153,498 research outputs found

    Identification of weights in multi-cteria decision problems based on stochastic optimization

    Get PDF
    Many scientific papers are devoted to solving multi-criteria problems using methods that find discrete solutions. However, the main challenge addressed by our work is the case when new decision-making variants have emerged which have not been assessed. Unfortunately, discrete identification makes it impossible to determine the preferences for new alternatives if we do not know the whole set of parameters, such as criteria weights. This paper proposes a new approach to identifying a multi-criteria decision model to address this challenge. The novelty of this work is using a discretization in the space of the problem to identify a continuous decisional model. We present a hybrid approach where the new alternative can be assessed based on stochastic optimization and the TOPSIS technique. The stochastic methods are used to find criteria weights used in the TOPSIS method. In that way, we get assessed easily each new alternative based only on the initial set of evaluated alternatives

    Applied Intertemporal Optimization

    Get PDF
    This textbook provides all tools required to easily solve intertemporal optimization problems in economics, finance, business administration and related disciplines. The focus of this textbook is on 'learning through examples' and gives a very quick access to all methods required by an undergraduate student, a PhD student and an experienced researcher who wants to explore new fields or confirm existing knowledge. Given that discrete and continuous time problems are given equal attention, insights gained in one area can be used for learning solutions methods more quickly in other contexts. This step-by-step approach is especially useful for the transition from deterministic to stochastic worlds. When it comes to stochastic methods in continuous time, the applied focus of this book is the most useful. Formulating and solving problems under continuous time uncertainty has never been explained in such a non-technical and highly accessible way.Intertemporal optimization, maximization, discrete time, continuous time, certainty, uncertainty, inserting, Lagrange, Hamiltonian, Dynamic Programming, Bellman equation, Ito's Lemma, Brownian motion, Poisson process, natural volatility

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    An evolutionary algorithm for global optimization based on self-organizing maps

    Get PDF
    In this article, a new population-based algorithm for real-parameter global optimization is presented, which is denoted as self-organizing centroids optimization (SOC-opt). The proposed method uses a stochastic approach which is based on the sequential learning paradigm for self-organizing maps (SOMs). A modified version of the SOM is proposed where each cell contains an individual, which performs a search for a locally optimal solution and it is affected by the search for a global optimum. The movement of the individuals in the search space is based on a discrete-time dynamic filter, and various choices of this filter are possible to obtain different dynamics of the centroids. In this way, a general framework is defined where well-known algorithms represent a particular case. The proposed algorithm is validated through a set of problems, which include non-separable problems, and compared with state-of-the-art algorithms for global optimization

    Pattern Search Ranking and Selection Algorithms for Mixed-Variable Optimization of Stochastic Systems

    Get PDF
    A new class of algorithms is introduced and analyzed for bound and linearly constrained optimization problems with stochastic objective functions and a mixture of design variable types. The generalized pattern search (GPS) class of algorithms is extended to a new problem setting in which objective function evaluations require sampling from a model of a stochastic system. The approach combines GPS with ranking and selection (R&S) statistical procedures to select new iterates. The derivative-free algorithms require only black-box simulation responses and are applicable over domains with mixed variables (continuous, discrete numeric, and discrete categorical) to include bound and linear constraints on the continuous variables. A convergence analysis for the general class of algorithms establishes almost sure convergence of an iteration subsequence to stationary points appropriately defined in the mixed-variable domain. Additionally, specific algorithm instances are implemented that provide computational enhancements to the basic algorithm. Implementation alternatives include the use modern R&S procedures designed to provide efficient sampling strategies and the use of surrogate functions that augment the search by approximating the unknown objective function with nonparametric response surfaces. In a computational evaluation, six variants of the algorithm are tested along with four competing methods on 26 standardized test problems. The numerical results validate the use of advanced implementations as a means to improve algorithm performance

    Stochastic hybrid system : modelling and verification

    Get PDF
    Hybrid systems now form a classical computational paradigm unifying discrete and continuous system aspects. The modelling, analysis and verification of these systems are very difficult. One way to reduce the complexity of hybrid system models is to consider randomization. The need for stochastic models has actually multiple motivations. Usually, when building models complete information is not available and we have to consider stochastic versions. Moreover, non-determinism and uncertainty are inherent to complex systems. The stochastic approach can be thought of as a way of quantifying non-determinism (by assigning a probability to each possible execution branch) and managing uncertainty. This is built upon to the - now classical - approach in algorithmics that provides polynomial complexity algorithms via randomization. In this thesis we investigate the stochastic hybrid systems, focused on modelling and analysis. We propose a powerful unifying paradigm that combines analytical and formal methods. Its applications vary from air traffic control to communication networks and healthcare systems. The stochastic hybrid system paradigm has an explosive development. This is because of its very powerful expressivity and the great variety of possible applications. Each hybrid system model can be randomized in different ways, giving rise to many classes of stochastic hybrid systems. Moreover, randomization can change profoundly the mathematical properties of discrete and continuous aspects and also can influence their interaction. Beyond the profound foundational and semantics issues, there is the possibility to combine and cross-fertilize techniques from analytic mathematics (like optimization, control, adaptivity, stability, existence and uniqueness of trajectories, sensitivity analysis) and formal methods (like bisimulation, specification, reachability analysis, model checking). These constitute the major motivations of our research. We investigate new models of stochastic hybrid systems and their associated problems. The main difference from the existing approaches is that we do not follow one way (based only on continuous or discrete mathematics), but their cross-fertilization. For stochastic hybrid systems we introduce concepts that have been defined only for discrete transition systems. Then, techniques that have been used in discrete automata now come in a new analytical fashion. This is partly explained by the fact that popular verification methods (like theorem proving) can hardly work even on probabilistic extensions of discrete systems. When the continuous dimension is added, the idea to use continuous mathematics methods for verification purposes comes in a natural way. The concrete contribution of this thesis has four major milestones: 1. A new and a very general model for stochastic hybrid systems; 2. Stochastic reachability for stochastic hybrid systems is introduced together with an approximating method to compute reach set probabilities; 3. Bisimulation for stochastic hybrid systems is introduced and relationship with reachability analysis is investigated. 4. Considering the communication issue, we extend the modelling paradigm

    Approximation Algorithms for Distributionally Robust Stochastic Optimization

    Get PDF
    Two-stage stochastic optimization is a widely used framework for modeling uncertainty, where we have a probability distribution over possible realizations of the data, called scenarios, and decisions are taken in two stages: we take first-stage actions knowing only the underlying distribution and before a scenario is realized, and may take additional second-stage recourse actions after a scenario is realized. The goal is typically to minimize the total expected cost. A common criticism levied at this model is that the underlying probability distribution is itself often imprecise. To address this, an approach that is quite versatile and has gained popularity in the stochastic-optimization literature is the two-stage distributionally robust stochastic model: given a collection D of probability distributions, our goal now is to minimize the maximum expected total cost with respect to a distribution in D. There has been almost no prior work however on developing approximation algorithms for distributionally robust problems where the underlying scenario collection is discrete, as is the case with discrete-optimization problems. We provide frameworks for designing approximation algorithms in such settings when the collection D is a ball around a central distribution, defined relative to two notions of distance between probability distributions: Wasserstein metrics (which include the L_1 metric) and the L_infinity metric. Our frameworks yield efficient algorithms even in settings with an exponential number of scenarios, where the central distribution may only be accessed via a sampling oracle. For distributionally robust optimization under a Wasserstein ball, we first show that one can utilize the sample average approximation (SAA) method (solve the distributionally robust problem with an empirical estimate of the central distribution) to reduce the problem to the case where the central distribution has a polynomial-size support, and is represented explicitly. This follows because we argue that a distributionally robust problem can be reduced in a novel way to a standard two-stage stochastic problem with bounded inflation factor, which enables one to use the SAA machinery developed for two-stage stochastic problems. Complementing this, we show how to approximately solve a fractional relaxation of the SAA problem (i.e., the distributionally robust problem obtained by replacing the original central distribution with its empirical estimate). Unlike in two-stage {stochastic, robust} optimization with polynomially many scenarios, this turns out to be quite challenging. We utilize a variant of the ellipsoid method for convex optimization in conjunction with several new ideas to show that the SAA problem can be approximately solved provided that we have an (approximation) algorithm for a certain max-min problem that is akin to, and generalizes, the k-max-min problem (find the worst-case scenario consisting of at most k elements) encountered in two-stage robust optimization. We obtain such an algorithm for various discrete-optimization problems; by complementing this via rounding algorithms that provide local (i.e., per-scenario) approximation guarantees, we obtain the first approximation algorithms for the distributionally robust versions of a variety of discrete-optimization problems including set cover, vertex cover, edge cover, facility location, and Steiner tree, with guarantees that are, except for set cover, within O(1)-factors of the guarantees known for the deterministic version of the problem. For distributionally robust optimization under an L_infinity ball, we consider a fractional relaxation of the problem, and replace its objective function with a proxy function that is pointwise close to the true objective function (within a factor of 2). We then show that we can efficiently compute approximate subgradients of the proxy function, provided that we have an algorithm for the problem of computing the t worst scenarios under a given first-stage decision, given an integer t. We can then approximately minimize the proxy function via a variant of the ellipsoid method, and thus obtain an approximate solution for the fractional relaxation of the distributionally robust problem. Complementing this via rounding algorithms with local guarantees, we obtain approximation algorithms for distributionally robust versions of various covering problems, including set cover, vertex cover, edge cover, and facility location, with guarantees that are within O(1)-factors of the guarantees known for their deterministic versions
    corecore