the area of minimal access surgical
simulators. One of the major challenges of these systems is the creation of photo-realistic rendering. Due to the
complexity of geometry used to represent internal body organs and the fact that they are all non-rigid, the realism
of deformations is one of the key issues of surgery simulation [6]. In this paper we present a novel technique for
soft tissue modelling which offers both visual realism and realistic interactive tissue deformations. This is
accomplished by combining the promise of photo-realism set by image-based rendering with the simplicity of
mass-spring tissue deformation modelling.

1.1 Image-Based Rendering

Image-based rendering (IBR) has established itself as a powerful alternative to conventional geometry-based
computer graphics. A set of images or depth-enhanced images is used to synthesise novel views of either
synthetic or real environments. The simplest form of IBR method is texture mapping [5], which was the first
technique to represent complex materials that are hard to model and render. A major limitation of texture
mapping is that texture mapped surfaces still appear as 2-D images painted onto flat polygons. They lack 3D
details and don’t exhibit appropriate parallax as the viewpoint changes. To address these problems, several
extensions have been proposed. Blinn [2] developed a bump mapping technique that enables the surface to
appear dimpled by applying perturbations to surface normals. The results, however, are not always convincing
especially when viewed from certain positions, as silhouette edges can appear to pass through depressions [13].
Other methods such as height fields and displacement maps have proven to be either difficult to calculate or
computationally prohibitive. Better illusion of depth can be achieved at interactive frame rates by using image-
based rendering methods, in which the colour texture image is associated with a depth map used in the image
generation process. This is referred to as Image-Based Rendering by Warping (IBRW) [12]. The depth map is
used with the texture image to model surface details. At run-time, the depth information at each image point is
projected onto the viewing manifold to achieve realistic rendering.

1.2 Soft Tissue Modelling
Deformable tissues can be geometrically represented as a set of surfaces or volumes. The choice of
representation is dependent on two factors: computational efficiency and physical accuracy [7]. Surface models
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are faster to render since the number of vertices used to represent the surfaces are fewer than those used in the
volumetric approach, though the deformations are less accurate.

Several methods for modelling soft tissue deformation exist. They can be divided into three main categories:
non-physical models, finite element models and mass-spring models. Non-physical models are parameter-based
representations that include splines, patches, and free-form deformations. The curve or surface is defined by
using a set of control points. Although these methods are sufficient for some simulations, they are not widely
used in medical simulations because of the difficulty in computing the parameters required to accurately deform
the model. Finite element models, on the other hand, provide accurate deformations. In these methods, the
deformable surface is described as a collection of basic elements such as triangles and quadrilaterals where shape
functions are defined [7]. This leads to the surface being treated as a continuum with deformation equations
derived from continuum mechanics [8]. Although much research has been carried out in using finite element
methods for real-time tissue deformations [3,4], their general application was limited by their extensive
computational requirements; especially when the surface exhibits large shape changes. Real-time tissue
deformations are typically achieved by using mass-spring models where the object is modelled as a collection of
masses connected by springs. Mass-spring models only represent an approximation to real-world physics;
however, they are characterized by their relative ease of implementation and well-understood dynamics [14]. In
the work presented here, we integrate 3D image warping with mass-spring tissue modelling to achieve realistic
simulations (real-time deformation and visual realism). Implementation details and issues related to 3D
perspective accuracy are discussed.

2 Method

The proposed method uses colour and depth information to simulate tissue deformation. While the colour
image captures the photometric properties of the surface, the depth image describes the orthogonal distance from
the modeled surface to each image point. Therefore, the depth image is considered as a modelling primitive that
implicitly describes detailed surface geometry. In a pre-processing step, filtering is used to separate the depth
image into macro- and micro-surface details. The micro-depth structures represent important surface details,
which are difficult to be modeled by soft-tissue deformation, whereas the macro-depth maps are those derived
from interactive tissue deformation. In this framework, a coarse mass-spring model can be fitted to the macro-
surface model, thus allowing rapid computation of interactive tissue deformation. The use of IBR allows the
augmentation of microscopic surface details, permitting a photorealistic representation of the soft tissue
undergoing free-form deformation. The process of simulating tissue deformatlon is 1llustrated in Figure 1.

b

Fig. 1. Deformation when the surface is pulled outwards, where (a) illustrates the mass-spring model used and (b) shows the
combined macro and micro depth structures. Images (c) and (d) are the distorted texture image and its 3D rendering
respectively.

(d)

2.1 Mass-spring-damper Model

Simulating tissue deformations using a mass-spring-damper model is a well-established technique. A mass is
assigned to each vertex in the geometric model describing the surface, then the vertices are connected using
springs and dampers. When a force acts on the surface, the movement of a single mass point is computed using
Newton’s Second law of motion. In a dynamic system, the motion of the point is given as

ma, =—pv, + Y X, +f, 0]
7

where a; is the resultant acceleration of point i with mass m; due to forces applied by neighbouring springs,
z . » and other external forces f,, such as user and gravity forces. The term —yy, is used to ensure system
lj 1 1

stability where (I, is a damping coefficient and v, is the speed of point i. As the system progresses through

time, the new point position is calculated by solving the differential equations. Since the described image-based
solution divorces deformation modelling from rendering, different deformable models can be used, such as finite
element methods with hierarchical mesh refinement, where more accurate deformations are required.



2.2 3D Image Warping

By using the plenoptic function approximation [1], which describes everything visible from a given point in
space, we define the mappings from one image to another as image warps [9]. 3D image warping is a geometric
operation where visible reference image points with depth are mapped onto a target image. Along with the
reference camera model, the depth values provide a representation of the structure of the scene. A 3D point X
seen through two different image planes as shown in Figure 2a, can be defined by using Equation 2.

X=C+tM3x =C,+t,M,Xx, 2) X, =6x)M, (C,—C,)+M," MX 3)

where, C'1 and C , are centres of projection of the reference and target cameras, M; and M, define the reference

and target camera models, x;=(u;,v;) and x, =(u,,v,) are reference and target camera image plane points and ¢;
and ¢, are reference and target camera constant scaling factors, all respectively. By expanding and rearranging
terms of Equation 2, the 3D image warping Equation 3 can be derived[9], where §(x,)is the depth at reference

image point x;. A new image can therefore be rendered from a nearby target viewpoint by projecting the
reference image pixels to their 3D positions and then re-projecting them onto the target image plane.
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Figure 2. (a) A 3D point X can be defined by using the camera centre-of projection C;, image plane point x; and
scalar value ¢ along the ray d; form C; through x; for both reference and target cameras, where i=1 and 2
respectively (b) If the reference and target camera image planes coincide, 3D image warping equation simplifies
to relief texture mapping equations.

Having the reference image represented with a parallel projection camera model and by making both reference
and target image planes coincide, as illustrated in Figure 2b, the warping equation simplifies to the relief texture
mapping equations [10],

(b xe yu + f (b X€ )displ(u,,v,) @ , b€ xayw, + [ (€ xa)displ(u,,v,) 5)
T e Gxb)+ £ (@ xb )displ(ug,v) P e(@ xb)+ f (@ xb )displ(u,,v,)

where @ and b are the reference camera image plane basis vectors in Euclidean space, € is the vector from
target viewpoint to the origin of the reference image plane, f is the vector perpendicular to the reference image
plane, disp(u,,v,) is the depth at reference image plane point (u,,v;), and (u,,v,) is the target image plane point.
Relief texturing is used in the presented image-based approach to render deformed surface. The relief texture
mapping process is carried out in two steps [11]: first, an intermediate image is generated by warping the source
image to a viewing plane that has exactly the same position, dimensions and orientation as the destination
polygon, then the intermediate image is texture mapped onto the destination polygon using texture mapping
hardware.

3 Results

To demonstrate the visual realism achieved by using the described technique, two deformable tissue simulation
experiments have been implemented. The first system employs conventional geometry-based tissue deformation
with a mass-spring model, while the second uses the described image-based soft method. Two views from both
systems are shown in Figure 3, from which it is evident that the proposed method provides enhanced visual
realism and improved image quality over conventional methods. It can be seen that when the tissue is deformed,
the 3D structure of micro-surface elements is still preserved resulting in rich surface details (Figures 3a and 3c).
Moreover, the texture pixelisation problem is minimised because the texture image is dynamically generated for
each frame. This becomes noticeable when the surface is viewed at sharp angles or from near viewpoints. The
accuracy of the proposed method is established through error analysis by comparing it to the conventional
polygon-based method.
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Incident Viewing Mean Projection Error in Pixels
Angle (degrees) Image-Based Method Polygon Method
11 10.140 10.104
14 10.013 11.548
19 8.5482 15.511
21 8.3895 15.317
23 8.2596 16.261

Table. 1. Error analysis for comparing relative performance of image-based and polygon-based methods at different angles

In table 1, error is defined as the screen-space distance in pixels between the projections of selected texels and
the projections of corresponding object-space points. The scale of pixels in the rendered images is illustrated in
Figure 3c. From Table 1 it can be seen that using the image-based method decreases the mean error. It is also
apparent that by increasing the viewing angle, the error for the polygon-based method increases which is not the
case for the new technique.

Fig. 3. Results from two deformable tissue simulations, where images (a) and (c) are obtained by using the proposed image-
based technique, and images (b) and (d) are generated by using the conventional polygonal method.

4 Discussion and Conclusions

In this paper we have introduced a new image-based tissue rendering technique. It is shown that the separation of
surface details into macro- and micro-structures allows for fast deformation calculations and photo-realistic
rendering. By comparing the quality of the rendering results, it is demonstrated that the described method offers
significantly improved visual realism over conventional polygonal methods. The wvalidity of the proposed
technique has been established by simulated tissue deformations and quantitative error analysis. A possible area
for future work is investigating the use of image-based lighting techniques to further improve the realism of the
rendered scene.
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Abstract. In the context of our research on Augmented Reality based surgical navigation for stereoscopic
microscope based ENT surgery, we aim to use autostereoscopic displays as a complementary visual aid. We
performed an experiment to evaluate the depth perception capabilities from four stereoscopic visual aids: the
surgical microsope, the SHARP twin LCD autostereoscopic display, the DTI Virtual Window 2015XLS flat
panel autostereoscopic display and the naked eye. Five expert and five non-expert subjects performed an unbi-
ased depth test to assess the autostereoscopic displays using the naked eye and microscope as the gold standard.
The SHARP display was considered to allow sufficient lateral and longitudinal freedom whilst providing ac-
curate stereo vision. The DTI display, though much lighter and easy to manipulate than the SHARP, did show
promising results, eventhough not all subjects were at ease with the overall display quality and corresponding
stereoscopic quality.

1 Introduction

There are three realistic and feasible solutions to augment images captured from a surgical microscope with vir-
tual images. The first approach is to inject the virtual images (after registration) in the microscope’s optics. This
approach was successfully implemented by Edwards et al [4]. An alternative solution is to use a head-mounted
display (HMD) based (lig