6,762 research outputs found

    Transient electrothermal simulation of power semiconductor devices

    Get PDF
    In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature

    Dynamic Thermal Analysis of a Power Amplifier

    Get PDF
    This paper presents dynamic thermal analyses of a power amplifier. All the investigations are based on the transient junction temperature measurements performed during the circuit cooling process. The presented results include the cooling curves, the structure functions, the thermal time constant distribution and the Nyquist plot of the thermal impedance. The experiments carried out demonstrated the influence of the contact resistance and the position of the entire cooling assembly on the obtained results.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Solcore: A multi-scale, python-based library for modelling solar cells and semiconductor materials

    Full text link
    Computational models can provide significant insight into the operation mechanisms and deficiencies of photovoltaic solar cells. Solcore is a modular set of computational tools, written in Python 3, for the design and simulation of photovoltaic solar cells. Calculations can be performed on ideal, thermodynamic limiting behaviour, through to fitting experimentally accessible parameters such as dark and light IV curves and luminescence. Uniquely, it combines a complete semiconductor solver capable of modelling the optical and electrical properties of a wide range of solar cells, from quantum well devices to multi-junction solar cells. The model is a multi-scale simulation accounting for nanoscale phenomena such as the quantum confinement effects of semiconductor nanostructures, to micron level propagation of light through to the overall performance of solar arrays, including the modelling of the spectral irradiance based on atmospheric conditions. In this article we summarize the capabilities in addition to providing the physical insight and mathematical formulation behind the software with the purpose of serving as both a research and teaching tool.Comment: 25 pages, 18 figures, Journal of Computational Electronics (2018

    The ReaxFF reactive force-field : development, applications and future directions

    Get PDF
    The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFF method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. This article provides an overview of the development, application, and future directions of the ReaxFF method

    Research at the Institute of electrotechnology in the field of induction heating

    Full text link
    The paper informs generally about the activities at the Institute of Electrotechnology in Hannover, Germany in the fields of education and research in Electrotechnology. Several actual research projects are described in detail in the field of induction heating. A second paper written by Baake and Spitans gives an overview about the activities at the institute in induction melting

    An experimental assessment of computational fluid dynamics predictive accuracy for electronic component operational temperature

    Get PDF
    Ever-rising Integrated Circuit (IC) power dissipation, combined with reducing product development cycles times, have placed increasing reliance on the use of Computational Fluid Dynamics (CFD) software for the thermal analysis of electronic equipment. In this study, predictive accuracy is assessed for board-mounted electronic component heat transfer using both a CFD code dedicated to the thermal analysis of electronics, Flotherm, and a general-purpose CFD code, Fluent. Using Flotherm, turbulent flow modelling approaches typically employed for the analysis of electronics cooling, namely algebraic mixing length and two-equation high-Reynolds number k-e models, are assessed. As shown, such models are not specific for the analysis of forced airflows over populated electronic boards, which are typically classified as low-Reynolds number flows. The potential for improved predictive accuracy is evaluated using candidate turbulent flow models more suited to such flows, namely a one-equation SpalartAllmaras model, two-layer zonal model and two equation SST k-co model, all implemented in Fluent. Numerical predictions are compared with experimental benchmark data for a range of componentboard topologies generating different airflow phenomena and varying degrees of component thermal interaction. Test case complexity is incremented in controlled steps, from single board-mounted components in free convection, to forced air-cooled, multi-component board configurations. Apart from the prediction of component operational temperature, the application of CFD analysis to the design of electronic component reliability screens and convective solder reflow temperature profiles is also investigated. Benchmark criteria are based on component junction temperature and component-board surface temperature profiles, measured using thermal test chips and infrared thermography respectively. This data is supplemented by experimental visualisations of the forced airflows over the boards, which are used to help assess predictive accuracy. Component numerical modelling is based on nominal package dimensions and material thermal properties. To eliminate potential numerical modelling uncertainties, both the test component geometry and structural integrity are assessed using destructive and non-destructive testing. While detailed component modelling provides the à priori junction temperature predictions, the capability of compact thermal models to predict multi-mode component heat transfer is also assessed. In free convection, component junction temperature predictions for an in-line array of fifteen boardmounted components are within ±5°C or 7% of measurement. Predictive accuracy decays up to ±20°C or 35% in forced airflows using the k-e flow model. Furthermore, neither the laminar or k-e turbulent flow model accurately resolve the complete flow fields over the boards, suggesting the need for a turbulence model capable of modelling transition. Using a k-co model, significant improvements in junction temperature prediction accuracy are obtained, which are associated with improved prediction of both board leading edge heat transfer and component thermal interaction. Whereas with the k-e flow model, prediction accuracy would only be sufficient for the early to intermediate phase of a thermal design process, the use of the k-co model would enable parametric analysis of product thermal performance to be undertaken with greater confidence. Such models would also permit the generation of more accurate temperature boundary conditions for use in Physics-of-Failure (PoF) based component reliability prediction methods. The case is therefore made for vendors of CFD codes dedicated to the thermal analysis of electronics to consider the adoption of eddy viscosity turbulence models more suited to the analysis of component heat transfer. While this study ultimately highlights that electronic component operational temperature needs to be experimentally measured to quality product thermal performance and reliability, the use of such flow models would help reduce the current dependency on experimental prototyping. This would not only enhance the potential of CFD as a design tool, but also its capability to provide detailed insight into complex multi-mode heat transfer, that would otherwise be difficult to characterise experimentally

    Evolution and Modern Approaches for Thermal Analysis of Electrical Machines

    Get PDF
    In this paper, the authors present an extended survey on the evolution and the modern approaches in the thermal analysis of electrical machines. The improvements and the new techniques proposed in the last decade are analyzed in depth and compared in order to highlight the qualities and defects of each. In particular, thermal analysis based on lumped-parameter thermal network, finite-element analysis, and computational fluid dynamics are considered in this paper. In addition, an overview of the problems linked to the thermal parameter determination and computation is proposed and discussed. Taking into account the aims of this paper, a detailed list of books and papers is reported in the references to help researchers interested in these topics

    Overview of Digital Design and Finite-Element Analysis in Modern Power Electronic Packaging

    Get PDF
    corecore