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Overview

The basic structure of this book is simple to understand. It covers optimization
methods and applications in discrete time and in continuous time, both in worlds with
certainty and worlds with uncertainty.

discrete time continuous time
deterministic setup Part I Part II
stochastic setup Part III Part IV

Table 0.0.1 Basic structure of this book

Solution methods

Parts and chapters Substitution Lagrange

Ch. 1 Introduction

Part I Deterministic models in discrete time
Ch. 2 Two-period models and di¤erence equations 2.2.1 2.3
Ch. 3 Multi-period models 3.8.2 3.1.2, 3.7

Part II Deterministic models in continuous time
Ch. 4 Di¤erential equations
Ch. 5 Finite and in�nite horizon models 5.2.2, 5.6.1
Ch. 6 In�nite horizon models again

Part III Stochastic models in discrete time
Ch. 7 Stochastic di¤erence equations and moments
Ch. 8 Two-period models 8.1.4, 8.2
Ch. 9 Multi-period models 9.5 9.4

Part IV Stochastic models in continuous time
Ch. 10 Stochastic di¤erential equations,

rules for di¤erentials and moments
Ch. 11 In�nite horizon models

Ch. 12 Notation and variables, references and index

Table 0.0.2 Detailed structure of this book



3

Each of these four parts is divided into chapters. As a quick reference, the table below
provides an overview of where to �nd the four solution methods for maximization problems
used in this book. They are the �substitution method�, �Lagrange approach�, �optimal
control theory� and �dynamic programming�. Whenever we employ them, we refer to
them as �Solving by�and then either �substitution�, �the Lagrangian�, �optimal control�
or �dynamic programming�. As di¤erences and comparative advantages of methods can
most easily be understood when applied to the same problem, this table also shows the
most frequently used examples.
Be aware that these are not the only examples used in this book. Intertemporal pro�t

maximization of �rms, capital asset pricing, natural volatility, matching models of the
labour market, optimal R&D expenditure and many other applications can be found as
well. For a more detailed overview, see the index at the end of this book.

Applications (selection)
optimal Dynamic Utility Central General Budget
control programming maximization planner equilibrium constraints

2.1, 2.2 2.3.2 2.4 2.5.5
3.3 3.1, 3.4, 3.8 3.2.3, 3.7 3.6

4.4.2
5 5.1, 5.3, 5.6.1 5.6.3

6 6.1 6.4

8.1.4, 8.2 8.1
9.1, 9.2, 9.3 9.1, 9.4 9.2

10.3.2
11 11.1, 11.3 11.5.1

Table 0.0.2 Detailed structure of this book (continued)
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Chapter 1

Introduction

This book provides a toolbox for solving dynamic maximization problems and for working
with their solutions in economic models. Maximizing some objective function is central
to Economics, it can be understood as one of the de�ning axioms of Economics. When it
comes to dynamic maximization problems, they can be formulated in discrete or contin-
uous time, under certainty or uncertainty. Various maximization methods will be used,
ranging from the substitution method, via the Lagrangian and optimal control to dy-
namic programming using the Bellman equation. Dynamic programming will be used for
all environments, discrete, continuous, certain and uncertain, the Lagrangian for most of
them. The substitution method is also very useful in discrete time setups. The optimal
control theory, employing the Hamiltonian, is used only for deterministic continuous time
setups. An overview was given in �g. 0.0.2 on the previous pages.
The general philosophy behind the style of this book says that what matters is an

easy and fast derivation of results. This implies that a lot of emphasis will be put on
examples and applications of methods. While the idea behind the general methods is
sometimes illustrated, the focus is clearly on providing a solution method and examples
of applications quickly and easily with as little formal background as possible. This is
why the book is called applied intertemporal optimization.

� Contents of parts I to IV

This book consists of four parts. In this �rst part of the book, we will get to know
the simplest and therefore maybe the most useful structures to think about changes over
time, to think about dynamics. Part I deals with discrete time models under certainty.
The �rst chapter introduces the simplest possible intertemporal problem, a two-period
problem. It is solved in a general way and for many functional forms. The methods used
are the Lagrangian and simple substitution. Various concepts like the time preference
rate and the intertemporal elasticities of substitution are introduced here as well, as they
are widely used in the literature and are used frequently throughout this book. For those
who want to understand the background of the Lagrangian, a chapter is included that
shows the link between Lagrangians and solving by substitution. This will also give us the

1
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opportunity to explain the concept of shadow prices as they play an important role e.g.
when using Hamiltonians or dynamic programming. The two-period optimal consumption
setup will then be put into a decentralized general equilibrium setup. This allows us to
understand general equilibrium structures in general while, at the same time, we get to
know the standard overlapping generations (OLG) general equilibrium model. This is one
of the most widely used dynamic models in Economics. Chapter 2 concludes by reviewing
some aspects of di¤erence equations.
Chapter 3 then covers in�nite horizon models. We solve a typical maximization prob-

lem �rst by using the Lagrangian again and then by dynamic programming. As dynamic
programming regularly uses the envelope theorem, this theorem is �rst reviewed in a sim-
ple static setup. Examples for in�nite horizon problems, a general equilibrium analysis
of a decentralized economy, a typical central planner problem and an analysis of how to
treat family or population growth in optimization problems then complete this chapter.
To complete the range of maximization methods used in this book, the presentation of
these examples will also use the method of �solving by inserting�.
Part II covers continuous time models under certainty. Chapter 4 �rst looks at dif-

ferential equations as they are the basis of the description and solution of maximization
problems in continuous time. First, some useful de�nitions and theorems are provided.
Second, di¤erential equations and di¤erential equation systems are analyzed qualitatively
by the so-called �phase-diagram analysis�. This simple method is extremely useful for
understanding di¤erential equations per se and also for later purposes for understand-
ing qualitative properties of solutions to maximization problems and properties of whole
economies. Linear di¤erential equations and their economic applications are then �nally
analyzed before some words are spent on linear di¤erential equation systems.
Chapter 5 presents a new method for solving maximization problems - the Hamil-

tonian. As we are now in continuous time, two-period models do not exist. A distinction
will be drawn, however, between �nite and in�nite horizon models. In practice, this dis-
tinction is not very important as, as we will see, optimality conditions are very similar for
�nite and in�nite maximization problems. After an introductory example on maximiza-
tion in continuous time by using the Hamiltonian, the simple link between Hamiltonians
and the Lagrangian is shown.
The solution to maximization problems in continuous time will consist of one or several

di¤erential equations. As a unique solution to di¤erential equations requires boundary
conditions, we will show how boundary conditions are related to the type of maximization
problem analyzed. The boundary conditions di¤er signi�cantly between �nite and in�nite
horizon models. For the �nite horizon models, there are initial or terminal conditions.
For the in�nite horizon models, we will get to know the transversality condition and other
related conditions like the No-Ponzi-game condition. Many examples and a comparison
between the present-value and the current-value Hamiltonian conclude this chapter.
Chapter 6 solves the same kind of problems as chapter 5, but it uses the method

of �dynamic programming�. The reason for doing this is to simplify understanding of
dynamic programming in stochastic setups in Part IV. Various aspects speci�c to the use
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of dynamic programming in continuous time, e.g. the structure of the Bellman equation,
can already be treated here under certainty. This chapter will also provide a comparison
between the Hamiltonian and dynamic programming and look at a maximization problem
with two state variables. An example from monetary economics on real and nominal
interest rates concludes the chapter.
In part III, the world becomes stochastic. Parts I and II provided many optimization

methods for deterministic setups, both in discrete and continuous time. All economic
questions that were analyzed were viewed as �su¢ ciently deterministic�. If there was
any uncertainty in the setup of the problem, we simply ignored it or argued that it is of
no importance for understanding the basic properties and relationships of the economic
question. This is a good approach to many economic questions.
Generally speaking, however, real life has few certain components. Death is certain,

but when? Taxes are certain, but how high are they? We know that we all exist - but
don�t ask philosophers. Part III (and part IV later) will take uncertainty in life seriously
and incorporate it explicitly in the analysis of economic problems. We follow the same
distinction as in part I and II - we �rst analyse the e¤ects of uncertainty on economic
behaviour in discrete time setups in part III and then move to continuous time setups in
part IV.
Chapter 7 and 8 are an extended version of chapter 2. As we are in a stochastic world,

however, chapter 7 will �rst spend some time reviewing some basics of random variables,
their moments and distributions. Chapter 7 also looks at di¤erence equations. As they
are now stochastic, they allow us to understand how distributions change over time and
how a distribution converges - in the example we look at - to a limiting distribution.
The limiting distribution is the stochastic equivalent to a �x point or steady state in
deterministic setups.
Chapter 8 looks at maximization problems in this stochastic framework and focuses on

the simplest case of two-period models. A general equilibrium analysis with an overlapping
generations setup will allow us to look at the new aspects introduced by uncertainty
for an intertemporal consumption and saving problem. We will also see how one can
easily understand dynamic behaviour of various variables and derive properties of long-
run distributions in general equilibrium by graphical analysis. One can for example easily
obtain the range of the long-run distribution for capital, output and consumption. This
increases intuitive understanding of the processes at hand tremendously and helps a lot as
a guide to numerical analysis. Further examples include borrowing and lending between
risk-averse and risk-neutral households, the pricing of assets in a stochastic world and a
�rst look at �natural volatility�, a view of business cycles which stresses the link between
jointly endogenously determined short-run �uctuations and long-run growth.
Chapter 9 is then similar to chapter 3 and looks at multi-period, i.e. in�nite horizon,

problems. As in each chapter, we start with the classic intertemporal utility maximization
problem. We then move on to various important applications. The �rst is a central planner
stochastic growth model, the second is capital asset pricing in general equilibrium and how
it relates to utility maximization. We continue with endogenous labour supply and the
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matching model of unemployment. The next section then covers how many maximization
problems can be solved without using dynamic programming or the Lagrangian. In fact,
many problems can be solved simply by inserting, despite uncertainty. This will be
illustrated with many further applications. A �nal section on �nite horizons concludes.
Part IV is the �nal part of this book and, logically, analyzes continuous time models

under uncertainty. The choice between working in discrete or continuous time is partly
driven by previous choices: If the literature is mainly in discrete time, students will �nd
it helpful to work in discrete time as well. The use of discrete time methods seem to hold
for macroeconomics, at least when it comes to the analysis of business cycles. On the
other hand, when we talk about economic growth, labour market analyses and �nance,
continuous time methods are very prominent.
Whatever the tradition in the literature, continuous time models have the huge ad-

vantage that they are analytically generally more tractable, once some initial investment
into new methods has been digested. As an example, some papers in the literature have
shown that continuous time models with uncertainty can be analyzed in simple phase
diagrams as in deterministic continuous time setups. See ch. 10.6 and ch. 11.6 on further
reading for references from many �elds.
To facilitate access to the magical world of continuous time uncertainty, part IV

presents the tools required to work with uncertainty in continuous time models. It is
probably the most innovative part of this book as many results from recent research �ow
directly into it. This part also most strongly incorporates the central philosophy behind
writing this book: There will be hardly any discussion of formal mathematical aspects like
probability spaces, measurability and the like. While some will argue that one can not
work with continuous time uncertainty without having studied mathematics, this chapter
and the many applications in the literature prove the opposite. The objective here is to
clearly make the tools for continuous time uncertainty available in a language that is ac-
cessible for anyone with an interest in these tools and some �feeling�for dynamic models
and random variables. The chapters on further reading will provide links to the more
mathematical literature. Maybe this is also a good point for the author of this book to
thank all the mathematicians who helped him gain access to this magical world. I hope
they will forgive me for �betraying their secrets�to those who, maybe in their view, were
not appropriately initiated.
Chapter 10 provides the background for optimization problems. As in part II where

we �rst looked at di¤erential equations before working with Hamiltonians, here we will
�rst look at stochastic di¤erential equations. After some basics, the most interesting
aspect of working with uncertainty in continuous time follows: Ito�s lemma and, more
generally, change-of-variable formulas for computing di¤erentials will be presented. As
an application of Ito�s lemma, we will get to know one of the most famous results in
Economics - the Black-Scholes formula. This chapter also presents methods for how to
solve stochastic di¤erential equations or how to verify solutions and compute moments of
random variables described by a stochastic process.
Chapter 11 then looks once more at maximization problems. We will get to know
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the classic intertemporal utility maximization problem both for Poisson uncertainty and
for Brownian motion. The chapter also shows the link between Poisson processes and
matching models of the labour market. This is very useful for working with extensions
of the simple matching model that allows for savings. Capital asset pricing and natural
volatility conclude the chapter.

� From simple to complex setups

Given that certain maximization problems are solved many times - e.g. utility max-
imization of a household �rst under certainty in discrete and continuous time and then
under uncertainty in discrete and continuous time - and using many methods, the �steps
how to compute solutions� can be easily understood: First, the discrete deterministic
two-period approach provides the basic intuition or feeling for a solution. Next, in�nite
horizon problems add one dimension of complexity by �taking away�the simple bound-
ary condition of �nite horizon models. In a third step, uncertainty adds expectations
operators and so on. By gradually working through increasing steps of sophistication and
by linking back to simple but structurally identical examples, intuition for the complex
setups is built up as much as possible. This approach then allows us to �nally understand
the beauty of e.g. Keynes-Ramsey rules in continuous time under Poisson uncertainty or
Brownian motion.

� Even more motivation for this book

Why teach a course based on this book? Is it not boring to go through all these
methods? In a way, the answer is yes. We all want to understand certain empirical
regularities or understand potential fundamental relationships and make exciting new
empirically testable predictions. In doing so, we also all need to understand existing work
and eventually present our own ideas. It is probably much more boring to be hindered
in understanding existing work and be almost certainly excluded from presenting our
own ideas if we always spend a long time trying to understand how certain results were
derived. How did this author get from equation (1) and (2) to equation (3)? The major
advantage of economic analysis over other social sciences is its strong foundation in formal
models. These models allow us to discuss questions much more precisely as expressions
like �marginal utility�, �time preference rate� or �Keynes-Ramsey rule� reveal a lot of
information in a very short time. It is therefore extremely useful to �rst spend some time
in getting to know these methods and then to try to do what Economics is really about:
understand the real world.
But, before we really start, there is also a second reason - at least for some economists

- to go through all these methods: They contain a certain type of truth. A proof is
true or false. The derivation of some optimal behaviour is true or false. A prediction of
general equilibrium behaviour of an economy is truth. Unfortunately, it is only truth in
an analytical sense, but this is at least some type of truth. Better than none.
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� The audience for this book

Before this book came out, it had been tested for at least ten years in many courses.
There are two typical courses which were based on this book. A third year Bachelor
course (for ambitious students) can be based on parts I and II, i.e. on maximization and
applications in discrete and continuous time under certainty. Such a course typically took
14 lectures of 90 minutes each plus the same number of tutorials. It is also possible to
present the material also in 14 lectures of 90 minutes each plus only 7 tutorials. Presenting
the material without tutorials requires a lot of energy from the students to go through the
problem sets on their own. One can, however, discuss some selected problem sets during
lectures.
The other typical course which was based on this book is a �rst-year PhD course. It

would review a few chapters of part I and part II (especially the chapters on dynamic
programming) and cover in full the stochastic material of part III and part IV. It also
requires fourteen 90 minute sessions and exercise classes help even more, given the more
complex material. But the same type of arrangements as discussed for the Bachelor course
did work as well.
Of course, any other combination is feasible. From my own experience, teaching part

I and II in a third year Bachelor course allows teaching of part III and IV at the Master
level. Of course, Master courses can be based on any parts of this book, �rst-year PhD
courses can start with part I and II and second-year �eld courses can use material of part
III or IV. This all depends on the ambition of the programme, the intention of the lecturer
and the needs of the students.
Apart from being used in classroom, many PhD students and advanced Bachelor or

Master students have used various parts of previous versions of this text for studying on
their own. Given the detailed step-by-step approach to problems, it turned out that it
was very useful for understanding the basic structure of, say, a maximization problem.
Once this basic structure was understood, many extensions to more complex problems
were obtained - some of which then even found their way into this book.
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This book consists of four parts. In this �rst part of the book, we will get to know
the simplest and therefore maybe the most useful structures to think about changes over
time, to think about dynamics. Part I deals with discrete time models under certainty.
The �rst chapter introduces the simplest possible intertemporal problem, a two-period
problem. It is solved in a general way and for many functional forms. The methods used
are the Lagrangian and simple substitution. Various concepts like the time preference
rate and the intertemporal elasticities of substitution are introduced here as well, as they
are widely used in the literature and are used frequently throughout this book. For those
who want to understand the background of the Lagrangian, a chapter is included that
shows the link between Lagrangians and solving by substitution. This will also give us the
opportunity to explain the concept of shadow prices as they play an important role e.g.
when using Hamiltonians or dynamic programming. The two-period optimal consumption
setup will then be put into a decentralized general equilibrium setup. This allows us to
understand general equilibrium structures in general while, at the same time, we get to
know the standard overlapping generations (OLG) general equilibrium model. This is one
of the most widely used dynamic models in Economics. Chapter 2 concludes by reviewing
some aspects of di¤erence equations.
Chapter 3 then covers in�nite horizon models. We solve a typical maximization prob-

lem �rst by using the Lagrangian again and then by dynamic programming. As dynamic
programming regularly uses the envelope theorem, this theorem is �rst reviewed in a sim-
ple static setup. Examples for in�nite horizon problems, a general equilibrium analysis
of a decentralized economy, a typical central planner problem and an analysis of how to
treat family or population growth in optimization problems then complete this chapter.
To complete the range of maximization methods used in this book, the presentation of
these examples will also use the method of �solving by inserting�.
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Chapter 2

Two-period models and di¤erence
equations

Given that the idea of this book is to start from simple structures and extend them to
the more complex ones, this chapter starts with the simplest intertemporal problem, a
two-period decision framework. This simple setup already allows us to illustrate the basic
dynamic trade-o¤s. Aggregating over individual behaviour, assuming an overlapping-
generations (OLG) structure, and putting individuals in general equilibrium provides an
understanding of the issues involved in these steps and in identical steps in more general
settings. Some revision of properties of di¤erence equations concludes this chapter.

2.1 Intertemporal utility maximization

2.1.1 The setup

Let there be an individual living for two periods, in the �rst she is young, in the second
she is old. Let her utility function be given by

Ut = U
�
cyt ; c

o
t+1

�
� U (ct; ct+1) ; (2.1.1)

where consumption when young and old are denoted by cyt and c
o
t+1 or ct and ct+1; respec-

tively, when no ambiguity arises. The individual earns labour income wt in both periods.
It could also be assumed that she earns labour income only in the �rst period (e.g. when
retiring in the second) or only in the second period (e.g. when going to school in the �rst).
Here, with st denoting savings, her budget constraint in the �rst period is

ct + st = wt (2.1.2)

and in the second it reads
ct+1 = wt+1 + (1 + rt+1) st: (2.1.3)

11
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Interest paid on savings in the second period are given by rt+1: All quantities are expressed
in units of the consumption good (i.e. the price of the consumption good is set equal to
one. See ch. 2.2.2 for an extension where the price of the consumption good is pt:).
This budget constraint says something about the assumptions made on the timing of

wage payments and savings. What an individual can spend in period two is principal and
interest on her savings st of the �rst period. There are no interest payments in period one.
This means that wages are paid and consumption takes place at the end of period 1 and
savings are used for some productive purposes (e.g. �rms use it in the form of capital for
production) in period 2. Therefore, returns rt+1 are determined by economic conditions
in period 2 and have the index t+ 1: Timing is illustrated in the following �gure.

st = wt � ct
wt ct

t

(1 + rt+1)st

ct+1wt+1

t+ 1

Figure 2.1.1 Timing in two-period models

These two budget constraints can be merged into one intertemporal budget constraint
by substituting out savings,

wt + (1 + rt+1)
�1wt+1 = ct + (1 + rt+1)

�1 ct+1: (2.1.4)

It should be noted that by not restricting savings to be non-negative in (2.1.2) or by equat-
ing the present value of income on the left-hand side with the present value of consumption
on the right-hand side in (2.1.4), we assume perfect capital markets: individuals can save
and borrow any amount they desire. Equation (2.2.14) provides a condition under which
individuals save.
Adding the behavioural assumption that individuals maximize utility, the economic

behaviour of an individual is described completely and one can derive her consumption
and saving decisions. The problem can be solved by a Lagrange approach or simply by
substitution. The latter will be done in ch. 2.2.1 and 3.8.2 in deterministic setups or
extensively in ch. 8.1.4 for a stochastic framework. Substitution transforms an optimiza-
tion problem with a constraint into an unconstrained problem. We will use a Lagrange
approach now.
The maximization problem reads maxct; ct+1(2.1.1) subject to the intertemporal budget

constraint (2.1.4). The household�s control variables are ct and ct+1: As they need to be
chosen so that they satisfy the budget constraint, they can not be chosen independently
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of each other. Wages and interest rates are exogenously given to the household. When
choosing consumption levels, the reaction of these quantities to the decision of our house-
hold is assumed to be zero - simply because the household is too small to have an e¤ect
on economy-wide variables.

2.1.2 Solving by the Lagrangian

We will solve this maximization problem by using the Lagrange function. This function
will now be presented simply and its structure will be explained in a �recipe sense�, which
is the most useful one for those interested in quick applications. For those interested in
more background, ch. 2.3 will show the formal principles behind the Lagrangian. The
Lagrangian for our problem reads

L = U (ct; ct+1) + �
�
wt + (1 + rt+1)

�1wt+1 � ct � (1 + rt+1)�1 ct+1
�
, (2.1.5)

where � is a parameter called the Lagrange multiplier. The Lagrangian always consists of
two parts. The �rst part is the objective function, the second part is the product of the
Lagrange multiplier and the constraint, expressed as the di¤erence between the right-hand
side and the left-hand side of (2.1.4). Technically speaking, it makes no di¤erence whether
one subtracts the left-hand side from the right-hand side as here or vice versa - right-
hand side minus left-hand side. Reversing the di¤erence would simply change the sign
of the Lagrange multiplier but not change the �nal optimality conditions. Economically,
however, one would usually want a positive sign of the multiplier, as we will see in ch. 2.3.
The �rst-order conditions are

Lct = Uct (ct; ct+1)� � = 0;
Lct+1 = Uct+1 (ct; ct+1)� � [1 + rt+1]

�1 = 0;

L� = wt + (1 + rt+1)
�1wt+1 � ct � (1 + rt+1)�1 ct+1 = 0:

Clearly, the last �rst-order condition is identical to the budget constraint. Note that there
are three variables to be determined, consumption for both periods and the Lagrange
multiplier �. Having at least three conditions is a necessary, though not su¢ cient (they
might, generally speaking, be linearly dependent) condition for this to be possible.
The �rst two �rst-order conditions can be combined to give

Uct (ct; ct+1) = (1 + rt+1)Uct+1 (ct; ct+1) = �: (2.1.6)

Marginal utility from consumption today on the left-hand side must equal marginal utility
tomorrow, corrected by the interest rate, on the right-hand side. The economic meaning
of this correction can best be understood when looking at a version with nominal budget
constraints (see ch. 2.2.2).
We learn from this maximization that the modi�ed �rst-order condition (2.1.6) gives us

a necessary equation that needs to hold when behaving optimally. It links consumption ct
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today to consumption ct+1 tomorrow. This equation together with the budget constraint
(2.1.4) provides a two-dimensional system: two equations in two unknowns, ct and ct+1.
These equations therefore allow us in principle to compute these endogenous variables as
a function of exogenously given wages and interest rates. This would then be the solution
to our maximization problem. The next section provides an example where this is indeed
the case.

2.2 Examples

2.2.1 Optimal consumption

� The setup

This �rst example allows us to solve explicitly for consumption levels in both periods.
Let preferences of households be represented by

Ut = 
 ln ct + (1� 
) ln ct+1: (2.2.1)

This utility function is often referred to as Cobb-Douglas or logarithmic utility function.
Utility from consumption in each period, instantaneous utility, is given by the logarithm
of consumption. Instantaneous utility is sometimes also referred to as felicity function.
As ln c has a positive �rst and negative second derivative, higher consumption increases
instantaneous utility but at a decreasing rate. Marginal utility from consumption is
decreasing in (2.2.1). The parameter 
 captures the importance of instantaneous utility
in the �rst relative to instantaneous utility in the second. Overall utility Ut is maximized
subject to the constraint we know from (2.1.4) above,

Wt = ct + (1 + rt+1)
�1 ct+1; (2.2.2)

where we denote the present value of labour income by

Wt � wt + (1 + rt+1)
�1wt+1: (2.2.3)

Again, the consumption good is chosen as numeraire good and its price equals unity.
Wages are therefore expressed in units of the consumption good.

� Solving by the Lagrangian

The Lagrangian for this problem reads

L = 
 ln ct + (1� 
) ln ct+1 + �
�
Wt � ct � (1 + rt+1)�1 ct+1

�
:

The �rst-order conditions are

Lct = 
 (ct)
�1 � � = 0;

Lct+1 = (1� 
) (ct+1)
�1 � � [1 + rt+1]�1 = 0;

and the budget constraint (2.2.2) following from L� = 0:
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� The solution

Dividing �rst-order conditions gives 

1�


ct+1
ct
= 1 + rt+1 and therefore

ct =



1� 
 (1 + rt+1)
�1 ct+1:

This equation corresponds to our optimality rule (2.1.6) derived above for the more general
case. Inserting into the budget constraint (2.2.2) yields

Wt =

�



1� 
 + 1
�
(1 + rt+1)

�1 ct+1 =
1

1� 
 (1 + rt+1)
�1 ct+1

which is equivalent to
ct+1 = (1� 
) (1 + rt+1)Wt: (2.2.4)

It follows that
ct = 
Wt: (2.2.5)

Apparently, optimal consumption decisions imply that consumption when young is
given by a share 
 of the present value Wt of life-time income at time t of the individual
under consideration. Consumption when old is given by the remaining share 1 � 
 plus
interest payments, ct+1 = (1 + rt+1) (1� 
)Wt: Equations (2.2.4) and (2.2.5) are the
solution to our maximization problem. These expressions are sometimes called �closed-
form�solutions. A (closed-form) solution expresses the endogenous variable, consumption
in our case, as a function only of exogenous variables. Closed-form solution is a di¤erent
word for closed-loop solution. For further discussion see ch. 5.6.2.
Assuming preferences as in (2.2.1) makes modelling sometimes easier than with more

complex utility functions. A drawback here is that the share of lifetime income consumed
in the �rst period and therefore the savings decision is independent of the interest rate,
which appears implausible. A way out is given by the CES utility function (see below at
(2.2.10)) which also allows for closed-form solutions for consumption (for an example in a
stochastic setup, see exercise 6 in ch. 8.1.4). More generally speaking, such a simpli�cation
should be justi�ed if some aspect of an economy that is fairly independent of savings is
the focus of some analysis.

� Solving by substitution

Let us now consider this example and see how this maximization problem could have
been solved without using the Lagrangian. The principle is simply to transform an op-
timization problem with constraints into an optimization problem without constraints.
This is most simply done in our example by replacing the consumption levels in the ob-
jective function (2.2.1) by the consumption levels from the constraints (2.1.2) and (2.1.3).
The unconstrained maximization problem then reads maxUt by choosing st; where

Ut = 
 ln (wt � st) + (1� 
) ln (wt+1 + (1 + rt+1) st) :
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This objective function shows the trade-o¤ faced by anyone who wants to save nicely.
High savings reduce consumption today but increase consumption tomorrow.
The �rst-order condition, i.e. the derivative with respect to saving st; is simply




wt � st
= (1 + rt+1)

1� 

wt+1 + (1 + rt+1) st

:

When this is solved for savings st; we obtain

wt+1
1 + rt+1

+ st = (wt � st)
1� 



, wt+1
1 + rt+1

= wt
1� 



� st

1



,

st = (1� 
)wt � 

wt+1
1 + rt+1

= wt � 
Wt;

whereWt is life-time income as de�ned after (2.2.2). To see that this is consistent with the
solution by Lagrangian, compute �rst-period consumption and �nd ct = wt � st = 
Wt -
which is the solution in (2.2.5).
What have we learned from using this substitution method? We see that we do not

need �sophisticated�tools like the Lagrangian as we can solve a �normal�unconstrained
problem - the type of problem we might be more familiar with from static maximization
setups. But the steps to obtain the �nal solution appear somewhat more �curvy�and less
elegant. It therefore appears worthwhile to become more familiar with the Lagrangian.

2.2.2 Optimal consumption with prices

Consider now again the utility function (2.1.1) and maximize it subject to the constraints
ptct + st = wt and pt+1ct+1 = wt+1 + (1 + rt+1) st: The di¤erence to the introductory
example in ch. 2.1 consists in the introduction of an explicit price pt for the consumption
good. The �rst-period budget constraint now equates nominal expenditure for consump-
tion (ptct is measured in, say, Euro, Dollar or Yen) plus nominal savings to nominal wage
income. The second period constraint equally equates nominal quantities. What does an
optimal consumption rule as in (2.1.6) now look like?
The Lagrangian is, now using an intertemporal budget constraint with prices,

L = U (ct; ct+1) + �
�
Wt � ptct � (1 + rt+1)�1 pt+1ct+1

�
:

The �rst-order conditions for ct and ct+1 are

Lct = Uct (ct; ct+1)� �pt = 0;
Lct+1 = Uct+1 (ct; ct+1)� � (1 + rt+1)

�1 pt+1 = 0

and the intertemporal budget constraint. Combining them gives

Uct (ct; ct+1)

pt
=

Uct+1 (ct; ct+1)

pt+1 [1 + rt+1]
�1 ,

Uct (ct; ct+1)

Uct+1 (ct; ct+1)
=

pt

pt+1 [1 + rt+1]
�1 : (2.2.6)
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This equation says that marginal utility of consumption today relative to marginal utility
of consumption tomorrow equals the relative price of consumption today and tomorrow.
This optimality rule is identical for a static 2-good decision problem where optimality
requires that the ratio of marginal utilities equals the relative price. The relative price
here is expressed in a present value sense as we compare marginal utilities at two points
in time. The price pt is therefore divided by the price tomorrow, discounted by the next
period�s interest rate, pt+1 [1 + rt+1]

�1 :
In contrast to what sometimes seems common practice, we will not call (2.2.6) a

solution to the maximization problem. This expression (frequently referred to as the
Euler equation) is simply an expression resulting from �rst-order conditions. Strictly
speaking, (2.2.6) is only a necessary condition for optimal behaviour - and not more. As
de�ned above, a solution to a maximization problem is a closed-form expression as for
example in (2.2.4) and (2.2.5). It gives information on levels - and not just on changes
as in (2.2.6). Being aware of this important di¤erence, in what follows, the term �solving
a maximization problem�will nevertheless cover both analyses. Those which stop at the
Euler equation and those which go all the way towards obtaining a closed-form solution.

2.2.3 Some useful de�nitions with applications

In order to be able to discuss results in subsequent sections easily, we review some de�ni-
tions here that will be used frequently in later parts of this book. We are mainly interested
in the intertemporal elasticity of substitution and the time preference rate. While a lot
of this material can be found in micro textbooks, the notation used in these books di¤ers
of course from the one used here. As this book is also intended to be as self-contained as
possible, this short review can serve as a reference for subsequent explanations. We start
with the

� Marginal rate of substitution (MRS)
Let there be a consumption bundle (c1; c2; ::::; cn) : Let utility be given by u (c1; c2; ::::; cn)

which we abbreviate to u (:) : The MRS between good i and good j is then de�ned by

MRSij (:) �
@u (:) =@ci
@u (:) =@cj

: (2.2.7)

It gives the increase of consumption of good j that is required to keep the utility level
at u (c1; c2; ::::; cn) when the amount of i is decreased marginally. By this de�nition, this
amount is positive if both goods are normal goods - i.e. if both partial derivatives in
(2.2.7) are positive. Note that de�nitions used in the literature can di¤er from this one.
Some replace �decreased�by �increased�(or - which has the same e¤ect - replace �increase�
by �decrease�) and thereby obtain a di¤erent sign.
Why this is so can easily be shown: Consider the total di¤erential of u (c1; c2; ::::; cn) ;

keeping all consumption levels apart from ci and cj �x. This yields

du (c1; c2; ::::; cn) =
@u (:)

@ci
dci +

@u (:)

@cj
dcj:
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The overall utility level u (c1; c2; ::::; cn) does not change if

du (:) = 0, dcj
dci

= �@u (:)
@ci

=
@u (:)

@cj
� �MRSij (:) :

� Equivalent terms

As a reminder, the equivalent term to the MRS in production theory is the mar-
ginal rate of technical substitution MRTSij (:) =

@f(:)=@xi
@f(:)=@xj

where the utility function was
replaced by a production function and consumption ck was replaced by factor inputs xk.
On a more economy-wide level, there is the marginal rate of transformationMRTij (:) =

@G(:)=@yi
@G(:)=@yj

where the utility function has now been replaced by a transformation function G
(maybe better known as production possibility curve) and the yk are output of good k.
The marginal rate of transformation gives the increase in output of good j when output
of good i is marginally decreased.

� (Intertemporal) elasticity of substitution

Though our main interest is a measure of intertemporal substitutability, we �rst de�ne
the elasticity of substitution in general. As with the marginal rate of substitution, the
de�nition implies a certain sign of the elasticity. In order to obtain a positive sign (with
normal goods), we de�ne the elasticity of substitution as the increase in relative consump-
tion ci=cj when the relative price pi=pj decreases (which is equivalent to an increase of
pj=pi). Formally, we obtain for the case of two consumption goods �ij � d(ci=cj)

d(pj=pi)

pj=pi
ci=cj

.
This de�nition can be expressed alternatively (see ex. 6 for details) in a way which

is more useful for the examples below. We express the elasticity of substitution by the
derivative of the log of relative consumption ci=cj with respect to the log of the marginal
rate of substitution between j and i,

�ij �
d ln (ci=cj)

d lnMRSji
: (2.2.8)

Inserting the marginal rate of substitution MRSji from (2.2.7), i.e. exchanging i and j
in (2.2.7), gives

�ij =
d ln (ci=cj)

d ln
�
ucj=uci

� = ucj=uci
ci=cj

d (ci=cj)

d
�
ucj=uci

� :
The advantage of an elasticity when compared to a normal derivative, such as the MRS, is
that an elasticity is measureless. It is expressed in percentage changes. (This can be best
seen in the following example and in ex. 6 where the derivative is multiplied by pj=pi

ci=cj
:) It

can both be applied to static utility or production functions or to intertemporal utility
functions.
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The intertemporal elasticity of substitution for a utility function u (ct; ct+1) is then
simply the elasticity of substitution of consumption at two points in time,

�t;t+1 �
uct=uct+1
ct+1=ct

d (ct+1=ct)

d
�
uct=uct+1

� : (2.2.9)

Here as well, in order to obtain a positive sign, the subscripts in the denominator have a
di¤erent ordering from the one in the numerator.

� The intertemporal elasticity of substitution for logarithmic and CES utility functions

For the logarithmic utility function Ut = 
 ln ct+(1� 
) ln ct+1 from (2.2.1), we obtain
an intertemporal elasticity of substitution of one,

�t;t+1 =



ct
= 1�

ct+1

ct+1=ct

d (ct+1=ct)

d
�


ct
= 1�

ct+1

� = 1;
where the last step used

d (ct+1=ct)

d
�


ct
= 1�

ct+1

� = 1� 




d (ct+1=ct)

d (ct+1=ct)
=
1� 




:

It is probably worth noting at this point that not all textbooks would agree on the
result of �plus one�. Following some other de�nitions, a result of minus one would be
obtained. Keeping in mind that the sign is just a convention, depending on �increase�or
�decrease�in the de�nition, this should not lead to confusions.
When we consider a utility function where instantaneous utility is not logarithmic but

of CES type
Ut = 
c1��t + (1� 
) c1��t+1 ; (2.2.10)

the intertemporal elasticity of substitution becomes

�t;t+1 �

 [1� �] c��t = (1� 
) (1� �) c��t+1

ct+1=ct

d (ct+1=ct)

d
�

 [1� �] c��t = (1� 
) (1� �) c��t+1

� : (2.2.11)
De�ning x � (ct+1=ct)� ; we obtain

d (ct+1=ct)

d
�

 [1� �] c��t = (1� 
) (1� �) c��t+1

� =
1� 




d (ct+1=ct)

d
�
c��t =c��t+1

� = 1� 




dx1=�

dx

=
1� 




1

�
x
1
�
�1:

Inserting this into (2.2.11) and cancelling terms, the elasticity of substitution turns out
to be

�t;t+1 �
c��t =c��t+1
ct+1=ct

1

�

�
ct+1
ct

�1��
=
1

�
:

This is where the CES utility function (2.2.10) has its name from: The intertemporal
elasticity (E) of substitution (S) is constant (C).
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� The time preference rate

Intuitively, the time preference rate is the rate at which future instantaneous utilities
are discounted. To illustrate, imagine a discounted income stream

x0 +
1

1 + r
x1 +

�
1

1 + r

�2
x2 + :::

where discounting takes place at the interest rate r: Replacing income xt by instantaneous
utility and the interest rate by �, � would be the time preference rate. Formally, the
time preference rate is the marginal rate of substitution of instantaneous utilities (not of
consumption levels) minus one,

TPR �MRSt;t+1 � 1:

As an example, consider the following standard utility function which we will use very
often in later chapters,

U0 = �
1
t=0�

tu (ct) ; � � 1

1 + �
; � > 0: (2.2.12)

Let � be a positive parameter and � the implied discount factor, capturing the idea of
impatience: By multiplying instantaneous utility functions u (ct) by �

t, future utility is
valued less than present utility. This utility function generalizes (2.2.1) in two ways: First
and most importantly, there is a much longer planning horizon than just two periods. In
fact, the individual�s overall utility U0 stems from the sum of discounted instantaneous
utility levels u (ct) over periods 0; 1; 2; ... up to in�nity. The idea behind this objective
function is not that individuals live forever but that individuals care about the well-
being of subsequent generations. Second, the instantaneous utility function u (ct) is not
logarithmic as in (2.2.1) but of a more general nature where one would usually assume
positive �rst and negative second derivatives, u0 > 0; u00 < 0.
The marginal rate of substitution is then

MRSt;t+1 (:) =
@U0 (:) =@u (ct)

@U0 (:) =@u (ct+1)
=

(1= (1 + �))t

(1= (1 + �))t+1
= 1 + �:

The time preference rate is therefore given by �:
Now take for example the utility function (2.2.1). Computing the MRS minus one, we

have
� =




1� 
 � 1 =
2
 � 1
1� 
 : (2.2.13)

The time preference rate is positive if 
 > 0:5: This makes sense for (2.2.1) as one should
expect that future utility is valued less than present utility.
As a side note, all intertemporal utility functions in this book will use exponential

discounting as in (2.2.12). This is clearly a special case. Models with non-exponential
or hyperbolic discounting imply fundamentally di¤erent dynamic behaviour and time
inconsistencies. See �further reading�for some references.
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� Does consumption increase over time?

This de�nition of the time preference rate allows us to provide a precise answer to
the question whether consumption increases over time. We simply compute the condition
under which ct+1 > ct by using (2.2.4) and (2.2.5),

ct+1 > ct , (1� 
) (1 + rt+1)Wt > 
Wt ,

1 + rt+1 >



1� 
 , rt+1 >

 � 1 + 

1� 
 , rt+1 > �:

Consumption increases if the interest rate is higher than the time preference rate. The
time preference rate of the individual (being represented by 
) determines how to split
the present value Wt of total income into current and future use. If the interest rate is
su¢ ciently high to overcompensate impatience, i.e. if (1� 
) (1 + r) > 
 in the �rst line,
consumption rises.
Note that even though we computed the condition for rising consumption for our

special utility function (2.2.1), the result that consumption increases when the interest
rate exceeds the time preference rate holds for more general utility functions as well. We
will get to know various examples for this in subsequent chapters.

� Under what conditions are savings positive?

Savings are from the budget constraint (2.1.2) and the optimal consumption result
(2.2.5) given by

st = wt � ct = wt � 

�
wt +

1

1 + rt+1
wt+1

�
= w

�
1� 
 � 


1 + rt+1

�
where the last equality assumed an invariant wage level, wt = wt+1 � w. Savings are
positive if and only if

st > 0, 1� 
 > 


1 + rt+1
, 1 + rt+1 >




1� 
 ,

rt+1 >
2
 � 1
1� 
 , rt+1 > � (2.2.14)

This means that savings are positive if interest rate is larger than time preference rate.
Clearly, this result does not necessarily hold for wt+1 > wt:

2.3 The idea behind the Lagrangian

So far, we simply used the Lagrange function without asking where it comes from. This
chapter will o¤er a derivation of the Lagrange function and also an economic interpretation
of the Lagrange multiplier. In maximization problems employing a utility function, the
Lagrange multiplier can be understood as a price measured in utility units. It is often
called a shadow price.
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2.3.1 Where the Lagrangian comes from I

� The maximization problem

Let us consider a maximization problem with some objective function and a constraint,

max
x1;x2

F (x1; x2) subject to g(x1;x2) = b: (2.3.1)

The constraint can be looked at as an implicit function, i.e. describing x2 as a function
of x1; i.e. x2 = h (x1) : Using the representation x2 = h (x1) of the constraint, the
maximization problem can be written as

max
x1

F (x1;h (x1)) : (2.3.2)

� The derivatives of implicit functions

As we will use implicit functions and their derivatives here and in later chapters, we
brie�y illustrate the underlying idea and show how to compute their derivatives. Consider
a function f (x1; x2; :::; xn) = 0: The implicit function theorem says - stated simply -
that this function f (x1; x2; :::; xn) = 0 implicitly de�nes (under suitable assumptions
concerning the properties of f (:) - see exercise 7) a functional relationship of the type
x2 = h (x1; x3; x4; :::; xn) : We often work with these implicit functions in Economics and
we are also often interested in the derivative of x2 with respect to, say, x1:
In order to obtain an expression for this derivative, consider the total di¤erential of

f (x1; x2; :::; xn) = 0;

df (:) =
@f (:)

@x1
dx1 +

@f (:)

@x2
dx2 + :::+

@f (:)

@xn
dxn = 0:

When we keep x3 to xn constant, we can solve this to get

dx2
dx1

= �@f (:) =@x1
@f (:) =@x2

: (2.3.3)

We have thereby obtained an expression for the derivative dx2=dx1 without knowing the
functional form of the implicit function h (x1; x3; x4; :::; xn) :
For illustration purposes, consider the following �gure.
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Figure 2.3.1 The implicit function visible at z = 0

The horizontal axes plot x1 and, to the back, x2: The vertical axis plots z: The increas-
ing surface depicts the graph of the function z = g (x1; x2)� b: When this surface crosses
the horizontal plane at z = 0; a curve is created which contains all the points where
z = 0: Looking at this curve illustrates that the function z = 0, g (x1; x2) = b implicitly
de�nes a function x2 = h (x1) : See exercise 7 for an explicit analytical derivation of such
an implicit function. The derivative dx2=dx1 is then simply the slope of this curve. The
analytical expression for this is - using (2.3.3) - dx2=dx1 = � (@g (:) =@x1) = (@g (:) =@x2) :

� First-order conditions of the maximization problem

The maximization problem we obtained in (2.3.2) is an example for the substitution
method: The budget constraint was solved for one control variable and inserted into the
objective function. The resulting maximization problem is one without constraint. The
problem in (2.3.2) now has a standard �rst-order condition,

dF

dx1
=
@F

@x1
+
@F

@x2

dh

dx1
= 0: (2.3.4)

Taking into consideration that from the implicit function theorem applied to the con-
straint,

dh

dx1
=
dx2
dx1

= �@g(x1; x2)=@x1
@g(x1; x2)=@x2

; (2.3.5)

the optimality condition (2.3.4) can be written as @F
@x1
� @F=@x2

@g=@x2

@g(x1;x2)
@x1

= 0: Now de�ne

the Lagrange multiplier � � @F=@x2
@g=@x2

and obtain

@F

@x1
� �@g(x1; x2)

@x1
= 0: (2.3.6)
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As can be easily seen, this is the �rst-order condition of the Lagrangian

L = F (x1;x2) + � [b� g (x1;x2)] (2.3.7)

with respect to x1:
Now imagine we want to undertake the same steps for x2; i.e. we start from the original

problem (2.3.1) but substitute out x1: We would then obtain an unconstrained problem
as in (2.3.2) only that we maximize with respect to x2: Continuing as we just did for x1
would yield the second �rst-order condition

@F

@x2
� �@g(x1; x2)

@x2
= 0:

We have thereby shown where the Lagrangian comes from: Whether one de�nes a La-
grangian as in (2.3.7) and computes the �rst-order condition or one computes the �rst-
order condition from the unconstrained problem as in (2.3.4) and then uses the implicit
function theorem and de�nes a Lagrange multiplier, one always ends up at (2.3.6). The
Lagrangian-route is obviously faster.

2.3.2 Shadow prices

� The idea

We can now also give an interpretation of the meaning of the multipliers �. Starting
from the de�nition of � in (2.3.6), we can rewrite it according to

� � @F=@x2
@g=@x2

=
@F

@g
=
@F

@b
:

One can understand that the �rst equality can �cancel�the term @x2 by looking at the
de�nition of a (partial) derivative: @f(x1;:::;xn)

@xi
=

lim4xi!0 f(x1;:::;xi+4xi;:::;xn)�f(x1;:::;xn)
lim4xi!0 4xi : The

second equality uses the equality of g and b from the constraint in (2.3.1). From these
transformations, we see that � equals the change in F as a function of b. It is now easy to
come up with examples for F or b: How much does F increase (e.g. your utility) when your
constraint b (your bank account) is relaxed? How much does the social welfare function
change when the economy has more capital? How much do pro�ts of �rms change when
the �rm has more workers? This � is called shadow price and expresses the value of b in
units of F:
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� A derivation

A more rigorous derivation is as follows (cf. Intriligator, 1971, ch. 3.3). Compute the
derivative of the maximized Lagrangian with respect to b,

@L(x�1 (b) ; x�2 (b))
@b

=
@

@b
(F (x�1(b); x

�
2 (b)) + �(b) [b� g (x�1(b); x�2 (b))]

= Fx�1
@x�1
@b

+ Fx�2
@x�2
@b

+ �
0
(b) [b� g(:)] + �(b)

�
1� gx�1

@x�1
@b
� gx�2

@x�2
@b

�
= �(b)

The last equality results from �rst-order conditions and the fact that the budget constraint
holds.
As L(x�1; x�2) = F (x�1; x

�
2) due to the budget constraint holding with equality,

�(b) =
@L(x�1; x�2)

@b
=
@F (x�1; x

�
2)

@b

� An example

The Lagrange multiplier � is frequently referred to as shadow price. As we have seen,
its unit depends on the unit of the objective function F: One can think of price in the
sense of a price in a currency, for example in Euro, only if the objective function is some
nominal expression like pro�ts or GDP. Otherwise it is a price expressed for example in
utility terms. This can explicitly be seen in the following example. Consider a central
planner that maximizes social welfare u (x1; x2) subject to technological and resource
constraints,

maxu (x1; x2)

subject to

x1 = f (K1;L1) ; x2 = g (K2;L2) ;

K1 +K2 = K; L1 + L2 = L:

Technologies in sectors 1 and 2 are given by f (:) and g (:) and factors of production are
capital K and labour L: Using as multipliers p1; p2; wK and wL; the Lagrangian reads

L = u (x1; x2) + p1 [f (K1;L1)� x1] + p2 [g (K2; L2)� x2]
+ wK [K �K1 �K2] + wL [L� L1 � L2] (2.3.8)

and �rst-order conditions are
@L
@x1

=
@u

@x1
� p1 = 0;

@L
@x2

=
@u

@x2
� p2 = 0; (2.3.9)

@L
@K1

= p1
@f

@K1

� wK = 0; @L
@K2

= p2
@g

@K2

� wK = 0;

@L
@L1

= p1
@f

@L1
� wL = 0; @L

@L2
= p2

@g

@L2
� wL = 0:
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Here we see that the �rst multiplier p1 is not a price expressed in some currency but the
derivative of the utility function with respect to good 1, i.e. marginal utility. By contrast,
if we looked at the multiplier wK only in the third �rst-order condition, wK = p1@f=@K1;
we would then conclude that it is a price. Then inserting the �rst �rst-order condition,
@u=@x1 = p1; and using the constraint x1 = f (K1;L1) shows however that it really stands
for the increase in utility when the capital stock used in production of good 1 rises,

wK = p1
@f

@K1

=
@u

@x1

@f

@K1

=
@u

@K1

:

Hence wK and all other multipliers are prices in utility units.
It is now also easy to see that all shadow prices are prices expressed in some currency if

the objective function is not utility but, for example GDP. Such a maximization problem
could read max p1x1 + p2x2 subject to the constraints as above. Finally, returning to
the discussion after (2.1.5), the �rst-order conditions show that the sign of the Lagrange
multiplier should be positive from an economic perspective. If p1 in (2.3.9) is to capture
the value attached to x1 in utility units and x1 is a normal good (utility increases in x1; i.e.
@u=@x1 > 0), the shadow price should be positive. If we had represented the constraint in
the Lagrangian (2.3.8) as x1�f (K1;L1) rather than right-hand side minus left-hand side,
the �rst-order condition would read @u=@x1 + p1 = 0 and the Lagrange multiplier would
have been negative. If we want to associate the Lagrange multiplier to the shadow price,
the constraints in the Lagrange function should be represented such that the Lagrange
multiplier is positive.

2.4 An overlapping generations model

We will now analyze many households jointly and see how their consumption and saving
behaviour a¤ects the evolution of the economy as a whole. We will get to know the Euler
theorem and how it is used to sum factor incomes to yield GDP. We will also understand
how the interest rate in the household�s budget constraint is related to marginal produc-
tivity of capital and the depreciation rate. All this jointly yields time paths of aggregate
consumption, the capital stock and GDP. We will assume an overlapping-generations
structure (OLG).
A model in general equilibrium is described by fundamentals of the model and mar-

ket and behavioural assumptions. Fundamentals are technologies of �rms, preferences of
households and factor endowments. Adding clearing conditions for markets and behav-
ioural assumptions for agents completes the description of the model.
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2.4.1 Technologies

� The �rms

Let there be many �rms who employ capital Kt and labour L to produce output Yt
according to the technology

Yt = Y (Kt; L) : (2.4.1)

Assume production of the �nal good Y (:) is characterized by constant returns to scale.
We choose Yt as our numeraire good and normalize its price to unity, pt = 1: While this
is not necessary and we could keep the price pt all through the model, we would see that
all prices, like for example factor rewards, would be expressed relative to the price pt:
Hence, as a shortcut, we set pt = 1:We now, however, need to keep in mind that all prices
are henceforth expressed in units of this �nal good. With this normalization, pro�ts are
given by �t = Yt � wKt Kt � wLt L. Letting �rms act under perfect competition, the �rst-
order conditions from pro�t maximization re�ect the fact that the �rm takes all prices as
parametric and set marginal productivities equal to real factor rewards,

@Yt
@Kt

= wKt ;
@Yt
@L

= wLt : (2.4.2)

In each period they equate t; the marginal productivity of capital, to the factor price wKt
for capital and the marginal productivity of labour to labour�s factor reward wLt .

� Euler�s theorem

Euler�s theorem shows that for a linear-homogeneous function f (x1; x2; :::; xn) the
sum of partial derivatives times the variables with respect to which the derivative was
computed equals the original function f (:) ;

f (x1; x2; :::; xn) =
@f (:)

@x1
x1 +

@f (:)

@x2
x2 + :::+

@f (:)

@xn
xn: (2.4.3)

Provided that the technology used by �rms to produce Yt has constant returns to scale,
we obtain from this theorem that

Yt =
@Yt
@Kt

Kt +
@Yt
@L

L: (2.4.4)

Using the optimality conditions (2.4.2) of the �rm for the applied version of Euler�s
theorem (2.4.4) yields

Yt = wKt Kt + wLt L: (2.4.5)

Total output in this economy, Yt; is identical to total factor income. This result is usually
given the economic interpretation that under perfect competition all revenue in �rms is
used to pay factors of production. As a consequence, pro�ts �t of �rms are zero.
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2.4.2 Households

� Individual households

Households live again for two periods. The utility function is therefore as in (2.2.1)
and given by

Ut = 
 ln cyt + (1� 
) ln cot+1: (2.4.6)

It is maximized subject to the intertemporal budget constraint

wLt = cyt + (1 + rt+1)
�1 cot+1:

This constraint di¤ers slightly from (2.2.2) in that people work only in the �rst period and
retire in the second. Hence, there is labour income only in the �rst period on the left-hand
side. Savings from the �rst period are used to �nance consumption in the second period.
Given that the present value of lifetime wage income is wLt ; we can conclude from

(2.2.4) and (2.2.5) that individual consumption expenditure and savings are given by

cyt = 
wLt ; cot+1 = (1� 
) (1 + rt+1)w
L
t ; (2.4.7)

st = wLt � c
y
t = (1� 
)wLt : (2.4.8)

� Aggregation

We assume that in each period L individuals are born and die. Hence, the number
of young and the number of old is L as well. As all individuals within a generation
are identical, aggregate consumption within one generation is simply the number of, say,
young times individual consumption. Aggregate consumption in t is therefore given by
Ct = Lcyt +Lc

o
t : Using the expressions for individual consumption from (2.4.7) and noting

the index t (and not t+ 1) for the old yields

Ct = Lcyt + Lcot =
�

wLt + (1� 
) (1 + rt)w

L
t�1
�
L:

2.4.3 Goods market equilibrium and accumulation identity

The goods market equilibrium requires that supply equals demand, Yt = Ct + It; where
demand is given by consumption plus gross investment. Next period�s capital stock is - by
an accounting identity - given byKt+1 = It+(1� �)Kt: Net investment, amounting to the
change in the capital stock, Kt+1�Kt, is given by gross investment It minus depreciation
�Kt, where � is the depreciation rate, Kt+1 �Kt = It � �Kt. Replacing gross investment
by the goods market equilibrium, we obtain the resource constraint

Kt+1 = (1� �)Kt + Yt � Ct: (2.4.9)

For our OLG setup, it is useful to rewrite this constraint slightly ,

Yt + (1� �)Kt = Ct +Kt+1: (2.4.10)
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In this formulation, it re�ects a �broader�goods market equilibrium where the left-hand
side shows supply as current production plus capital held by the old. The old sell capital
as it is of no use for them, given that they will not be able to consume anything in the
next period. Demand for the aggregate good is given by aggregate consumption (i.e.
consumption of the young plus consumption of the old) plus the capital stock to be held
next period by the currently young.

2.4.4 The reduced form

For the �rst time in this book we have come to the point where we need to �nd what will be
called a �reduced form�. Once all maximization problems are solved and all constraints
and market equilibria are taken into account, the objective consists of understanding
properties of the model, i.e. understanding its predictions. This is usually done by �rst
simplifying the structure of the system of equations coming out of the model as much
as possible. In the end, after inserting and reinserting, a system of n equations in n
unknowns results. The system where n is the smallest possible is what will be called the
reduced form.
Ideally, there is only one equation left and this equation gives an explicit solution of the

endogenous variable. In static models, an example would be LX = �L; i.e. employment
in sector X is given by a utility parameter � times the total exogenous labour supply L:
This would be an explicit solution. If we are left with just one equation but we obtain on
an implicit solution, we would obtain something like f (LX ; �; L) = 0:

� Deriving the reduced form

We now derive, given the results we have obtained so far, how large the capital stock
in the next period is. Splitting aggregate consumption into consumption of the young
and consumption of the old and using the output-factor reward identity (2.4.5) for the
resource constraint in the OLG case (2.4.10), we obtain

wKt Kt + wLt L+ (1� �)Kt = Cyt + Cot +Kt+1:

De�ning the interest rate rt as the di¤erence between factor rewards wKt for capital and
the depreciation rate �;

rt � wKt � �; (2.4.11)

we �nd
rtKt + wLt L+Kt = Cyt + Cot +Kt+1:

The interest rate de�nition (2.4.11) shows the net income of capital owners per unit of
capital. They earn the gross factor rewards wKt but, at the same time, they experience a
loss from depreciation. Net income therefore only amounts to rt: As the old consume the
capital stock plus interest cotL = (1 + rt)Kt, we obtain

Kt+1 = wLt L� C
y
t = stL: (2.4.12)
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which is the aggregate version of the savings equation (2.4.8). Hence, we have found that
savings st of young at t is the capital stock at t+ 1:
Note that equation (2.4.12) is often present on �intuitive�grounds. The old in period

t have no reason to save as they will not be able to use their savings in t+1: Hence, only
the young will save and the capital stock in t + 1; being made up from savings in the
previous period, must be equal to the savings of the young.

� The one-dimensional di¤erence equation

In our simple dynamic model considered here, we obtain the ideal case where we are
left with only one equation that gives us the solution for one variable, the capital stock.
Inserting the individual savings equation (2.4.8) into (2.4.12) gives with the �rst-order
condition (2.4.2) of the �rm

Kt+1 = (1� 
)wLt L = (1� 
)
@Y (Kt; L)

@L
L: (2.4.13)

The �rst equality shows that a share 1�
 of labour income turns into capital in the next
period. Interestingly, the depreciation rate does not have an impact on the capital stock
in period t+1. Economically speaking, the depreciation rate a¤ects the wealth of the old
but - with logarithmic utility - not the saving of the young.

2.4.5 Properties of the reduced form

Equation (2.4.13) is a non-linear di¤erence equation in Kt: All other quantities in this
equation are constant. This equation determines the entire path of capital in this dynamic
economy, provided we have an initial condition K0. We have therefore indeed solved the
maximization problem and reduced the general equilibrium model to one single equation.
From the path of capital, we can compute all other variables which are of interest for our
economic questions.
Whenever we have reduced a model to its reduced form and have obtained one or

more di¤erence equations (or di¤erential equations in continuous time), we would like to
understand the properties of such a dynamic system. The procedure is in principle always
the same: We �rst ask whether there is some solution where all variables (Kt in our case)
are constant. This is then called a steady state analysis. Once we have understood the
steady state (if there is one), we want to understand how the economy behaves out of the
steady state, i.e. what its transitional dynamics are.

� Steady state

In the steady state, the capital stock is constant, Kt = Kt+1 = K�, and determined
by

K� = (1� 
) @Y (K
�; L)

@L
L: (2.4.14)
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All other variables like aggregate consumption, interest rates, wages etc. are constant as
well. Consumption when young and when old can di¤er, as in a setup with �nite lifetimes,
the interest rate in the steady state does not need to equal the time preference rate of
households.

� Transitional dynamics

Dynamics of the capital stock are illustrated in �gure 2.4.1. The �gure plots the capital
stock in period t on the horizontal axis. The capital stock in the next period, Kt+1; is
plotted on the vertical axis. The law of motion for capital from (2.4.13) then shows up as
the curve in this �gure. The 45� line equates Kt+1 to Kt:

We start from our initial condition K0. Equation (2.4.13) or the curve in this �gure
then determines the capital stock K1: This capital stock is then viewed as Kt so that,
again, the curve gives us Kt+1; which is, given that we now started in 1; the capital stock
K2 of period 2:We can continue doing so and see graphically that the economy approaches
the steady state K� which we computed in (2.4.14).
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Figure 2.4.1 Convergence to the steady state

� Summary

We started with a description of technologies in (2.4.1), preferences in (2.4.6) and
factor endowment given by K0: With behavioural assumptions concerning utility and
pro�t maximization and perfect competition on all markets plus a description of markets
in (2.4.3) and some �juggling of equations�, we ended up with a one-dimensional di¤erence
equation (2.4.13) which describes the evolution of the economy over time and steady state
in the long-run. Given this formal analysis of the model, we could now start answering
economic questions.
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2.5 More on di¤erence equations

The reduced form in (2.4.13) of the general equilibrium model turned out to be a non-
linear di¤erence equation. We derived its properties in a fairly intuitive manner. However,
one can approach di¤erence equations in a more systematic manner, which we will do in
this chapter.

2.5.1 Two useful proofs

Before we look at di¤erence equations, we provide two results on sums which will be
useful in what follows. As the proof of this result also has an esthetic value, there will be
a second proof of another result to be done in the exercises.

Lemma 2.5.1 For any a 6= 1;

�Ti=1a
i = a

1� aT
1� a ; �Ti=0a

i =
1� aT+1
1� a

Proof. The left hand side is given by

�Ti=1a
i = a+ a2 + a3 + : : :+ aT�1 + aT : (2.5.1)

Multiplying this sum by a yields

a�Ti=1a
i = a2 + a3 + : : :+ aT + aT+1: (2.5.2)

Now subtract (2.5.2) from (2.5.1) and �nd

(1� a) �Ti=1ai = a� aT+1 , �Ti=1a
i = a

1� aT
1� a : (2.5.3)

Lemma 2.5.2

�Ti=1ia
i =

1

1� a

�
a
1� aT
1� a � Ta

T+1

�
Proof. The proof is left as exercise 9.

2.5.2 A simple di¤erence equation

One of the simplest di¤erence equations is

xt+1 = axt; a > 0: (2.5.4)

This equation appears too simple to be worth analysing. We do it here as we get to
know the standard steps in analyzing di¤erence equations which we will also use for more
complex di¤erence equations. The objective here is therefore not this di¤erence equation
as such but what is done with it.
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� Solving by substitution

The simplest way to �nd a solution to (2.5.4) consists of inserting and reinserting this
equation su¢ ciently often. Doing it three times gives

x1 = ax0;

x2 = ax1 = a2x0;

x3 = ax2 = a3x0:

When we look at this solution for t = 3 long enough, we see that the general solution is

xt = atx0: (2.5.5)

This could formally be proven by either induction or by veri�cation. In this context, we
can make use of the following

De�nition 2.5.1 A solution of a di¤erence equation is a function of time which, when
inserted into the original di¤erence equation, satis�es this di¤erence equation.

Equation (2.5.5) gives x as a function of time t only. Verifying that it is a solution
indeed just requires inserting it twice into (2.5.4) to see that it satis�es the original
di¤erence equation.

� Examples for solutions

The sequence of xt given by this solution, given di¤erent initial conditions x0; are shown
in the following �gure for a > 1: The parameter values chosen are a = 2, x0 2 f0:5; 1; 2g
and t runs from 0 to 10.
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Figure 2.5.1 Solutions to a di¤erence equation for a > 1
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� Long-term behaviour

We can now ask whether xt approaches a constant when time goes to in�nity. This
gives

lim
t�!1

xt = x0 lim
t�!1

at =

8<:
0
x0
1

9=;,
8<:
0 < a < 1
a = 1
a > 1

:

Hence, xt approaches a constant only when a < 1: For a = 1; it stays at its initial value
x0:

� A graphical analysis
For more complex di¤erence equations, it often turns out to be useful to analyze

their behaviour in a phase diagram. Even though this simple di¤erence equation can be
understood easily analytically, we will illustrate its properties in the following �gure. Here
as well, this allows us to understand how analyses of this type can also be undertaken for
more complex di¤erence equations.
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Figure 2.5.2 A phase diagram for a < 1 on the left and a > 1 in the right panel

The principle of a phase diagram is simple. The horizontal axis plots xt; the vertical
axis plots xt+1: There is a 45� line which serves to equate xt to xt+1 and there is a plot of
the di¤erence equation we want to understand. In our current example, we plot xt+1 as
axt into the �gure. Now start with some initial value x0 and plot this on the horizontal
axis as in the left panel. The value for the next period, i.e. for period 1; can then be read
o¤ the vertical axis by looking at the graph of axt: This value for x1 is then copied onto
the horizontal axis by using the 45� line. Once on the horizontal axis, we can again use
the graph of axt to compute the next xt+1: Continuing to do so, the left panel shows how
xt evolves over time, starting at x0: In this case of a < 1; we see how xt approaches zero.
When we graphically illustrate the case of a > 1; the evolution of xt is as shown in the
right panel.
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2.5.3 A slightly less but still simple di¤erence equation

We now consider a slightly more general di¤erence equation. Compared to (2.5.4), we
just add a constant b in each period,

xt+1 = axt + b; a > 0: (2.5.6)

We can plot phase diagrams for this di¤erence equation for di¤erent parameter values.
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Figure 2.5.3 Phase diagrams of (2.5.6) for positive (left panel) and negative b (right
panel) and higher a in the right panel

We will work with them shortly.

� Solving by substitution

We solve again by substituting. In contrast to the solution for (2.5.4), we start from
an initial value of xt. Hence, we imagine we are in t (t as today) and compute what the
level of x will be tomorrow and the day after tomorrow etc. We �nd for xt+2 and xt+3
that

xt+2 = axt+1 + b = a [axt + b] + b = a2xt + b [1 + a] ;

xt+3 = a3xt + b
�
1 + a+ a2

�
:

This suggests that the general solution is of the form

xt+n = anxt + b�n�1i=0 a
i = anxt + b

an � 1
a� 1 :

The last equality used the �rst lemma from ch. 2.5.1.
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� Limit for n �!1 and a < 1

The limit for n going to in�nity and a < 1 is given by

lim
n�!1

xt+n = lim
n�!1

anxt + b
an � 1
a� 1 =

b

1� a: (2.5.7)

� A graphical analysis

The left panel in �g. 2.5.3 studies the evolution of xt for the stable case, i.e. where
0 < a < 1 and b > 0: Starting today in t with xt; we end up in x�. As we chose a smaller
than one and a positive b; x� is positive as (2.5.7) shows. We will return to the right panel
in a moment.

2.5.4 Fix points and stability

� De�nitions

We can use these examples to de�ne two concepts that will also be useful at later
stages.

De�nition 2.5.2 (Fixpoint) A �xpoint x� of a function f (x) is de�ned by

x� = f (x�) : (2.5.8)

For di¤erence equations of the type xt+1 = f (xt) ; the �xpoint x� of the function
f (xt) is also the point where x stays constant, i.e. xt+1 = xt. This is usually called the
long-run equilibrium point of some economy or its steady or stationary state. Whenever
an economic model, represented by its reduced form, is analyzed, it is generally useful to
�rst try and �nd out whether �xpoints exist and what their economic properties are. For
the di¤erence equation from the last section, we obtain

xt+1 = xt � x� , x� = ax� + b, x� =
b

1� a:

Once a �xpoint has been identi�ed, one can ask whether it is stable.

De�nition 2.5.3 (Global stability) A �xpoint x� is globally stable if, starting from an
initial value x0 6= x�; xt converges to x�.

The concept of global stability usually refers to initial values x0 that are economically
meaningful. An initial physical capital stock that is negative would not be considered to
be economically meaningful.
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De�nition 2.5.4 (Local stability and instability) A �xpoint x� is
�

unstable
locally stable

�
if,

starting from an initial value x� + "; where " is small, xt

�
diverges from
converges to

�
x�.

For illustration purposes consider the �xpoint x� in the left panel of �g. 2.5.3 - it is
globally stable. In the right panel of the same �gure, it is unstable. As can easily be seen,
the instability follows by simply letting the xt+1 line intersect the 45�-line from below. In
terms of the underlying di¤erence equation (2.5.6), this requires b < 0 and a > 1:
Clearly, economic systems can be much more complex and generate several �xpoints.

Imagine the link between xt+1 and xt is not linear as in (2.5.6) but nonlinear, xt+1 = f (xt) :
Unfortunately for economic analysis, a nonlinear relationship is the much more realistic
case. The next �gure provides an example for some function f (xt) that implies an unstable
x�u and a locally stable �xpoint x

�
s.
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Figure 2.5.4 A locally stable �xpoint x�s and an unstable �xpoint x
�
u

2.5.5 An example: Deriving a budget constraint

A frequently encountered di¤erence equation is the budget constraint. We have worked
with budget constraints at various points before but we have hardly thought about their
origin. We more or less simply wrote them down. Budget constraints, however, are tricky
objects, at least when we think about general equilibrium setups. What is the asset we
save in? Is there only one asset or are there several? What are the prices of these assets?
How does it relate to the price of the consumption good, i.e. do we express the value of
assets in real or nominal terms?
This section will derive a budget constraint. We assume that there is only one asset.

The price of one unit of the asset will be denoted by vt: Its relation to the price pt
of the consumption good will be left unspeci�ed, i.e. we will discuss the most general
setup which is possible for the one-asset case. The derivation of a budget constraint is in
principle straightforward. One de�nes the wealth of the household (taking into account
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which types of assets the household can hold for saving purposes and what their prices
are), computes the di¤erence between wealth �today�and �tomorrow�(this is where the
di¤erence equation aspect comes in) and uses an equation which relates current savings
to current changes in the number of assets. In a �nal step, one will naturally �nd out how
the interest rate appearing in budget constraints relates to more fundamental quantities
like value marginal products and depreciation rates.

� A real budget constraint

The budget constraint which results depends on the measurement of wealth. We start
with the case where we measure wealth in units of share, or �number of machines� kt:
Savings of a household who owns kt shares are given by capital income (net of depreciation
losses) plus labour income minus consumption expenditure,

st � wKt kt � �vtkt + wLt � ptct:

This is an identity resulting from bookkeeping of �ows at the household level. Savings in
t are used for buying new assets in t for which the period-t price vt needs to be paid,

st
vt
= kt+1 � kt: (2.5.9)

We can rewrite this equation slightly, which will simplify the interpretation of subsequent
results, as

kt+1 = (1� �) kt +
wKt kt + wLt � ptct

vt
:

Wealth in the next period expressed in number of stocks (and hence not in nominal terms)
is given by wealth which is left over from the current period, (1� �) kt, plus new acqui-
sitions of stocks which amount to gross capital plus labour income minus consumption
expenditure divided by the price of one stock. Collecting the kt terms and de�ning an
interest rate

rt �
wKt
vt
� �

gives a budget constraint for wealth measured by kt;

kt+1 =

�
1 +

wKt
vt
� �
�
kt +

wLt
vt
� pt
vt
ct = (1 + rt) kt +

wLt
vt
� pt
vt
ct: (2.5.10)

This is a di¤erence equation in kt but not yet a di¤erence equation in nominal wealth at:
Rearranging such that expenditure is on the left- and disposable income on the right-

hand side yields
ptct + vtkt+1 = vtkt +

�
wKt � vt�

�
kt + wLt :

This equation also lends itself to a simple interpretation: On the left-hand side is total
expenditure in period t; consisting of consumption expenditure ptct plus expenditure for
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buying the number of capital goods, kt+1, the household wants to hold in t + 1: As this
expenditure is made in t; total expenditure for capital goods amounts to vtkt+1. The right-
hand side is total disposable income which splits into income vtkt from selling all capital
�inherited�from the previous period, capital income

�
wKt � vt�

�
kt and labour income wLt :

This is the form budget constraints are often expressed in capital asset pricing models.
Note that this is in principle also a di¤erence equation in kt:

� A nominal budget constraint

In our one-asset case, nominal wealth at of a household is given by the number kt of
stocks the household owns (say the number of machines it owns) times the price vt of one
stock (or machine), at = vtkt: Computing the �rst di¤erence yields

at+1 � at = vt+1kt+1 � vtkt
= vt+1 (kt+1 � kt) + (vt+1 � vt) kt; (2.5.11)

where the second line added vt+1kt � vt+1kt. Wealth changes depend on the acquisition
vt+1 (kt+1 � kt) of new assets and on changes in the value of assets that are already held,
(vt+1 � vt) kt. Inserting (2.5.9) into (2.5.11) yields

at+1 � at =
vt+1
vt

st + (vt+1 � vt) kt

=
vt+1
vt

�
wKt
vt
at � �at + wLt � ptct

�
+

�
vt+1
vt
� 1
�
at ,

at+1 =
vt+1
vt

��
1 +

wKt
vt
� �
�
at + wLt � ptct

�
: (2.5.12)

What does this equation tell us? Each unit of wealth at (say Euro, Dollar, Yen ...) gives 1�
� units at the end of the period as �% is lost due to depreciation plus �dividend payments�
wKt =vt. Wealth is augmented by labour income minus consumption expenditure. This
end-of-period wealth is expressed in wealth at+1 at the beginning of the next period by
dividing it through vt (which gives the number kt of stocks at the end of the period) and
multiplying it by the price vt+1 of stocks in the next period. We have thereby obtained a
di¤erence equation in at:
This general budget constraint is fairly complex, however, which implies that in prac-

tice it is often expressed di¤erently. One possibility consists of choosing the capital good
as the numeraire good and setting vt � 1 8t: This simpli�es (2.5.12) to

at+1 = (1 + rt) at + wLt � ptct: (2.5.13)

The simpli�cation in this expression consists also in the de�nition of the interest rate rt
as rt � wKt � �:
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2.6 Further reading and exercises

Rates of substitution are discussed in many books on Microeconomics; see e.g. Mas-Colell,
Whinston and Green (1995) or Varian (1992). The de�nition of the time preference rate is
not very explicit in the literature. An alternative formulation implying the same de�nition
as the one we use here is used by Buiter (1981, p. 773). He de�nes the pure rate of time
preference as �the marginal rate of substitution between consumption� in two periods
�when equal amounts are consumed in both periods, minus one.� A derivation of the
time preference rate for a two-period model is in appendix A.1 of Bossmann, Kleiber and
Wälde (2007).
The OLGmodel goes back to Samuelson. For presentations in textbooks, see e.g. Blan-

chard and Fischer (1989), Azariadis (1993) or de la Croix and Michel (2002). Applications
of OLG models are more than numerous. For an example concerning bequests and wealth
distributions, see Bossmann, Kleiber and Wälde (2007). See also Galor and Moav (2006)
and Galor and Zeira (1993).
The presentation of the Lagrangian is inspired by Intriligator (1971, p. 28 - 30). Treat-

ments of shadow prices are available in many other textbooks (Dixit, 1989, ch. 4; Intrili-
gator, 1971, ch. 3.3). More extensive treatments of di¤erence equations and the implicit
function theorem can be found in many introductory �mathematics for economists�books.
There is an interesting discussion on the empirical relevance of exponential discount-

ing. An early analysis of the implications of non-exponential discounting is by Strotz
(1955/56). An overview is provided by Frederick et al. (2002). An analysis using sto-
chastic continuous time methods is by Gong et al. (2007).
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Exercises chapter 2
Applied Intertemporal Optimization

Optimal consumption in two-period discrete time models

1. Optimal choice of household consumption
Consider the following maximization problem,

max
ct;ct+1

Ut = v (ct) +
1

1 + �
v (ct+1) (2.6.1)

subject to
wt + (1 + r)�1wt+1 = ct + (1 + r)�1 ct+1:

Solve it by using the Lagrangian.

(a) What is the optimal consumption path?

(b) Under what conditions does consumption rise?

(c) Show that the �rst-order conditions can be written as u0 (ct) =u0 (ct+1) = � [1 + r] :
What does this equation tell you?

2. Solving by substitution
Consider the maximization problem of section 2.2.1 and solve it by inserting. Solve
the constraint for one of the control variables, insert this into the objective function
and compute �rst-order conditions. Show that the same results as in (2.2.4) and
(2.2.5) are obtained.

3. Capital market restrictions
Now consider the following budget constraint. This is a budget constraint that
would be appropriate if you want to study the education decisions of households.
The parameter b amounts to schooling costs. Inheritance of this individual under
consideration is n.

Ut = 
 ln ct + (1� 
) ln ct+1
subject to

�b+ n+ (1 + r)�1wt+1 = ct + (1 + r)�1 ct+1:

(a) What is the optimal consumption pro�le under no capital market restrictions?

(b) Assume loans for �nancing education are not available, hence savings need to
be positive, st � 0. What is the consumption pro�le in this case?
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4. Optimal investment
Consider a monopolist investing in its technology. Technology is captured by mar-
ginal costs ct. The chief accountant of the �rm has provided the manager of the
�rm with the following information,

� = �1 +R�2; �t = p (xt)xt � ctxt � It; ct+1 = ct � f (I1) :

Assume you are the manager. What is the optimal investment sequence I1, I2?

5. A particular utility function
Consider the utility function U = ct + �ct+1; where 0 < � < 1: Maximize U subject
to an arbitrary budget constraint of your choice. Derive consumption in the �rst
and second period. What is strange about this utility function?

6. Intertemporal elasticity of substitution
Consider the utility function U = c1��t + �c1��t+1 :

(a) What is the intertemporal elasticity of substitution?

(b) How can the de�nition in (2.2.8) of the elasticity of substitution be transformed
into the maybe better known de�nition

�ij =
d ln (ci=cj)

d ln
�
ucj=uci

� = pj=pi
ci=cj

d (ci=cj)

d (pj=pi)
?

What does �ij stand for in words?

7. An implicit function
Consider the constraint x2 � x�1 � x1 = b.

(a) Convince yourself that this implicitly de�nes a function x2 = h (x1) : Can the
function h (x1) be made explicit?

(b) Convince yourself that this implicitly de�nes a function x1 = k (x2) : Can the
function k (x2) be made explicit?

(c) Think of a constraint which does not de�ne an implicit function.

8. General equilibrium
Consider the Diamond model for a Cobb-Douglas production function of the form
Yt = K�

t L
1�� and a logarithmic utility function u = ln cyt + � ln cot+1.

(a) Derive the di¤erence equation for Kt:

(b) Draw a phase diagram.

(c) What are the steady state consumption level and capital stock?
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9. Sums

(a) Proof the statement of the second lemma in ch. 2.5.1,

�Ti=1ia
i =

1

1� a

�
a
1� aT
1� a � Ta

T+1

�
:

The idea is identical to the �rst proof in ch. 2.5.1.

(b) Show that

�k�1s=0c
k�1�s
4 �s =

ck4 � �k
c4 � �

:

Both parameters obey 0 < c4 < 1 and 0 < v < 1: Hint: Rewrite the sum as
ck�14 �k�1s=0 (�=c4)

s and observe that the �rst lemma in ch. 2.5.1 holds for a which
are larger or smaller than 1.

10. Di¤erence equations
Consider the following linear di¤erence equation system

yt+1 = a yt + b; a < 0 < b;

(a) What is the �xpoint of this equation?

(b) Is this point stable?

(c) Draw a phase diagram.
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Chapter 3

Multi-period models

This chapter looks at decision processes where the time horizon is longer than two periods.
In most cases, the planning horizon will be in�nity. In such a context, Bellman�s optimality
principle is very useful. Is it, however, not the only way to solve maximization problems
with in�nite time horizon? For comparison purposes, we therefore start with the Lagrange
approach, as in the last section. Bellman�s principle will be introduced afterwards when
intuition for the problem and relationships will have been increased.

3.1 Intertemporal utility maximization

3.1.1 The setup

The objective function is given by the utility function of an individual,

Ut = �
1
�=t�

��tu (c� ) ; (3.1.1)

where again as in (2.2.12)
� � (1 + �)�1 ; � > 0 (3.1.2)

is the discount factor and � is the positive time preference rate. We know this utility
function already from the de�nition of the time preference rate, see (2.2.12). The util-
ity function is to be maximized subject to a budget constraint. The di¤erence to the
formulation in the last section is that consumption does not have to be determined for
two periods only but for in�nitely many. Hence, the individual does not choose one or
two consumption levels but an entire path of consumption. This path will be denoted by
fc�g : As � � t; fc�g is a short form of fct; ct+1; :::g : Note that the utility function is a
generalization of the one used above in (2.1.1), but is assumed to be additively separable.
The corresponding two period utility function was used in exercise set 1, cf. equation
(2.6.1).
The budget constraint can be expressed in the intertemporal version by

�1�=t (1 + r)
�(��t) e� = at + �

1
�=t (1 + r)

�(��t)w� ; (3.1.3)

45
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where e� = p�c� : It states that the present value of expenditure equals current wealth
at plus the present value of labour income w� . Labour income w� and the interest rate
r are exogenously given to the household, its wealth level at is given by history. The
only quantity that is left to be determined is therefore the path fc�g : Maximizing (3.1.1)
subject to (3.1.3) is a standard Lagrange problem.

3.1.2 Solving by the Lagrangian

The Lagrangian reads

L = �1�=t���tu (c� ) + �
h
�1�=t (1 + r)

�(��t) e� � at � �1�=t (1 + r)
�(��t)w�

i
;

where � is the Lagrange multiplier. First-order conditions are

Lc� = ���tu0 (c� ) + � [1 + r]�(��t) p� = 0; t � � <1; (3.1.4)

L� = 0; (3.1.5)

where the latter is, as in the OLG case, the budget constraint. Again, we have as many
conditions as variables to be determined: there are in�nitely many conditions in (3.1.4),
one for each c� and one condition for � in (3.1.5).
Do these �rst-order conditions tell us something? Take the �rst-order condition for

period � and for period � + 1. They read

���tu0 (c� ) = �� [1 + r]�(��t) p� ;
��+1�tu0 (c�+1) = �� [1 + r]�(�+1�t) p�+1:

Dividing them gives

��1
u0 (c� )

u0 (c�+1)
= (1 + r)

p�
p�+1

, u0 (c� )

�u0 (c�+1)
=

p�

(1 + r)�1 p�+1
: (3.1.6)

Rearranging allows us to see an intuitive interpretation: Comparing the instantaneous
gain in utility u0 (c� ) with the future gain, discounted at the time preference rate, �u0 (c�+1) ;
must yield the same ratio as the price p� that has to be paid today relative to the price
that has to be paid in the future, also appropriately discounted to its present value price
(1 + r)�1 p�+1: This interpretation is identical to the two-period interpretation in (2.2.6)
in ch. 2.2.2. If we normalize prices to unity, (3.1.6) is just the expression we obtained in
the solution for the two-period maximization problem in (2.6.1).

3.2 The envelope theorem

We saw how the Lagrangian can be used to solve optimization problems with many
time periods. In order to understand how dynamic programming works, it is useful to
understand a theorem which is frequently used when employing the dynamic programming
method: the envelope theorem.
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3.2.1 The theorem

In general, the envelope theorem says

Theorem 3.2.1 Let there be a function g (x; y) : Choose x such that g (:) is maximized
for a given y: (Assume g (:) is such that a smooth interior solution exists.) Let f(y) be
the resulting function of y;

f (y) � max
x

g (x; y) :

Then the derivative of f with respect to y equals the partial derivative of g with respect to
y, if g is evaluated at that x = x(y) that maximizes g;

d f (y)

d y
=
@ g (x; y)

@ y

����
x=x(y)

:

Proof. f (y) is constructed by @
@x
g (x; y) = 0: This implies a certain x = x (y) ;

provided that second order conditions hold. Hence, f (y) = maxx g (x; y) = g (x (y) ; y) :

Then, d f(y)
d y

= @ g(x(y);y)
@ x

d x(y)
d y

+ @ g(x(y);y)
@ y

: The �rst term of the �rst term is zero.

3.2.2 Illustration

The plane depicts the function g (x; y). The maximum of this function with respect to x
is shown as maxxg (x; y), which is f (y). Given this �gure, it is obvious that the derivative
of f (y) with respect to y is the same as the partial derivative of g (:) with respect to y
at the point where g (:) has its maximum with respect to x: The partial derivative @g

@y

is the derivative when �going in the direction of y�. Choosing the highest point of g (:)
with respect to x, this directional derivative must be the same as df(y)

dy
at the back of the

�gure.
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Figure 3.2.1 Illustrating the envelope theorem

3.2.3 An example

There is a central planner of an economy. The social welfare function is given by U (A;B),
where A and B are consumption goods. The technologies available for producing these
goods are A = A (cLA) and B = B (LB) : The amount of labour used for producing one
or the other good is denoted by LA and LB and c is a productivity parameter in sector
A: The economy�s resource constraint is LA + LB = L:

The planner is interested in maximizing the social welfare level and allocates labour
according to maxLA U (A (cLA) ; B (L� LA)) : The optimality condition is

@U

@A
A
0
c� @U

@B
B

0
= 0: (3.2.1)

This makes optimal employment LA a function of c,

LA = LA (c) : (3.2.2)

The central planner now asks what happens to the social welfare level when the tech-
nology parameter c increases and she still maximizes the social welfare. The latter requires
that (3.2.1) continues to hold and the maximized social welfare function with (3.2.2) and
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the resource constraint reads U (A (cLA (c)) ; B (L� LA (c))). Without using the envelope
theorem, the answer is

d

dc
U (A (cLA (c)) ; B (L� LA (c)))

=
@U (:)

@A
A
0
[LA (c) + cL0A (c)] +

@U (:)

@B
B

0
[�L0A (c)] =

@U (:)

@A
A
0
LA (c) > 0;

where the last equality follows from inserting the optimality condition (3.2.1). Economi-
cally, this result means that the e¤ect of better technology on overall welfare is given by
the direct e¤ect in sector A: The indirect e¤ect through the reallocation of labour vanishes
as, due to the �rst-order condition (3.2.1), the marginal contribution of each worker is
identical across sectors. Clearly, this only holds for a small change in c:
If one is interested in �nding an answer by using the envelope theorem, one would

start by de�ning a function V (c) � maxLA U (A (cLA) ; B (L� LA)) : Then, according to
the envelope theorem,

d

dc
V (c) =

@

@c
U (A (cLA) ; B (L� LA))

����
LA=LA(c)

=
@U (:)

@A
A
0
LA

����
LA=LA(c)

=
@U (:)

@A
A
0
LA (c) > 0:

Apparently, both approaches yield the same answer. Applying the envelope theorem gives
the answer faster.

3.3 Solving by dynamic programming

3.3.1 The setup

We will now get to know how dynamic programming works. Let us study a maximization
problem which is similar to the one in ch. 3.1.1. We will use the same utility function as in
(3.1.1), reproduced here for convenience, Ut = �1�=t�

��tu (c� ). The constraint, however,
will be represented in a more general way than in (3.1.3). We stipulate that there is a
variable xt which evolves according to

xt+1 = f (xt; ct) : (3.3.1)

This variable xt could represent wealth and this constraint could then represent the budget
constraint of the household. This di¤erence equation could also be non-linear, however,
as for example in a central planner problem where the constraint is a resource constraint
as in (3.9.3). In this case, xt would stand for capital. Another standard example for xt as
a state variable would be environmental quality. Here we will treat the general case �rst
before we go on to more speci�c examples further below.
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The consumption level ct and - more generally speaking - other variables whose value
is directly chosen by individuals, e.g. investment levels or shares of wealth held in di¤erent
assets, are called control variables. Variables which are not under the direct control of
individuals are called state variables. In many maximization problems, state variables
depend indirectly on the behaviour of individuals as in (3.3.1). State variables can also
be completely exogenous like for example the TFP level in an exogenous growth model
or prices in a household maximization problem.
Optimal behaviour is de�ned by maxfc�g Ut subject to (3.3.1), i.e. the highest value

Ut can reach by choosing a sequence fc�g � fct; ct+1; :::g and by satisfying the constraint
(3.3.1). The value of this optimal behaviour or optimal program is denoted by

V (xt) � max
fc�g

Ut subject to xt+1 = f (xt;ct) : (3.3.2)

V (xt) is called the value function. It is a function of the state variable xt and not of the
control variable ct. The latter point is easy to understand if one takes into account that
the control variable ct is, when behaving optimally, a function of the state variable xt:
The value function V (:) could also be a function of time t (e.g. in problems with �nite

horizon). Generally speaking, xt and ct could be vectors and time could then be part of
the state vector xt: The value function is always a function of the states of the system or
of the maximization problem.

3.3.2 Three dynamic programming steps

Given this description of the maximization problem, solving by dynamic programming
essentially requires us to go through three steps. This three-step approach will be followed
here, later in continuous time, and also in models with uncertainty.

� DP1: Bellman equation and �rst-order conditions

The �rst step establishes the Bellman equation and computes �rst-order conditions.
The objective function Ut in (3.1.1) is additively separable which means that it can be
written in the form

Ut = u(ct) + �Ut+1: (3.3.3)

Bellman�s idea consists of rewriting the maximization problem in the optimal program
(3.3.2) as

V (xt) � max
ct
fu(ct) + �V (xt+1)g (3.3.4)

subject to
xt+1 = f (xt; ct) :

Equation (3.3.4) is known as the Bellman equation. In this equation, the problem
with potentially in�nitely many control variables fc�g was broken down in many problems
with one control variable ct. Note that there are two steps involved: First, the additive



3.3. Solving by dynamic programming 51

separability of the objective function is used. Second, more importantly, Ut+1 is replaced
by V (xt+1). This says that we assume that the optimal problem for tomorrow is solved
and we should worry about the maximization problem of today only.
We can now compute the �rst-order condition which is of the form

u0 (ct) + �V 0 (xt+1)
@f (xt; ct)

@ct
= 0: (3.3.5)

It tells us that increasing consumption ct has advantages and disadvantages. The advan-
tages consist in higher utility today, which is re�ected here by marginal utility u0 (ct) : The
disadvantages come from lower overall utility - the value function V - tomorrow. The re-
duction in overall utility amounts to the change in xt+1; i.e. the derivative @f (xt; ct) =@ct;
times the marginal value of xt+1; i.e. V 0 (xt+1) : As the disadvantage arises only tomorrow,
this is discounted at the rate �: One can talk of a disadvantage of higher consumption
today on overall utility tomorrow as the derivative @f (xt; ct) =@ct needs to be negative,
otherwise an interior solution as assumed in (3.3.5) would not exist.
In principle, this is the solution of our maximization problem. Our control variable

ct is by this expression implicitly given as a function of the state variable, ct = c (xt) ; as
xt+1 by the constraint (3.3.1) is a function of xt and ct. As all state variables in t are
known, the control variable is determined by this optimality condition. Hence, as V is
well-de�ned above, we have obtained a solution.
As we know very little about the properties of V at this stage, however, we need to go

through two further steps in order to eliminate V (to be precise, its derivative V 0 (xt+1) ;
i.e. the costate variable of xt+1) from this �rst-order condition and obtain a condition
that uses only functions (like e.g. the utility function or the technology for production in
later examples) of which properties like signs of �rst and second derivatives are known.
We obtain more information about the evolution of this costate variable in the second
dynamic programming step.

� DP2: Evolution of the costate variable

The second step of the dynamic programming approach starts from the �maximized
Bellman equation�. The maximized Bellman equation is obtained by replacing the control
variables in the Bellman equation, i.e. the ct in (3.3.4), in the present case, by the optimal
control variables as given by the �rst-order condition, i.e. by c (xt) resulting from (3.3.5).
Logically, the max operator disappears (as we insert the c (xt) which imply a maximum)
and the maximized Bellman equation reads

V (xt) = u (c (xt)) + �V (f (xt; c(xt))) :

The derivative with respect to xt reads

V 0 (xt) = u0 (c (xt))
dc (xt)

dxt
+ �V 0 (f (xt; c (xt)))

�
fxt + fc

dc (xt)

dxt

�
:
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This step shows why it is important that we use the maximized Bellman equation here:
Now control variables are a function of state variable and we need to compute the deriv-
ative of ct with respect to xt when computing the derivative of the value function V (xt) :
Inserting the �rst-order condition simpli�es this equation to

V 0 (xt) = �V 0 (f (xt; ct (xt))) fxt = �V 0 (xt+1) fxt (3.3.6)

This equation is a di¤erence equation for the costate variable, the derivative of the
value function with respect to the state variable, V 0 (xt). The costate variable is also
called the shadow price of the state variable xt: If we had more state variables, there
would be a costate variable for each state variable. It says how much an additional unit
of the state variable (say e.g. of wealth) is valued: As V (xt) gives the value of optimal
behaviour between t and the end of the planning horizon, V 0 (xt) says by how much this
value changes when xt is changed marginally. Hence, equation (3.3.6) describes how the
shadow price of the state variable changes over time when the agent behaves optimally.
If we had used the envelope theorem, we would have immediately ended up with (3.3.6)
without having to insert the �rst-order condition.

� DP3: Inserting �rst-order conditions

Now insert the �rst-order condition (3.3.5) twice into (3.3.6) to replace the unknown
shadow price and to �nd an optimality condition depending on u� only. This will then be
the Euler equation. We do not do this here explicitly as many examples will go through
this step in detail in what follows.

3.4 Examples

3.4.1 Intertemporal utility maximization with a CES utility func-
tion

The individual�s budget constraint is given in the dynamic formulation

at+1 = (1 + rt) (at + wt � ct) : (3.4.1)

Note that this dynamic formulation corresponds to the intertemporal version in the sense
that (3.1.3) implies (3.4.1) and (3.4.1) with some limit condition implies (3.1.3). This will
be shown formally in ch. 3.5.1.
The budget constraint (3.4.1) can be found in many papers and also in some textbooks.

The timing as implicit in (3.4.1) is illustrated in the following �gure. All events take place
at the beginning of the period. Our individual owns a certain amount of wealth at at the
beginning of t and receives here wage income wt and spends ct on consumption also at
the beginning. Hence, savings st can be used during t for production and interest is paid
on st which in turn gives at+1 at the beginning of period t+ 1.
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t t +1

ct +1ct

( )a r st t t+ = +1 1s a w ct t t t= + −

Figure 3.4.1 The timing in an in�nite horizon discrete time model

The consistency of (3.4.1) with technologies in general equilibrium is not self-evident.
We will encounter more conventional budget constraints of the type (2.5.13) further below.
As (3.4.1) is widely used, however, we now look at dynamic programming methods and
take this budget constraint as given.
The objective of the individual is to maximize her utility function (3.1.1) subject to the

budget constraint by choosing a path of consumption levels ct; denoted by fc�g ; � 2 [t;1] :
We will �rst solve this with a general instantaneous utility function and then insert the
CES version of it, i.e.

u (c� ) =
c1��� � 1
1� � : (3.4.2)

The value of the optimal program fc�g is, given its initial endowment with at, de�ned as
the maximum which can be obtained subject to the constraint, i.e.

V (at) � max
fc�g

Ut (3.4.3)

subject to (3.4.1). It is called the value function. Its only argument is the state variable
at: See ch. 3.4.2 for a discussion on state variables and arguments of value functions.

� DP1: Bellman equation and �rst-order conditions

We know that the utility function can be written as Ut = u (ct) + �Ut+1: Now assume
that the individual behaves optimally as from t+1: Then we can insert the value function.
The utility function reads Ut = u (ct) + �V (at+1) : Inserting this into the value function,
we obtain the recursive formulation

V (at) = max
ct
fu (ct) + �V (at+1)g ; (3.4.4)

known as the Bellman equation.
Again, this breaks down a many-period problem into a two-period problem: The

objective of the individual was maxfc�g (3.1.1) subject to (3.4.1), as shown by the value
function in equation (3.4.3). The Bellman equation (3.4.4), however, is a two period
decision problem, the trade-o¤ between consumption today and more wealth tomorrow
(under the assumption that the function V is known). This is what is known as Bellman�s
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principle of optimality: Whatever the decision today, subsequent decisions should be made
optimally, given the situation tomorrow. History does not count, apart from its impact
on the state variable(s).
We now derive a �rst-order condition for (3.4.4). It reads

d

dct
u (ct) + �

d

dct
V (at+1) = u0 (ct) + �V 0 (at+1)

dat+1
dct

= 0:

Since dat+1=dct = � (1 + rt) by the budget constraint (3.4.1), this gives

u0 (ct)� � (1 + rt)V 0 (at+1) = 0: (3.4.5)

Again, this equation makes consumption a function of the state variable, ct = ct (at) :
Following the �rst-order condition (3.3.5) in the general example, we wrote ct = c (xt) ;
i.e. consumption ct changes only when the state variable xt changes. Here, we write
ct = ct (at) ; indicating that there can be other variables which can in�uence consumption
other than wealth at: An example for such an additional variable in our setup would be
the wage rate wt or interest rate rt; which after all is visible in the �rst-order condition
(3.4.5). See ch. 3.4.2 for a more detailed discussion of state variables.
Economically, (3.4.5) tells us as before in (3.3.5) that, under optimal behaviour, gains

from more consumption today are just balanced by losses from less wealth tomorrow.
Wealth tomorrow falls by 1 + rt, this is evaluated by the shadow price V 0 (at+1) and
everything is discounted by �:

� DP2: Evolution of the costate variable

Using the envelope theorem, the derivative of the maximized Bellman equation reads,

V 0 (at) = �V 0 (at+1)
@at+1
@at

: (3.4.6)

We compute the partial derivative of at+1 with respect to at as the functional relationship
of ct = ct (at) should not (because of the envelope theorem) be taken into account. See
exercise 2 on p. 71 on a derivation of (3.4.6) without using the envelope theorem.
From the budget constraint we know that @at+1

@at
= 1 + rt: Hence, the evolution of the

shadow price/ the costate variable under optimal behaviour is described by

V 0 (at) = � [1 + rt]V
0 (at+1) :

This is the analogon to (3.3.6).

� DP3: Inserting �rst-order conditions

Let us now be explicit about how to insert �rst-order conditions into this equation. We
can insert the �rst-order condition (3.4.5) on the right-hand side. We can also rewrite the
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�rst-order condition (3.4.5), by lagging it by one period, as � (1 + rt�1)V 0 (at) = u0 (ct�1)
and can insert this on the left-hand side. This gives

u0 (ct�1) �
�1 (1 + rt�1)

�1 = u0 (ct), u0 (ct) = � [1 + rt]u
0 (ct+1) : (3.4.7)

This is the same result as the one we obtained when we used the Lagrange method in
equation (3.1.6).
It is also the same result as for the two-period saving problem which we found in

OLG models - see e.g. (2.2.6) or (2.6.1) in the exercises. This might be surprising as
the planning horizons di¤er considerably between a two- and an in�nite-period decision
problem. Apparently, whether we plan for two periods or for many more, the change
between two periods is always the same when we behave optimally. It should be kept in
mind, however, that consumption levels (and not changes) do depend on the length of the
planning horizon.

� The CES and logarithmic version of the Euler equation

Let us now insert the CES utility function from (3.4.2) into (3.4.7). Computing mar-
ginal utility gives u0 (c� ) = c��� and we obtain a linear di¤erence equation in consumption,

ct+1 = (� [1 + rt])
1=� ct: (3.4.8)

Note that the logarithmic utility function u (c� ) = ln c� ; known for the two-period
setup from (2.2.1), is a special case of the CES utility function (3.4.2). Letting � approach
unity, we obtain

lim
�!1

u (c� ) = lim
�!1

c1��� � 1
1� � = ln c�

where the last step used L�Hôspital�s rule: The derivative of the numerator with respect
to � is

d

d�

�
c1��� � 1

�
=

d

d�

�
e(1��) ln c� � 1

�
= e(1��) ln c� (� ln c� ) = c1��� (� ln c� ) :

Hence,

lim
�!1

c1��� � 1
1� � = lim

�!1

c1��� (� ln c� )
�1 = ln c� : (3.4.9)

When the logarithmic utility function is inserted into (3.4.7), one obtains an Euler equa-
tion as in (3.4.8) with � set equal to one.

3.4.2 What is a state variable?

Dynamic programming uses the concept of a state variable. In the general version of
ch. 3.3, there is clearly only one state variable. It is xt and its evolution is described in
(3.3.1). In the economic example of ch. 3.4.1, the question of what is a state variable is
less obvious.
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In a strict formal sense, �everything� is a state variable. �Everything� means all
variables which are not control variables are state variables. This very broad view of state
variables comes from the simple de�nition that �everything (apart from parameters) which
determines control variables is a state variable�.

We can understand this view by looking at the explicit solution for the control variables
in the two-period example of ch. 2.2.1. We reproduce (2.2.3), (2.2.4) and (2.2.5) for ease
of reference,

Wt = wt + (1 + rt+1)
�1wt+1;

ct+1 = (1� 
) (1 + rt+1)Wt;

ct = 
Wt:

We did not use the terms control and state variable there but we could of course solve
this two-period problem by dynamic programming as well. Doing so would allow us to
understand why �everything�is a state variable. Looking at the solution for ct+1 shows
that it is a function of rt+1; wt and wt+1: If we want to make the statement that the
control variable is a function of the state variables, then clearly rt+1; wt and wt+1 are
state variables.

Generalizing this for our multi-period example from ch. 3.4.1, the entire paths of rt and
wt are state variables, in addition to wealth at: As we are in a deterministic world, we
know the evolution of variables rt and wt and we can reduce the path of rt and wt by the
levels of rt and wt plus the parameters of the process describing their evolution. Hence,
the broad view for state variables applied to ch. 3.4.1 requires us to use rt; wt; at as state
variables.

This broad (and ultimately correct) view of state variables is the reason why the �rst-
order condition (3.4.5) is summarized by ct = ct (at) : The index t captures all variables
which in�uence the solution for c apart from the explicit argument at:

In a more practical sense - as opposed to the strict sense - it is highly recommended
to consider only the variable which is indirectly a¤ected by the control variable as (the
relevant) state variable. Writing the value function as V = V (at; wt; rt) is possible but
highly cumbersome from a notational point of view. What is more, going through the
dynamic programming steps does not require more than at as a state variable as only the
shadow price of at is required to obtain an Euler equation and not the shadow price of wt
or rt. To remind us that more than just at has an impact on optimal controls, we should,
however, always write ct = ct (at) as a shortcut for ct = c (at; wt; rt; :::) :

The conclusion of all this, however, is more cautious: When encountering a new max-
imization problem and when there is uncertainty about how to solve it and what is a
state variable and what is not, it is always the best choice to include more rather than
less variables as arguments of the value function. Dropping some arguments afterwards
is simpler than adding additional ones.
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3.4.3 Optimal R&D e¤ort

In this second example, a research project has to be �nished at some future known point
in time T . This research project has a certain value at point T and we denote it by D
like dissertation. In order to reach this goal, a path of a certain length L needs to be
completed. We can think of L as a certain number of pages, a certain number of papers
or - probably better - a certain quality of a �xed number of papers. Going through this
process of walking and writing is costly, it requires e¤ort e� at each point in time � � t:
Summing over these cost - think of them as hours worked per day - eventually yields the
desired amount of pages,

�T�=tf (e� ) = L; (3.4.10)

where f(:) is the page of quality production function: More e¤ort means more output,
f 0(:) > 0; but any increase in e¤ort implies a lower increase in output, f 00(:) < 0:
The objective function of our student is given by

Ut = �T�tD � �T�=t���te� : (3.4.11)

The value of the completed dissertation is given by D and its present value is obtained by
discounting at the discount factor �: Total utility Ut stems from this present value minus
the present value of research cost e� . The maximization problem consists in maximizing
(3.4.11) subject to the constraint (3.4.10) by choosing an e¤ort path fe�g : The question
now arises how these costs are optimally spread over time. How many hours should be
worked per day?
An answer can be found by using the Lagrange-approach with (3.4.11) as the objective

function and (3.4.10) as the constraint. However, her we will use the dynamic program-
ming approach. Before we can apply it, we need to derive a dynamic budget constraint.
We therefore de�ne

Mt � �t�1�=1f(e� )

as the amount of the pages that have already been written by today. This then implies

Mt+1 �Mt = f(et): (3.4.12)

The increase in the number of completed pages between today and tomorrow depends on
e¤ort-induced output f (e� ) today. We can now apply the three dynamic programming
steps.

� DP1: Bellman equation and �rst-order conditions

The value function can be de�ned by V (Mt) � maxfe�g Ut subject to the constraint.
We follow the approach discussed in ch. 3.4.2 and explicitly use as state variable Mt only,
the only state variable relevant for derivations to come. In other words, we explicitly
suppress time as an argument of V (:) : The reader can go through the derivations by
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using a value function speci�ed as V (Mt; t) and �nd out that the same result will obtain.
The objective function Ut written recursively reads

Ut = �
�
�T�(t+1)D � ��1�T�=t���te�

�
= �

�
�T�(t+1)D � ��1

�
et + �

T
�=t+1�

��te�
��

= �
�
�T�(t+1)D � �T�=t+1���(t+1)e�

�
� et = �Ut+1 � et:

Assuming that the individual behaves optimally as from tomorrow, this reads Ut = �et+
�V (Mt+1) and the Bellman equation reads

V (Mt) = max
et
f�et + �V (Mt+1)g : (3.4.13)

The �rst-order condition is �1 + �V 0(Mt+1)
dMt+1

det
= 0; which, using the dynamic

budget constraint, becomes
1 = �V 0 (Mt+1) f

0 (et) : (3.4.14)

Again as in (3.3.5), implicitly and with (3.4.12), this equation de�nes a functional re-
lationship between the control variable and the state variable, et = e (Mt) : One unit
of additional e¤ort reduces instantaneous utility by 1 but increases the present value of
overall utility tomorrow by �V 0 (Mt+1) f

0 (et) :

� DP2: Evolution of the costate variable

To provide some variation, we will now go through the second step of dynamic pro-
gramming without using the envelope theorem. Consider the maximized Bellman equa-
tion, where we insert et = e (Mt) and (3.4.12) into the Bellman equation (3.4.13),

V (Mt) = �e (Mt) + �V (Mt + f(e (Mt))) :

The derivative with respect to Mt is

V 0 (Mt) = �e0 (Mt) + �V 0 (Mt + f(e (Mt)))
d [Mt + f (e (Mt))]

dMt

= �e0 (Mt) + �V 0 (Mt+1) [1 + f 0 (e (Mt)) e
0 (Mt)] :

Using the �rst-order condition (3.4.14) simpli�es this derivative to V 0 (Mt) = �V 0 (Mt+1) :
Expressed for t+ 1 gives

V 0 (Mt+1) = �V 0(Mt+2) (3.4.15)

� DP3: Inserting �rst-order conditions

The �nal step inserts the �rst-order condition (3.4.14) twice to replace V 0 (Mt+1) and
V 0 (Mt+2) ;

� �1(f 0(et))
�1 = (f 0(et+1))

�1 , f 0(et+1)

f 0(et)
= �: (3.4.16)

The interpretation of this Euler equation is now simple. As f 00(:) < 0 and � < 1; e¤ort
et increases under optimal behaviour, i.e. et+1 > et: Optimal writing of a dissertation
implies more work every day.
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� What about levels?

The optimality condition in (3.4.16) speci�es only how e¤ort e� changes over time, it
does not provide information on the level of e¤ort required every day. This is a property
of all expressions based on �rst-order conditions of intertemporal problems. They only
give information about changes of levels, not about levels themselves. However, the basic
idea for how to obtain information about levels can be easily illustrated.
Assume f (et) = e
t ; with 0 < 
 < 1: Then (3.4.16) implies (with t being replaced by

�) e
�1�+1=e

�1
� = � , e�+1 = ��1=(1�
)e� : Solving this di¤erence equation yields

e� = ��(��1)=(1�
)e1; (3.4.17)

where e1 is the (at this stage still) unknown initial e¤ort level. Starting in � = 1 on the
�rst day, inserting this solution into the intertemporal constraint (3.4.10) yields

�T�=1f
�
��(��1)=(1�
)e1

�
= �T�=1�

�(��1)
=(1�
)e
1 = L:

This gives us the initial e¤ort level as (the sum can be solved by using the proofs in
ch. 2.5.1)

e1 =

�
L

�T�=1�
�(��1)
=(1�
)

�1=

:

With (3.4.17), we have now also computed the level of e¤ort every day.
Behind these simple steps, there is a general principle. Modi�ed �rst-order conditions

resulting from intertemporal problems are di¤erence equations, see for example (2.2.6),
(3.1.6), (3.4.7) or (3.4.16) (or di¤erential equations when we work in continuous time
later). Any di¤erence (or also di¤erential) equation when solved gives a unique solution
only if an initial or terminal condition is provided. Here, we have solved the di¤erence
equation in (3.4.16) assuming some initial condition e1. The meaningful initial condition
then followed from the constraint (3.4.10). Hence, in addition to the optimality rule
(3.4.16), we always need some additional constraint which allows us to compute the level
of optimal behaviour. We return to this point when looking at problems in continuous
time in ch. 5.4.

3.5 On budget constraints

We have encountered two di¤erent (but related) types of budget constraints so far: dy-
namic ones and intertemporal ones. Consider the dynamic budget constraint derived in
(2.5.13) as an example. Using et � ptct for simplicity, it reads

at+1 = (1 + rt) at + wt � et: (3.5.1)

This budget constraint is called dynamic as it �only�takes what happens between the two
periods t and t + 1;into account. In contrast, an intertemporal budget constraint takes
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what happens between any starting period (usually t) and the end of the planning horizon
into account. In this sense, the intertemporal budget constraint is more comprehensive
and contains more information (as we will also see formally below whenever we talk about
the no-Ponzi game condition). An example for an intertemporal budget constraint was
provided in (3.1.3), replicated here for ease of reference,

�1�=t (1 + r)
�(��t) e� = at + �

1
�=t (1 + r)

�(��t)w� : (3.5.2)

3.5.1 From intertemporal to dynamic

We will now ask about the link between dynamic and intertemporal budget constraints.
Let us choose the simpler link to start with, i.e. the link from the intertemporal to the
dynamic version. As an example, take (3.5.2). We will now show that this intertemporal
budget constraint implies

at+1 = (1 + rt) (at + wt � ct) ; (3.5.3)

which was used before, for example in (3.4.1).
Write (3.5.2) for the next period as

�1�=t+1 (1 + r)
�(��t�1) e� = at+1 + �

1
�=t+1 (1 + r)

�(��t�1)w� : (3.5.4)

Express (3.5.2) as

et + �
1
�=t+1 (1 + r)

�(��t) e� = at + wt + �
1
�=t+1 (1 + r)

�(��t)w� ,
et + (1 + r)�1�1�=t+1 (1 + r)

�(��t�1) e� = at + wt + (1 + r)�1�1�=t+1 (1 + r)
�(��t�1)w� ,

�1�=t+1 (1 + r)
�(��t�1) e� = (1 + r) (at + wt � et) + �1�=t+1 (1 + r)

�(��t�1)w� :

Insert (3.5.4) and �nd the dynamic budget constraint (3.5.3).

3.5.2 From dynamic to intertemporal

Let us now ask about the link from the dynamic to the intertemporal budget constraint.
How can we obtain the intertemporal version of the budget constraint (3.5.1)?
Technically speaking, this simply requires us to solve a di¤erence equation: In order

to solve (3.5.1) recursively, we rewrite it as

at =
at+1 + et � wt

1 + rt
; at+i =

at+i+1 + et+i � wt+i
1 + rt+i

:
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Inserting su¢ ciently often yields

at =

at+2+et+1�wt+1
1+rt+1

+ et � wt
1 + rt

=
at+2 + et+1 � wt+1
(1 + rt+1) (1 + rt)

+
et � wt
1 + rt

=

at+3+et+2�wt+2
1+rt+2

+ et+1 � wt+1
(1 + rt+1) (1 + rt)

+
et � wt
1 + rt

=
at+3 + et+2 � wt+2

(1 + rt+2) (1 + rt+1) (1 + rt)
+

et+1 � wt+1
(1 + rt+1) (1 + rt)

+
et � wt
1 + rt

= ::: = lim
i!1

at+i
(1 + rt+i�1) � � � (1 + rt+1) (1 + rt)

+ �1i=0
et+i � wt+i

(1 + rt+i) � � � (1 + rt+1) (1 + rt)
:

The expression in the last line is hopefully instructive but somewhat cumbersome. We
can write it in a more concise way as

at = lim
i!1

at+i

�i�1s=0 (1 + rt+s)
+ �1i=0

et+i � wt+i
�is=0 (1 + rt+s)

where � indicates a product, i.e. �is=0 (1 + rt+i) = 1 + rt for i = 0 and �is=0 (1 + rt+i) =
(1 + rt+i) � � � (1 + rt) for i > 0: For i = �1; �is=0 (1 + rt+i) = 1 by de�nition.
Letting the limit be zero, a step explained in a second, we obtain

at = �
1
i=0

et+i � wt+i
�is=0 (1 + rt+s)

= �1�=t
e� � w�

���ts=0 (1 + rt+s)
� �1�=t

e� � w�
R�

where the last but one equality is substituted t+ i by � : We can write this as

�1�=t
e�
R�

= at + �
1
�=t

w�
R�

: (3.5.5)

With a constant interest rate, this reads

�1�=t (1 + r)
�(��t+1) e� = at + �

1
�=t (1 + r)

�(��t+1)w� : (3.5.6)

Equation (3.5.5) is the intertemporal budget constraint that results from a dynamic bud-
get constraint as speci�ed in (3.5.1) using the additional condition that
limi!1

at+i
�i�1s=0(1+rt+s)

= 0.
Note that the assumption that this limit is zero has a standard economic interpreta-

tion. It is usually called the no-Ponzi game condition. To understand the interpretation
more easily, just focus on the case of a constant interest rate. The condition then reads
limi!1 at+i= (1 + r)

i = 0: The term at+i= (1 + r)
i is the present value in t of wealth at+i

held in t+ i: The condition says that this present value must be zero.
Imagine an individual that �nances expenditure e� by increasing debt, i.e. by letting

at+i becoming more and more negative. This condition simply says that an individual�s
�long-run� debt level, i.e. at+i for i going to in�nity must not increase too quickly -
the present value must be zero. Similarly, the condition also requires that an individual
should not hold positive wealth in the long run whose present value is not zero. Note that
this condition is ful�lled , for example, for any constant debt or wealth level.
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3.5.3 Two versions of dynamic budget constraints

Note that we have also encountered two subspecies of dynamic budget constraints. The
one from (3.5.1) and the one from (3.5.3). The di¤erence between these two constraints is
due to more basic assumptions about the timing of events as was illustrated in �g.s 2.1.1
and 3.4.1.
These two dynamic constraints imply two di¤erent versions of intertemporal budget

constraints. The version from (3.5.1) leads to (3.5.6) and the one from (3.5.3) leads (with
a similar no-Ponzi game condition) to (3.5.2). Comparing (3.5.6) with (3.5.2) shows that
the present values on both sides of (3.5.6) discounts one time more than in (3.5.2). The
economic di¤erence again lies in the timing, i.e. whether we look at values at the beginning
or end of a period.
The budget constraint (3.5.1) is the �natural�budget constraint in the sense that it can

be derived easily as above in ch. 2.5.5 and in the sense that it easily aggregates to economy
wide resource constraints. We will therefore work with (3.5.1) and the corresponding
intertemporal version (3.5.6) in what follows. The reason for not working with them right
from the beginning is that the intertemporal version (3.5.2) has some intuitive appeal and
that its dynamic version (3.5.3) is widely used in the literature.

3.6 A decentralized general equilibrium analysis

We have so far analyzed maximization problems of households in partial equilibrium. In
two-period models, we have analyzed how households can be aggregated and what we
learn about the evolution of the economy as a whole. We will now do the same for in�nite
horizon problems.
As we did in ch. 2.4, we will �rst specify technologies. This shows what is technologi-

cally feasible in this economy. Which goods are produced, which goods can be stored for
saving purposes, is there uncertainty in the economy stemming from production processes?
Given these technologies, �rms maximize pro�ts. Second, household preferences are pre-
sented and the budget constraint of households is derived from the technologies presented
before. This is the reason why technologies should be presented before households are
introduced: budget constraints are endogenous and depend on knowledge of what house-
holds can do. Optimality conditions for households are then derived. Finally, aggregation
over households and an analysis of properties of the model using the reduced form follows.

3.6.1 Technologies

The technology is a simple Cobb-Douglas technology

Yt = AK�
t L

1��: (3.6.1)

Capital Kt and labour L is used with a given total factor productivity level A to produce
output Yt: This good can be used for consumption and investment and equilibrium on the
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goods market requires
Yt = Ct + It: (3.6.2)

Gross investment It is turned into net investment by taking depreciation into account,
Kt+1 = (1� �)Kt+ It: Taking these two equations together gives the resource constraint
of the economy,

Kt+1 = (1� �)Kt + Yt � Ct: (3.6.3)

As this constraint is simply a consequence of technologies and market clearing, it is
identical to the one used in the OLG setup in (2.4.9).

3.6.2 Firms

Firms maximize pro�ts by employing optimal quantities of labour and capital, given the
technology in (3.6.1). First-order conditions are

@Yt
@Kt

= wKt ;
@Yt
@L

= wLt (3.6.4)

as in (2.4.2), where we have again chosen the consumption good as numeraire.

3.6.3 Households

Preferences of households are described as in the intertemporal utility function (3.1.1).
As the only way households can transfer savings from one period to the next is by buying
investment goods, an individual�s wealth is given by the �number of machines� kt, she
owns. Clearly, adding up all individual wealth stocks gives the total capital stock, �Lkt =
Kt:Wealth kt increases over time if the household spends less on consumption than what
it earns through capital plus labour income, corrected for the loss in wealth each period
caused by depreciation,

kt+1 � kt = wKt kt � �kt + wLt � ct , kt+1 =
�
1 + wKt � �

�
kt + wLt � ct:

If we now de�ne the interest rate to be given by

rt � wKt � �; (3.6.5)

we obtain our budget constraint

kt+1 = (1 + rt) kt + wLt � ct: (3.6.6)

Note that the �derivation�of this budget constraint was simpli�ed in comparison to
ch. 2.5.5 as the price vt of an asset is, as we measure it in units of the consumption
good which is traded on the same �nal market (3.6.2), given by 1. More general budget
constraints will become pretty complex as soon as the price of the asset is not normalized.
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This complexity is needed when it comes e.g. to capital asset pricing - see further below
in ch. 9.3. Here, however, this simple constraint is perfect for our purposes.
Given the preferences and the constraint, the Euler equation for this maximization

problem is given by (see exercise 5)

u0 (ct) = � [1 + rt+1]u
0 (ct+1) : (3.6.7)

Structurally, this is the same expression as in (3.4.7). The interest rate, however, refers
to t + 1, due to the change in the budget constraint. Remembering that � = 1= (1 + �),
this shows that consumption increases as long as rt+1 > �.

3.6.4 Aggregation and reduced form

� Aggregation

To see that individual constraints add up to the aggregate resource constraint, we
simply need to take into account that individual income adds up to output, wKt Kt+w

L
t Lt =

Yt. Remember that we are familiar with the latter from (2.4.4). Now start from (3.6.6)
and use (3.6.5) to obtain,

Kt+1 = �Lkt+1 =
�
1 + wKt � �

�
�Lkt + wLt L� Ct = (1� �)Kt + Yt � Ct:

The optimal behaviour of all households taken together can be gained from (3.6.7)
by summing over all households. This is done analytically correctly by �rst applying the
inverse function of u0 to this equation and then summing individual consumption levels
over all households (see exercise 6 for details). Applying the inverse function again gives

u0 (Ct) = � [1 + rt+1]u
0 (Ct+1) ; (3.6.8)

where Ct is aggregate consumption in t:

� Reduced form

We now need to understand how our economy evolves in general equilibrium. Our �rst
equation is (3.6.8), telling us how consumption evolves over time. This equation contains
consumption and the interest rate as endogenous variables.
Our second equation is therefore the de�nition of the interest rate in (3.6.5) which we

combine with the �rst-order condition of the �rm in (3.6.4) to yield

rt =
@Yt
@Kt

� �: (3.6.9)

This equation contains the interest rate and the capital stock as endogenous variables.
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Our �nal equation is the resource constraint (3.6.3), which provides a link between
capital and consumption. Hence, (3.6.8), (3.6.9) and (3.6.3) give a system in three equa-
tions and three unknowns. When we insert the interest rate into the optimality condition
for consumption, we obtain as our reduced form

u0 (Ct) = �
h
1 + @Yt+1

@Kt+1
� �
i
u0 (Ct+1) ;

Kt+1 = (1� �)Kt + Yt � Ct:
(3.6.10)

This is a two-dimensional system of non-linear di¤erence equations which gives a unique
solution for the time path of capital and consumption, provided we have two initial con-
ditions K0 and C0.

3.6.5 Steady state and transitional dynamics

When trying to understand a system like (3.6.10), the same principles can be followed as
with one-dimensional di¤erence equations. First, one tries to identify a �xed point, i.e. a
steady state, and then one looks at transitional dynamics.

� Steady state

In a steady state, all variables are constant. Setting Kt+1 = Kt = K and Ct+1 = Ct =
C; we obtain

1 = �

�
1 +

@Y

@K
� �
�
, @Y

@K
= �+ �; C = Y � �K;

where the �, step�used the link between � and � from (3.1.2). In the steady state, the
marginal productivity of capital is given by the time preference rate plus the depreciation
rate. Consumption equals output minus depreciation, i.e. minus replacement investment.
These two equations determine two variables K and C: the �rst determines K; the second
determines C:

� Transitional dynamics

Understanding transitional dynamics is not as straightforward as understanding the
steady state. Its analysis follows the same idea as in continuous time, however, and we
will analyze transitional dynamics in detail there.
Having said this, we should acknowledge the fact that transitional dynamics in discrete

time can quickly become more complex than in continuous time. As an example, chaotic
behaviour can occur in one-dimensional di¤erence equations while one needs at least a
three-dimensional di¤erential equation system to obtain chaotic properties in continuous
time. The literature on chaos theory and textbooks on di¤erence equations provide many
examples.
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3.7 A central planner

3.7.1 Optimal factor allocation

One of the most solved maximization problems in Economics is the central planner prob-
lem. The choice by a central planner given a social welfare function and technological
constraints provides information about the �rst-best factor allocation. This is a bench-
mark for many analyses in normative economics. We consider the probably most simple
case of optimal factor allocation in a dynamic setup.

� The maximization problem

Let preferences be given by

Ut = �
1
�=t�

��tu (C� ) ; (3.7.1)

where C� is the aggregate consumption of all households at a point in time � : This function
is maximized subject to a resource accumulation constraint which reads

K�+1 = Y (K� ; L� ) + (1� �)K� � C� (3.7.2)

for all � � t: The production technology is given by a neoclassical production function
Y (K� ; L� ) with standard properties.

� The Lagrangian

This setup di¤ers from the ones we got to know before in that there is an in�nite
number of constraints in (3.7.2). This constraint holds for each point in time � � t: As a
consequence, the Lagrangian is formulated with in�nitely many Lagrangian multipliers,

L = �1�=t���tu (C� ) + �1�=t f�� [K�+1 � Y (K� ; L� )� (1� �)K� + C� ]g : (3.7.3)

The �rst part of the Lagrangian is standard, �1�=t�
��tu (C� ), it just copies the objective

function. The second part consists of a sum from t to in�nity, one constraint for each
point in time, each multiplied by its own Lagrange multiplier �� . In order to make the
maximization procedure clearer, we rewrite the Lagrangian as

L = �1�=t���tu (C� ) + �s�2�=t�� [K�+1 � Y (K� ; L� )� (1� �)K� + C� ]

+ �s�1 [Ks � Y (Ks�1; Ls�1)� (1� �)Ks�1 + Cs�1]

+ �s [Ks+1 � Y (Ks; Ls)� (1� �)Ks + Cs]

+ �1�=s+1�� [K�+1 � Y (K� ; L� )� (1� �)K� + C� ] ;

where we simply explicitly write out the sum for s� 1 and s:
Now maximize the Lagrangian both with respect to the control variable Cs; the mul-

tipliers �s and the state variables Ks. Maximization with respect to Ks might appear
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unusual at this stage; we will see a justi�cation for this in the next chapter. First-order
conditions are

LCs = �s�tu0 (Cs) + �s = 0, �s = �u0 (Cs) �s�t; (3.7.4)

LKs = �s�1 � �s
�
@Y

@Ks

+ 1� �
�
= 0, �s�1

�s
= 1 +

@Y

@Ks

� �; (3.7.5)

L�s = 0: (3.7.6)

Combining the �rst and second �rst-order condition gives �u0(Cs�1)�s�1�t
�u0(Cs)�s�t

= 1 + @Y
@Ks
� �:

This is equivalent to
u0 (Cs)

�u0 (Cs+1)
=

1
1

1+ @Y
@Ks+1

��
: (3.7.7)

This expression has the same interpretation as (3.1.6) or (3.4.7) for example. When we
replace s by � ; this equation with the constraint (3.7.2) is a two-dimensional di¤erence
equation system which allows us to determine the paths of capital and consumption,
given two boundary conditions, which the economy will follow when factor allocation is
optimally chosen. The steady state of such an economy is found by setting Cs = Cs+1
and Ks = Ks+1 in (3.7.7) and (3.7.2).
This example also allows us to return to the discussion about the link between the

sign of shadow prices and the Lagrange multiplier at the end of ch. 2.3.2. Here, the
constraints in the Lagrangian are represented as left-hand side minus right-hand side. As
a consequence, the Lagrange multipliers are negative, as the �rst-order conditions (3.7.4)
show. Apart from the fact that the Lagrange multiplier here now stands for minus the
shadow price, this does not play any role for the �nal description of optimality in (3.7.7).

3.7.2 Where the Lagrangian comes from II

Let us now see how we can derive the same expression as that in (3.7.7) without using the
Lagrangian. This will allow us to give an intuitive explanation for why we maximized the
Lagrangian in the last chapter with respect to both the control and the state variable.

� Maximization without Lagrange

Insert the constraint (3.7.2) into the objective function (3.7.1) and �nd

Ut = �
1
�=t�

��tu (Y (K� ; L� ) + (1� �)K� �K�+1) �! max
fK�g

This is now maximized by choosing a path fK�g for capital. Choosing the state variable
implicitly pins down the path fC�g of the control variable consumption and one can
therefore think of this maximization problem as one where consumption is optimally
chosen.
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Now rewrite the objective function as

Ut = �
s�2
�=t�

��tu (Y (K� ; L� ) + (1� �)K� �K�+1)

+ �s�1�tu (Y (Ks�1; Ls�1) + (1� �)Ks�1 �Ks)

+ �s�tu (Y (Ks; Ls) + (1� �)Ks �Ks+1)

+ �1�=s+1�
��tu (Y (K� ; L� ) + (1� �)K� �K�+1) :

Choosing Ks optimally implies

� �s�1�tu0 (Y (Ks�1; Ls�1) + (1� �)Ks�1 �Ks)

+ �s�tu0 (Y (Ks; Ls) + (1� �)Ks �Ks+1)

�
@Y (Ks; Ls)

@Ks

+ 1� �
�
= 0:

Reinserting the constraint (3.7.2) and rearranging gives

u0 (Cs�1) = �u0 (Cs)

�
1 +

@Y (Ks; Ls)

@Ks

� �
�
:

This is the standard optimality condition for consumption which we obtained in (3.7.7).
As s can stand for any point in time between t and in�nity, we could replace s by t, � or
� + 1:

� Back to the Lagrangian

When we now go back to the maximization procedure where the Lagrangian was used,
we see that the partial derivative of the Lagrangian with respect to Kt in (3.7.5) captures
how �t changes over time. The simple reason why the Lagrangian is maximized with
respect to Kt is therefore that an additional �rst-order condition is needed as �t needs to
be determined as well.
In static maximization problems with two consumption goods and one constraint, the

Lagrangian is maximized by choosing consumption levels for both consumption goods and
by choosing the Lagrange multiplier. In the Lagrange setup above in (3.7.4) to (3.7.6), we
choose both endogenous variables Kt and Ct plus the multiplier �t and thereby determine
optimal paths for all three variables. Hence, it is a technical - mathematical - reason that
Kt is �chosen�: determining three unknowns simply requires three �rst-order conditions.
Economically, however, the control variable Ct is �economically chosen�while the state
variable Kt adjusts indirectly as a consequence of the choice of Ct:

3.8 Growth of family size

3.8.1 The setup

Let us now consider an extension to the models considered so far. Let us imagine there is
a family consisting of n� members at point in time � and let consumption c� per individual
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family member be optimally chosen by the head of the family. The objective function
for this family head consists of instantaneous utility u (:) per family member times the
number of members, discounted at the usual discount factor �;

Ut = �
1
�=t�

��tu (c� )n� :

Let us denote family wealth by ât. It is the product of individual wealth times the
number of family members, ât � ntat. The budget constraint of the household is then
given by

ât+1 = (1 + rt) ât + ntwt � ntct
Total labour income is given by nt times the wage wt and family consumption is ntct:

3.8.2 Solving by substitution

We solve this maximization problem by substitution. We rewrite the objective function
and insert the constraint twice,�

�s�1�=t�
��tu (c� )n� + �s�tu (cs)ns + �s+1�tu (cs+1)ns+1 + �

1
�=s+2�

��tu (c� )n�
	

= �s�1�=t�
��tu (c� )n� + �s�tu

�
(1 + rs) âs + nsws � âs+1

ns

�
ns

+ �s+1�tu

�
(1 + rs+1) âs+1 + ns+1ws+1 � âs+2

ns+1

�
ns+1 + �

1
�=s+2�

��tu (c� )n� :

Now compute the derivative with respect to âs+1. This gives

u0
�
(1 + rs) âs + nsws � âs+1

ns

�
ns
ns
= �u0

�
(1 + rs+1) âs+1 + ns+1ws+1 � âs+2

ns+1

�
1 + rs+1
ns+1

ns+1:

When we replace the budget constraint by consumption again and cancel the ns and ns+1,
we obtain

u0 (cs) = � [1 + rs+1]u
0 (cs+1) : (3.8.1)

The interesting feature of this rule is that being part of a family whose size n� can change
over time does not a¤ect the growth of individual consumption cs: It follows the same rule
as if individuals maximized utility independently of each other and with their personal
budget constraints.

3.8.3 Solving by the Lagrangian

The Lagrangian for this setup with one budget constraint for each point in time requires
an in�nite number of Lagrange multipliers �� ; one for each � : It reads

L = �1�=t
�
���tu (c� )n� + �� [(1 + r� ) â� + n� l�w� � n�c� � â�+1]

	
:
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We �rst compute the �rst-order conditions for consumption and hours worked for one
point in time s;

Lcs = �s�t
@

@cs
u (cs)� �s = 0;

As discussed in 3.7, we also need to compute the derivative with respect to the state
variable. It is important to compute the derivative with respect to family wealth â� as
this is the true state variable of the head of the family. (Computing the derivative with
respect to individual wealth a� would also work but would lead to an incorrect result, i.e.
a result that di¤ers from 3.8.1.) This derivative is

Lâs = ��s�1 + �s (1 + rs) = 0, �s�1 = (1 + rs)�s:

Optimal consumption then follows by replacing the Lagrange multipliers, u0 (cs�1) =
� [1 + rs]u

0 (cs) : This is identical to the result we obtain by inserting in (3.8.1).

3.9 Further reading and exercises

For a much more detailed background on the elasticity of substitution, see Blackorby
and Russell (1989). They study the case of more than two inputs and stress that the
Morishima elasticity is to be preferred to the Allan/ Uzawa elasticity.
The dynamic programming approach was developed by Bellman (1957). Maximization

using the Lagrange method is widely applied by Chow (1997). The example in ch. 3.4.3
was originally inspired by Grossman and Shapiro (1986).
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Exercises chapter 3
Applied Intertemporal Optimization
Dynamic programming in discrete deterministic time

1. The envelope theorem I
Let the utility function of an individual be given by

U = U (C;L) ;

where consumption C increases utility and supply of labour L decreases utility. Let
the budget constraint of the individual be given by

wL = C:

Let the individual maximize utility with respect to consumption and the amount of
labour supplied.

(a) What is the optimal labour supply function (in implicit form)? How much does
an individual consume? What is the indirect utility function?

(b) Under what conditions does an individual increase labour supply when wages
rise (no analytical solution required)?

(c) Assume higher wages lead to increased labour supply. Does disutility arising
from increased labour supply compensate utility from higher consumption?
Does utility rise if there is no disutility from working? Start from the indirect
utility function derived in a) and apply the proof of the envelope theorem and
the envelope theorem itself.

2. The envelope theorem II

(a) Compute the derivative of the Bellman equation (3.4.6) without using the
envelope theorem. Hint: Compute the derivative with respect to the state
variable and then insert the �rst-order condition.

(b) Do the same with (3.4.15)

3. The additively separable objective function

(a) Show that the objective function can be written as in (3.3.3).
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(b) Find out whether (3.3.3) implies the objective function. (It does not.)

4. Intertemporal and dynamic budget constraints

(a) Show that the intertemporal budget constraint

�T�=t

�
���1k=t

1

1 + rk

�
e� = at + �

T
�=t

�
���1k=t

1

1 + rk

�
i� (3.9.1)

implies the dynamic budget constraint

at+1 = (at + it � et) (1 + rt) : (3.9.2)

(b) Under which conditions does the dynamic budget constraint imply the in-
tertemporal budget constraint?

(c) Now consider at+1 = (1 + rt) at+wt�et:What intertemporal budget constraint
does it imply?

5. The standard saving problem
Consider the objective function from (3.1.1), Ut = �1�=t�

��tu (c� ), and maximize
it by choosing a consumption path fc�g subject to the constraint (3.6.6), kt+1 =
(1 + rt) kt + wLt � ct: The result is given by (3.6.7).

(a) Solve this problem by dynamic programming methods.

(b) Solve this by using the Lagrange approach. Choose a multiplier �t for an in�nite
sequence of constraints.

6. Aggregation of optimal consumption rules
Consider the optimality condition u0 (ct) = � (1 + rt+1)u

0 (ct+1) in (3.6.7) and derive
the aggregate version (3.6.8). Find the assumptions required for the utility function
for these steps to be possible.

7. A benevolent central planner
You are the omniscient omnipotent benevolent central planner of an economy. You
want to maximize a social welfare function

Ut = �
1
�=t�

��tu (C� )

for your economy by choosing a path of aggregate consumption levels fC�g subject
to a resource constraint

Kt+1 �Kt = Y (Kt; Lt)� � Kt � Ct (3.9.3)

(a) Solve this problem by dynamic programming methods.
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(b) Discuss how the central planner result is related to the decentralized result
from exercise 5.

(c) What does the result look like for a utility function which is logarithmic and
for one which has constant elasticity of substitution,

u (C (�)) = � lnC (�) and u (C (�)) =
C (�)1�� � 1

1� � ? (3.9.4)

8. Environmental economics
Imagine you are an economist only interested in maximizing the present value of
your endowment. You own a renewable resource, for example a piece of forest. The
amount of wood in your forest at a point in time t is given by xt. Trees grow at
b(xt) and you harvest at t the quantity ct.

(a) What is the law of motion for xt?

(b) What is your objective function if prices at t per unit of wood is given by pt,
your horizon is in�nity and you have perfect information?

(c) How much should you harvest per period when the interest rate is constant?
Does this change when the interest rate is time-variable?

9. The 10k run - Formulating and solving a maximization problem
You consider participation in a 10k run or a marathon. The event will take place
in M months. You know that your �tness needs to be improved and that this will
be costly: it requires e¤ort a0 which reduces utility u (:) : At the same time, you
enjoy being fast, i.e. utility increases the shorter your �nish time l: The higher your
e¤ort, the shorter your �nish time.

(a) Formulate a maximization problem with 2 periods. E¤ort a¤ects the �nish time
in M months. Specify a utility function and discuss a reasonable functional
form which captures the link between �nish time l and e¤ort a0:

(b) Solve this maximization problem by providing and discussing the �rst-order
condition.

10. A central planner
Consider the objective function of a central planner,

U0 = �
1
t=0�

tu (Ct) : (3.9.5)

The constraint is given by

Kt+1 = Y (Kt; Lt) + (1� �)Kt � Ct: (3.9.6)

(a) Explain in words the meaning of the objective function and of the constraint.
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(b) Solve the maximization problem by �rst inserting (3.9.6) into (3.9.5) and then
by optimally choosingKt. Show that the result is

u0(Ct)
�u0(Ct+1)

= 1+ @Y (Kt+1;Lt+1)
@Kt+1

��
and discuss this in words.

(c) Discuss why using the Lagrangian also requires maximizing with respect to Kt

even though Kt is a state variable.
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Deterministic models in continuous
time
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Part II covers continuous time models under certainty. Chapter 4 �rst looks at dif-
ferential equations as they are the basis of the description and solution of maximization
problems in continuous time. First, some useful de�nitions and theorems are provided.
Second, di¤erential equations and di¤erential equation systems are analyzed qualitatively
by the so-called �phase-diagram analysis�. This simple method is extremely useful for
understanding di¤erential equations per se and also for later purposes for understand-
ing qualitative properties of solutions to maximization problems and properties of whole
economies. Linear di¤erential equations and their economic applications are then �nally
analyzed before some words are spent on linear di¤erential equation systems.
Chapter 5 presents a new method for solving maximization problems - the Hamil-

tonian. As we are now in continuous time, two-period models do not exist. A distinction
will be drawn, however, between �nite and in�nite horizon models. In practice, this dis-
tinction is not very important as, as we will see, optimality conditions are very similar for
�nite and in�nite maximization problems. After an introductory example on maximiza-
tion in continuous time by using the Hamiltonian, the simple link between Hamiltonians
and the Lagrangian is shown.
The solution to maximization problems in continuous time will consist of one or several

di¤erential equations. As a unique solution to di¤erential equations requires boundary
conditions, we will show how boundary conditions are related to the type of maximization
problem analyzed. The boundary conditions di¤er signi�cantly between �nite and in�nite
horizon models. For the �nite horizon models, there are initial or terminal conditions.
For the in�nite horizon models, we will get to know the transversality condition and other
related conditions like the No-Ponzi-game condition. Many examples and a comparison
between the present-value and the current-value Hamiltonian conclude this chapter.
Chapter 6 solves the same kind of problems as chapter 5, but it uses the method

of �dynamic programming�. The reason for doing this is to simplify understanding of
dynamic programming in stochastic setups in Part IV. Various aspects speci�c to the use
of dynamic programming in continuous time, e.g. the structure of the Bellman equation,
can already be treated here under certainty. This chapter will also provide a comparison
between the Hamiltonian and dynamic programming and look at a maximization problem
with two state variables. An example from monetary economics on real and nominal
interest rates concludes the chapter.
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Chapter 4

Di¤erential equations

There are many excellent textbooks on di¤erential equations. This chapter will therefore
be relatively short. Its objective is more to recap basic concepts taught in other courses
and to serve as a background for later applications.

4.1 Some de�nitions and theorems

4.1.1 De�nitions

The following de�nitions are standard and follow Brock and Malliaris (1989).

De�nition 4.1.1 An ordinary di¤erential equation system (ODE system) is of the type

dx (t)

dt
� _x (t) = f (t; x (t)) ; (4.1.1)

where t lies between some starting point and in�nity, t 2 [t0;1[ ; x can be a vector, x 2 Rn
and f maps from Rn+1 into Rn: When x is not a vector, i.e. for n = 1; (4.1.1) obviously
is an ordinary di¤erential equation.
An autonomous di¤erential equation is an ordinary di¤erential equation where f(:) is

independent of time t;
dx (t)

dt
� _x (t) = f (x (t)) : (4.1.2)

The di¤erence between a di¤erential equation and a �normal�algebraic equation ob-
viously lies in the fact that di¤erential equations contain derivatives of variables like _x (t).
An example of a di¤erential equation which is not an ODE is the partial di¤erential
equation. A linear example is

a (x; t)
@p (x; t)

@x
+ b (x; t)

@p (x; t)

@t
= c (x; t) ;

where a (:) ; b (:) ; c (:) and p (:) are functions with �nice properties�. While in an ODE,
there is one derivative (often with respect to time), a partial di¤erential equation contains
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derivatives with respect to several variables. Partial di¤erential equations can describe
e.g. a density and how it changes over time. Other types of di¤erential equations include
stochastic di¤erential equations (see ch. 9), implicit di¤erential equations (which are of
the type g ( _x (t)) = f (t; x (t))), delay di¤erential equations ( _x (t) = f (x (t��))) and
many other more.

De�nition 4.1.2 An initial value problem is described by

_x = f(t; x); x (t0) = x0; t 2 [t0; T ] ;

where x0 is the initial condition.
A terminal value problem is of the form

_x = f (t; x) ; x (T ) = xT ; t 2 [t0; T ] ;

where xT is the terminal condition.

4.1.2 Two theorems

Theorem 4.1.1 Existence (Brock and Malliaris, 1989)
If f (t; x) is a continuous function on rectangle L = f(t; x)j jt� t0j � a; jx� x0j � bg
then there exists a continuous di¤erentiable solution x (t) on interval jt� t0j � a that
solves initial value problem

_x = f (t; x) ; x (t0) = x0: (4.1.3)

This theorem only proves that a solution exists. It is still possible that there are many
solutions.

Theorem 4.1.2 Uniqueness
If f and @f=@x are continuous functions on L; the initial value problem (4.1.3) has a
unique solution for

t 2
�
t0; t0 +min

�
a;

b

max jf (t; x)j

��
If this condition is met, an ODE with an initial or terminal condition has a unique

solution. More generally speaking, a di¤erential equation system consisting of n ODEs
that satisfy these conditions (which are met in the economic problems we encounter here)
has a unique solution provided that there are n boundary conditions. Knowing about a
unique solution is useful as one knows that changes in parameters imply unambiguous
predictions about changes in endogenous variables. If the government changes some tax,
we can unambiguously predict whether employment goes up or down.
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4.2 Analyzing ODEs through phase diagrams

This section will present tools that allow us to determine properties of solutions of dif-
ferential equations and di¤erential equation systems. The analysis will be qualitative in
this chapter as most economic systems are too non-linear to allow for an explicit general
analytic solution. Explicit solutions for linear di¤erential equations will be treated in
ch. 4.3.

4.2.1 One-dimensional systems

We start with a one-dimensional di¤erential equation _x (t) = f (x (t)), where x 2 R and
t > 0: This will also allow us to review the concepts of �xpoints, local and global stability
and instability as used already when analyzing di¤erence equations in ch. 2.5.4.

� Unique �xpoint

Let f (x) be represented by the graph in the following �gure, with x (t) being shown
on the horizontal axis. As f (x) gives the change of x (t) over time, _x (t) is plotted on the
vertical axis.

N

N

x(t)

_x(t)

x�

N N N N

Figure 4.2.1 Qualitative analysis of a di¤erential equation

As in the analysis of di¤erence equations in ch. 2.5.4, we �rst look for the �xpoint of
the underlying di¤erential equation. A �xpoint is de�ned similarly in spirit but - thinking
now in continuous time - di¤erently in detail.
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De�nition 4.2.1 A �xpoint x� is a point where x (t) does not change. In continuous
time, this means _x (t) = 0 which, from the de�nition (4.1.2) of the di¤erential equation,
requires f (x�) = 0:

The requirement that x (t) does not change is the similarity in spirit to the de�nition
in discrete time. The requirement that f (x�) = 0 is the di¤erence in detail: in discrete
time as in (2.5.8) we required f (x�) = x�. Looking at the above graph of f (x) ; we �nd
x� at the point where f (x) crosses the horizontal line.
We then inquire the stability of the �xpoint. When x is to the left of x�; f (x) > 0

and therefore x increases, _x (t) > 0: This increase of x is represented in this �gure by
the arrows on the horizontal axis. Similarly, for x > x�; f (x) < 0 and x (t) decreases.
We have therefore found that the �xpoint x� is globally stable and have also obtained a
�feeling�for the behaviour of x (t) ; given some initial conditions.
We can now qualitatively plot the solutions with time t on the horizontal axis. As

the discussion has just shown, the solution x (t) depends on the initial value from which
we start, i.e. on x (0) : For x (0) > x�; x (t) decreases, for x (0) < x�; x (t) increases:
any changes over time are monotonic. There is one solution for each initial condition.
The following �gure shows three solutions of _x (t) = f (x (t)), given three di¤erent initial
conditions.

Figure 4.2.2 Qualitative solutions of an ODE for three di¤erent initial conditions

� Multiple �xpoints and equilibria

Of course, more sophisticated functions than f (x) can be imagined. Now consider a
di¤erential equation _x (t) = g (x (t)) where g (x) is non-monotonic as plotted in the next
�gure.
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Figure 4.2.3 Multiple equilibria

As this �gure shows, there are four �xpoints. Looking at whether g (x) is positive or
negative, we know whether x (t) increases or decreases over time. This allows us to plot
arrows on the horizontal axis as in the previous example. The di¤erence to before consists
of the fact that some �xpoints are unstable and some are stable. De�nition 4.2.1 showed
us that the concept of a �xpoint in continuous time is slightly di¤erent from discrete
time. However, the de�nitions of stability as they were introduced in discrete time can
be directly applied here as well. Looking at x�1; any small deviation of x from x�1 implies
an increase or decrease of x: The �xpoint x�1 is therefore unstable, given the de�nition in
ch. 2.5.4. Any small deviation x�2; however, implies that x moves back to x

�
2: Hence, x

�
2 is

(locally) stable. The �xpoint x�3 is also unstable, while x
�
4 is again locally stable: While x

converges to x�4 for any x > x�4 (in this sense x
�
4 could be called globally stable from the

right), x converges to x�4 from the left only if x is not smaller than or equal to x�3:

Figure 4.2.4 Qualitative solutions of an ODE for di¤erent initial conditions II
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If an economy can be represented by such a di¤erential equation _x (t) = g (x (t)), one
would call �xpoints long-run equilibria. There are stable equilibria and unstable equilibria
and it depends on the underlying system (the assumptions that implied the di¤erential
equation _x = g (x)) which equilibrium would be considered to be the economically relevant
one.
As in the system with one �xpoint, we can qualitatively plot solutions of x (t) over time,

given di¤erent initial values for x (0). This is shown in �g. 4.2.4 which again highlights
the stability properties of �xpoints x�1 to x

�
4:

4.2.2 Two-dimensional systems I - An example

We now extend our qualitative analysis of di¤erential equations to two-dimensional sys-
tems. This latter case allows for an analysis of more complex systems than simple one-
dimensional di¤erential equations. In almost all economic models with optimal saving
decisions, a reduced form consisting of at least two di¤erential equations will result. We
start here with an example before we analyse two-dimensional systems more generally in
the next chapter.

� The system

Consider the following di¤erential equation system,

_x1 = x�1 � x2; _x2 = b+ x�11 � x2; 0 < � < 1 < b:

Assume that for economic reasons we are interested in properties for xi > 0:

� Fixpoint

The �rst question is as always whether there is a �xpoint at all. In a two-dimensional
system, a �xpoint x� = (x�1; x

�
2) is two-dimensional as well. The �xpoint is de�ned such

that both variables do not change over time, i.e. _x1 = _x2 = 0: If such a point exists, it
must satisfy

_x1 = _x2 = 0, (x�1)
� = x�2; x�2 = b+ (x�1)

�1:

By inserting the second equation into the �rst, x�1 is determined by (x
�
1)
� = b+(x�1)

�1 and
x�2 follows from x�2 = (x

�
1)
�: Analyzing the properties of the equation (x�1)

� = b + (x�1)
�1

would then show that x�1 is unique: The left-hand side increases monotonically from 0 to
in�nity for x�1 2 [0;1[ while the right-hand side decreases monotonically from in�nity to
b: Hence, there must be an intersection point and there can be only one as functions are
monotonic. As x�1 is unique, so is x

�
2 = (x

�
1)
�.
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� Zero-motion lines and pairs of arrows

Having derived the �xpoint, we now need to understand the behaviour of the system
more generally. What happens to x1 and x2 when (x1; x2) 6= (x�1; x

�
2)? To answer this

question, the concept of zero-motion lines is very useful. A zero-motion line is a line for a
variable xi which marks the points for which the variable xi does not change, i.e. _xi = 0:
For our two-dimensional di¤erential equation system, we obtain two zero-motion lines,

_x1 � 0, x2 � x�1 ;
_x2 � 0, x2 � b+ x�11 :

(4.2.1)

In addition to the equality sign, we also analyse here at the same time for which values
xi rises. Why this is useful will soon become clear. We can now plot the curves where
_xi = 0 in a diagram. In contrast to the one-dimensional graphs in the previous chapter,
we now have the variables x1 and x2 on the axes (and not the change of one variable on
the vertical axis). The intersection point of the two zero-motion lines gives the �x point
x� = (x�1; x

�
2) which we derived analytically above.

Figure 4.2.5 First steps towards a phase diagram

In addition to showing where variables do not change, the zero-motion lines also delimit
regions where variables do change. Looking at (4.2.1) again shows (why we used the �
and not the = sign and) that the variable x1 increases whenever x2 < x�1 . Similarly, the
variable x2 increases, whenever x2 < b + x�11 : The directions in which variables change
can then be plotted into this diagram by using arrows. In this diagram, there is a pair of
arrows per region as two directions (one for x1; one for x2) need to be indicated. This is in
principle identical to the arrows we used in the analysis of the one-dimensional systems.
If the system �nds itself in one of these four regions, we know qualitatively, how variables
change over time: Variables move to the south-east in region I, to the north-east in region
II, to the north-west in region III and to the south-west in region IV.
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� Trajectories

Given the zero-motion lines, the �xpoint and the pairs of arrows, we are now able to
draw trajectories into this phase diagram. We will do so and analyse the implications of
pairs of arrows further once we have generalized the derivation of a phase diagram.

4.2.3 Two-dimensional systems II - The general case

After this speci�c example, we will now look at a more general di¤erential equation system
and will analyse it by using a phase diagram.

� The system

Consider two di¤erential equations where functions f (:) and g (:) are continuous and
di¤erentiable,

_x1 = f (x1; x2) ; _x2 = g (x1; x2) : (4.2.2)

For the following analysis, we will need four assumptions on partial derivatives; all of
them are positive apart from fx1 (:) ;

fx1 (:) < 0; fx2 (:) > 0; gx1 (:) > 0; gx2 (:) > 0: (4.2.3)

Note that, provided we are willing to make the assumptions required by the theorems in
ch. 4.1.2, we know that there is a unique solution to this di¤erential equation system, i.e.
x1 (t) and x2 (t) are unambiguously determined given two boundary conditions.

� Fixpoint

The �rst question to be tackled is whether there is an equilibrium at all. Is there a
�xpoint x� such that _x1 = _x2 = 0? To this end, set f (x1; x2) = 0 and g (x1; x2) = 0 and
plot the implicitly de�ned functions in a graph.

2x

1x

*
2x

*
1x

( ) 0, 21 =xxf

( ) 0, 21 =xxg

Figure 4.2.6 Zero motion lines with a unique steady state
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By the implicit function theorem - see (2.3.3) - and the assumptions made in (4.2.3),
one zero motion line is increasing and one is decreasing. If we are further willing to assume
that functions are not monotonically approaching an upper and lower bound, we know
that there is a unique �xpoint (x�1; x

�
2) � x�:

� General evolution

Now we ask again what happens if the state of the system di¤ers from x�; i.e. if either
x1 or x2 or both di¤er from their steady state values. To �nd an answer, we have to
determine the sign of f (x1; x2) and g (x1;x2) for some (x1; x2) : Given (4.2.2); x1 would
increase for a positive f (:) and x2 would increase for a positive g (:) : For any known
functions f (x1; x2) and g (x1;x2) ; one can simply plot a 3-dimensional �gure with x1 and
x2 on the axes in the plane and with time derivatives on the vertical axis.

Figure 4.2.7 A three-dimensional illustration of two di¤erential equations and their zero-
motion lines

The white area in this �gure is the horizontal plane, i.e. where _x1 and _x2 are zero.
The dark surface illustrates the law of motion for x1 as does the grey surface for x2: The
intersection of the dark surface with the horizontal plane gives the loci on which x1 does
not change. The same is true for the grey surface and x2: Clearly, at the intersection
point of these zero-motion lines we �nd the steady state x�:
When working with two-dimensional �gures and without the aid of computers, we

start from the zero-motion line for, say, x1 and plot it into a �normal��gure.
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f(x1; x2) = 0

Figure 4.2.8 Step 1 in constructing a phase diagram

Now consider a point (~x1; ~x2) : As we know that _x1 = 0 on f (x1; x2) = 0 and that
from (4.2.3) fx2 (:) > 0; we know that moving from ~x1 on the zero-motion line vertically
to (~x1; ~x2) ; f (:) is increasing. Hence, x1 is increasing, _x1 > 0; at (~x1; ~x2) : As this line of
reasoning holds for any (~x1; ~x2) above the zero-motion line, x1 is increasing everywhere
above f (x1; x2) = 0: As a consequence, x1 is decreasing everywhere below the zero-motion
line. This movement is indicated by the arrows in the above �gure.

N

N

x1

x2

r
(~x1;~x2)

6g(x1; x2) = 0

6

6

6

?
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Figure 4.2.9 Step 2 in constructing a phase diagram

Let us now consider the second zero-motion line, _x2 = 0 , g (x1; x2) = 0; and look
again at the point (~x1; ~x2) : When we start from the point ~x2 on the zero motion line
and move towards (~x1; ~x2) ; g (x1; x2) is decreasing, given the derivative gx1 (:) > 0 from
(4.2.3). Hence, for any points to the left of g (x1; x2) = 0; x2 is decreasing. Again, this is
shown in the above �gure.
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� Fixpoints and trajectories

We can now represent the directions in which x1 and x2 are moving into a single
phase-diagram by plotting one arrow each into each of the four regions limited by the
zero-motion lines. Given that the arrows can either indicate an increase or a decrease for
both x1 and x2; there are two times two di¤erent combinations of arrows, i.e. four regions.
When we add some representative trajectories, a complete phase diagram results.

Figure 4.2.10 Phase diagram for a saddle point

Adding trajectories is relatively easy when paying attention to the zero-motion lines.
When trajectories are plotted �far away�from zero-motion lines, the arrow pairs indicate
whether the movement is towards the �north-east�, the �south-east� or the other two
possible directions. At point A in the phase diagram for a saddle point, the movement is
towards the �north-west�. Note that the arrows represent �rst derivatives only. As second
derivatives are not taken into account (usually), we do not know whether the trajectory
moves more and more to the north or more and more to the west. The arrow-pairs are
also consistent with wave-like trajectories, as long as the movement is always towards the
north-west.
Precise information on the shape of the trajectories is available when we look at the

points where trajectories cross the zero-motion lines. On a zero-motion line, the variable
to which this zero-motion line belongs does not change. Hence all trajectories cross
zero-motion lines either vertically or horizontally. When we look at point B above, the
trajectory moves from the north-west to the north-east region. The variable x1 changes
direction and begins to rise after having crossed its zero-motion line vertically.
An example where a zero-motion line is crossed horizontally is point C: To the left of

point C; x1 rises and x2 falls. On the zero-motion line for x2; x2 does not change but x1
continues to rise. To the right of C; both x1 and x2 increase. Similar changes in direction
can be observed at other intersection points of trajectories with zero-motion lines.
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4.2.4 Types of phase diagrams and �xpoints

� Types of �xpoints

As has become clear by now, the partial derivatives in (4.2.3) are crucial for the slope of
the zero-motion lines and for the direction of movements of variables x1 and x2: Depending
on the signs of the partial derivatives, various phase diagrams can occur. As there are
two possible directions for each variable, these phase diagrams can be classi�ed into four
typical groups, depending on the properties of their �xpoint.

De�nition 4.2.2 A �xpoint is called a

center
saddle point
focus
node

9>>=>>;,
8>><>>:
zero
two
all
all

9>>=>>; trajectories pass through the �xpoint

and

8>><>>: on
�
at least one trajectory, both variables are non-monotonic
all trajectories, one or both variables are monotonic

A node and a focus can be either stable or unstable.

� Illustration

Here is now an overview of some typical phase diagrams.

Figure 4.2.11 Phase diagram for a node
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This �rst phase diagram shows a node. A node is a �xpoint through which all trajec-
tories go and where the time paths implied by trajectories are monotonic for at least one
variable. As drawn here, it is a stable node, i.e. for any initial conditions, the system ends
up in the �xpoint. An unstable node is a �xpoint from which all trajectories start. A
phase diagram for an unstable node would look like the one above but with all directions
of motions reversed.

Figure 4.2.12 Phase diagram for a focus

A phase diagram with a focus looks similar to one with a node. The di¤erence lies in
the non-monotonic paths of the trajectories. As drawn here, x1 or x2 �rst increase and
then decrease on some trajectories.

Figure 4.2.13 Phase diagram for a center
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A circle is a very special case for a di¤erential equation system. It is rarely found
in models with optimizing agents. The standard example is the predator-prey model,
_x = �x � �xy, _y = �
y + �xy, where �, �, 
, and � are positive constants. This is also
called the Lotka-Volterra model. No closed-form solution has been found so far.

� Limitations

It should be noted that a phase diagram analysis allows us to identify a saddle point.
If no saddle point can be identi�ed, it is generally not possible to distinguish between a
node, focus or center. In the linear case, more can be deduced from a graphical analysis.
This is generally not necessary, however, as there is a closed-form solution. The de�nition
of various types of �xpoints is then based on Eigenvalues of the system. See ch. 4.5.

4.2.5 Multidimensional systems

If we have higher-dimensional problems where x 2 Rn and n > 2; phase diagrams are
obviously di¢ cult to draw. In the three-dimensional case, plotting zero motion surfaces
sometimes helps to gain some intuition. A graphical solution will generally, however, not
allow us to identify equilibrium properties like saddle-path or saddle-plane behaviour.

4.3 Linear di¤erential equations

This section will focus on a special case of the general ODE de�ned in (4.1.1). The special
aspect consists of making the function f (:) in (4.1.1) linear in x (t) : By doing this, we
obtain a linear di¤erential equation,

_x (t) = a (t)x (t) + b (t) ; (4.3.1)

where a (t) and b (t) are functions of time. This is the most general case for a one dimen-
sional linear di¤erential equation.

4.3.1 Rules on derivatives

Before analyzing (4.3.1) in more detail, we �rst need some other results which will be useful
later. This section therefore �rst presents some rules on how to compute derivatives. It
is by no means intended to be comprehensive or go in any depth. It presents rules which
have shown by experience to be of importance.

� Integrals

De�nition 4.3.1 A function F (x) �
R
f (x) dx is the inde�nite integral of a function

f (x) if
d

dx
F (x) =

d

dx

Z
f (x) dx = f (x) (4.3.2)
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This de�nition implies that there are in�nitely many integrals of f (x) : If F (x) is an
integral, then F (x) + c; where c is a constant, is an integral as well.

� Leibniz rule

We present here a rule for computing the derivative of an integral function. Let there
be a function z (x) with argument x; de�ned by the integral

z (x) �
Z b(x)

a(x)

f (x; y) dy;

where a (x) ; b (x) and f (x; y) are di¤erentiable functions. Note that x is the only argu-
ment of z; as y is integrated out on the right-hand side. Then, the Leibniz rule says that
the derivative of this function with respect to x is

d

dx
z (x) = b0 (x) f (x; b (x))� a0 (x) f (x; a (x)) +

Z b(x)

a(x)

@

@x
f (x; y) dy: (4.3.3)

The following �gure illustrates this rule.

( )yxf ,

( )xa ( )xb

( )yxf ,

y

( )xz

( )xxz ∆+

( )xz

( )xxz ∆+

Figure 4.3.1 Illustration of the di¤erentiation rule

Let x increase by a small amount. Then the integral changes at three margins: The
upper bound, the lower bound and the function f (x; y) itself. As drawn here, the upper
bound b (x) and the function f (x; y) increase and the lower bound a (x) decreases in x. As
a consequence, the area below the function f (:) between bounds a (:) and b (:) increases
because of three changes: the increase to the left because of a (:) ; the increase to the
right because of b (:) and the increase upwards because of f (:) itself. Clearly, this �gure
changes when the derivatives of a (:), b (:) and f (:) with respect to x have a di¤erent sign
than the ones assumed here.
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� Another derivative with an integral

Now consider a function of the type y =
R b
a
f (x (i)) di: Functions of this type will be

encountered frequently as objective functions, e.g. intertemporal utility or pro�t functions.
What is the derivative of y with respect to x (i)? It is given by @y=@x (i) = f 0 (x (i)) : The
integral is not part of this derivative as the derivative is computed for one speci�c x (i)
and not for all x (i) with i lying between a and b: Note the analogy to maximizing a sum
as e.g. in (3.1.4). The integration variable i here corresponds to the summation index �
in (3.1.4). When one speci�c point i is chosen (say i = (a+ b) =2), all derivatives of the
other f (x (i)) with respect to this speci�c x (i) are zero.

� Integration by parts (for inde�nite and de�nite integrals)

Proposition 4.3.1 For two di¤erentiable functions u (x) and v (x) ;Z
u0 (x) v (x) dx = u (x) v (x)�

Z
u (x) v0 (x) dx: (4.3.4)

Proof. We start by observing that

(u (x) v (x))
0
= u0 (x) v (x) + u (x) v0 (x) ;

where we used the product rule. Integrating both sides by applying
R
� dx; gives

u (x) v (x) =

Z
u0 (x) v (x) dx+

Z
u (x) v0 (x) dx:

Rearranging gives (4.3.4).
Equivalently, one can show (see the exercise 8) thatZ b

a

_xydt = [xy]ba �
Z b

a

x _ydt: (4.3.5)

4.3.2 Forward and backward solutions of a linear di¤erential
equation

We now return to our linear di¤erential equation _x (t) = a (t)x (t) + b (t) from (4.3.1). It
will now be solved. Generally speaking, a solution to a di¤erential equation is a function
x (t) which satis�es this equation. A solution can be called a time path of x when t
represents time.
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� General solution of the non-homogeneous equation

The di¤erential equation in (4.3.1) has, as all di¤erential equations, an in�nite number
of solutions. The general solution reads

x (t) = e
R
a(t)dt

�
~x+

Z
e�

R
a(t)dtb (t) dt

�
: (4.3.6)

Here, ~x is some arbitrary constant. As this constant is arbitrary, (4.3.6) indeed provides
an in�nite number of solutions to (4.3.1).
To see that (4.3.6) is a solution to (4.3.1) indeed, remember the de�nition of what a

solution is. A solution is a time path x (t) which satis�es (4.3.1). Hence, we simply need
to insert the time path given by (4.3.6) into (4.3.1) and check whether (4.3.1) then holds.
To this end, compute the time derivative of x(t),

d

dt
x (t) = e

R
a(t)dta (t)

�
~x+

Z
e�

R
a(t)dtb (t) dt

�
+ e

R
a(t)dte�

R
a(t)dtb (t) ;

where we have used the de�nition of the integral in (4.3.2), d
dx

R
f (x) dx = f (x) :Note that

we do not have to apply the product or chain rule since, again by (4.3.2), d
dx

R
g (x)h (x) dx =

g (x)h (x) : Inserting (4.3.6) gives _x (t) = a (t)x (t) + b (t) : Hence, (4.3.6) is a solution to
(4.3.1).

� Determining the constant ~x

To obtain one particular solution, some value x (t0) at some point in time t0 has to be
�xed. Depending on whether t0 lies in the future (where t0 is usually denoted by T ) or in
the past, t < T or t0 < t, the equation is solved forward or backward.

backward forward

t0 t                        T

Figure 4.3.2 Illustrating backward solution (initial value problem) and forward solution
(boundary value problem)

We start with the backward solution, i.e. where t0 < t. Let the initial condition be
x (t0) = x0. Then the solution of (4.3.1) is

x (t) = e
R t
t0
a(�)d�

�
x0 +

Z t

t0

e
�
R �
t0
a(u)du

b (�) d�

�
= x0e

R t
t0
a(�)d�

+

Z t

t0

e
R t
� a(u)dub (�) d� : (4.3.7)
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Some intuition for this solution can be gained by considering special cases. Look �rst at
the case where b (t) = 0 for all t (and therefore all �). The variable x (t) then grows at a
variable growth rate a (t) ; _x (t) =x (t) = a (t) from (4.3.1). The solution to this ODE is

x (t) = x0e
R t
t0
a(�)d� � x0e

�a[t�t0]

where �a �
R t
t0
a(�)d�

t�t0 is the average growth rate of a between t0 and t: The solution x0e�a[t�t0]

has the same structure as the solution for a constant a - this ODE implies an exponential
increase of x (t) : Looking at �a then shows that this exponential increase now takes place
at the average of a (t) over the period we are looking at.
Now allow for a positive b (t) : The solution (4.3.7) says that when a b (�) is added

in � ; the e¤ect on x (t) is given by the initial b (�) times an exponential increase factor
e
R t
� a(u)du that takes the increase from � to t into account. As a b (�) is added at each � ;

the outer integral
R t
t0
:d� �sums�over all these individual contributions.

The forward solution is required if t0; which we rename T for ease of distinction, lies
in the future of t, T > t: With a terminal condition x (T ) = xT , the solution then reads

x (t) = xT e
�
R T
t a(�)d� �

Z T

t

e�
R �
t a(u)dub (�) d� : (4.3.8)

A similar intuitive explanation as after (4.3.7) can be given for this equation.

� Veri�cation
We now show that (4.3.7) and (4.3.8) are indeed a solution for (4.3.1). Using the

Leibniz rule from (4.3.3), the time derivative of (4.3.7) is given by

_x (t) = e
R t
t0
a(�)d�

a (t)x0 + e
R t
t a(u)dub (t) +

Z t

t0

e
R t
� a(u)dua (t) b (�) d� :

When we pull out a (t) and reinsert (4.3.7), we �nd

_x (t) = a (t)

�
e
R t
t0
a(�)d�

x0 +

Z t

t0

e
R t
� a(u)dub (�) d�

�
+ b (t)

= a (t)x (t) + b (t) :

This shows us that our function x (t) in (4.3.7) is in fact a solution of (4.3.1) as x (t) in
(4.3.7) satis�es (4.3.1).
The time derivative for the forward solution in (4.3.8) is

_x (t) = e�
R T
t a(�)d�a (t)xT + b (t)�

Z T

t

e�
R �
t a(u)dub (�) d�a (t)

= a (t)

�
e�

R T
t a(�)d�xT �

Z T

t

e�
R �
t a(u)dub (�) d�

�
+ b (t)

= a (t)x (t) + b (t) :

Here, (4.3.8) was also reinserted into the second step. This shows that (4.3.8) is also a
solution of (4.3.1).
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4.3.3 Di¤erential equations as integral equations

Any di¤erential equation can be written as an integral equation. While we will work
with the �usual�di¤erential equation representation most of the time, we introduce the
integral representation here as it will be used frequently later when computing moments
in stochastic setups. Understanding the integral version of di¤erential equations in this
deterministic setup allows for an easier understanding of integral representations of sto-
chastic di¤erential equations later.

� The principle
The non-autonomous di¤erential equation _x = f (t; x) can be written equivalently

as an integral equation. To this end, write this equation as dx = f (t; x) dt or, after
substituting s for t, as dx = f (s; x) ds: Now apply the integral

R t
0
on both sides. This

gives the integral version of the di¤erential equation _x = f (t; x) which readsZ t

0

dx = x (t)� x (0) =
Z t

0

f (s; x) ds:

� An example
The di¤erential equation _x = a (t)x is equivalent to

x (t) = x0 +

Z t

0

a (s)x (s) ds: (4.3.9)

Computing the derivative of this equation with respect to time t gives, using (4.3.3),
_x (t) = a (t)x (t) again.
The presence of an integral in (4.3.9) should not lead one to confuse (4.3.9) with

a solution of _x = a (t)x in the sense of the last section. Such a solution would read
x (t) = x0e

R t
0 a(s)ds.

4.4 Examples

4.4.1 Backward solution: A growth model

Consider an example inspired by growth theory. Let the capital stock of the economy
follow _K = I � �K, gross investment minus depreciation gives the net increase of the
capital stock. Let gross investment be determined by a constant saving rate times output,
I = sY (K) and the technology be given by a linear AK speci�cation. The complete
di¤erential equation then reads

_K = sAK � �K = (sA� �)K:
Its solution is (see ch. 4.3.2) K (t) = 
e(sA��)t. As in the qualitative analysis above,
we found a multitude of solutions, depending on the constant 
: If we specify an initial
condition, say we know the capital stock at t = 0; i.e. K (0) = K0, then we can �x the
constant 
 by 
 = K0 and our solution �nally reads K (t) = K0e

(sA��)t:
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4.4.2 Forward solution: Budget constraints

As an application of di¤erential equations, consider the budget constraint of a household.
As in discrete time in ch. 3.5.2, budget constraints can be expressed in a dynamic and an
intertemporal way. We �rst show here how to derive the dynamic version and then how
to obtain the intertemporal version from solving the dynamic one.

� Deriving a nominal dynamic budget constraint

Following the idea of ch. 2.5.5, let us �rst derive the dynamic budget constraint. In
contrast to ch. 2.5.5 in discrete time, we will see how straightforward a derivation is in
continuous time.
We start from the de�nition of nominal wealth. We have only one asset here. Nominal

wealth is therefore given by a = kv; where k is the household�s physical capital stock and
v is the value of one unit of the capital stock. One can alternatively think of k as the
number of shares held by the household. By computing the time derivative, wealth of a
household changes according to

_a = _kv + k _v: (4.4.1)

If the household wants to save, it can buy capital goods. The household�s nominal savings
in t are given by s = wKk+w�pc; the di¤erence between factor rewards for capital (value
marginal product times capital owned), labour income and expenditure. Dividing savings
by the value of a capital good, i.e. the price of a share, gives the number of shares bought
(or sold if savings are negative),

_k =
wKk + w � pc

v
: (4.4.2)

Inserting this into (4.4.1), the equation for wealth accumulation gives, after reintroducing
wealth a by replacing k by a=v;

_a = wKk + w � pc+ k _v =
�
wK + _v

�
k + w � pc = wK + _v

v
a+ w � pc:

De�ning the nominal interest rate as

i � wK + _v

v
; (4.4.3)

we have the nominal budget constraint

_a = ia+ w � pc: (4.4.4)

This shows why it is wise to always derive a budget constraint. Without a derivation,
(4.4.3) is missed out and the meaning of the interest rate i in the budget constraint is not
known.
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� Finding the intertemporal budget constraint

We can now obtain the intertemporal budget constraint from solving the dynamic one
in (4.4.4). Using the forward solution from (4.3.8), we take a (T ) = aT as the terminal
condition lying with T > t in the future. We are in t today. The solution is then

a (t) = e�
R T
t i(�)d�aT �

Z T

t

e�
R �
t i(u)du [w (�)� p (�) c (�)] d� ,Z T

t

D (�)w (�) d� + a (t) = D (T ) aT +

Z T

t

D (�) p (�) c (�) d� ;

where D (�) � e�
R �
t i(u)du de�nes the discount factor. As we have used the forward so-

lution, we have obtained an expression which easily lends itself to an economic interpre-
tation. Think of an individual who - at the end of his life - does not want to leave any
bequest, i.e. aT = 0: Then, this intertemporal budget constraint requires that current
wealth on the left-hand side, consisting of the present value of life-time labour income plus
�nancial wealth a (t) needs to equal the present value of current and future expenditure
on the right-hand side.
Now imagine that aT > 0 as the individual does plan to leave a bequest. Then this

bequest is visible as an expenditure on the right-hand side. Current wealth plus the
present value of wage income on the left must then be high enough to provide for the
present value D (T ) aT of this bequest and the present value of consumption.
What about debt in T? Imagine there is a fairy godmother who pays all debts left at

the end of a life. With aT < 0 the household can consume more than current wealth a (t)
and the present value of labour income - the di¤erence is just the present value of debt,
D (T ) aT < 0:

Now let the future point T in time go to in�nity. Expressing limT!1
R T
t
f (�) d� asR1

t
f (�) d� , the budget constraint becomesZ 1

t

D (�)w (�) d� + a (t) = lim
T!1

D (T ) aT +

Z 1

t

D (�) p (�) c (�) d�

What would a negative present value of future wealth now mean, i.e. limT!1D (T ) aT <
0? If there was such a fairy godmother, having debt would allow the agent to permanently
consume above its income levels and pay for this di¤erence by accumulating debt. As fairy
godmothers rarely exist in real life - especially when we think about economic aspects -
economists usually assume that

lim
T!1

D (T ) aT = 0: (4.4.5)

This condition is often called solvency or no-Ponzi game condition. Note that the no-
Ponzi game condition is a di¤erent concept from the boundedness condition in ch. 5.3.2
or the transversality condition in ch. 5.4.3.
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� Real wealth

We can also start from the de�nition of the household�s real wealth, measured in units
of the consumption good, whose price is p. Real wealth is then ar = kv

p
: The change in

real wealth over time is then (apply the log on both sides and derive with respect to time),

_ar

ar
=
_k

k
+
_v

v
� _p

p
:

Inserting the increase into the capital stock obtained from (4.4.2) gives

_ar

ar
=
wKk + w � pc

vk
+
_v

v
� _p

p
=

�
wKk + w � pc

�
p�1

vkp�1
+
_v

v
� _p

p
:

Using the expression for real wealth ar;

_ar = wK
k

p
+
w

p
� c+ _v

v
ar � _p

p
ar =

wK

v
ar +

w

p
� c+ _v

v
ar � _p

p
ar

=

�
wK + _v

v
� _p

p

�
ar +

w

p
� c = rar +

w

p
� c: (4.4.6)

Hence, the real interest rate r is - by de�nition -

r =
wK + _v

v
� _p

p
:

The di¤erence to (4.4.3) simply lies in the in�ation rate: Nominal interest rate minus in-
�ation rate gives real interest rate. Solving the di¤erential equation (4.4.6) again provides
the intertemporal budget constraint as in the nominal case above.
Now assume that the price of the capital good equals the price of the consumption

good, v = p: This is the case in an economy where there is one homogeneous output good
as in (2.4.9) or in (9.3.4). Then, the real interest rate is equal to the marginal product of
capital, r = wK=p:

4.4.3 Forward solution again: capital markets and utility

� The capital market no-arbitrage condition

Imagine you own wealth of worth v (t) : You can invest it on a bank account which
pays a certain return r (t) per unit of time or you can buy shares of a �rm which cost v (t)
and which yield dividend payments � (t) and are subject to changes _v (t) in its worth. In
a world of perfect information and assuming that in some equilibrium agents hold both
assets, the two assets must yield identical income streams,

r (t) v (t) = � (t) + _v (t) : (4.4.7)
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This is a linear di¤erential equation in v (t). As just motivated, it can be considered as
a no-arbitrage condition. Note, however, that it is structurally equivalent to (4.4.3), i.e.
this no-arbitrage condition can be seen to just de�ne the interest rate r (t).
Whatever the interpretation of this di¤erential equation is, solving it forward with a

terminal condition v (T ) = vT gives according to (4.3.8)

v (t) = e�
R T
t r(�)d�vT +

Z T

t

e�
R �
t r(u)du� (�) d� :

Letting T go to in�nity, we have

v (t) =

Z 1

t

e�
R �
t r(u)du� (�) d� + lim

T!1
e�

R T
t r(�)d�vT :

This forward solution stresses the economic interpretation of v (t) : The value of an asset
depends on the future income stream - dividend payments � (�) - that are generated from
owning this asset. Note that it is usually assumed that there are no bubbles, i.e. the limit
is zero so that the fundamental value of an asset is given by the �rst term.
For a constant interest rate and dividend payments and no bubbles, the expression for

v (t) simpli�es to v = �=r:

� The utility function

Consider an intertemporal utility function as it is often used in continuous time models,

U (t) =

Z 1

t

e��[��t]u (c (�)) d� : (4.4.8)

This is the standard expression which corresponds to (2.2.12) or (3.1.1) in discrete time.
Again, instantaneous utility is given by u (:) : It depends here on consumption only, where
households consume continuously at each instant � : Impatience is captured as before by
the time preference rate �: Higher values attached to present consumption are captured
by the discount function e��[��t]; whose discrete time analog in (3.1.1) is ���t:
Using (4.3.3), di¤erentiating with respect to time gives us a linear di¤erential equation,

_U (t) = �u (c (t)) +
Z 1

t

d

dt

�
e��[��t]u (c (�))

�
d� = �u (c (t)) + �U (t) :

This equation says that overall utility U (t) decreases, as time goes by, by instantaneous
consumption u (c (t)) : When t is over, the opportunity is gone: we can no longer enjoy
utility from consumption at t: But U (t) also has an increasing component: as the future
comes closer, we gain �U (t) :
Solving this linear di¤erential equation forward gives

U (t) = e��[T�t]U (T ) +

Z T

t

e��[��t]u (c (�)) d� :
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Letting T go to in�nity, we have

U (t) =

Z T

t

e��[��t]u (c (�)) d� + lim
T!1

e��[T�t]U (T ) :

The second term is related to the transversality condition.

4.5 Linear di¤erential equation systems

A di¤erential equation system consists of two or more di¤erential equations which are
mutually related to each other. Such a system can be written as

_x (t) = Ax (t) + b;

where the vector x (t) is given by x = (x1; x2; x3; :::; xn)
0 ; A is an n � n matrix with

elements aij and b is a vector b = (b1; b2; b3; :::; bn)
0 : Note that elements of A and b can

be functions of time but not functions of x:
With constant coe¢ cients, such a system can be solved in various ways, e.g. by deter-

mining so-called Eigenvalues and Eigenvectors. These systems either result from economic
models directly or are the outcome of a linearization of some non-linear system around
a steady state. This latter approach plays an important role for local stability analyses
(compared to the global analyses we undertook above with phase diagrams). These local
stability analyses can be performed for systems of almost arbitrary dimension and are
therefore more general and (for the local surrounding of a steady state) more informative
than phase diagram analyses.
Please see the references in �further reading� on many textbooks that treat these

issues.

4.6 Further reading and exercises

There are many textbooks that treat di¤erential equations and di¤erential equation sys-
tems. Any library search tool will provide many hits. This chapter owes insights to
Gandolfo (1996) on phase diagram analysis and di¤erential equations and - inter alia -
to Brock and Malliaris (1989), Braun (1975) and Chiang (1984) on di¤erential equations.
See also Gandolfo (1996) on di¤erential equation systems. The predator-prey model is
treated in various biology textbooks. It can also be found on many sites on the Internet.
The Leibniz rule was taken from Fichtenholz (1997) and can be found in many other
textbooks on di¤erentiation and integration.
The AK speci�cation of a technology was made popular by Rebelo (1991).
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Exercises chapter 4
Applied Intertemporal Optimization

Using phase diagrams

1. Phase diagram I
Consider the following di¤erential equation system,

_x1 = f (x1; x2) ; _x2 = g (x1; x2) :

Assume

fx1 (x1; x2) < 0; gx2 (x1; x2) < 0;
dx2
dx1

����
f(x1;x2)=0

< 0;
dx2
dx1

����
g(x1;x2)=0

> 0:

(a) Plot a phase diagram for the positive quadrant.

(b) What type of �xpoint can be identi�ed with this setup?

2. Phase diagram II

(a) Plot two phase diagrams for

_x = xy � a; _y = y � b; a > 0: (4.6.1)

by varying the parameter b.

(b) What type of �xpoints do you �nd?

(c) Solve this system analytically. Note that y is linear and can easily be solved.
Once this solution is plugged into the di¤erential equation for x; this becomes
a linear di¤erential equation as well.

3. Phase diagram III

(a) Plot paths through points marked by a dot ���in the �gure below.
(b) What type of �xpoints are A and B?
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y

O
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&x = 0

&y = 0
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4. Local stability analysis
Study local stability properties of the �xpoint of the di¤erential equation system
(4.6.1).

5. Phase diagram and �xpoint
Grossman and Helpman (1991) present a growth model with an increasing number of
varieties. The reduced form of this economy can be described by a two-dimensional
di¤erential equation system,

_n (t) =
L

a
� �

v (t)
; _v (t) = �v (t)� 1� �

n (t)
;

where 0 < � < 1 and a > 0. Variables v (t) and n (t) denote the value of the
representative �rm and the number of �rms, respectively. The positive constants �
and L denote the time preference rate and �x labour supply.

(a) Draw a phase diagram (for positive n (t) and v (t)) and determine the �xpoint.

(b) What type of �xpoint do you �nd?

6. Solving linear di¤erential equations
Solve � _y (t) + � y (t) = 
; y (s) = 17 for

(a) t > s;

(b) t < s:

(c) What is the forward and what is the backward solution? How do they relate
to each other?
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7. Comparing forward and backward solutions
Remember that

R z2
z1
f (z) dz = �

R z1
z2
f (z) dz for any well-de�ned z1; z2 and f (z) :

Replace T by t0 in (4.3.8) and show that the solution is identical to the one in
(4.3.7). Explain why this must be the case.

8. Derivatives of integrals
Compute the following derivatives.

(a) d
d y

R y
a
f (s) ds;

(b) d
d y

R y
a
f (s; y) ds;

(c) d
d y

R b
a
f (y) dy;

(d) d
d y

R
f (y) dy:

(e) Show that the integration by parts formula
R b
a
_xydt = [xy]ba �

R b
a
x _ydt holds.

9. Intertemporal and dynamic budget constraints
Consider the intertemporal budget constraint which equates the discounted expen-
diture stream to asset holdings plus a discounted income stream,Z 1

t

Dr (�)E (�) d� = A (t) +

Z 1

t

Dr (�) I (�) d� ; (4.6.2)

where

Dr (�) = exp

�
�
Z �

t

r (s) ds

�
: (4.6.3)

A dynamic budget constraint reads

E (t) + _A (t) = r (t)A (t) + I (t) : (4.6.4)

(a) Show that solving the dynamic budget constraint yields the intertemporal bud-

get constraint if and only if limT!1A (T ) exp
h
�
R T
t
r (�) d�

i
= 0:

(b) Show that di¤erentiating the intertemporal budget constraint yields the dy-
namic budget constraint.

10. A budget constraint with many assets
Consider an economy with two assets whose prices are vi (t). A household owns
ni (t) assets of each type such that total wealth at time t of the household is given
by a (t) = v1 (t)n1 (t) + v2 (t)n2 (t) : Each asset pays a �ow of dividends �i (t) : Let
the household earn wage income w (t) and spend p (t) c (t) on consumption per unit
of time. Show that the household�s budget constraint is given by

_a (t) = r (t) a (t) + w (t)� p (t) c (t)
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where the interest rates are de�ned by

r (t) � � (t) r1 (t) + (1� � (t)) r2 (t) ; ri (t) �
�i (t) + _vi (t)

vi (t)

and � (t) � v1 (t)n1 (t) =a (t) is de�ned as the share of wealth held in asset 1:

11. Optimal saving
Let optimal saving and consumption behaviour (see ch. 5, e.g. eq. (5.1.6)) be de-
scribed by the two-dimensional system

_c = gc; _a = ra+ w � c;

where g is the growth rate of consumption, given e.g. by g = r�� or g = (r � �) =�:
Solve this system for time paths of consumption c and wealth a:

12. ODE systems
Study transitional dynamics in a two-country world.

(a) Compute time paths for the number ni (t) of �rms in country i: The laws of
motion are given by (Grossman and Helpman, 1991; Wälde, 1996)

_ni =
�
nA + nB

�
Li � ni� (L+ �) ; i = A;B; L = LA + LB; �; � > 0:

Hint: Eigenvalues are g = (1� �)L� � � > 0 and � = �� (L+ �).

(b) Plot the time path of nA. Choose appropriate initial conditions.



Chapter 5

Finite and in�nite horizon models

One widely used approach to solve deterministic intertemporal optimization problems in
continuous time consists of using the so-called Hamiltonian function. Given a certain
maximization problem, this function can be adapted - just like a recipe - to yield a
straightforward result. The �rst section will provide an introductory example with a
�nite horizon. It shows how easy it can sometimes be to solve a maximization problem.
It is useful to understand, however, where the Hamiltonian comes from. A list of

examples can never be complete, so it helps to be able to derive the appropriate optimality
conditions in general. This will be done in the subsequent section. Section 5.4 then
discusses what boundary conditions for maximization problems look like and how they
can be motivated. The in�nite planning horizon problem is then presented and solved in
section 5.3 which includes a section on transversality and boundedness conditions. Various
examples follow in section 5.5. Section 5.7 �nally shows how to work with present-value
Hamiltonians and how they relate to current-value Hamiltonians (which are the ones used
in all previous sections).

5.1 Intertemporal utility maximization - an intro-
ductory example

5.1.1 The setup

Consider an individual that wants to maximize a utility function similar to the one en-
countered already in (4.4.8),

U (t) =

Z T

t

e��[��t] ln c (�) d� : (5.1.1)

The planning period starts in t and stops in T � t: The instantaneous utility function is
logarithmic and given by ln c (�) : The time preference rate is �: The budget constraint
of this individual equates changes in wealth, _a (�) ; to current savings, i.e. the di¤erence

107
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between capital and labour income, r (�) a (�)+w (�) ; and consumption expenditure c (�),

_a (�) = r (�) a (�) + w (�)� c (�) : (5.1.2)

The maximization task consists of maximizing U (t) subject to this constraint by choosing
a path of control variables, here consumption and denoted by fc (�)g :

5.1.2 Solving by optimal control

This maximization problem can be solved by using the present-value or the current-value
Hamiltonian. We will work with the current-value Hamiltonian here and in what follows.
Section 5.7 presents the present-value Hamiltonian and shows how it di¤ers from the
current-value Hamiltonian. The current-value Hamiltonian reads

H = ln c (�) + � (�) [r (�) a (�) + w (�)� c (�)] ; (5.1.3)

where � (�) is a multiplier of the constraint. It is called the costate variable as it corre-
sponds to the state variable a (�) : In maximization problems with more than one state
variable, there is one costate variable for each state variable. The costate variable could
also be called Hamilton multiplier - similar to the Lagrange multiplier. We show further
below that � (�) is the shadow price of wealth. The meaning of the terms state, costate
and control variables is the same as in discrete time setups.
Omitting time arguments, optimality conditions are

@H

@c
=
1

c
� � = 0; (5.1.4)

_� = ��� @H

@a
= ��� r�: (5.1.5)

The �rst-order condition in (5.1.4) is a usual optimality condition: the derivative of the
Hamiltonian (5.1.3) with respect to the consumption level c must be zero. The second
optimality condition - at this stage - just comes �out of the blue�. Its origin will be
discussed in a second. Applying logs to the �rst �rst-order condition, � ln c = ln�; and
computing derivatives with respect to time yields � _c=c = _�=�: Inserting into (5.1.5) gives
the Euler equation

� _c

c
= �� r , _c

c
= r � �: (5.1.6)

As this type of consumption problem was �rst solved by Ramsey in 1928 with some
support by Keynes, a consumption rule of this type is often called Keynes-Ramsey rule.
This rule is one of the best-known and most widely used in Economics. It says that

consumption increases when the interest rate is higher than the time preference rate. One
reason is that a higher interest rate implies - at unchanged consumption levels - a quicker
increase in wealth. This is visible directly from the budget constraint (5.1.2). A quicker
increase in wealth allows for a quicker increase in consumption. The second reason is that
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a higher interest rate can lead to a change in the consumption level (as opposed to its
growth rate). This channel will be analyzed in detail towards the end of ch. 5.6.1.
Equations (5.1.2) and (5.1.6) form a two-dimensional di¤erential equation system in

a and c: This system can be solved given two boundary conditions. How these conditions
can be found will be treated in ch. 5.4.

5.2 Deriving laws of motion

This subsection shows where the Hamiltonian comes from. More precisely, it shows how
the Hamiltonian can be deduced from the optimality conditions resulting from a Lagrange
approach. The Hamiltonian can therefore be seen as a shortcut which is quicker than the
Lagrange approach but leads to (it needs to lead to) identical results.

5.2.1 The setup

Consider the objective function

U (t) =

Z T

t

e��[��t]u (y (�) ; z (�) ; �) d� (5.2.1)

which we now maximize subject to the constraint

_y (�) = Q (y (�) ; z (�) ; �) : (5.2.2)

The function Q (:) is left fairly unspeci�ed. It could be a budget constraint of a household,
a resource constraint of an economy or some other constraint. We assume that Q (:)
has �nice properties�, i.e. it is continuous and di¤erentiable everywhere. The objective
function is maximized by an appropriate choice of the path fz(�)g of control variables.

5.2.2 Solving by the Lagrangian

This problem can be solved by using the Lagrangian

L =
Z T

t

e��[��t]u (�) d� +

Z T

t

� (�) [Q (�)� _y (�)] d� :

The utility function u (:) and the constraint Q (:) are presented as u (�) and Q (�), re-
spectively. This shortens notation compared to full expressions in (5.2.1) and (5.2.2).
The intuition behind this Lagrangian is similar to the one behind the Lagrangian in the
discrete time case in (3.7.3) in ch. 3.7, where we also looked at a setup with many con-
straints. The �rst part is simply the objective function. The second part refers to the
constraints. In the discrete-time case, each point in time had its own constraint with its
own Lagrange multiplier. Here, the constraint (5.2.2) holds for a continuum of points � .
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Hence, instead of the sum in the discrete case we now have an integral over the product
of multipliers � (�) and constraints.
This Lagrangian can be rewritten as follows,

L =
Z T

t

e��[��t]u (�) + � (�)Q (�) d� �
Z T

t

� (�) _y (�) d�

=

Z T

t

e��[��t]u (�) + � (�)Q (�) d� +

Z T

t

_� (�) y (�) d� � [� (�) y (�)]Tt (5.2.3)

where the last step integrated by parts and [� (�) y (�)]Tt is the integral function of
� (�) y (�) evaluated at T minus its level at t.
Now assume that we could choose not only the control variable z (�) ; but also the

state variable y (�) at each point in time. The intuition for this is the same as in discrete
time in ch. 3.7.2. Hence, we maximize the Lagrangian (5.2.3) with respect to y and z at
one particular � 2 [t; T ] ; i.e. we compute the derivative with respect to z (�) and y (�).
For the control variable z (�) ; we get a �rst-order condition

e��[��t]uz (�) + � (�)Qz (�) = 0, uz (�) + e�[��t]� (�)Qz (�) = 0:

When we de�ne
� (�) � e�[��t]� (�) ; (5.2.4)

we �nd
uz (�) + � (�)Qz (�) = 0: (5.2.5)

For the state variable y (�) ; we obtain

e��[��t]uy (�) + � (�)Qy (�) + _� (�) = 0,
�uy (�)� � (�) e�[��t]Qy (�) = e�[��t] _� (�) : (5.2.6)

Di¤erentiating (5.2.4) with respect to time � and resinserting (5.2.4) gives

_� (�) = �e�[��t]� (�) + e�[��t] _� (�) = �� (�) + e�[��t] _� (�) :

Inserting (5.2.6) and (5.2.4), we obtain

_� (�) = �� (�)� uy (�)� � (�)Qy (�) : (5.2.7)

Equations (5.2.5) and (5.2.7) are the two optimality conditions that solve the above
maximization problem jointly with the constraint (5.2.2). We have three equations which
�x three variables: The �rst condition (5.2.5) determines the optimal level of the control
variable z: As this optimality condition holds for each point in time � ; it �xes an entire
path for z: The second optimality condition (5.2.7) �xes a time path for �: By letting the
costate � follow an appropriate path, it makes sure, that the level of the state variable
(which is not instantaneously adjustable as the maximization of the Lagrangian would
suggest) is as if it had been optimally chosen at each instant. Finally, the constraint
(5.2.2) �xes the time path for the state variable y:



5.3. The in�nite horizon 111

5.2.3 Hamiltonians as a shortcut

Let us now see how Hamiltonians can be justi�ed. The optimal control problem continues
to be the one in ch.5.2.1 . De�ne the Hamiltonian similar to (5.1.3),

H = u (�) + � (�)Q (�) : (5.2.8)

In fact, this Hamiltonian shows the general structure of Hamiltonians. Take the instan-
taneous utility level (or any other function behind the discount term in the objective
function) and add the costate variable � multiplied by the right-hand side of the con-
straint. Optimality conditions are then

Hz = 0; (5.2.9)
_� = ���Hy: (5.2.10)

These conditions were already used in (5.1.4) and (5.1.5) in the introductory example
in the previous chapter 5.1 and in (5.2.5) and (5.2.7): When the derivatives Hz and Hy in
(5.2.9) and (5.2.10) are computed from (5.2.8), this yields equations (5.2.5) and (5.2.7).
Hamiltonians are therefore just a shortcut that allow us to obtain results faster than in
the case where Lagrangians are used. Note for later purposes that both � and � have
time � as an argument.
There is an interpretation of the costate variable � which we simply state at this

point (see ch. 6.2 for a formal derivation): The derivative of the objective function with
respect to the state variable at t, evaluated on the optimal path, equals the value of
the corresponding costate variable at t. Hence, just as in the static Lagrange case, the
costate variable measures the change in utility as a result of a change in endowment (i.e.
in the state variable). Expressing this formally, de�ne the value function as V (y (t)) �
maxfz(�)g U (t) ; identical in spirit to the value function in dynamic programming as we
got to know it in discrete time. The derivative of the value function, the shadow price
V 0 (y (t)) ; is then the change in utility when behaving optimally resulting from a change
in the state y (t) : This derivative equals the costate variable, V 0 (y (t)) = �.

5.3 The in�nite horizon

5.3.1 Solving by optimal control

� Setup

In the in�nite horizon case, the objective function has the same structure as before in
e.g. (5.2.1) only that the �nite time horizon T is replaced by an in�nite time horizon 1.
The constraints are unchanged and the maximization problem reads

max
fz(�)g

Z 1

t

e��[��t]u (y (�) ; z (�) ; �) d� ;
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subject to

_y (�) = Q (y (�) ; z (�) ; �) ;

y (t) = yt: (5.3.1)

We need to assume for this problem that the integral
R1
t
e��[��t]u (:) d� converges for

all feasible paths of y (�) and z (�), otherwise the optimality criterion must be rede�ned.
This boundedness condition is important only in this in�nite horizon case. Consider the
following �gure for the �nite horizon case.

t                                          T

e­ρ[τ­t]u(y(τ),z(τ),τ)

Figure 5.3.1 Bounded objective function for a �nite horizon

If individuals have a �nite horizon (planning starts at t and ends at T ) and the utility
function u (:) is continuous over the entire planning period (as drawn), the objective
function (the shaded area) is �nite and the boundedness problem disappears. (As is clear
from the �gure, the condition of a continuous u (:) could be relaxed.) Clearly, making
such an assumption is not always innocuous and one should check, at least after having
solved the maximization problem, whether the objective function indeed converges. This
will be done in ch. 5.3.2.

� Optimality conditions

The current-value Hamiltonian as in (5.2.8) is de�ned by H = u (�) + � (�)Q (�) :
Optimality conditions are (5.2.9) and (5.2.10), i.e.

@H

@z
= 0; _� = ��� @H

@y
:

Hence, we have identical optimality conditions to the case of a �nite horizon.
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5.3.2 The boundedness condition

When introducing an in�nite horizon objective function, it was stressed right after (5.3.1)
that objective functions must be �nite for any feasible paths of the control variable.
Otherwise, overall utility U (t) would be in�nitely large and there would be no objective
for optimizing - we are already in�nitely happy! This �problem�of unlimited happiness
is particularly severe in models where control variables grow with a constant rate, think
e.g. of consumption in a model of growth. A pragmatic approach to checking whether
growth is not too high is to �rst assume that it is not too high, then to maximize the
utility function and afterwards check whether the initial assumption is satis�ed.
As an example, consider the utility function U (t) =

R1
t
e��[��t]u (c (�)) d� : The in-

stantaneous utility function u (c (�)) is characterized by constant elasticity of substitution
as in (2.2.10),

u (c (�)) =
c (�)1�� � 1
1� � ; � > 0: (5.3.2)

Assume that consumption grows with a rate of g, where this growth rate results from util-
ity maximization. Think of this g as representing e.g. the di¤erence between the interest
rate and the time preference rate, corrected by intertemporal elasticity of substitution,
as will be found later e.g. in the Keynes-Ramsey rule (5.6.8), i.e. _c=c = (r � �) =� � g.
Consumption at � � t is then given by c (�) = c (t) eg[��t]: With this exponential growth
of consumption, the utility function becomes

U (t) = (1� �)�1
�
c (t)1��

Z 1

t

e��[��t]e(1��)g[��t]d� +
1

�

�
:

This integral is bounded if and only if the boundedness condition

(1� �) g � � < 0

holds. This can formally be seen by computing the integral explicitly and checking under
which conditions it is �nite. Intuitively, this condition makes sense: Instantaneous utility
from consumption grows by a rate of (1� �) g: Impatience implies that future utility is
discounted by the rate �: Only if this time preference rate � is large enough, the overall
expression within the integral, e��[��t]

�
C (�)1�� � 1

�
; will fall in � :

5.4 Boundary conditions and su¢ cient conditions

So far, maximization problems were presented without boundary conditions. Usually,
however, boundary conditions are part of the maximization problem. Without boundary
conditions, the resulting di¤erential equation system (e.g. (5.1.2) and (5.1.6) from the
introductory example in ch. 5.1) has an in�nite number of solutions and the level of
control and state variables is not pinned down. We will now consider three cases. All
cases will later be illustrated in the phase diagram of section 5.5.
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5.4.1 Free value of the state variable at the endpoint

Many problems are of the form (5.2.1) and (5.2.2), where boundary values for the state
variable are given by

y (t) = yt; y (T ) free. (5.4.1)

The �rst condition is the usual initial condition. The second condition allows the state
variable to be freely chosen for the end of the planning horizon.
We can use the current-value Hamiltonian (5.2.8) to obtain optimality conditions

(5.2.9) and (5.2.10). In addition to the boundary condition y (t) = yt from (5.4.1), we
have (cf. Feichtinger and Hartl, 1986, p. 20),

� (T ) = 0: (5.4.2)

With this additional condition, we have two boundary conditions which allows us to solve
our di¤erential equation system (5.2.9) and (5.2.10). This yields a unique solution and
an example for this will be discussed further below in ch. 5.5.

5.4.2 Fixed value of the state variable at the endpoint

Now consider (5.2.1) and (5.2.2) with one initial and one terminal condition,

y (t) = yt; y (T ) = yT : (5.4.3)

In order for this problem to make sense, we assume that a feasible solution exists. This
�should� generally be the case, but it is not obvious: Consider again the introductory
example in ch. 5.1. Let the endpoint condition be given by �the agent is very rich in T�;
i.e. a (T ) =�very large�. If a (T ) is too large, even zero consumption at each point in
time, c (�) = 0 8� 2 [t; T ] ; would not allow wealth a to be as large as required by a (T ) :
In this case, no feasible solution would exist.
We assume, however, that a feasible solution exists. Optimality conditions are then

identical to (5.2.9) and (5.2.10), plus initial and boundary values (5.4.3). Again, two
di¤erential equations with two boundary conditions gives level information about the
optimal solution and not just information about changes.
The di¤erence between this approach and the previous one is that, now, y (T ) = yT

is exogenously given, i.e. part of the maximization problem. Before the corresponding
� (T ) = 0 was endogenously determined as a necessary condition for optimality.

5.4.3 The transversality condition

The analysis of the maximization problem with an in�nite horizon in ch. 5.3 also led to
a system of two di¤erential equations. One boundary condition is provided by the initial
condition in (5.3.1) for the state variable. Hence, again, we need a second condition to
pin down the initial level of the control variable, e.g. the initial consumption level.
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In the �nite horizon case, we had terminal conditions of the type K (T ) = KT or
� (T ) = 0 in (5.4.2) and (5.4.3). As no such terminal T is now available, these conditions
need to be replaced by alternative speci�cations. It is useful to draw a distinction between
abstract conditions and conditions which have a practical value in the sense that they can
be used to explicitly compute the initial consumption level. A �rst practically useful
condition is the no-Ponzi game condition (4.4.5) resulting from considerations concerning
the budget constraint,

lim
T!1

y (T ) exp

�
�
Z T

t

r (�) d�

�
= 0

where r � @H=@y. Note that this no-Ponzi game condition can be rewritten as

lim
T!1

e��T� (T ) y (T ) = lim
T!1

� (T ) y (T ) = 0; (5.4.4)

where the fact that _�=� = r � � implies that �e��t = �0e
�
R T
t r(�)d� was used. The

formulations in (5.4.4) of the no-Ponzi game condition is frequently encountered as a
second boundary condition. We will use it later in the example of ch. 5.6.1.
A second useful way to determine levels of variables is the existence of a long-run

steady state. With a well-de�ned steady state, one generally analyses properties on the
saddle path which leads to this steady state. On this saddle path, the level of variables is
determined, at least graphically. Numerical solutions also exist and sometimes analytical
closed-form solutions can be found. Often, an analysis of the steady state alone is su¢ -
cient. An example where levels of variables are determined when analysing transitional
dynamics on the saddle-path leading to the steady state is the central planner problem
studied in ch. 5.6.3.
Concerning abstract conditions, a condition occasionally encountered is the transver-

sality condition (TVC),
lim
t!1
f� (t) [y (t)� y� (t)]g = 0;

where y� (t) is the path of y (t) for an optimal choice of control variables. There is a
considerable literature on the necessity and su¢ ciency of the TVC and no attempt is
made here to cover it. Various references to the literature on the TVC are in section 5.8
on �further reading�.

5.4.4 Su¢ cient conditions

So far, we have only presented conditions that are necessary for a maximum. We do
not yet know, however, whether these conditions are also su¢ cient. Su¢ ciency can be
important, however, as it can be easily recalled when thinking of a static maximization
problem. Consider maxx f (x) where f 0 (x�) = 0 is necessary for an interior maximum.
This is not su¢ cient as f 0 (x� + ") could be positive for any " 6= 0.
For our purposes, necessary conditions are su¢ cient if either (i) the functions u (:) and

Q (:) in (5.2.1) and (5.2.2) are concave in y and z and if � (�) is positive for all � ; (ii)
Q (:) is linear in y and z for any �(t) or (iii) Q (:) is convex and � (�) is negative for all � :
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The concavity of the utility function u (:) and constraint Q (:) can easily be checked
and obviously hold, for example, for standard logarithmic and CES utility functions (as
in (2.2.10) or (3.9.4)) and for constraints containing a technology as in (5.6.12) below.
The sign of the shadow price can be checked by looking at the �rst order conditions as
e.g. (5.1.4) or (5.6.13) later. As we usually assume that utility increases in consumption,
we see that - for a problem to make economically sense - the shadow price is positive.
Linearity in condition (ii) is often ful�lled when the constraint is e.g. a budget constraint.
See �further reading�on references with a more formal treatment of su¢ cient condi-

tions.

5.5 Illustrating boundary conditions

Let us now consider an example from microeconomics. We consider a �rm that operates
under adjustment costs. This will bring us back to phase-diagram analysis, to an under-
standing of the meaning of �xed and free values of state variables at the end points for a
�nite planning horizon T; and to the meaning of transversality conditions for the in�nite
horizon.

5.5.1 A �rm with adjustment costs

The maximization problem we are now interested in is a �rm that operates under adjust-
ment costs. Capital can not be rented instantaneously on a spot market but its installation
is costly. The crucial implication of this simple generalization of the standard theory of
production implies that �rms �all of a sudden�have an intertemporal and no longer a
static optimization problem. As one consequence, factors of production are then no longer
paid their value marginal product as in static �rm problems.

� The model

A �rm maximizes the present value �0 of its future instantaneous pro�ts � (t),

�0 =

Z T

0

e�rt� (t) dt; (5.5.1)

subject to a capital accumulation constraint

_K (t) = I (t)� �K (t) : (5.5.2)

Gross investment I (t)minus depreciation �K (t) gives the net increase of the �rm�s capital
stock. Economic reasoning suggests that K (t) should be non-negative. Instantaneous
pro�ts are given by the di¤erence between revenue and cost,

� (t) = pF (K (t))� � (I (t)) : (5.5.3)
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Revenue is given by pF (K (t)) where the production technology F (:) employs capital
only. Output increases in capital input, F 0 (:) > 0; but to a decreasing extent, F 00 (:) < 0.
The �rm�s costs are given by the cost function � (I (t)) : As the �rm owns capital, it
does not need to pay any rental costs for capital. Costs that are captured by � (:) are
adjustment costs which include both the cost of buying and of installing capital. The
initial capital stock is given by K (0) = K0. The interest rate r is exogenous to the �rm.
Maximization takes place by choosing a path of investment fI (t)g :
The maximization problem is presented slightly di¤erently from previous chapters.

We look at the �rm from the perspective of a point in time zero and not - as before -
from a point in time t: This is equivalent to saying that we normalize t to zero. Both
types of objective functions are used in the literature. One with normalization of today
to zero as in (5.5.1) and one with a planning horizon starting in t: Economically, this is
of no major importance. The presentation with t representing today as normally used in
this book is slightly more general and is more useful when dynamic programming is the
method chosen for solving the maximization problem. We now use a problem starting in
0 to show that no major di¤erences in the solution techniques arise.

� Solution

This �rm obviously has an intertemporal problem, in contrast to the �rms we encoun-
tered so far. Before solving this problem formally, let us ask where this intertemporal
dimension comes from. By looking at the constraint (5.5.2), this becomes clear: Firms
can no longer instantaneously rent capital on some spot market. The �rm�s capital stock
is now a state variable and can only change slowly as a function of (positive or nega-
tive) investment and depreciation. As an investment decision today has an impact on the
capital stock �tomorrow�, i.e. the decision today a¤ects future capital levels, there is an
intertemporal link between decisions and outcomes at di¤ering points in time.
As discussed after (5.2.8), the current-value Hamiltonian combines the function after

the discount term in the objective function, here instantaneous pro�ts � (t) ; with the
constraint, here I (t)� � K (t) ; and uses the costate variable � (t). This gives

H = � (t) + � (t) [I (t)� �K (t)] = pF (K (t))� � (I (t)) + � (t) [I (t)� �K (t)] :

Following (5.2.9) and (5.2.10), optimality conditions are

HI = ��0 (I (t)) + � (t) = 0; (5.5.4)
_� (t) = r ��HK (t) = r �� pF 0 (K (t)) + ��

= (r + �)�� pF 0 (K (t)) ; (5.5.5)

The optimality condition for � in (5.5.5) shows that the value marginal product of capital,
pF 0 (K (t)) ; still plays a role and it is still compared to the rental price r of capital (the
latter being adjusted for the depreciation rate), but there is no longer an equality as in
static models of the �rm. We will return to this point in exercise 2 of ch. 6.
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In a long-run situation where the shadow price is constant, we see that value marginal
productivity of capital, pF 0 (K (t)) ; equals the interest rate plus the depreciation rate
corrected for the shadow price. If, by (5.5.4), adjustment costs are given by investment
costs only and the price of an investment good is identical to the price of the output good,
we are back to equalities known from static models.

Optimality conditions can be presented in a simpler way (i.e. with fewer endogenous
variables). First, solve the �rst optimality condition for the costate variable and compute
the time derivative,

_� (t) = �00 (I (t)) _I (t) :

Second, insert this into the second optimality condition (5.5.5) to �nd

�00 (I (t)) _I (t) = (r + �) �0 (I (t))� pF 0 (K (t)) : (5.5.6)

This equation, together with the capital accumulation constraint (5.5.2), is a two-dimensional
di¤erential equation system that can be solved, given the initial condition K0 and one
additional boundary condition.

� An example

Now assume adjustment costs are of the form

� (I) = v
�
I + I2=2

�
: (5.5.7)

The price to be paid per unit of capital is given by the constant v and costs of installation
are given by I2=2: This quadratic term captures the idea that installation costs are low
and do not increase quickly, i.e. underproportionally to the new capital stock, at low
levels of I but increase overproptionally when I becomes large. Then, optimality requires
(5.5.2) and, from inserting (5.5.7) into (5.5.6),

_I (t) = (r + �) (1 + I (t))� p

v
F 0 (K (t)) (5.5.8)

A phase diagram using (5.5.2) and (5.5.8) is plotted in the following �gure. As one
can see, we can unambiguously determine that dynamic properties are represented by a
saddle-path system with a saddle point as de�ned in def. 4.2.2.
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Figure 5.5.1 A �rm with adjustment cost

We now have to select one of this in�nite number of paths that start at K0: What
is the correct investment level I0? This depends on how we choose the second boundary
condition.

5.5.2 Free value at the end point

One modelling opportunity consists of leaving the value of the state variable at the end
point open as in ch. 5.4.1. The condition is then � (T ) = 0 from (5.4.2) which in the
context of our example requires

�0 (I (T )) = 0, v [1 + I (T )] = 0, I (T ) = �1:

from the �rst-order condition (5.5.4) and the example for � chosen in (5.5.7). In words, the
trajectory where the investment level is minus one at T is the optimal one. Economically
speaking, this means that the �rm will sell capital at T (and also for some time before T )
as we will now see.
Let us now see how this information helps us to identify the level of investment and

capital, i.e. the corresponding trajectory in the phase diagram by looking at �g. 5.5.1.
Look at the trajectory starting at point A �rst. This trajectory crosses the zero-motion
line for capital after some time and eventually hits the horizontal axis where I = 0: Have
we now found a trajectory which satis�es all optimality conditions? Not yet, as we do not
know whether the time needed to go from A to C is exactly of length T: If we started at
B and went to D; we would also end up at I = 0; also not knowing whether the length is
T: Hence, in order to �nd the appropriate trajectory, a numerical solution is needed. Such
a solution would then compute various trajectories as the ones starting at A and B and
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compare the length required to reach the horizontal axis. When the trajectory requiring
T to hit the horizontal axis is found, levels of investment and capital are identi�ed.
There is also hope that searching for the correct trajectory does not take too long.

We know that starting on the saddle path which leads to the steady state actually never
brings us to the steady state. Capital K (t) and investment I (t) approach the steady
state asymptotically but never reach it. As an example, the path for investment would
look qualitatively like the graph starting with x03 in �g. 4.2.2 which approaches x� from
above but never reaches it. If we start very close to the saddle path, let�s say at B, it takes
more time to go towards the steady state and then to return than on the trajectory that
starts at A: Time to reach the horizontal line is in�nity when we start on the saddle path
(i.e. we never reach the horizontal line). As time falls, the lower the initial investment
level, the correct path can easily be found.

5.5.3 Fixed value at the end point

Let us now consider the case where the end point requires a �xed capital stock KT . The
�rst aspect to be checked is whether KT can be reached in the planning period of length
T: Maybe KT is simply too large. Can we see this in our equations?
If we look at the investment equation (5.5.2) only, any KT can be reached by setting

the investment levels I (T ) just high enough. When we look at period pro�ts in (5.5.3),
however, we see that there is an upper investment level above which pro�ts become
negative. If we want to rule out negative pro�ts, investment levels are bounded from
above at each point in time by � (t) � 0 and some values at the endpoint KT are not
feasible. The maximization problem would have no solution.
If we now look at a more optimistic example and let KT not be too high, then we can

�nd the appropriate trajectory in a similar way as before where I (T ) = 0: Consider the
KT drawn in the �gure 5.5.1. When the initial investment level is at point F; the level KT

will be reached faster than on a trajectory that starts between F and E: As time spent
between K0 and KT is monotonically decreasing, the higher the initial consumption level,
i.e. the further the trajectory is away from the steady state, the appropriate initial level
can again be easily found by numerical analysis.

5.5.4 In�nite horizon and transversality condition

Let us �nally consider the case where the planning horizon is in�nity, i.e. we replace T by
1. Which boundary condition shall we use now? Given the discussion in ch. 5.4.3, one
would �rst ask whether there is some intertemporal constraint. As this is not the case
in this model (an example for this will be treated shortly in ch. 5.6.1), one can add an
additional requirement to the model analyzed so far. One could require the �rm to be in
a steady state in the long run. This can be justi�ed by the observation that most �rms
have a relatively constant size over time. The solution of an economic model of a �rm
should therefore be characterized by the feature that, in the absence of further shocks,
the �rm size should remain constant.
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The only point where the �rm is in a steady state is the intersection point of the
zero-motion lines. The question therefore arises where to start at K0 if one wants to
end up in the steady state. The answer is clearly to start on the saddle path. As
we are in a deterministic world, a transition towards the steady state would take place
and capital and investment approach their long-run values asymptotically. If there were
any unanticipated shocks which push the �rm o¤ this saddle path, investment would
instantaneously be adjusted such that the �rm is back on the saddle path.

5.6 Further examples

This section presents further examples of intertemporal optimization problems which can
be solved by employing the Hamiltonian. The examples show both how to compute
optimality conditions and how to understand the predictions of the optimality conditions.

5.6.1 In�nite horizon - optimal consumption paths

Let us now look at an example with in�nite horizon. We focus on the optimal behaviour
of a consumer. The problem can be posed in at least two ways. In either case, one part
of the problem is the intertemporal utility function

U (t) =

Z 1

t

e��[��t]u (c (�)) d� : (5.6.1)

Due to the general instantaneous utility function u (c (�)), it is somewhat more general
than e.g. (5.1.1). The second part of the maximization problem is a constraint limiting
the total amount of consumption. Without such a constraint, maximizing (5.6.1) would
be trivial (or meaningless): With u0 (c (�)) > 0 maximizing the objective simply means
setting c (�) to in�nity. The way this constraint is expressed determines the way in which
the problem is solved most straightforwardly.

� Solving by Lagrangian

The constraint to (5.6.1) is given by a budget constraint. The �rst way in which this
budget constraint can be expressed is, again, the intertemporal formulation,Z 1

t

Dr (�)E (�) d� = a (t) +

Z 1

t

Dr (�)w (�) d� ; (5.6.2)

where E (�) = p (�) c (�) and Dr (�) = e�
R �
t r(u)du: The maximization problem is then

given by: maximize (5.6.1) by choosing a path fc(�)g subject to the budget constraint
(5.6.2).
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We build the Lagrangean with � as the time-independent Lagrange multiplier

L =
Z 1

t

e��[��t]u (c (�)) d�

� �
�Z 1

t

Dr (�)E (�) d� � a (t)�
Z 1

t

Dr (�)w (�) d�

�
:

Note that in contrast to section 5.2.2 where a continuum of constraints implied a con-
tinuum of Lagrange multipliers (or, in an alternative interpretation, a time-dependent
multiplier), there is only one constraint here.
The optimality conditions are the constraint (5.6.2) and the partial derivative with

respect to consumption c (�) at one speci�c point � in time, i.e. the �rst-order condition
for the Lagrangian,

Lc(�) = e��[��t]u0 (c (�))� �Dr (�) p (�) = 0

, Dr (�)
�1 e��[��t]p (�)�1 = �u0 (c (�))�1 : (5.6.3)

Note that this �rst-order condition represents an in�nite number of �rst-order conditions:
one for each point � in time between t and in�nity. See ch. 4.3.1 for some background on
how to compute a derivative in the presence of integrals. Applying logs to (5.6.3) yieldsZ �

t

r (u) du� � [� � t]� ln p (�) = ln�� lnu0 (c (�)) :

Di¤erentiating with respect to time � gives the Keynes-Ramsey rule

� u00 (c (�))

u0 (c (�))
_c (�) = r (�)� _p (�)

p (�)
� �: (5.6.4)

The Lagrange multiplier � drops out as it is not a function of time. Note that �u00(c(�))
u0(c(�))

is Arrow�s measure of absolute risk aversion which is a measure of the curvature of the
utility function. In our setup of certainty, it is more meaningful, however, to think of the
intertemporal elasticity of substitution. Even though we are in continuous time now, it
can be de�ned, as in (2.2.9), in discrete time, replacing the distance of 1 from t to the
next period t + 1 by a period of length �: One could then go through the same steps as
after (2.2.9) and obtain identical results for a CES and logarithmic instantaneous utility
function (see ex. 4).
With a logarithmic utility function, u (c (�)) = ln c (�), u0 (c (�)) = 1

c(�)
and u00 (c (�)) =

� 1
c(�)2

and the Keynes-Ramsey rule becomes

_c (�)

c (�)
= r (�)� _p (�)

p (�)
� �: (5.6.5)
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� Employing the Hamiltonian

In contrast to above, the utility function (5.6.1) here is maximized subject to the
dynamic (or �ow) budget constraint,

_a (t) = r (t) a (t) + w (t)� p (t) c (t) : (5.6.6)

The solution is obtained by solving exercise 1.

� The interest rate e¤ect on consumption

As an application for the methods we have got to know so far, imagine there is a
discovery of a new technology in an economy. All of a sudden, computers or cell-phones
or the Internet is available on a large scale. Imagine further that this implies an increase
in the returns on investment (i.e. the interest rate r): For any Euro invested, more comes
out than before the discovery of the new technology. What is the e¤ect of this discovery
on consumption? To ask this more precisely: what is the e¤ect of a change in the interest
rate on consumption?
To answer this question, we study a maximization problem as the one just solved, i.e.

the objective function is (5.6.1) and the constraint is (5.6.2). We simplify the maximiza-
tion problem, however, by assuming a CRRA utility function u (c (�)) =

�
c (�)1�� � 1

�
= (1� �) ;

a constant interest rate and a price being equal to one (imagine the consumption good is
the numeraire). This implies that the budget constraint readsZ 1

t

e�r[��t]c (�) d� = a (t) +

Z 1

t

e�r[��t]w (�) d� (5.6.7)

and from inserting the CES utility function into (5.6.4), the Keynes-Ramsey rule becomes

_c (�)

c (�)
=
r � �
�

: (5.6.8)

One e¤ect, the growth e¤ect, is straightforward from (5.6.8) or also from (5.6.4).
A higher interest rate, ceteris paribus, increases the growth rate of consumption. The
second e¤ect, the e¤ect on the level of consumption, is less obvious, however. In order to
understand it, we undertake the following steps.
First, we solve the linear di¤erential equation in c (�) given by (5.6.8). Following

ch. 4.3, we �nd
c (�) = c (t) e

r��
�
(��t): (5.6.9)

Consumption, starting today in t with a level of c (t) ; grows exponentially over time at
the rate (r � �) =� to reach the level c (�) at some future � > t:
In the second step, we insert this solution into the left-hand side of the budget con-

straint (5.6.7) and �ndZ 1

t

e�r[��t]c (t) e
r��
�
(��t)d� = c (t)

Z 1

t

e�(r�
r��
� )[��t]d�

= c (t)
1

�
�
r � r��

�

� he�(r� r��
� )[��t]

i1
t
:
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The simpli�cation stems from the fact that c (t) ; the initial consumption level, can be
pulled out of the term

R1
t
e�r[��t]c (�) d� ; representing the present value of current and

future consumption expenditure. Please note that c (t) could be pulled out of the integral
also in the case of a non-constant interest rate. Note also that we do not need to know
what the level of c (t) is, it is enough to know that there is some c (t) in the solution
(5.6.9), whatever its level.
With a constant interest rate, the remaining integral can be solved explicitly. First

note that �
�
r � r��

�

�
must be negative. Consumption growth would otherwise exceed

the interest rate and a boundedness condition for the objective function similar to the one
in ch. 5.3.2 would eventually be violated. (Note, however, that boundedness in ch. 5.3.2
refers to the utility function, here we focus on the present value of consumption.) Hence,
we assume r > r��

�
, (1� �) r < �: Therefore, for the present value of consumption

expenditure we obtain

c (t)
1

�
�
r � r��

�

� he�(r� r��
� )[��t]

i1
t

= c (t)
1

�
�
r � r��

�

� [0� 1]
=

c (t)

r � r��
�

=
�c (t)

�� (1� �) r

and, inserted into the budget constraint, this yields a closed-form solution for consump-
tion,

c (t) =
�� (1� �) r

�

�
a (t) +

Z 1

t

e�r[��t]w (�) d�

�
: (5.6.10)

For the special case of a logarithmic utility function, the fraction in front of the curly
brackets simpli�es to � (as � = 1).
After these two steps, we have two results, both visible in (5.6.10). One result shows

that initial consumption c (t) is a fraction out of wealth of the household. Wealth needs
to be understood in a more general sense than usual, however: It is �nancial wealth a (t)
plus, what could be called human wealth (in an economic, i.e. material sense), the present
value of labour income,

R1
t
e�r[��t]w (�) d� : Going beyond t today and realizing that this

analysis can be undertaken for any point in time, the relationship (5.6.10) of course holds
on any point of an optimal consumption path. The second result is a relationship between
the level of consumption and the interest rate, our original question.
We now need to understand the derivative dc (t) =dr in order to further exploit (5.6.10).

If we focus only on the term in front of the curly brackets, we �nd for the change in the
level of consumption when the interest rate changes

dc (t)

dr
= �1� �

�
f:g R 0, � R 1:

The consumption level increases when the interest rate rises if � is larger than one, i.e.
if the intertemporal elasticity of substitution ��1 is smaller than unity. This is probably
the empirically more plausible case (compared to � < 1) on the aggregate level. There is
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micro-evidence, however, where the intertemporal elasticity of substitution can be much
larger than unity. This �nding is summarized in the following �gure.

N

N

time

r1

t

c1(t)

lnc(t)

��
��

��
��

��
��

���

c2(t) �
�
�
�
�
�
�
�
�
�
�
�

r2 > r1

� > 1

Figure 5.6.1 The e¤ect of the interest rate on consumption growth and consumption
level for an intertemporal elasticity of substitution smaller than one, i.e. � > 1

� The boundary condition for the in�nite horizon

The steps we just went through are also an illustration of how to use the no-Ponzi game
condition as a condition to obtain level information in an in�nite horizon problem. We
therefore just saw an example for the discussion in ch. 5.4.3 on transversality conditions.
Solving a maximization problem by Hamiltonian requires a dynamic budget constraint,

i.e. a di¤erential equation. The solution is a Keynes-Ramsey rule, also a di¤erential
equation. These two di¤erential equations require two boundary conditions in order to
obtain a unique solution. One boundary condition is the initial stock of wealth, the second
boundary condition is the no-Ponzi game condition.
We just saw how this second condition can indeed be used to obtain level information

for the control and the state variable: The No-Ponzi game condition allows us to obtain
an intertemporal budget constraint of the type we usually want to work through solving
the dynamic budget constraint - see ch. 4.4.2 on �Finding the intertemporal budget con-
straint�. (In the example we just looked at, we did not need to derive an intertemporal
budget constraint as it was already given in (5.6.2).) Using the Keynes-Ramsey rule in the
way we just did provides the initial consumption level c (t) : Hence, by using a boundary
condition for this in�nite horizon problem, we were able to obtain level information in
addition to information on optimal changes.
Note that the principle used here is identical to the one used in the analysis of level

e¤ects in ch. 3.4.3 on optimal R&D e¤ort.
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5.6.2 Necessary conditions, solutions and state variables

The previous example provides a good opportunity to provide a more in-depth explanation
of some concepts that were introduced before.
A distinction was drawn between a solution and a necessary condition in ch. 2.2.2

when discussing (2.2.6). The starting point of our analysis here is the Keynes-Ramsey
rule (5.6.8) which is a necessary condition for optimal behaviour. The solution obtained
here is given in (5.6.10) and is the outcome of solving the di¤erential equation (5.6.8) and
using the intertemporal budget constraint. Looking at these expressions clearly shows that
(5.6.8), the outcome of modifying necessary conditions, contains much less information
than the solution in (5.6.10). The Keynes-Ramsey rule provides information about the
change of the control variable �only�while the solution provides information about the
level.
The solution in (5.6.10) is a closed-form or closed-loop solution. A closed-loop solution

is a solution where the control variable is expressed as a function of the state variable
and time. In (5.6.10), the state variable is a (t) and the function of time t is the integralR1
t
e�r[��t]w (�) d� : Closed-loop solutions stand in contrast to open-loop solutions where

the control variable is a function of time only. This distinction becomes meaningful only
in a stochastic world. In a deterministic world, any closed-loop solution can be expressed
as a function of time only by replacing the state-variable by the function of time which
describes its path. When we solve the budget constraint starting at some a (t0) with
t0 � t; insert c (�) from (5.6.9) into this solution for a (t) and �nally insert this solution
for a (t) into (5.6.10), we would obtain an expression for the control c (t) as a function of
time only.
The solution in (5.6.10) is also very useful for further illustrating the question raised

earlier in ch. 3.4.2 on �what is a state variable?�. De�ning all variables which in�uence
the solution for the control variable as state variable, we clearly see from (5.6.10) that
a (t) and the entire path of w (t) ; i.e. w (�) for t � � < 1 are state variables. As we
are in a deterministic world, we can reduce the path of w (�) to its initial value in t plus
some function of time. What this solution clearly shows is that a (t) is not the only state
variable. From solving the maximization problem using the Hamiltonian as suggested
after (5.6.6) or from comparing with the similar setup in the introductory example in
ch. 5.1, it is su¢ cient from a practical perspective, however, to take only a (t) as explicit
state variable into account. The Keynes-Ramsey rule in (5.1.6) was obtained using the
shadow-price of wealth only - see (5.1.5) - but no shadow-price for the wage was required
in ch. 5.1.

5.6.3 Optimal growth - the central planner and capital accumu-
lation

� The setup

This example studies the classic central planner problem: First, there is a social welfare
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function like (5.1.1), expressed slightly more generally as

max
fC(�)g

Z 1

t

e��[��t]u (C (�)) d� :

The generalization consists of the in�nite planning horizon and the general instantaneous
utility function (felicity function) u (c (�)). We will specify it in the most common version,

u (C) =
C1�� � 1
1� � ; (5.6.11)

where the intertemporal elasticity of substitution is constant and given by �1=�:
Second, there is a resource constraint that requires that net capital investment is given

by the di¤erence between output Y (K;L), depreciation �K and consumption C;

_K (t) = Y (K (t) ; L)� �K (t)� C (t) : (5.6.12)

This constraint is valid for t and for all future points in time. Assuming for simplicity that
the labour force L is constant, this completely describes this central planner problem.
The planner�s choice variable is the consumption level C (�) ; to be determined for each

point in time between today t and the far future1. The fundamental trade-o¤ lies in the
utility increasing e¤ect of more consumption visible from (5.6.11) and the net-investment
decreasing e¤ect of more consumption visible from the resource constraint (5.6.12). As
less capital implies less consumption possibilities in the future, the trade-o¤ can also be
described as lying in more consumption today vs. more consumption in the future.

� The Keynes-Ramsey rule

Let us solve this problem by employing the Hamiltonian consisting of instantaneous
utility plus � (t) multiplied by the relevant part of the constraint, H = u (C (t)) +
� (t) [Y (K (t) ; L)� �K (t)� C (t)] : Optimality conditions are

u0 (C (t)) = � (t) ; (5.6.13)

_� (t) = �� (t)� @H

@K
= �� (t)� � (t) [YK (K (t) ; L)� �] :

Di¤erentiating the �rst-order condition (5.6.13) with respect to time gives u00 (C (t)) _C (t) =
_� (t) : Inserting this and (5.6.13) into the second condition again gives, after some rear-
ranging,

�u
00 (C (t))

u0 (C (t))
_C (t) = YK (K (t) ; L)� � � �:

This is almost identical to the optimality rule we obtained on the individual level in
(5.6.4). The only di¤erence lies in aggregate consumptionC instead of c and YK (K (t) ; L)�
� instead of r (�) � _p(�)

p(�)
: Instead of the real interest rate on the household level, we here

have the marginal productivity of capital minus depreciation on the aggregate level.
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If we assumed a logarithmic instantaneous utility function, �u00 (C (t)) =u0 (C (t)) =
1=C (t) and the Keynes-Ramsey rule would be _C (t) =C (t) = YK (K (t) ; L)����, similar
to (5.1.6) or (5.6.5). In our case of the more general CES speci�cation in (5.6.11), we �nd
�u00 (C (t)) =u0 (C (t)) = �=C (t) such that the Keynes-Ramsey rule reads

_C (t)

C (t)
=
YK (K (t) ; L)� � � �

�
: (5.6.14)

This could be called the classic result on optimal consumption in general equilibrium.
Consumption grows if marginal productivity of capital exceeds the sum of the depreciation
rate and the time preference rate. The higher the intertemporal elasticity of substitution
1=�; the stronger consumption growth reacts to the di¤erences YK (K (t) ; L)� � � �:

� A phase diagram analysis

The resource constraint of the economy in (5.6.12) plus the Keynes-Ramsey rule in
(5.6.14) represent a two-dimensional di¤erential equation system which, given two bound-
ary conditions, give a unique solution for time paths C (t) and K (t) : These two equations
can be analyzed in a phase diagram. This is probably the phase diagram taught most
often in Economics.
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Figure 5.6.2 Optimal central planner consumption

Zero-motion lines for capital and labour, respectively, are given by

_K (t) � 0, C (t) � Y (K (t) ; L)� �K (t) ; (5.6.15)
_C (t) � 0, YK (K (t) ; L) � � + �; (5.6.16)

when the inequality signs hold as equalities. Zero motion lines are plotted in the above
�gure.
When consumption lies above the Y (K (t) ; L) � �K (t) line, (5.6.15) tells us that

capital decreases, below this line, capital increases. When the marginal productivity of
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capital is larger than � + �; i.e. when the capital stock is su¢ ciently small, (5.6.16) tells
us that consumption increases. These laws of motion are also plotted in �gure 5.6.2. This
allows us to draw trajectories A; B and C which all satisfy (5.6.12) and (5.6.14). Hence,
again, we have a multitude of solutions for a di¤erential equation system.
As always, boundary conditions allow us to �pick�the single solution to this system.

One boundary condition is the initial value K0 of the capital stock. The capital stock is
a state variable and therefore historically given at each point in time. It can not jump.
The second boundary condition should �x the initial consumption level C0: Consumption
is a control or choice variable and can therefore jump or adjust to put the economy on
the optimal path.
The condition which provides the second boundary condition is, formally speaking,

the transversality condition (see ch. 5.4.3). Taking this formal route, one would have to
prove that starting with K0 at the consumption level that puts the economy on path A
would violate the TVC or some No-Ponzi game condition. Similarly, it would have to be
shown that path C or any path other than B violates the TVC as well. Even though not
often admitted, this is not often done in practice. (For an exception to the application
of the No-Ponzi game condition, see ch. 5.6.1 or exercise 5 in ch. 5.) Whenever a saddle
path is found in a phase diagram, it is argued that the saddle path is the equilibrium
path and the initial consumption level is such that the economy �nds itself on the path
which approaches the steady state. While this is a practical approach, it is also formally
satis�ed as this path satis�es the TVC indeed.

5.6.4 The matching approach to unemployment

Matching functions are widely used in, for example, Labour economics and Monetary
economics. Here we will present the background for their use in labour market modelling.

� Aggregate unemployment

The unemployment rate in an economy is governed by two factors: the speed with
which new employment is created and the speed with which existing employment is de-
stroyed. The number of new matches per unit of time dt is given by a matching function.
It depends on the number of unemployed U , i.e. the number of those potentially available
to �ll a vacancy, and the number of vacancies V , m = m (U; V ). The number of �lled
jobs that are destroyed per unit of time is given by the product of the separation rate
s and employment, sL. Combining both components, the evolution of the number of
unemployed over time is given by

_U = sL�m (U; V ) : (5.6.17)

De�ning employment as the di¤erence between the size of the labour force N and the
number of unemployed U , L = N � U , we obtain

_U = s [N � U ]�m (U; V ), _u = s [1� u]�m (u; V=N) ;
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where we divided by the size of the labour force N in the last step to obtain the un-
employment rate u � U=N: We also assumed constant returns to scale in the matching
function m (:) : De�ning labour market tightness by � � V=U; the matching function can
further be rewritten as

m

�
u;
V

N

�
= m

�
1;
V

U

�
u =

V

U
m

�
U

V
; 1

�
u � �q (�)u (5.6.18)

and we obtain _u = s [1� u]� �q (�)u which is equation (1.3) in Pissarides (2000).
Clearly, from (5.6.17), one can easily obtain the evolution of employment, again using

the de�nition L = N � U;
_L = m (N � L; V )� sL: (5.6.19)

� Optimal behaviour of large �rms

Given this matching process, the choice variable of a �rm i is no longer employment Li
but the number of vacancies Vi it creates. There is an obvious similarity to the adjustment
cost setup in ch. 5.5.1. Here, the �rm is no longer able to choose labour directly but only
indirectly through vacancies. With adjustment costs, the capital stock is chosen only
indirectly through investment.
The �rm�s objective is to maximize its present value, given by the integral over dis-

counted future pro�ts,

max
fVi;Kig

Z 1

t

e�r[��t]�i (�) d� :

Pro�ts are given by
�i = Y (Ki; Li)� rKi � wLi � 
Vi:

Each vacancy implies costs 
 measured in units of the output good Y: The �rm rents
capital Ki from the capital market and pays interest r and a wage rate w per workers.
The employment constraint is

_Li = m (N � L; V ) Vi
V
� sLi:

The constraint now says - in contrast to (5.6.19) - that only a certain share of all matches
goes to the �rm under consideration and that this share is given by the share of the �rm�s
vacancies in total vacancies, Vi=V . Alternatively, this says that the �probability� that
a match in the economy as a whole �lls a vacancy of �rm i is given by the number of
matches in the economy as a whole divided by the total number of vacancies. As under
constant returns to scale for m and using the de�nition of q (�) implicitly in (5.6.18),
m (N � L; V ) =V = m (U=V; 1) = q (�) ; we can write the �rm�s constraint as

_Li = q (�)Vi � sLi: (5.6.20)

Assuming small �rms, this rate q (�) can safely be assumed to be exogenous for the �rm�s
maximization problem.
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The current-value Hamiltonian for this problem reads H = �i + �i _Li; i.e.

H = Y (Ki; Li)� rKi � wLi � 
Vi + �i [q (�) Vi � sLi] ;

and the �rst-order conditions for capital and vacancies are

HKi
= YKi

(Ki; Li)� r = 0; HVi = �
 + �iq (�) = 0: (5.6.21)

The optimality condition for the shadow price of labour is

_�i = r�i �HLi = r�i � (YLi (Ki; Li)� w � �is) = (r + s)�i � YLi (Ki; Li) + w:

The �rst condition for capital is the usual marginal productivity condition applied to
capital input. With CRTS production functions, this condition �xes the capital to labour
ratio for each �rm. This implies that the marginal product of labour is a function of the
interest only and therefore identical for all �rms, independent of the labour stock, i.e. the
size of the �rm. This changes the third condition to

_� = (r + s) �� YL (K;L) + w (5.6.22)

which means that the shadow prices are identical for all �rms.
The �rst-order condition for vacancies, written as 
 = q (�)� says that the marginal

costs 
 of a vacancy (which in this special case equal average and unit costs) must be
equal to revenue from a vacancy. This expected revenue is given by the share q (�) of
vacancies that yield a match times the value of a match. The value of a match to the
�rm is given by �; the shadow price of labour. The link between � and the value of an
additional unit of labour (or of the state variable, more generally speaking) is analyzed
in ch. 6.2.

� General equilibrium

It appears as if the �rst-order condition for vacancies (5.6.21) was independent of the
number of vacancies opened by the �rm. In fact, given this structure, the individual �rm
follows a bang-bang policy. Either the optimal number of vacancies is zero or in�nity.
In general equilibrium, however, a higher number of vacancies increases the rate q (�) in
(5.6.20) with which existing vacancies get �lled (remember that � = V=U). Hence, this
second condition holds in general equilibrium and we can compute by di¤erentiating with
respect to time

_�=� = � _q (�) =q (�) :
The third condition (5.6.22) can then be written as

� _q (�)

q (�)
= r + s� q (�)



[YL (K;L)� w] (5.6.23)

which is an equation depending on the number of vacancies and employment only. This
equation, together with (5.6.19), is a two-dimensional di¤erential equation system which
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determines V and L; provided there are 2 boundary conditions for V and L and wages and
the interest rate are exogenously given. (In a more complete general equilibrium setup,
wages would be determined e.g. by Nash-bargaining. For this, we need to derive value
functions which is done in ch. 11.2).

� An example for the matching function

Assume the matching function has CRTS and is of the CD type,m = U�V �: As q (�) =
m (N � L; V ) =V; it follows that _q(�)

q(�)
= _m

m
� _V

V
: Given our Cobb-Douglas assumption, we

can write this as
_q (�)

q (�)
= �

_U

U
+ �

_V

V
�
_V

V
= �

_U

U
� (1� �)

_V

V
:

Hence, the vacancy equation (5.6.23) becomes

��
_U

U
+ (1� �)

_V

V
= r + s� q (�)



[YL (K;L)� w],

(1� �)
_V

V
= r + s� (N � L)

�


V 1�� [YL (K;L)� w] + �

�
s

L

N � L �
V �

(N � L)1��
�

where the last equality used q (�) = (N � L)� V ��1 and (5.6.17) with m = U�V �: Again,
this equation with (5.6.19) is a two-dimensional di¤erential equation system which deter-
mines V and L;as just described in the general case.

5.7 The present value Hamiltonian

5.7.1 Problems without (or with implicit) discounting

� The problem and its solution

Let the maximization problem be given by

max
z(�)

Z T

t

F (y (�) ; z (�) ; �) d� (5.7.1)

subject to
_y (�) = Q (y (�) ; z (�) ; �) (5.7.2)

y (t) = yt; y (T ) free (5.7.3)

where y (�) 2 Rn; z (�) 2 Rm and Q = (Q1 (y (�) ; z (�) ; �) ; Q2 (:) ; ::: ; Qn (:))T : A feasible
path is a pair (y (�) ; z (�)) which satis�es (5.7.2) and (5.7.3). z(�) is the vector of control
variables, y(�) is the vector of state variables.
Then de�ne the (present-value) Hamiltonian HP as

HP = F (�) + � (�)Q (�) ; (5.7.4)
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where �(�) is the costate variable,

� (�) = (�1 (�) ; �2 (�) ; ::: ; �n (�)) (5.7.5)

Necessary conditions for an optimal solution are

HP
z = 0; (5.7.6)

_� (�) = �HP
y ; (5.7.7)

and
� (T ) = 0;

(Kamien and Schwartz, p. 126) in addition to (5.7.2) and (5.7.3). In order to have a
maximum, we need second order conditions Hzz < 0 to hold (Kamien and Schwartz).

� Understanding its structure

The �rstm equations (5.7.6) (z (�) 2 Rm) solve the control variables z(�) as a function
of state and costate variables, y(�) and �(�). Hence

z(�) = z(y(�); �(�)):

The next 2n equations (5.7.7) and (5.7.2) (y (t) 2 Rn) constitute a 2n dimensional dif-
ferential equation system. In order to solve it, one needs, in addition to the n initial
conditions given exogenously for the state variables by (5.7.3), n further conditions for
the costate variables. These are given by boundary value conditions � (T ) = 0:
Su¢ ciency of these conditions results from theorem as e.g. in section 5.4.4.

5.7.2 Deriving laws of motion

As in the section on the current-value Hamiltonian, a �derivation� of the Hamiltonian
starting from the Lagrange function can be given for the present value Hamiltonian as
well.

� The maximization problem

Let the objective function be (5.7.1) that is to be maximized subject to the constraint
(5.7.2) and, in addition, a static constraint

G (y (�) ; z (�) ; �) = 0: (5.7.8)

This maximization problem can be solved by using a Lagrangian. The Lagrangian
reads

L =
Z T

t

F (:) + � (�) (Q (:)� _y (�))� � (�)G (:); t) d�

=

Z T

t

F (:) + � (�)Q (:)� � (�)G (:) d� �
Z T

�

� (�) _y (�) d�
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Using the integration by parts rule
R b
a
_xydt = �

R b
a
x _ydt + [xy]ba from (4.3.5), integrating

the last expression givesZ T

�

� (�) _y (�) dt = �
Z T

t

_� (�) y (�) d� + [� (�) y (�)]T�

and the Lagrangian reads

L =
Z T

t

F (:) + � (�)Q (:) + _� (�) y (�)� � (�)G (:) d�

� [� (�) y (�)]Tt :

This is now maximized with respect to y (�) and z (�), both the control and the state
variable. We then obtain conditions that are necessary for an optimum.

Fz (:) + � (�)Qz (:)� � (�)Gz (:) = 0 (5.7.9)

Fy (:) + � (�)Qy (:) + _� (�)� � (�)Gy (:) = 0 (5.7.10)

The last �rst-order condition can be rearranged to

_� (�) = �� (�)Qy (:)� Fy (:) + � (�)Gy (:) (5.7.11)

These necessary conditions will be the ones used regularly in maximization problems.

� The shortcut

As it is cumbersome to start from a Lagrangian for each dynamic maximization prob-
lem, one can de�ne the Hamiltonian as a shortcut as

HP = F (:) + � (�)Q (:)� � (�)G (:) : (5.7.12)

Optimality conditions are then
HP
z = 0; (5.7.13)

_� (�) = �HP
y : (5.7.14)

which are the same as (5.7.9) and (5.7.11) above and (5.7.6) and (5.7.7) in the last section.

5.7.3 The link between CV and PV

If we solve the problem (5.2.1) and (5.2.2) via the present value Hamiltonian, we would
start from

HP (�) = e��[��t]G (:) + � (�)Q (:) ; (5.7.15)

�rst-order conditions would be
� (T ) = 0; (5.7.16)
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@HP

@z
= e��[��t]Gz (:) + �Qz (:) = 0; (5.7.17)

_� (�) = �@H
P

@y
= �e��[��t]Gy (:)� �Qy (:) (5.7.18)

and we would be done with solving this problem.

� Simpli�cation

We can simplify the presentation of �rst-order conditions, however, by rewriting
(5.7.17) as

Gz (�) + � (�)Qz (�) = 0 (5.7.19)

where we used the same de�nition as in (5.2.4),

� (�) � e�[��t]� (�) : (5.7.20)

Note that the argument of the costate variables is always time � (and not time t).
When we use this de�nition in (5.7.18), this �rst-order condition reads

e�[��t] _� (�) = �Gy (:)� �Qy (:) :

Replacing the left-hand side by

e�[��t] _� (�) = _� (�)� �e�[��t]� (�) = _� (�)� �� (�) :

which follows from computing the time � derivative of the de�nition (5.7.20), we get

_� = ���Gy � �(�)Qy: (5.7.21)

Inserting the de�nition (5.7.20) into the Hamiltonian (5.7.15) gives

e�[��t]HP (t) = G (:) + �Q (:) <�> Hc (t) = G (:) + �Q (:)

which de�nes the link between the present value and the current-value Hamiltonian as

Hc (t) = e�[��t]HP (t)

� Summary

Hence, instead of �rst-order conditions (5.7.17) and (5.7.18), we get (5.7.19) and
(5.7.21). As just shown these �rst-order conditions are equivalent.
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5.8 Further reading and exercises

The classic reference for the optimal consumption behaviour of an individual household
analyzed in ch. 5.6.1 is Ramsey (1928). The paper credits part of the intuitive explanation
to Keynes - which led to the name Keynes-Ramsey rule. See Arrow and Kurz (1969) for
a detailed analysis.
There are many texts that treat Hamiltonians as a maximization device. Some ex-

amples include Dixit (1990, p. 148), Intriligator (1971), Kamien and Schwartz (1991),
Leonard and Long (1992) or, in German, Feichtinger and Hartl (1986). Intriligator pro-
vides a nice discussion of the distinction between closed- and open-loop controls in his
ch. 11.3. The corresponding game-theory de�nitions for closed-loop and open-loop strate-
gies (which are in perfect analogy) are in Fudenberg and Tirole (1991).
On su¢ cient conditions, see Kamien and Schwartz (1991, ch. 3 and ch. 15).
The literature on transversality conditions includes Mangasarian (1966), Arrow (1968),

Arrow and Kurz (1970), Araujo and Scheinkman (1983), Léonard and Long (1992, p. 288-
289), Chiang (1992, p. 217, p. 252) and Kamihigashi (2001). Counterexamples that the
TVC is not necessary are provided by Michel (1982) and Shell (1969). See Buiter and
Siebert (2007) for a recent very useful discussion and an application.
The issue of boundedness was discovered a relatively long time ago and received re-

newed attention in the 1990s when the new growth theory was being developed. A more
general treatment of this problem was undertaken by vonWeizsäcker (1965) who compares
utility levels in unbounded circumstances by using �overtaking criteria�.
Expressions for explicit solutions for consumption have been known for a while. The

case of a logarithmic utility function, i.e. where � = 1 and where the fraction in front of
the curly brackets in (5.6.10) simpli�es to �, was obtained by Blanchard (1985).
Vissing-Jørgensen (2002) provides micro-evidence on the level of the intertemporal

elasticity of substitution.
Matching models of unemployment go back to Pissarides (1985). For a textbook

treatment, see Pissarides (2000)
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Exercises chapter 5
Applied Intertemporal Optimization

Hamiltonians

1. Optimal consumption over an in�nite horizon
Solve the maximization problem

max
c(�)

Z 1

t

e��[��t] ln c (�) d� ;

subject to
p (t) c (t) + _A (t) = r (t)A (t) + w (t) :

by

(a) using the present-value Hamiltonian. Compare the result to (5.6.5).

(b) Use u (c (�)) instead of ln c (�).

2. Adjustment costs
Solve the adjustment cost example for

� (I) = I:

What do optimality conditions mean? What is the optimal end-point value for K
and I?

3. Consumption over the life cycle
The utility of an individual, born at s and living for T periods is given at time t by

u (s; t) =

Z s+T

t

e��[��t] ln (c (s; �)) d� :

The individual�s budget constraint is given byZ s+T

t

DR (�) c (s; �) d� = h (s; t) + a (s; t)

where

DR (�) = exp

�
�
Z �

t

r (u) du

�
; h (s; t) =

Z s+T

t

Dr (�)w (s; �) d� :

This deplorable individual would like to know how he can lead a happy life but,
unfortunately, has not studied optimal control theory!
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(a) What would you recommend him? Use a Hamiltonian approach and distinguish
between changes of consumption and the initial level. Which information do
you need to determine the initial consumption level? What information would
you expect this individual to provide you with? In other words, which of the
above maximization problems makes sense? Why not the other one?

(b) Assume all prices are constant. Draw the path of consumption in a (t,c(t))
diagram. Draw the path of asset holdings a(t) in the same diagram, by guessing
how you would expect it to look. (You could compute it if you want)

4. Optimal consumption

(a) Derive the optimal allocation of expenditure and consumption over time for

u (c (�)) =
c (�)1�� � 1
1� � ; � > 0

by employing the Hamiltonian.

(b) Show that this function includes the logarithmic utility function for � = 1
(apply L�Hôspital�s rule).

(c) Does the utility function u(c(t)) make sense for � > 1? Why (not)?

(d) Compute the intertemporal elasticity of substitution for this utility function
following the discussion after (5.6.4). What is the intertemporal elasticity of
substitution for the logarithmic utility function u (c) = ln c?

5. A central planner
You are responsible for the future well-being of 360 million Europeans and centrally
plan the EU by assigning a consumption path to each inhabitant. Your problem
consists in maximizing a social welfare function of the form

U i (t) =

Z 1

t

e��[��t]
�
C1�� � 1

�
(1� �)�1 d�

subject to the EU resource constraint

_K = BK � C (5.8.1)

(a) What are optimality conditions? What is the consumption growth rate?

(b) Under which conditions is the problem well de�ned (boundedness condition)?
Insert the consumption growth rate and show under which conditions the utility
function is bounded.

(c) What is the growth rate of the capital stock? Compute the initial consumption
level, by using the no-Ponzi-game condition (5.4.4).
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(d) Under which conditions could you resign from your job without making anyone
less happy than before?

6. Optimal consumption levels

(a) Derive a rule for the optimal consumption level for a time-varying interest rate
r (t) : Show that (5.6.10) can be generalized to

c (t) =
1R1

t
e�

R �
t
��(1��)r(s)

�
dsd�

fW (t) + a (t)g ;

where W (t) is human wealth.

(b) What does this imply for the wealth level a (t)?

7. Investment and the interest rate

(a) Use the result of 5 c) and check under which conditions investment is a de-
creasing function of the interest rate.

(b) Perform the same analysis for a budget constraint _a = ra + w � c instead of
(5.8.1).

8. The Ramsey growth model (Cf. Blanchard and Fischer, ch. 2)
Let the resource constraint now be given by

_K = Y (K;L)� C � � K:

Draw a phase diagram. What is the long-run equilibrium? Perform a stability
analysis graphically and analytically (locally). Is the utility function bounded?

9. An exam question
Consider a decentralized economy in continuous time. Factors of production are
capital and labour. The initial capital stock is K0, labour endowment is L: Capital
is the only asset, i.e. households can save only by buying capital. Capital can be
accumulated also at the aggregate level, _K (�) = I (�)� �K (�). Households have a
corresponding budget constraint and a standard intertemporal utility function with
time preference rate � and in�nite planning horizon. Firms produce under perfect
competition. Describe such an economy in a formal way and derive its reduced form.
Do this step by step:

(a) Choose a typical production function.

(b) Derive factor demand functions by �rms.
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(c) Let the budget constraints of households be given by

_a (�) = r (�) a (�) + wL (�)� c (�) :

Specify the maximization problem of a household and solve it.

(d) Aggregate the optimal individual decision over all households and describe the
evolution of aggregate consumption.

(e) Formulate the goods market equilibrium.

(f) Show that the budget constraint of the household is consistent with the aggre-
gate goods market equilibrium.

(g) Derive the reduced form

_K (�) = Y (�)� C (�)� �K (�) ;
_C (�)

C (�)
=

@Y (�)
@K(�)

� � � �
�

by going through these steps and explain the economics behind this reduced
form.



Chapter 6

In�nite horizon again

This chapter reanalyzes maximization problems in continuous time that are known from
the chapter on Hamiltonians. It shows how to solve them with dynamic programming
methods. The sole objective of this chapter is to present the dynamic programming
method in a well-known deterministic setup such that its use in a stochastic world in
subsequent chapters becomes more accessible.

6.1 Intertemporal utility maximization

We consider a maximization problem that is very similar to the introductory example for
the Hamiltonian in section 5.1 or the in�nite horizon case in section 5.3. Compared to
5.1, the utility function here is more general and the planning horizon is in�nity. None
of this is important, however, for understanding the di¤erences in the approach between
the Hamiltonian and dynamic programming.

6.1.1 The setup

Utility of the individual is given by

U (t) =

Z 1

t

e��[��t]u (c (�)) d� : (6.1.1)

Her budget constrained equates wealth accumulation with savings,

_a = ra+ w � pc: (6.1.2)

The individual can choose the path of consumption fc (�)g between now and in�nity and
takes prices and factor rewards as given.

6.1.2 Solving by dynamic programming

As in models of discrete time, the value V (a (t)) of the optimal program is de�ned by
the maximum overall utility level that can be reached by choosing the consumption path

141
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optimally given the constraint, V (a (t)) � maxfc(�)g U (t) subject to (6.1.2). When house-
holds behave optimally between today and in�nity by choosing the optimal consumption
path fc (�)g ; their overall utility U (t) is given by V (a (t)) :

� A prelude on the Bellman equation

The derivation of the Bellman equation under continuous time is not as obvious as
under discrete time. Even though we do have a today, t, we do not have a clear tomorrow
(like a t + 1 in discrete time). We therefore need to construct a tomorrow by adding a
�small�time interval �t to t: Tomorrow would then be t+�t: Note that this derivation
is heuristic and more rigorous approaches exist. See e.g. Sennewald (2007) for further
references to the literature.
Following Bellman�s idea, we rewrite the objective function as the sum of two subpe-

riods,

U (t) =

Z t+�t

t

e��[��t]u (c (�)) d� +

Z 1

t+�t

e��[��t]u (c (�)) d� ;

where�t is a �small�time interval. As we did in discrete time, we exploit here the additive
separability of the objective function. This is the �rst step of simplifying the maximization
problem, as discussed for the discrete-time case after (3.3.4). When we approximate
the �rst integral (think of the area below the function u (c (�)) plotted over time �) by
u (c (t))�t and the discounting between t and t+�t by 1

1+��t
and we assume that as of

t+�t we behave optimally, we can rewrite the value function V (a (t)) = maxfc(�)g U (t)
as

V (a (t)) = max
c(t)

�
u (c (t))�t+

1

1 + ��t
V (a (t+�t))

�
:

The assumption of behaving optimally as of t + �t can be seen formally in the fact
that V (a (t+�t)) now replaces U (t+�t) : This is the second step in the procedure
to simplify the maximization problem. After these two steps, we are left with only one
choice variable c (t) instead of the entire path fc (�)g :When we �rst multiply this expres-
sion by 1 + ��t, then divide by �t and �nally move V (a(t))

�t
to the right hand side, we

get �V (a (t)) = maxc(t)
n
u (c (t)) [1 + ��t] + V (a(t+�t))�V (a(t))

�t

o
: Taking the limit lim�t!0

gives the Bellman equation,

�V (a (t)) = max
c(t)

�
u (c (t)) +

dV (a (t))

dt

�
: (6.1.3)

This equation again shows Bellman�s trick: A maximization problem, consisting of the
choice of a path of a choice variable, was broken down to a maximization problem where
only the level of the choice variable in t has to be chosen.
The structure of this equation can also be understood from a more intuitive perspec-

tive: The term �V (a (t)) can best be understood when comparing it to rv; capital income
at each instant of an individual who owns a capital stock of value v and the interest rate is
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r: A household that behaves optimally �owns�the value V (a (t)) from optimal behaviour
and receives a utility stream of �V (a (t)) : This �utility income�at each instant is given by
instantaneous utility from consumption plus the change in the value of optimal behaviour.
Note that this structure is identical to the capital-market no-arbitrage condition (4.4.7),
r (t) v (t) = � (t) + _v (t) - the capital income stream from holding wealth v (t) on a bank
account is identical to dividend payments � (t) plus the change _v (t) in the market price
when holding the same level of wealth in stocks.
While the derivation just shown is the standard one, we will now present an alternative

approach which illustrates the economic content of the Bellman equation and which is
more straightforward. Given the objective function in (6.1.1), we can ask how overall
utility U (t) changes over time. To this end, we compute the derivative dU (t) =dt and �nd
(using the Leibniz rule 4.3.3 from ch. 4.3.1)

_U (t) = �e��[t�t]u (c (t)) +
Z 1

t

d

dt
e��[��t]u (c (�)) d� = �u (c (t)) + �U (t) :

Overall utility U (t) reduces as time goes by by the amount u (c (t)) at each instant
(as the integral becomes �smaller�when current consumption in t is lost and we start
an instant after t) and increases by �U (t) (as we gain because future utilities come
closer to today when today moves into the future). Rearranging this equation gives
�U (t) = u (c (t))+ _U (t) :When overall utility is replaced by the value function, we obtain
�V (a (t)) = u (c (t))+ _V (a (t)) which corresponds in its structure to the Bellman equation
(6.1.3).

� DP1: Bellman equation and �rst-order conditions

We will now follow the three-step procedure to maximization when using the dynamic
programming approach as we got to know it in discrete time setups is section 3.3. When
we compute the Bellman equation for our case, we obtain for the derivative in (6.1.3)
dV (a (t)) =dt = V 0 (a (t)) _a which gives with the budget constraint (6.1.2)

�V (a (t)) = max
c(t)
fu (c (t)) + V 0 (a (t)) [ra+ w � pc]g : (6.1.4)

The �rst-order condition reads

u0 (c (t)) = pV 0 (a (t)) (6.1.5)

and makes consumption a function of the state variable, c (t) = c (a (t)) : In contrast to
discrete time models, there is no tomorrow and the interest rate and the time preference
rate, present for example in (3.4.5), are absent here. This �rst-order condition also cap-
tures �pros and cons�of more consumption today. The advantage is higher instantaneous
utility, the disadvantage is the reduction in wealth. The disadvantage is captured by the
change in overall utility due to changes in a (t) ; i.e. the shadow price V 0 (a (t)) ; times the
price of one unit of consumption in units of the capital good. Loosely speaking, when con-
sumption goes up today by one unit, wealth goes down by p units. Higher consumption
increases utility by u0 (c (t)) ; p units less wealth reduces overall utility by pV 0 (a (t)) :
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� DP2: Evolution of the costate variable

In continuous time, the second step of the dynamic programming approach to maxi-
mization can be subdivided into two substeps. (i) In the �rst, we look at the maximized
Bellman equation,

�V (a) = u (c (a)) + V 0 (a) [ra+ w � pc (a)] :

The �rst-order condition (6.1.5) together with the maximized Bellman equation deter-
mines the evolution of the control variable c (t) and V (a (t)). This system can be used
as a basis for numerical solution. Again, however, the maximized Bellman equation does
not provide very much insight from an analytical perspective. Computing the derivative
with respect to a (t) however (and using the envelope theorem) gives an expression for
the shadow price of wealth that will be more useful,

�V 0 (a) = V 00 (a) [ra+ w � pc] + V 0 (a) r , (6.1.6)

(�� r)V 0 (a) = V 00 (a) [ra+ w � pc] :

(ii) In the second step, we compute the derivative of the costate variable V 0 (a) with
respect to time, giving

dV 0 (a)

dt
= V 00 (a) _a = (�� r)V 0 (a) ;

where the last equality used (6.1.6). Dividing by V 0 (a) and using the usual notation
_V 0 (a) � dV 0 (a) =dt, this can be written as

_V 0 (a)

V 0 (a)
= �� r: (6.1.7)

This equation describes the evolution of the costate variable V 0 (a), the shadow price of
wealth.

� DP3: Inserting �rst-order conditions

The derivative of the �rst-order condition with respect to time is given by (apply �rst
logs)

u00 (c)

u0 (c)
_c =

_p

p
+
_V 0 (a)

V 0 (a)
:

Inserting (6.1.7) gives

u00 (c)

u0 (c)
_c =

_p

p
+ �� r , �u

00 (c)

u0 (c)
_c = r � _p

p
� �:

This is the well-known Keynes Ramsey rule.



6.2. Comparing dynamic programming to Hamiltonians 145

6.2 Comparing dynamic programming to Hamiltoni-
ans

When we compare optimality conditions under dynamic programming with those obtained
when employing the Hamiltonian, we �nd that they are identical. Observing that our
costate evolves when using dynamic programming according to

_V 0 (a)

V 0 (a)
= �� r;

as just shown in (6.1.7), we obtain the same equation as we had in the Hamiltonian
approach for the evolution of the costate variable, see e.g. (5.1.5) or (5.6.13). Comparing
�rst-order conditions (5.1.4) or (5.2.9) with (6.1.5), we see that they would be identical if
we had chosen exactly the same maximization problem. This is not surprising given our
applied view of optimization: If there is one optimal path that maximizes some objective
function, this one path should always be optimal, independently of which maximization
procedure is chosen.
A comparison of optimality conditions is also useful for an alternative purpose, how-

ever. As (6.1.7) and e.g. (5.1.5) or (5.6.13) are identical, we can conclude that the deriv-
ative V 0 (a (t)) of the value function with respect to the state variable, in our case a, is
identical to the costate variable � in the current-value Hamiltonian approach, V 0 (a) = �:
This is where the interpretation for the costate variable in the Hamiltonian approach in
ch. 5.2.3 came from. There, we said that the costate variable � stands for the increase in
the value of the optimal program when an additional unit of the state variable becomes
available; this is exactly what V 0 (a) stands for. Hence, the interpretation of a costate
variable � is similar to the interpretation of the Lagrange multiplier in static maximization
problems.

6.3 Dynamic programming with two state variables

As a �nal example for maximization problems in continuous time that can be solved
with dynamic programming, we look at a maximization problem with two state variables.
Think e.g. of an agent who can save by putting savings on a bank account or by ac-
cumulating human capital. Or think of a central planner who can increase total factor
productivity or the capital stock. We look here at the �rst case.
Our agent has a standard objective function,

U (t) =

Z 1

t

e��[��t]u (c (�)) d� :

It is maximized subject to two constraints. They describe the evolution of the state
variables wealth a and human capital h;

_a = f (a; h; c) ; _h = g (a; h; c) : (6.3.1)
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We do not give explicit expressions for the functions f (:) or g (:) but one can think
of a standard resource constraint for f (:) as in (6.1.2) and a functional form for g (:)
that captures a trade-o¤ between consumption and human capital accumulation: Human
capital accumulation is faster when a and h are large but decreases in c: To be precise,
we assume that both f (:) and g (:) increase in a and h but decrease in c:

� DP1: Bellman equation and �rst-order conditions

In this case, the Bellman equation reads

�V (a; h) = max

�
u (c) +

dV (a; h)

dt

�
= max fu (c) + Vaf (:) + Vhg (:)g :

There are simply two partial derivatives of the value function after the u (c) term times
the da and dh term, respectively, instead of one as in (6.1.4), where there is only one state
variable.
Given that there is still only one control variable, consumption, there is only one

�rst-order condition. This is clearly speci�c to this example. One could think of a time
constraint for human capital accumulation (a trade-o¤ between leisure and learning -
think of the Lucas (1988) model) where agents choose the share of their time used for
accumulating human capital. In this case, there would be two �rst-order conditions. Here,
however, we have just the one for consumption, given by

u0 (c) + Va
@f (:)

@c
+ Vh

@g (:)

@c
= 0 (6.3.2)

When we compare this condition with the one-state-variable case in (6.1.5), we see
that the �rst two terms u0 (c) + Va

@f(:)
@c

correspond exactly to (6.1.5): If we had speci�ed
f (:) as in the budget constraint (6.1.2), the �rst two terms would be identical to (6.1.5).
The third term Vh

@g(:)
@c
is new and stems from the second state variable: Consumption now

not only a¤ects the accumulation of wealth but also the accumulation of human capital.
More consumption gives higher instantaneous utility but, at the same time, decreases
future wealth and - now new - the future human capital stock as well.

� DP2: Evolution of the costate variables

As always, we need to understand the evolution of the costate variable(s). In a setup
with two state variables, there are two costate variables, or, economically speaking, a
shadow price of wealth a and a shadow price of human capital h: This is obtained by
partially di¤erentiating the maximized Bellman equation, �rst with respect to a; then
with respect to h: Doing this, we get (employing the envelope theorem right away)

�Va = Vaaf (:) + Va
@f (:)

@a
+ Vhag (:) + Vh

@g (:)

@a
; (6.3.3)

�Vh = Vahf (:) + Va
@f (:)

@h
+ Vhhg (:) + Vh

@g (:)

@h
: (6.3.4)
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As in ch. 6.1, the second step of DP2 consists of computing the time derivatives of the
costate variables and in reinserting (6.3.3) and (6.3.4). We �rst compute time derivatives,
inserting (6.3.1) into the last step,

dVa (a; h)

dt
= Vaa _a+ Vah _h = Vaaf (:) + Vahg (:) ;

dVh (a; h)

dt
= Vha _a+ Vhh _h = Vhaf (:) + Vhhg (:) :

Then inserting (6.3.3) and (6.3.4), we �nd

dVa (a; h)

dt
= �Va � Va

@f (:)

@a
� Vh

@g (:)

@a
;

dVh (a; h)

dt
= �Vh � Va

@f (:)

@h
� Vh

@g (:)

@h
:

The nice feature of this last step is the fact that the cross derivatives Vah and Vha �disap-
pear�, i.e. can be substituted out again, using the fact that fxy (x; y) = fyx (x; y) for any
twice di¤erentiable function f (x; y). Writing these equations as

_Va
Va
= �� @f (:)

@a
� Vh
Va

@g (:)

@a
;

_Vh
Vh
= �� Va

Vh

@f (:)

@h
� @g (:)

@h
;

allows us to give an interpretation that links them to the standard one-state case in (6.1.7).
The costate variable Va evolves as above, only that instead of the interest rate, we �nd
here @f(:)

@a
+ Vh

Va

@g(:)
@a
: The �rst derivative @f (:) =@a captures the e¤ect a change in a has

on the �rst constraint; in fact, if f (:) represented a budget constraint as in (6.1.2), this
would be identical to the interest rate. The second term @g (:) =@a captures the e¤ect
of a change in a on the second constraint; by how much would h increase if there was
more a? This e¤ect is multiplied by Vh=Va; the relative shadow price of h: An analogous
interpretation is possible for _Vh=Vh:

� DP3: Inserting �rst-order conditions

The �nal step consists of computing the derivative of the �rst-order condition (6.3.2)
with respect to time and replacing the time derivatives _Va and _Vh by the expressions
from the previous step DP2. The principle of how to obtain a solution therefore remains
unchanged when having two state variables instead of one. Unfortunately, however, it is
generally not possible to eliminate the shadow prices from the resulting equation which
describes the evolution of the control variable. Some economically suitable assumptions
concerning f (:) or g (:) could, however, help.
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6.4 Nominal and real interest rates and in�ation

We present here a simple model which allows us to understand the di¤erence between the
nominal and real interest rate and the determinants of in�ation. This chapter is intended
(i) to provide another example where dynamic programming can be used and (ii) to show
again how to go from a general decentralized description of an economy to its reduced
form and thereby obtain economic insights.

6.4.1 Firms, the central bank and the government

� Firms

Firms use a standard neoclassical technology Y = Y (K;L) : Producing under perfect
competition implies factor demand function of

wK = p
@Y

@K
; wL = p

@Y

@L
: (6.4.1)

� The central bank and the government

Studying the behaviour of central banks will �ll a lot of books. We present the be-
haviour of the central bank in a very simple way - so simple that what the central bank
does here (buy bonds directly from the government) is actually illegal in most OECD
countries. Despite this simple presentation, the general result we obtain later would hold
in more realistic setups as well.
The central bank issues money M (t) in exchange for government bonds B (t) : It

receives interest payments iB from the government on the bonds. The balance of the
central bank is therefore iB + _M = _B. This equation says that bond holdings by the
central bank increase by _B; either when the central bank issues money _M or receives
interest payments iB on bonds it holds.
The government�s budget constraint reads G + iB = T + _B: General government

expenditure G plus interest payments iB on government debt B is �nanced by tax income
T and de�cit _B: We assume that only the central bank holds government bonds and not
private households. Combining the government with the central bank budget therefore
yields

_M = G� T:

This equation says that an increase in monetary supply is either used to �nance govern-
ment expenditure minus tax income or, if G = 0 for simplicity, any monetary increase is
given to households in the form of negative taxes, T = � _M:
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6.4.2 Households

Household preferences are described by a �money-in-utility�function,Z 1

t

e��[��t]
�
ln c (�) + 
 ln

m (�)

p (�)

�
d� :

In addition to utility from consumption c (t), utility is derived from holding a certain
stock m (t) of money, given a price level p (t) : Given that wealth of households consists of
capital goods plus money, a (t) = k (t) +m (t) ; and that holding money pays no interest,
the household�s budget constraint can be shown to read (see exercises)

_a = i [a�m] + w � T=L� pc:

Tax payments T=L per representative household are lump-sum. If taxes are negative,
T=L represents transfers from the government to households. The interest rate i is de�ned
according to

i � wK + _v

v
:

When households choose consumption and the amount of money held optimally, con-
sumption growth follows (see exercises)

_c

c
= i� _p

p
� �:

Money demand is given by (see exercises)

m = 

pc

i
:

6.4.3 Equilibrium

� The reduced form

Equilibrium requires equality of supply and demand on the goods market. This is
obtained if total supply Y equals demand C + I: Letting capital accumulation follow
_K = I � �K; we get

_K = Y (K;L)� C � �K: (6.4.2)

This equation determines K: As capital and consumption goods are traded on the same
market, this equation implies v = p and the nominal interest rate becomes with (6.4.1)

i =
wK

p
+
_p

p
=
@Y

@K
+
_p

p
: (6.4.3)

The nominal interest rate is given by marginal productivity of capital wK=p = @Y=@K
(the �real interest rate�) plus in�ation _p=p.
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Aggregating over households yields aggregate consumption growth of _C=C = i� _p=p�
�: Inserting (6.4.3) yields

_C

C
=
@Y

@K
� �: (6.4.4)

Aggregate money demand is given by

M = 

pC

i
: (6.4.5)

Given an exogenous money supply rule and appropriate boundary conditions, these four
equations determine the paths of K; C; i and the price level p:
One standard property of models with �exible prices is the dichotomy between real

variables and nominal variables. The evolution of consumption and capital - the real
side of the economy - is completely independent of monetary in�uences: Equation (6.4.2)
and (6.4.4) determine the paths of K and C just as in the standard optimal growth
model without money - see (5.6.12) and (5.6.14) in ch. 5.6.3. Hence, when thinking
about equilibrium in this economy, we can think about the real side on the one hand
- independently of monetary issues - and about the nominal side on the other hand.
Monetary variables have no real e¤ect but real variables have an e¤ect on monetary
variables like e.g. in�ation.
Needless to say that the real world does not have perfectly �exible prices such that

one should expect monetary variables to have an impact on the real economy. This model
is therefore a starting point to well understanding structures and not a fully developed
model for analysing monetary questions in a very realistic way. Price rigidity would have
to be included before doing this.

� A steady state

Assume the technology Y (K;L) is such that in the long-run K is constant. As a
consequence, aggregate consumption C is constant as well. Hence, with respect to real
variables (including, in addition to K and C; the real interest rate and output), we are in
a steady state as in ch. 5.6.3.
Depending on exogenous money supply, equations (6.4.3) and (6.4.5) determine the

price level and the nominal interest rate. Substituting the nominal interest rate out, we
obtain

_p

p
= 


pC

M
� @Y

@K
:

This is a di¤erential equation which is plotted in the next �gure. As this �gure shows,
provided that M is constant, there is a price level p� which implies that there is zero
in�ation.
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Figure 6.4.1 The price level p� in a monetary economy

Now assume there is money growth, _M > 0: The �gure then shows that the price level
p� increases as the slope of the line becomes �atter. Money growth in an economy with
constant GDP implies in�ation. By looking at (6.4.3) and (6.4.5) again and by focusing
on equilibria with constant in�ation rates, we know from (6.4.3) that a constant in�ation
rate implies a constant nominal interest rate. Hence, by di¤erentiating the equilibrium
(6.4.5) on the money market, we get

_p

p
=

_M

M
: (6.4.6)

In an economy with constant GDP and increasing money supply, the in�ation rate is
identical to the growth rate of money supply.

� A growth equilibrium

Now assume there is (exogenous) technological progress at a rate g such that in the
long run _Y =Y = _C=C = _K=K = g: Then by again assuming a constant in�ation rate
(implying a constant nominal interest rate) and going through the same steps that led to
(6.4.6), we �nd by di¤erentiating (6.4.5)

_p

p
=

_M

M
�
_C

C
:

In�ation is given by the di¤erence between the growth rate of money supply and con-
sumption growth.
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� Exogenous nominal interest rates

The current thinking about central bank behaviour di¤ers from the view that the
central bank chooses money supply M as assumed so far. The central bank rather sets
nominal interest rates and money supply adjusts (where one should keep in mind that
money supply is more than just cash used for exchange as modelled here). Can nominal
interest rate setting be analyzed in this setup?
Equilibrium is described by equations (6.4.2) to (6.4.5). They were understood to

determine the paths of K; C; i and the price level p; given a money supply choice M by
the central bank. If one believes that nominal interest rate setting is more realistic, these
four equations would simply determine the paths of K; C; M and the price level p; given a
nominal interest rate choice i by the central bank. Hence, simply by making an exogenous
variable, M; endogenous and making a previously endogenous variable, i; exogenous, the
same model can be used to understand the e¤ects of higher and lower nominal interest
rates on the economy.
Due to perfect price �exibility, real quantities remain una¤ected by the nominal in-

terest rate. Consumption, investment, GDP, the real interest rate, real wages are all
determined, as before, by (6.4.2) and (6.4.4) - the dichotomy between real and nominal
quantities continues given price �exibility. In (6.4.3), a change in the nominal interest rate
a¤ects in�ation: high (nominal) interest rates imply high in�ation, low nominal interest
rates imply low in�ation. From the money market equilibrium in (6.4.5) one can then
conclude what this implies for money supply, again both for a growing or a stationary
economy. Much more needs to be said about these issues before policy implications can
be discussed. Any analysis in a general equilibrium framework would however partly be
driven by the relationships presented here.

6.5 Further reading and exercises

An alternative way, which is not based on dynamic programming, to reach the same
conclusion about the interpretation of the costate variable for Hamiltonian maximization
as here in ch. 6.2 is provided by Intriligator (1971, p. 352). An excellent overview and
introduction to Monetary economics is provided by Walsh (2003).
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Exercises chapter 6
Applied Intertemporal Optimization

Dynamic Programming in Continuous Time

1. The envelope theorem once again
Compute the derivative (6.1.6) of the maximized Bellman equation without using
the envelope theorem.

2. A �rm with adjustment costs
Consider again, as in ch. 5.5.1, a �rm with adjustment cost. The �rm�s objective is

max
fI(t);L(t)g

Z 1

t

e�r[��t]� (�) d� :

In contrast to ch. 5.5.1, the �rm now has an in�nite planning horizon and employs
two factors of production, capital and labour. Instantaneous pro�ts are

� = pF (K;L)� wL� I � �I�;

where investment I also comprises adjustment costs for � > 0: Capital, owned by
the �rm, accumulates according to _K = I��K: All parameters �; �; � are constant.

(a) Solve this maximization problem by using the dynamic programming approach. You
may choose appropriate (numerical or other) values for parameters where this
simpli�es the solution (and does not destroy the spirit of this exercise).

(b) Show that in the long-run with adjustment costs and at each point in time un-
der the absence of adjustment costs, capital is paid its value marginal product.
Why is labour being paid its value marginal product at each point in time?

3. Money in the utility function
Consider an individual with the following utility function

U (t) =

Z 1

t

e��[��t]
�
ln c(�) + 
 ln

m(�)

p(�)

�
d� :

As always, � is the time preference rate and c (�) is consumption. This utility
function also captures demand for money by including a real monetary stock of
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m (�) =p (�) in the utility function where m (�) is the amount of cash and p (�) is
the price level of the economy. Let the budget constraint of the individual be

_a = i [a�m] + w � T=L� pc:

where a is the total wealth consisting of shares in �rms plus money, a = k +m and
i is the nominal interest rate.

(a) Derive the budget constraint by assuming interest payments of i on shares in
�rms and zero interest rates on money.

(b) Derive the optimal money demand.

4. Nominal and real interest rates in general equilibrium
Put households from exercise 3 in general equilibrium with capital accumulation and
a central bank which chooses money supply M: Compute the real and the nominal
interest rate in a long-run equilibrium.
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6.6 Looking back

This is the end of part I and II. This is often also the end of a course. This is a good
moment to look back at what has been accomplished. After 14 or 15 lectures and the
same number of exercise classes, the amount of material covered is fairly impressive.
In terms of maximization tools, this �rst part has covered

� Solving by substitution

� Lagrange methods in discrete and continuous time

� Dynamic programming in discrete time and continuous time

� Hamiltonian

With respect to model building components, we have learnt

� how to build budget constraints

� how to structure the presentation of a model

� how to derive reduced forms

From an economic perspective, the �rst part presented

� the two-period OLG model

� the optimal saving central planner model in discrete and continuous time

� the matching approach to unemployment

� the decentralized optimal growth model and

� an optimal growth model with money

Most importantly, however, the tools presented here allow students to �become in-
dependent�. A very large part of the Economics literature (acknowledging that game
theoretic approaches have not been covered here at all) is now open and accessible and
the basis for understanding a paper in detail (and not just the overall argument) and for
presenting their own arguments in a scienti�c language are laid out.
Clearly, models with uncertainty present additional challenges. They will be presented

and overcome in part III and part IV.
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Part III

Stochastic models in discrete time

157





159

In part III, the world becomes stochastic. Parts I and II provided many optimization
methods for deterministic setups, both in discrete and continuous time. All economic
questions that were analyzed were viewed as �su¢ ciently deterministic�. If there was
any uncertainty in the setup of the problem, we simply ignored it or argued that it is of
no importance for understanding the basic properties and relationships of the economic
question. This is a good approach to many economic questions.
Generally speaking, however, real life has few certain components. Death is certain,

but when? Taxes are certain, but how high are they? We know that we all exist - but
don�t ask philosophers. Part III (and part IV later) will take uncertainty in life seriously
and incorporate it explicitly in the analysis of economic problems. We follow the same
distinction as in part I and II - we �rst analyse the e¤ects of uncertainty on economic
behaviour in discrete time setups in part III and then move to continuous time setups in
part IV.
Chapter 7 and 8 are an extended version of chapter 2. As we are in a stochastic world,

however, chapter 7 will �rst spend some time reviewing some basics of random variables,
their moments and distributions. Chapter 7 also looks at di¤erence equations. As they
are now stochastic, they allow us to understand how distributions change over time and
how a distribution converges - in the example we look at - to a limiting distribution.
The limiting distribution is the stochastic equivalent to a �x point or steady state in
deterministic setups.
Chapter 8 looks at maximization problems in this stochastic framework and focuses on

the simplest case of two-period models. A general equilibrium analysis with an overlapping
generations setup will allow us to look at the new aspects introduced by uncertainty
for an intertemporal consumption and saving problem. We will also see how one can
easily understand dynamic behaviour of various variables and derive properties of long-
run distributions in general equilibrium by graphical analysis. One can for example easily
obtain the range of the long-run distribution for capital, output and consumption. This
increases intuitive understanding of the processes at hand tremendously and helps a lot as
a guide to numerical analysis. Further examples include borrowing and lending between
risk-averse and risk-neutral households, the pricing of assets in a stochastic world and a
�rst look at �natural volatility�, a view of business cycles which stresses the link between
jointly endogenously determined short-run �uctuations and long-run growth.
Chapter 9 is then similar to chapter 3 and looks at multi-period, i.e. in�nite horizon,

problems. As in each chapter, we start with the classic intertemporal utility maximization
problem. We then move on to various important applications. The �rst is a central planner
stochastic growth model, the second is capital asset pricing in general equilibrium and how
it relates to utility maximization. We continue with endogenous labour supply and the
matching model of unemployment. The next section then covers how many maximization
problems can be solved without using dynamic programming or the Lagrangian. In fact,
many problems can be solved simply by inserting, despite uncertainty. This will be
illustrated with many further applications. A �nal section on �nite horizons concludes.
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Chapter 7

Stochastic di¤erence equations and
moments

Before we look at di¤erence equations in section 7.4, we will �rst spend a few sections
reviewing basic concepts related to uncertain environments. These concepts will be useful
at later stages.

7.1 Basics on random variables

Let us �rst have a look at some basics of random variables. This follows Evans, Hastings
and Peacock (2000).

7.1.1 Some concepts

A probabilistic experiment is an occurrence where a complex natural background leads to
a chance outcome. The set of possible outcomes of a probabilistic experiment is called the
possibility space. A random variable (RV)X is a function which maps from the possibility
space into a set of numbers. The set of numbers this RV can take is called the range of
this variable X.
The distribution function F associated with the RV X is a function which maps from

the range into the probability domain [0,1],

F (x) = Prob (X � x) :

The probability that X has a realization of x or smaller is given by F (x) :
We now need to make a distinction between discrete and continuous RVs. When the

RV X has a discrete range then f (x) gives �nite probabilities and is called the probability
function or probability mass function. The probability that X has the realization of x is
given by f (x) :

161
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When the RV X is continuous, the �rst derivative of the distribution function F

f(x) =
dF (x)

dx

is called the probability density function f . The probability that the realization of X lies
between, say, a and b > a is given by F (b) � F (a) =

R b
a
f (x) dx: Hence the probability

that X equals a is zero.

7.1.2 An illustration

� Discrete random variable

Consider the probabilistic experiment �tossing a coin twice�. The possibility space is
given by fHH; HT; TH; TTg. De�ne the RV �Number of heads�. The range of this
variable is given by f0; 1; 2g : Assuming that the coin falls on either side with the same
probability, the probability function of this RV is given by

f (x) =

8<:
:25
:5
:25

9=; for x =

8<:
0
1
2
:

� Continuous random variable

Think of next weekend. You might consider going to a pub to meet friends. Before
you go there, you do not know how much time you will spend there. If you meet a lot of
friends, you will stay longer; if you drink just one beer, you will leave soon. Hence, going
to a pub on a weekend is a probabilistic experiment with a chance outcome.
The set of possible outcomes with respect to the amount of time spent in a pub is the

possibility space. Our random variable T maps from this possibility space into a set of
numbers with a range from 0 to, let�s say, 4 hours (as the pub closes at 1 am and you never
go there before 9 p.m.). As time is continuous, T 2 [0; 4] is a continuous random variable.
The distribution function F (t) gives you the probability that you spend a period of length
t or shorter in the pub. The probability that you spend between 1.5 and two hours in the
pub is given by

R 2
1:5
f (t) dt; where f (t) is the density function f (t) = dF (t) =dt.

7.2 Examples for random variables

We now look at some examples of RVs that are useful for later applications. As an RV
is completely characterized by its range and its probability or density function, we will
describe RVs by providing this information. Many more random variables exist than those
presented here and the interested reader is referred to the �further reading�section at the
end.
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7.2.1 Discrete random variables

� Discrete uniform distribution

range x 2 fa; a+ 1; :::; b� 1; bg
probability function f (x) = 1= (b� a+ 1)

An example for this RV is the die. Its range is 1 to 6, the probability for any number
(at least for fair dice) is 1=6.

� The Poisson distribution

range x 2 f0; 1; 2; :::g
probability function f (x) = e���x

x!

Here � is some positive parameter. When we talk about stochastic processes in part
IV, this will be called the arrival rate. An example for this RV is e.g. the number of falling
stars visible on a warm summer night at a nice beach.

7.2.2 Continuous random variables

� Normal distribution

range x 2 ]�1;+1[

density function f (x) = 1p
2��2

e�
1
2(

x��
� )

2

The mean and the standard deviation of X are given by � and �:

� Standard normal distribution

This is the normal distribution with mean and standard deviation given by � = 0 and
� = 1:

� Exponential distribution

range x 2 [0;1[
density function f (x) = �e��x

Again, � is some positive parameter. One standard example for x is the duration of
unemployment for an individual who just lost his or her job.
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7.2.3 Higher-dimensional random variables

So far we have studied one-dimensional RVs. In what follows, we will occasionally work
with multi-dimensional RVs as well. For our illustration purposes here it will su¢ ce to
focus on a two-dimensional normal distribution. Consider two random variables X1 and
X2: They are (jointly) normally distributed if the density function of X1 and X2 is given
by

f (x1; x2) =
1

2��1�2
p
1� �2

e
� 1
2(1��2)(~x

2
1�2�~x1~x2+~x22); (7.2.1)

where ~xi =
xi � �i
�i

; � =
�12
�1�2

: (7.2.2)

The mean and standard deviation of the RVs are denoted by �i and �i: The parameter
� is called the correlation coe¢ cient between X1 and X2 and is de�ned as the covariance
�12 divided by the standard deviations (see ch. 7.3.1).
The nice aspects about this two-dimensional normally distributed RV (the same holds

for n-dimensional RVs) is that the density function of each individual RVXi; i.e. the mar-
ginal density, is given by the standard expression which is independent of the correlation
coe¢ cient,

f (xi) =
1p
2��2i

e�
1
2
~x2i : (7.2.3)

This implies a very convenient way to go from independent to correlated RVs in a multi-
dimensional setting: When we want to assume independent normally distributed RVs, we
assume that (7.2.3) holds for each random variable Xi and set the correlation coe¢ cient
to zero. When we want to work with dependent RVs that are individually normally
distributed, (7.2.3) holds for each RV individually as well but, in addition, we �x a non-
zero coe¢ cient of correlation �.

7.3 Expected values, variances, covariances and all
that

Here we provide various de�nitions, some properties and results on transformations of
RVs. Only in some selected cases do we provide proofs. A more in depth introduction
can be found in many textbooks on statistics.

7.3.1 De�nitions

For de�nitions, we shall focus on continuous random variables. For discrete random
variables, the integral is replaced by a sum - in very loose notation,

R b
a
g (x) dx is replaced

by �bi=ag (xi), where a and b are constants which can be minus or plus in�nity and g (x)
is some function. In the following de�nitions,

R
:dx means the integral over the relevant
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range (i.e. from minus to plus in�nity or from the lower to upper bound of the range of
the RV under consideration).

Mean EX �
R
xf (x) dx

z = g (x; y)) EZ =
R R

g (x; y) f (x; y) dx dy

Variance varX �
R
(x� EX)2 f (x) dx

kth uncentered moment EXk �
R
xkf (x) dx

kth centered moment E (X � EX)k �
R
(x� EX)k f (x) dx

covariance cov(X;Y ) �
R R

(x� EX) (y � EY ) f (x; y) dx dy
correlation coe¢ cient �XY � cov (X; Y ) =

p
varX varY

independence p (X 2 A; Y 2 B) = P (X 2 A)P (Y 2 B)

Table 7.3.1 Some basic de�nitions

7.3.2 Some properties of random variables

� Basic

Here are some useful properties of random variables. They are listed here for later
reference. More background can be found in many statistics textbooks.

E [a+ bX] = a+ bEX
E [bX + cY ] = bEX + cEY
E (XY ) = EXEY + cov (X; Y )

Table 7.3.2 Some properties of expectations

varX = E
�
(X � EX)2

�
= E

�
X2 � 2XEX + (EX)2

�
= EX2 � 2 (EX)2 + (EX)2 = EX2 � (EX)2 (7.3.1)

var (a+ bX) = b2varX

var (X + Y ) = varX + varY + 2cov (X; Y ) (7.3.2)

Table 7.3.3 Some properties of variances

cov (X;X) = varX

cov (X; Y ) = E (XY )� EXEY (7.3.3)

cov (a+ bX; c+ dY ) = bd cov (X; Y )
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Table 7.3.4 Some properties of covariances

� Advanced

Here we present a theorem which is very intuitive and highly useful for analytically
studying the pro- and countercyclical behaviour of endogenous variables in models of
business cycles. The theorem says that if two variables depend �in the same sense�on
some RV (i.e. they both increase or decrease in the RV), then these two variables have a
positive covariance. If e.g. both GDP and R&D expenditure increase in TFP and TFP is
random, then GDP and R&D expenditure are procyclical.

Theorem 7.3.1 Let X be a random variable and f (X) and g (X) two functions such
that f 0 (X) g0 (X) R 0 8 x 2 X: Then

cov (f (X) ; g (X)) R 0:

Proof. We only prove the �> 0� part. We know from (7.3.3) that cov(Y; Z) =
E (Y Z)� EY EZ: With Y = f (X) and Z = g (X), we have

cov (f (X) ; g (X)) = E (f (X) g (X))� Ef (X)Eg (X)
=
R
f (x) g (x) p (x) dx�

R
f (x) p (x) dx

R
g (x) p (x) dx;

where p (x) is the density of X. Hence

cov (f (X) ; g (X)) > 0,
R
f (x) g (x) p (X) dx >

R
f (x) p (x) dx

R
g (x) p (x) dx:

The last inequality holds for f 0 (X) g0 (X) > 0 as shown by µCeby�ev and presented in
Mitrinovíc (1970, Theorem 10, sect. 2.5, p. 40).

7.3.3 Functions on random variables

We will occasionally encounter the situation where we need to compute density functions
of functions of RVs. Here are some examples.

� Linearly transforming a normally distributed RV

Consider a normally distributed RV X � N (�; �2) : What is the distribution of the
Y = a + bX? We know from ch. 7.3.2 that for any RV, E (a+ bX) = a + bEX and
V ar (a+ bX) = b2V ar (X). As it can be shown that a linear transformation of a normally
distributed RV gives a normally distributed RV again, Y is also normally distributed with
Y � N (a+ b�; b2�2) :
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� An exponential transformation

Consider the RV Y = eX where X is again normally distributed. The RV Y is then
lognormally distributed. A variable is lognormally distributed if its logarithm is normally
distributed, lnY � N (�; �2). The mean and variance of this distribution are given by

�y = e�+
1
2
�2 ; �2y = e2�+�

2
�
e�

2 � 1
�
: (7.3.4)

Clearly, Y can only have non-negative realizations.

� Transformations of lognormal distributions

Let there be two lognormally distributed variables Y and Z. Any transformation of
the type Y �; where � is a constant, or products like Y Z are also lognormally distributed.
To show this, remember that we can express Y and Z as Y = eX1 and Z = eX2 ,

with the Xi being (jointly) normally distributed. Hence, for the �rst example, we can
write Y � = e�X1 : As �X1 is normally distributed, Y � is lognormally distributed. For the
second, we write Y Z = eX1eX2 = eX1+X2 : As the Xi are (jointly) normally distributed,
their sum is as well and Y Z is lognormally distributed.
Total factor productivity is sometimes argued to be lognormally distributed. Its log-

arithm is then normally distributed. See e.g. ch. 8.1.6.

� The general case

Consider now a general transformation of the type y = y (x) where the RV X has a
density f (x) : What is the density of Y ? The answer comes from the following

Theorem 7.3.2 Let X be a random variable with density f (x) and range [a; b] which
can be ]�1;+1[: Let Y be de�ned by the monotonically increasing function y = y (x) :
Then the density g (y) is given by g (y) = f (x (y)) dx

dy
on the range [y(a); y(b)]:

N

N

X

Y
y(x)

a ex b

y(a)

y(ex)

y(b)

Figure 7.3.1 Transforming a random variable
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This theorem can be easily proven as follows. The proof is illustrated in �g. 7.3.1.
The �gure plots the RV X on the horizontal and the RV Y on the vertical axis. A
monotonically increasing function y (x) represents the transformation of realizations x
into y:
Proof. The transformation of the range is immediately clear from the �gure: WhenX

is bounded between a and b; Y must be bounded between y (a) and y (b) : The proof for the
density of Y requires a few more steps: The probability that y is smaller than some y (~x) is
identical to the probability thatX is smaller than this ~x: This follows from the monotonic-
ity of the function y (x) : As a consequence, the distribution function (cumulative density
function) of Y is given by G (y) = F (x) where y = y (x) or, equivalently, x = x (y) : The
derivative then gives the density function, g (y) � d

dy
G (y) = d

dy
F (x (y)) = f (x (y)) dx

dy
:

7.4 Examples of stochastic di¤erence equations

We now return to the �rst main objective of this chapter, the description of stochastic
processes through stochastic di¤erence equations.

7.4.1 A �rst example

� The di¤erence equation
Possibly the simplest stochastic di¤erence equation is the following

xt = axt�1 + "t; (7.4.1)

where a is a positive constant and the stochastic component "t is distributed according
to some distribution function over a range which implies a mean � and a variance �2;
"t � (�; �2) : We do not make any speci�c assumption about "t at this point. Note
that the stochastic components "t are i.i.d. (identically and independently distributed)
which implies that the covariance between any two distinct "t is zero, cov("t; "s) = 0
8t 6= s. An alternative representation of xt with identical distributional properties would
be xt = axt�1 + �+ vt with vt � (0; �2).
� Solving by substitution
In complete analogy to deterministic di¤erence equations in ch. 2.5.3, equation (7.4.1)

can be solved for xt as a function of time and past realizations of "t; provided we have a
boundary condition x0 for t = 0. By repeated reinserting, we obtain

x1 = ax0 + "1; x2 = a [ax0 + "1] + "2 = a2x0 + a"1 + "2;

x3 = a
�
a2x0 + a"1 + "2

�
+ "3 = a3x0 + a2"1 + a"2 + "3

and eventually

xt = atx0 + at�1"1 + at�2"2 + :::+ "t

= atx0 + �
t
s=1a

t�s"s: (7.4.2)
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� The mean

A stochastic di¤erence equation does not predict how the stochastic variable xt for
t > 0 actually evolves, it only predicts the distribution of xt for all future points in time.
The realization of xt is random. Hence, we can only hope to understand something about
the distribution of xt. To do so, we start by analyzing the mean of xt for future points in
time.
Denote the conditional expected value of xt by ~xt;

~xt � E0xt; (7.4.3)

i.e. ~xt is the value expected when we are in t = 0 for xt in t > 0: The expectations operator
E0 is conditional, i.e. it uses our �knowledge�in 0 when we compute the expectation for
xt. The �0�says that we have all information for t = 0 and know therefore x0 and "0;
but we do not know "1; "2; etc. Put di¤erently, we look at the conditional distribution of
xt: What is the mean of xt conditional on x0?
By applying the expectations operator E0 to (7.4.1), we obtain

~xt = a~xt�1 + �:

This is a deterministic di¤erence equation which describes the evolution of the expected
value of xt over time. There is again a standard solution to this equation which reads

~xt = atx0 + ��ts=1a
t�s = atx0 + �

1� at
1� a ; (7.4.4)

where we used �ts=1a
t�s = a0 + a1 + ::: + at�1 = �t�1i=0a

i and, from ch. 2.5.1, �ni=0a
i =

(1� an+1) = (1� a) : This equation shows that the expected value of xt changes over time
as t changes. Note that ~xt might increase or decrease (see the exercises).

� The variance

Let us now look at the variance of xt: We obtain an expression for the variance by
starting from (7.4.2) and observing that the terms in (7.4.2) are all independent from
each other: atx0 is a constant and the disturbances "s are i.i.d. by assumption. The
variance of xt is therefore given by the sum of variances (compare (7.3.2) for the general
case including the covariance),

V ar (xt) = 0 + �
t
s=1

�
at�s

�2
V ar ("s) = �2�ts=1

�
a2
�t�s

= �2�t�1i=0

�
a2
�i
= �2

1� a2t
1� a2 :

(7.4.5)
We see that it is also a function of t: The fact that, for 0 < a < 1; the variance becomes
larger the higher t appears intuitively clear. The further we look into the future, the �more
randomness� there is: equation (7.4.2) shows that a higher t means that more random
variables are added up. (One should keep in mind, however, that i.i.d. variables are added
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up. If they were negatively correlated, the variance would not necessarily increase over
time.)
The fact that we used V ar (atx0) = 0 here also shows that we work with a conditional

distribution of xt. We base our computation of the variance at some future point in time
on our knowledge of the RV X in t = 0: If we wanted to make this point very clearly, we
could write V ar0 (xt) :

� Long-run behaviour

When we considered deterministic di¤erence equations like (2.5.6), we found the long-
run behaviour of xt by computing the solution of this di¤erence equation and by letting
t approach in�nity. This would give us the �xpoint of this di¤erence equation as e.g. in
(2.5.7). The concept that corresponds to a �xpoint/ steady state in an uncertain envi-
ronment, e.g. when looking at stochastic di¤erence equations like (7.4.1), is the limiting
distribution. As stated earlier, stochastic di¤erence equations do not tell us anything
about the evolution of xt itself, they only tell us something about the distribution of xt:
It would therefore make no sense to ask what xt is in the long run - it will always remain
random. It makes a lot of sense, however, to ask what the distribution of xt is for the
long run, i.e. for t!1:
All results so far were obtained without a speci�c distributional assumption for "t

apart from specifying a mean and a variance. Understanding the long-run distribution of
xt in (7.4.1) is easy if we assume that the stochastic component "t is normally distributed
for each t; "t � N (�; �2). In this case, starting in t = 0; the variable x1 is from (7.4.1)
normally distributed as well. As a weighted sum of two random variables that are (jointly)
normally distributed gives again a random variable with a normal distribution (where the
mean and variance can be computed as in ch. 7.3.2), we also know from (7.4.1) that x1;
x2 ..., xt; ... are all normally distributed.
As the normal distribution is a two-parameter distribution characterized by the mean

and variance, we can �nd a stable distribution of xt for the long-run if the mean and
variance approach some constant. Neglecting the cases of a � 1, the mean ~x of our
long-run normal distribution is given from (7.4.4) by the �xpoint

lim
t!1

~xt � ~x1 = �
1

1� a; 0 < a < 1:

The variance of the long-run distribution is from (7.4.5)

lim
t!1

var (xt) = �2
1

1� a2 :

Hence, the long-run distribution of xt for 0 < a < 1 is a normal distribution with mean
�= (1� a) and variance �2= (1� a2).
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� The evolution of the distribution of xt

Given our results on the evolution of the mean and the variance of xt and the fact
that we assumed "t to be normally distributed, we know that xt is normally distributed at
each point in time. Hence, in order to understand the evolution of the distribution of xt,
we only have to �nd out how the expected value and variance of the variable xt evolves.
As we have computed just this above, we can express the density for xt in closed form by
(compare ch. 7.2.2)

f (xt) =
1p
2��2t

e
� 1
2

�
xt��t
�t

�2
;

where the mean �t and the variance �
2
t are functions of time. These functions are given

by �t = ~xt from (7.4.2) and �2t = V ar (xt) from (7.4.5). For some illustrating parameter
values, we can then draw the evolution of the distribution of x as in the following �gure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 3 5 7 9 11 13 15 17 19

0

0.05

0.1

0.15
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0.25

0.3

0.35

0.4
A simple stochastic difference equation

initial distribution

limiting distribution

time

x axt t t= +−1 ε

xt

Figure 7.4.1 Evolution of a distribution over time

Remember that we were able to plot a distribution for each t only because of properties
of the normal distribution. If we had assumed that "t is lognormally or equally distributed,
we would not have been able to say something about the distribution of xt easily. The
means and variances in (7.4.4) and (7.4.5) would still have been valid but the distribution
of xt for future t is generally unknown for distributions of "t other than the normal
distribution.
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� An interpretation for many agents

Let us now make an excursion into the world of heterogeneous agents. Imagine the
variable xit represents the �nancial wealth of an individual i. Equation (7.4.1) can then
be interpreted to describe the evolution of wealth xit over time,

xit = axit�1 + "it:

Given information in period t = 0, it predicts the density function f(xit) for wealth in
all future periods, given some initial value xi0. Shocks are identically and independently
distributed (i.i.d.) over time and across individuals.
Assuming a large number of agents i, more precisely a continuum of agents with mass

n, a law of large numbers can be applied: Let all agents start with the same wealth xi0 = x0
in t = 0. Then the density f(xit) for the wealth of any individual i in t equals the realized
wealth distribution in t for the continuum of agents with mass n: Put di¤erently: when
the probability for an individual to hold wealth between some lower and upper bound in
t is given by p, the share of individuals that hold wealth between these two bounds in t is
also given by p. Total wealth in t in such a pure idiosyncratic risk setup (i.e. no aggregate
uncertainty) is then deterministic (as are all other population shares) and is given by

xt = n

Z 1

�1
xitf(xit)dxit = n�t; (7.4.6)

where �t is the average wealth over individuals or the expected wealth of any individual
i:
The same argument can also be made with a discrete number of agents. The wealth

xit of individual i at t is a random variable. Let the probability that xit is smaller than
�x be given by P (xit � �x) = �p: Now assume there are n agents and therefore, at each
point in time t; there are n independent random variables xit: Denote by �n the number of
random variables xit that have a realization smaller than �x: The share of random variables
that have a realization smaller than �x is denoted by �q � �n=n: It is then easy to show
that E�q = �p for all n and, more importantly, limn!1 var (�q) = 0: This equals in words
the statement based on Judd above: The share in the total population n is equal to the
individual probability if the population is large. This share becomes deterministic for
large populations.
Here is now a formal proof: De�ne Yi as the number of realizations below �x for one

xit; i.e. Yi � I (xit � �x) where I is the indicator function which is 1 if the condition in
parentheses holds and 0 if not. Clearly, the probability that Yi = 1 is given by �p; i.e.
Yi is Bernoulli(�p) distributed, with EYi = �p and varYi = �p(1 � �p). (The Yi are i.i.d. if
the xit are i.i.d..) Then the share �q is given by �q = �ni=1Yi=n: Its moments are E�q = �p
and var�q = �p(1 � �p)=n. Hence, the variance tends to zero for n going to in�nity. (More
technically, �q tends to �p in �quadratic mean�and therefore �in probability�. The latter
means we have a �weak law of large numbers�.)
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7.4.2 A more general case

Let us now consider the more general di¤erence equation

xt = �txt�1 + "t;

where the coe¢ cient � is now also stochastic

�t �
�
a; �2a

�
; "t �

�
�; �2"

�
:

Analyzing the properties of this process is pretty complex. What can be easily done,
however, is to analyze the evolution of moments. As Vervaat (1979) has shown, the
limiting distribution has the following moments

Exj = �jk=0
�
j
k

�
E
�
�k"j�k

�
Exk:

Assuming we are interested in the expected value, we would obtain

Ex1 = �1k=0
�
1
k

�
E
�
�k"1�k

�
Exk =

�
1
0

�
E
�
�0"1

�
Ex0 +

�
1
1

�
E
�
�1"0

�
Ex1

= E"+ E�Ex:

Solving for Ex yields Ex = E"
1�E� =

�
1�a :
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Chapter 8

Two-period models

8.1 An overlapping generations model

Let us now return to maximization issues. We do so in the context of the most sim-
ple example of a dynamic stochastic general equilibrium model. It is a straightforward
extension of the deterministic model analyzed in section 2.4.
The structure of the maximization problem of individuals, the timing of when uncer-

tainty reveals itself and what is uncertain depends on the fundamental and exogenous
sources of uncertainty. As the fundamental source of uncertainty results here from the
technology used by �rms, technologies will be presented �rst. Once this is done, we can
derive the properties of the maximization problem households or �rms face.

8.1.1 Technology

Let there be an aggregate technology

Yt = AtK
�
t L

1��
t (8.1.1)

The total factor productivity level At is uncertain. We assume that At is identically and
independently distributed (i.i.d.) in each period. The random variable At is positive,
has a mean A and a variance �2: No further information is needed about its distribution
function at this point,

At �
�
A; �2

�
; At > 0: (8.1.2)

Assuming that total factor productivity is i.i.d. means, inter alia, that there is no tech-
nological progress. One can imagine many di¤erent distributions for At. In principle, all
distributions presented in the last section are viable candidates. Hence, we can work with
discrete distributions or continuous distributions.

8.1.2 Timing

The sequence of events is as follows. At the beginning of period t, the capital stock
Kt is inherited from the last period, given decisions from the last period. Then, total

175
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factor productivity is revealed. With this knowledge, �rms choose factor employment and
households choose consumption (and thereby savings).

ct
wt
rtKt

At

Figure 8.1.1 Timing of events

Hence, only �at the end of the day�does one really know how much one has produced.
This implies that wages and interest payments are also only known with certainty at the
end of the period.
The state of the economy in t is completely described by Kt; Lt and the realization of

At: All variables of the model are contingent on the state.

8.1.3 Firms

As a consequence of this timing of events, �rms do not bear any risk and they pay the
marginal product of labour and capital to workers and capital owners at the end of the
period,

wt = pt
@Yt
@Lt

; (8.1.3)

rt = pt
@Yt
@Kt

= ptAt�

�
Lt
Kt

�1��
: (8.1.4)

All risk is therefore born by households through labour and capital income.
In what follows, the price will be set to unity, pt � 1. All other prices will therefore

be real prices in units of the consumption good.

8.1.4 Intertemporal utility maximization

This is the �rst time in this book that we encounter a maximization problem with un-
certainty. The presentation will therefore be relatively detailed in order to stress crucial
features which are new due to the uncertainty.

� General approach

We consider an agent that lives for two periods and works and consumes in a world as
just described. Agents consume in both periods and choose consumption such that they
maximize expected utility. In all generality concerning the uncertainty, she maximizes

maxEt fu (ct) + �u (ct+1)g ; (8.1.5)
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where � is the subjective discount factor that measures the agent�s impatience to con-
sume. The expectations operator has an index t, similar to E0 in (7.4.3), to indicate that
expectations are based on the knowledge concerning random variables which is available
in period t. We will see in an instant whether the expectations operator Et is put at
a meaningful place in this objective function. Placing it in front of both instantaneous
consumption from ct and from ct+1 is the most general way of handling it. We will also
have to specify later what the control variable of the household is.
Imagine the agent chooses consumption for the �rst and the second period. When

consumption is chosen and given wage income wt; savings adjust such that the budget
constraint

wt = ct + st (8.1.6)

for the �rst period holds. Note that this constraint always holds, despite the uncertainty
concerning the wage. It holds in realizations, not in expected terms. In the second
period, the household receives interest payments on savings made in the �rst period and
uses savings plus interests for consumption,

(1 + rt+1) st = ct+1: (8.1.7)

One way of solving this problem (for an alternative, see the exercise) is to insert
consumption levels from these two constraints into the objective function (8.1.5). This
gives

max
st

Et fu (wt � st) + �u ((1 + rt+1) st)g :

This nicely shows that the household in�uences consumption in both periods by choosing
savings st in the �rst period. In fact, the only control variable the household can choose
is st:
Let us now take into consideration, as drawn in the above �gure, that consumption

takes place at the end of the period after revelation of productivity At in that period.
Hence, the consumption level in the �rst period is determined by savings only and is
thereby certain. Note that even if consumption ct (or savings) was chosen before reve-
lation of total factor productivity, households would want to consume a di¤erent level
of consumption ct after At is known. The �rst choice would therefore be irrelevant and
we can therefore focus on consumption choice after revelation of uncertainty right away.
The consumption level in the second period is de�nitely uncertain, however, as the next
period interest rate rt+1 depends on the realization of At+1 which is unknown in t when
decisions about savings st are made. The objective function can therefore be rewritten as

max
st

u (wt � st) + �Etu ((1 + rt+1) st) :

For illustration purposes, let us now assume a discrete random variable At with a �nite
number n of possible realizations. Then, this maximization problem can be written as

max
st
fu (wt � st) + ��ni=1�iu ((1 + ri;t+1) st)g
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where �i is the probability that the interest rate ri;t+1 is in state i in t+1: This is the same
probability as the probability that the underlying source of uncertainty At is in state i:
The �rst-order condition then reads

u0 (wt � st) = ��ni=1�iu
0 ((1 + ri;t+1) st) (1 + ri;t+1) = �Etu

0 ((1 + rt+1) st) (1 + rt+1)
(8.1.8)

Marginal utility of consumption today must equal expected marginal utility of consump-
tion tomorrow corrected by interest and time preference rate. Optimal behaviour in an
uncertain world therefore means ex ante optimal behaviour, i.e. before random events
are revealed. Ex post, i.e. after resolution of uncertainty, behaviour is suboptimal when
compared to the case where the realization is known in advance: Marginal utility in t will
(with high probability) not equal marginal utility (corrected by interest and time prefer-
ence rate) in t+ 1. This re�ects a simple fact of life: �If I had known before what would
happen, I would have behaved di¤erently.�Ex ante, behaviour is optimal, ex post, prob-
ably not. Clearly, if there was only one realization for At, i.e. �1 = 1 and �i = 0 8 i > 1;
we would have the deterministic �rst-order condition we had in exercise 1 in ch. 2.
The �rst-order condition also shows that closed-form solutions are possible if marginal

utility is of a multiplicative type. As savings st are known, the only quantity which is
uncertain is the interest rate rt+1: If the instantaneous utility function u (:) allows us to
separate the interest rate from savings, i.e. the argument (1 + ri;t+1) st in u0 ((1 + ri;t+1) st)
in (8.1.8), an explicit expression for st and thereby consumption can be computed. This
will be shown in the following example and in exercise 6.

� An example - Cobb-Douglas preferences

Now assume the household maximizes a Cobb-Douglas utility function as in (2.2.1). In
contrast to the deterministic setup in (2.2.1), however, expectations about consumption
levels need to be formed. Preferences are therefore captured by

Et f
 ln ct + (1� 
) ln ct+1g : (8.1.9)

When we express consumption by savings, we can express the maximization problem by
maxst Et f
 ln (wt � st) + (1� 
) ln ((1 + rt+1) st)g which is identical to

max
st


 ln (wt � st) + (1� 
) [ln st + Et ln (1 + rt+1)] : (8.1.10)

The �rst-order condition with respect to savings reads




wt � st
=
1� 

st

(8.1.11)

and the optimal consumption and saving levels are given by the closed-form solution

ct = 
wt; ct+1 = (1� 
) (1 + rt+1)wt; st = (1� 
)wt; (8.1.12)
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just as in the deterministic case (2.4.7).
Thus, despite the setup with uncertainty, one can compute a closed-form solution of

the same structure as in the deterministic solutions (2.2.4) and (2.2.5). What is peculiar
here about the solutions and also about the �rst-order condition is the fact that the ex-
pectations operator is no longer visible. One could get the impression that households
do not form expectations when computing optimal consumption paths. The expectations
operator �got lost� in the �rst-order condition only because of the logarithm, i.e. the
Cobb-Douglas nature of preferences. Nevertheless, there is still uncertainty for an indi-
vidual being in t : consumption in t+ 1 is unknown as it is a function of the interest-rate
in t+ 1.
Exercise 6 shows that closed-form solutions are possible also for the CRRA case beyond

Cobb-Douglas.

8.1.5 Aggregation and the reduced form for the CD case

We now aggregate over all individuals. Let there be L newborns each period. Consump-
tion of all young individuals in period t is given from (8.1.12),

Cyt = L
wt = 
(1� �)Yt:

The second equality used competitive wage setting from (8.1.3), the fact that with a Cobb-
Douglas technology (8.1.3) can be written as wtLt = pt (1� �)Yt; the normalization of
pt to unity and the identity between number of workers and number of young, Lt = L.
Note that this expression would hold identically in a deterministic model. With (8.1.4),
consumption by old individuals amounts to

Cot = L [1� 
] [1 + rt]wt�1 = (1� 
)(1 + rt)(1� �)Yt�1:

Consumption in t depends on output in t� 1 as savings are based on income in t� 1:
The capital stock in period t+1 is given by savings of the young. One could show this

as we did in the deterministic case in ch. 2.4.2. In fact, adding uncertainty would change
nothing to the fundamental relationships. We can therefore directly write

Kt+1 = Lst = L [1� 
]wt = (1� 
) (1� �)Yt = (1� 
) (1� �)AtK�
t L

1��;

where we used the expression for savings for the Cobb-Douglas utility case from (8.1.12).
Again, we succeeded in reducing the presentation of the model to one equation in one
unknown. This allows us to illustrate the dynamics of the capital stock in this economy
by using a simple phase diagram.
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N

N

KtK0 K1 K2 K3

Kt+1 K2 = (1� 
)(1� �)A1K�
1 L

1��

K3 = (1� 
)(1� �)A2K�
2 L

1��

K1 = (1� 
)(1� �)A0K�
0 L

1��

Kt = Kt+1

Figure 8.1.2 Convergence towards a �stochastic steady state�

In principle this phase diagram looks identical to the deterministic case. There is of
course a fundamental di¤erence. The Kt+1 loci are at a di¤erent point in each period. In
t = 0, K0 and A0 are known. Hence, by looking at the K1 loci, we can compute K1 as in
a deterministic setup. Then, however, TFP changes and, in the example plotted above,
A1 is larger than A0: Once A1 is revealed in t = 1; the new capital stock for period 2
can be graphically derived. With A2 revealed in t = 2; K3 can be derived and so on. It
is clear that this economy will never end up in one steady state, as in the deterministic
case, as At is di¤erent for each t: As illustrated before in �g. 7.4.1, however, the economy
can converge to a unique stationary distribution for Kt:

8.1.6 Some analytical results

� The basic di¤erence equation

In order to better understand the evolution of this economy, let us now look at some
analytical results. The logarithm of the capital stock evolves according to

lnKt+1 = ln ((1� 
) (1� �)) + lnAt + � lnKt + (1� �) lnLt:

Assuming a constant population size Lt = L, we can rewrite this equation as

�t+1 = m0 + ��t + �t; �t � N(�� ; �
2
�); (8.1.13)

where we used
�t � lnKt (8.1.14)

m0 � ln [(1� 
) (1� �)] + (1� �) lnL (8.1.15)

and �t � lnAt captures the uncertainty stemming from the TFP level At: As TFP is
i.i.d., so is its logarithm �t. Since we assumed the TFP to be lognormally distributed,
its logarithm �t is normally distributed. When we remove the mean from the random
variable by replacing according to �t = "t + �� ; where "t � N(0; �2�); we obtain �t+1 =
m0 + �� + ��t + "t:
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� The expected value and the variance

We can now compute the expected value of �t by following the same steps as ch. 7.4.1,
noting that the only additional parameter is m0. Starting in t = 0 with an initial value
�0; and solving this equation recursively gives

�t = �t�0 + (m0 + ��)
1� �t
1� � + �t�1s=0�

t�1�s"s: (8.1.16)

Computing the expected value from the perspective of t = 0 gives

E0�t = �t�0 + (m0 + ��)
1� �t
1� � ; (8.1.17)

where we used E0"s = 0 for all s > 0 (and we set "0 = 0 or assumed that expectations in
0 are formed before the realization of "0 is known). For t going to in�nity, we obtain

lim
t!1

E0�t =
m0 + ��
1� � : (8.1.18)

Note that the solution in (8.1.16) is neither di¤erence- nor trend stationary. Only in the
limit, we have a (pure) random walk. For a very large t; �t in (8.1.16) is zero and (8.1.16)
implies a random walk,

�t � �t�1 = "t�1:

The variance of �t can be computed with (8.1.16), where again independence of all
terms is used as in (7.4.5),

V ar (�t) = 0 + 0 + V ar
�
�t�1s=0�

t�1�s"s
�
= �t�1s=0�

2(t�1�s)�2� =
1� �2t
1� �2 �

2
� (8.1.19)

In the limit, we obtain

lim
t!1

V ar (�t) =
�2�

1� �2 : (8.1.20)

A graphical illustration of these �ndings would look similar to the one in �g. 7.4.1.

� Relation to fundamental uncertainty

For a more convincing economic interpretation of the mean and the variance, it is
useful to express some of the equations, not as a function of properties of the log of At;
i.e. properties of �t; but directly of the level of At. As (7.3.4) implies, the mean and
variances of these two variables are related in the following fashion

�2� = ln

 
1 +

�
�A
�A

�2!
; (8.1.21)
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�� = ln�A �
1

2
�2� = ln�A �

1

2
ln

 
1 +

�
�A
�A

�2!
: (8.1.22)

We can insert these expressions into (8.1.17) and (8.1.19) and study the evolution over
time or directly focus on the long-run distribution of �t � lnKt. Doing so by inserting
into (8.1.18) and (8.1.20) gives

lim
t!1

E0�t =

m0 + ln�A � 1
2
ln

�
1 +

�
�A
�A

�2�
1� � ; lim

t!1
V ar (�t) =

ln

�
1 +

�
�A
�A

�2�
1� �2 :

These equations tell us that uncertainty in TFP as captured by �A not only a¤ects
the spread of the long-run distribution of the capital stock but also its mean. More
uncertainty leads to a lower long-run mean of the capital stock. This is interesting given
the standard result of precautionary saving and the portfolio e¤ect (in setups with more
than one asset).

8.1.7 CRRA and CARA utility functions

Before concluding this �rst analysis of optimal behaviour in an uncertain world, it is
useful to explicitly introduce CRRA (constant relative risk aversion) and CARA (constant
absolute risk aversion) utility functions. Both are widely used in various applications.
The Arrow-Pratt measure of absolute risk aversion is �u00 (c) =u0 (c) and the measure of
relative risk aversion is �cu00 (c) =u0 (c). An individual with uncertain consumption at a
small risk would be willing to give up a certain absolute amount of consumption which
is proportional to �u00 (c) =u0 (c) to obtain certain consumption. The relative amount she
would be willing to give up is proportional to the measure of relative risk aversion.
The CRRA utility function is the same function as the CES utility function which we

know from deterministic setups in (2.2.10) and (5.3.2). Inserting a CES utility function
(c1�� � 1) = (1� �) into these two measures of risk aversion gives a measure of absolute
risk aversion of ���c(�)���1

c(�)��
= �=c (�) and a measure of relative risk aversion of �; which

is minus the inverse of the intertemporal elasticity of substitution. This is why the CES
utility function is also called CRRA utility function. Even though this is not consistently
done in the literature, it seems more appropriate to use the term CRRA (or CARA) in
setups with uncertainty only. In a certain world without risk, risk-aversion plays no role.
The fact that the same parameter � captures risk aversion and intertemporal elasticity

of substitution is not always desirable as two di¤erent concepts should be captured by
di¤erent parameters. The latter can be achieved by using a recursive utility function of
the Epstein-Zin type.
The typical example for a utility function with constant absolute risk aversion is the

exponential utility function u (c (�)) = �e��c where � is the measure of absolute risk
aversion. Given relatively constant risk-premia over time, the CRRA utility function
seems to be preferable for applications.
See �further reading�on references to a more in-depth analysis of these issues.
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8.2 Risk-averse and risk-neutral households

Previous analyses in this book have worked with the representative-agent assumption.
This means that we neglected all potential di¤erences across individuals and assumed
that they are all the same (especially identical preferences, labour income and initial
wealth). We now extend the analysis of the last section by (i) allowing individuals to give
loans to each other. These loans are given at a riskless endogenous interest rate r: As
before, there is a �normal�asset which pays an uncertain return rt+1:We also (ii) assume
there are two types of individuals, the risk-neutral ones and the risk-averse, denoted by
i = a; n. The second assumption is crucial: if individuals were identical, i.e. if they had
identical preferences and experienced the same income streams, no loans would be given
in equilibrium. In this world with heterogeneous agents, we want to understand who owns
which assets. We keep the analysis simple by analyzing a partial equilibrium setup.

� Households

The budget constraints (8.1.6) and (8.1.7) of all individuals i now read

wt = cit + sit; (8.2.1)

cit+1 = sit
�
1 + ri

�
: (8.2.2)

In the �rst period, there is the classic consumption-savings choice. In addition, there
is an investment problem as savings need to be allocated to the two types of assets.
Consumption in the second period is paid for entirely by capital income. Interests paid
on the portfolio amount to

ri = �irt+1 +
�
1� �i

�
r: (8.2.3)

Here and in subsequent chapters, �i denotes the share of wealth held by individual i in
the risky asset.
We solve this problem by the substitution method which gives us an unconstrained

maximization problem. A household i with time preference rate � and therefore discount
factor � = 1= (1 + �) maximizes

U it = u
�
wt � sit

�
+ �Etu

��
1 + ri

�
sit
�
! max

sit;�
i

(8.2.4)

by now choosing two control variables: The amount of resources not used in the �rst
period for consumption, i.e. savings sit; and the share �

i of savings held in the risky asset.
First-order conditions for sit and �

i, respectively, are

u0
�
cit
�
= �Et

�
u0
�
cit+1

� �
1 + ri

�	
; (8.2.5)

Eu0
�
cit+1

�
[rt+1 � r] = 0: (8.2.6)
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Note that the �rst-order condition for consumption (8.2.5) has the same interpretation,
once slightly rewritten, as the interpretation in deterministic two-period or in�nite horizon
models (see (2.2.6) in ch. 2.2.2 and (3.1.6) in ch. 3.1.2). When rewriting it as

Et

(
�u0
�
cit+1

�
u0 (cit)

1

1= (1 + ri)

)
= 1; (8.2.7)

we see that optimal behaviour again requires us to equate marginal utilities today and
tomorrow (the latter in its present value) with relative prices today and tomorrow (the
latter also in its present value). Of course, in this stochastic environment, we need to
express everything in expected terms. As the interest rates and consumption tomorrow
are jointly uncertain, we can not bring it exactly in the form as known from above in
(2.2.6) and (3.1.6). However, this will be possible, further below in (9.1.10) in ch. 9.1.3.
The �rst-order condition for � says that expected returns from giving a loan and

holding the risky asset must be identical. Returns consist of the interest rate times
marginal utility. This condition can best be understood when �rst thinking of a certain
environment. In this case, (8.2.6) would read rt+1 = r : agents would be indi¤erent
when holding two assets only if they receive the same interest rate on both assets. Under
uncertainty and with risk-neutrality of agents, i.e. u0 = const:, we get Etrt+1 = r : Agents
hold both assets only if the expected return from the risky assets equals the certain return
from the riskless asset.
Under risk-aversion, we can write this condition as Etu0

�
cit+1

�
rt+1 = Etu

0 �cit+1� r (or,
given that r is non-stochastic, as Etu0

�
cit+1

�
rt+1 = rEtu

0 �cit+1�). This says that agents
do not value the interest rate per se but rather the extra utility gained from holding an
asset: An asset provides interest of rt+1 which increases utility by u0

�
cit+1

�
rt+1: The share

of wealth held in the risky asset then depends on the increase in utility from realizations
of rt+1 across various states and the expectations operator computes a weighted sum of
theses utility increases: Etu0

�
cit+1

�
rt+1 � �nj=1u0

�
cijt+1

�
rjt+1�j; where j is the state, rjt+1

the interest rate in this state and �j the probability for state j to occur. An agent is
then indi¤erent between holding two assets when expected utility-weighted returns are
identical.

� Risk-neutral and risk-averse behaviour

For risk-neutral individuals (i.e. the utility function is linear in consumption), the
�rst-order conditions become

1 = �E [1 + �nrt+1 + (1� �n) r] ; (8.2.8)

Ert+1 = r: (8.2.9)

The �rst-order condition for how to invest implies, together with (8.2.8), that the endoge-
nous interest rate for loans is pinned down by the time preference rate,

1 = � [1 + r], r = � (8.2.10)
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as the discount factor is given by � = (1 + �)�1 as stated before in (8.2.4). Reinserting this
result into (8.2.9) shows that we need to assume that an interior solution for Ert+1 = �
exists. This is not obvious for an exogenously given distribution for the interest rate rt+1
but it is more plausible for a situation where rt is stochastic but endogenous as in the
analysis of the OLG model in the previous chapter.
For risk-averse individuals with u (cat ) = ln c

a
t ; the �rst-order condition for consumption

reads with i in (8.2.3) being replaced by a

1

cat
= �E

1

cat+1
[1 + �art+1 + (1� �a) r] = �E

1

sat
= �

1

sat
(8.2.11)

where we used (8.2.2) for the second equality and the fact that st as a control variable is
deterministic for the third. Hence, as in the last section, we can derive explicit expressions.
Use (8.2.11) and (8.2.1) and �nd

sat = �cat , wt � cat = �cat , cat =
1

1 + �
wt:

This gives with (8.2.1) again and with (8.2.2)

sat =
�

1 + �
wt; cat+1 =

�

1 + �
[1 + �art+1 + (1� �a) r]wt: (8.2.12)

This is our closed-form solution for risk-averse individuals in our heterogeneous-agent
economy.
Let us now look at the investment problem of risk-averse households. The derivative

of their objective function is given by the left-hand side of the �rst-order condition (8.2.6)
times �. Expressed for logarithmic utility function, and inserting the optimal consumption
result (8.2.12) yields

d

d�
Uat = �E

1

cat+1
[rt+1 � r] = (1 + �)E

rt+1 � r
1 + �art+1 + (1� �a) r

= (1 + �)E
rt+1 � r

1 + �a (rt+1 � r) + r
� (1 + �)E X

�+ �aX
: (8.2.13)

The last step de�ned X � rt+1 � r as a RV and � as a constant.

� Who owns what?

It can now easily be shown that (8.2.13) implies that risk-averse individuals will not
allocate any of their savings to the risky asset, i.e. �a = 0. First, observe that the
derivative of the expression EX= (�+ �aX) from (8.2.13) with respect to �a is negative

d

d�a
E

X

�+ �aX
= E

�
� X2

(�+ �aX)2

�
< 0 8�a:
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The sign of this derivative can also easily be seen from (8.2.13) as an increase in �a implies
a larger denominator. Hence, when plotted, the �rst-order condition is downward sloping
in �a: Second, by guessing, we �nd that, with (8.2.9), �a = 0 satis�es the �rst-order
condition for investment,

�a = 0) E
X

�+ �aX
= EX = 0:

Hence, the �rst-order condition is zero for �a = 0: Finally, as the �rst-order condition is
monotonically decreasing, �a = 0 is the only value for which it is zero,

E
X

�+ �aX
= 0, �a = 0:

This is illustrated in the following �gure.

N

N

0 �a

dUat
d�
= (1 + �)E X

�+�aX

Figure 8.2.1 The �rst-order condition (8.2.13) for the share �a of savings held in the
risky asset

The �gure shows that expected utility of a risk-averse individual increases for negative
�a and falls for positive �a. Risk-averse individuals will hence allocate all of their savings
to loans, i.e. �a = 0. They give loans to risk-neutral individuals who in turn pay a
certain interest rate equal to the expected interest rate. All risk is born by risk-neutral
individuals.
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8.3 Pricing of contingent claims and assets

8.3.1 The value of an asset

The question is what an individual is willing to pay in t = 0 for an asset that is worth pj
(which is uncertain) in t = 1. As the assumption underlying the pricing of assets is that
individuals behave optimally, the answer is found by considering a maximization problem
where individuals solve a saving and portfolio problem.

� The individual

Let an individual�s preferences be given by

E fu (c0) + �u (c1)g :

This individual can invest in a risky and in a riskless investment form. It earns labour
income w in the �rst period and does not have any other source of income. This income
w is used for consumption and savings. Savings are allocated to several risky assets j and
a riskless bond. The �rst period budget constraint therefore reads

w = c0 + �
n
j=1mjpj0 + b

where the number of shares j are denoted by mj; their price by pj0 and the amount of
wealth held in the riskless asset is b. The individual consumes all income in the second
period which implies the budget constraint

c1 = �
n
j=1mjpj1 + (1 + r) b;

where r is the interest rate on the riskless bond.
We can summarize this maximization problem as

max
c0;mj

u (c0) + �Eu ((1 + r) (w � c0 � �jmjpj0) + �jmjpj1) :

This expression illustrates that consumption in period one is given by capital income
from the riskless interest rate r plus income from assets j. It also shows that there is
uncertainty only with respect to period one consumption. This is because consumption
in period zero is a control variable. The consumption in period one is uncertain as prices
of assets are uncertain. In addition to consumption c0; the number mj of shares bought
for each asset are also control variables.

� First-order conditions and asset pricing

Computing �rst-order conditions gives

u0 (c0) = (1 + r) �Eu
0 (c1)
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This is the standard �rst-order condition for consumption. The �rst-order condition for
the number of assets to buy reads for any asset j

�E [u0 (c1) ((1 + r) (�pj0) + pj1)] = 0, E [u0 (c1) pj1] = (1 + r) pj0Eu
0 (c1) :

The last step used the fact that the interest rate and pj0 are known in 0 and can therefore
be pulled out of the expectations operator on the right-hand side. Reformulating this
condition gives

pj0 =
1

1 + r
E

u0 (c1)

Eu0 (c1)
pj1 (8.3.1)

which is an expression that can be given an interpretation as a pricing equation. The
price of an asset j in period zero is given by the discounted expected price in period one.
The price in period one is weighted by marginal utilities.

8.3.2 The value of a contingent claim

What we are now interested in are prices of contingent claims. Generally speaking, con-
tingent claims are claims that can be made only if certain outcomes occur. The simplest
example of the contingent claim is an option. An option gives the buyer the right to buy
or sell an asset at a set price on or before a given date. We will consider current contingent
claims whose values can be expressed as a function of the price of the underlying asset.
Denote by g (pj1) the value of the claim as a function of the price pj1 of asset j in period
one. The price of the claim in zero is denoted by v (pj0) :
When we add an additional asset, i.e. the contingent claim under consideration, to

the set of assets considered in the previous section, then optimal behaviour of households
implies

v (pj0) =
1

1 + r
E

u0 (c1)

Eu0 (c1)
g (pj1) : (8.3.2)

If all agents were risk neutral, we would know that the price of such a claim would be
given by

v (pj0) =
1

1 + r
Eg (pj1) (8.3.3)

Both equations directly follow from the �rst-order condition for assets. Under risk neu-
trality, a household�s utility function is linear in consumption and the �rst derivative
is therefore a constant. Including the contingent claim in the set of assets available to
households, exactly the same �rst-order condition for their pricing would hold.

8.3.3 Risk-neutral valuation

There is a strand in the �nance literature, see e.g. Brennan (1979), that asks under
what conditions a risk neutral valuation of contingent claims holds (risk neutral valuation
relationship, RNVR) even when households are risk averse. This is identical to asking
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under which conditions marginal utilities in (8.3.1) do not show up. We will now brie�y
illustrate this approach and drop the index j.
Assume the distribution of the price p1 can be characterized by a density f (p1; �) ;

where � � Ep1. Then, if a risk neutral valuation relationship exists, the price of the
contingent claim in zero is given by

v (p0) =
1

1 + r

Z
g (p1) f (p1; �) dp1; with � = (1 + r) p0:

This is (8.3.3) with the expectations operator being replaced by the integral over realiza-
tions g (p1) times the density f (p1). With risk averse households, the pricing relationship
would read, under this distribution,

v (p0) =
1

1 + r

Z
u0 (c1)

Eu0 (c1)
g (p1) f (p1; �) dp1:

This is (8.3.2) expressed without the expectations operator. The expected value � is left
unspeci�ed here as it is not a priori clear whether this expected value equals (1 + r) p0
also under risk aversion. It is then easy to see that a RNVR holds if u0 (c1) =Eu0 (c1) =
f (p1) =f (p1; �) : Similar conditions are derived in that paper for other distributions and
for longer time horizons.

8.4 Natural volatility I

Natural volatility is a view of why growing economies experience phases of high and phases
of low growth. The central belief is that both long-run growth and short-run �uctuations
are jointly determined by economic forces that are inherent to any real world economy.
Long-run growth and short-run �uctuations are both endogenous and two sides of the
same coin: They both stem from the introduction of new technologies.
It is important to note that no exogenous shocks occur according to this approach.

In this sense, it di¤ers from real business cycle (RBC) and sunspot models and also from
endogenous growth models with exogenous disturbances.
There are various models that analyse this view in more detail and an overview is

provided at http://www.waelde.com/nv.html. This section will look at a simple model
that provides the basic intuition. More on natural volatility will follow in ch. 11.5.

8.4.1 The basic idea

The basic mechanism of the natural volatility literature (and this is probably a necessary
property of any model that wants to explain both short-run �uctuations and long-run
growth) is that some measure of productivity (this could be labour or total factor produc-
tivity) does not grow smoothly over time as in most models of exogenous or endogenous
long-run growth but that productivity follows a step function.

http://www.waelde.com/nv.html
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Figure 8.4.1 Smooth productivity growth in balanced growth models (dashed line) and
step-wise productivity growth in models of natural volatility

With time on the horizontal and the log of productivity on the vertical axis, this �gure
shows a smooth productivity growth path as the dashed line. This is the smooth growth
path that induces balanced growth. In models of natural volatility, the growth path of
productivity has periods of no change at all and points in time of discrete jumps. After a
discrete jump, returns on investment go up and an upward jump in growth rates results.
Growth rates gradually fall over time as long as productivity remains constant. With the
next jump, growth rates jump up again. While this step function implies long-run growth
as productivity on average grows over time, it also implies short-run �uctuations.
The precise economic reasons given for this step function - which is not simply imposed

but always follows from some deeper mechanisms - di¤er from one approach to the other.
A crucial implication of this step-function is the implicit belief that economically relevant
technological jumps take place once every 4-5 years. Each cycle of an economy and
therefore also long-run growth go back to relatively rare events. Fluctuations in time
series that are of higher frequency than these 4-5 years either go back to exogenous
shocks, to measurement error or other disturbances in the economy.
The step function sometimes captures jumps in total factor productivity, sometimes

only in labour productivity for the most recent vintage of a technology. This di¤erence
is important for the economic plausibility of the models. Clearly, one should not build a
theory on large aggregate shocks to TFP, as those are not easily observable. Some papers
in the literature show indeed how small changes in technology can have large e¤ects (see
�further reading�).
This section presents the simple stochastic natural volatility model which allows us to

show the di¤erence from exogenous shock models in the business cycle most easily .

8.4.2 A simple stochastic model

This section presents the simplest possible model that allows us to understand the di¤er-
ence between the stochastic natural volatility and the RBC approach.



8.4. Natural volatility I 191

� Technologies

Let the technology be described by a Cobb-Douglas speci�cation,

Yt = AtK
�
t L

1��;

where At represents total factor productivity, Kt is the capital stock and L are hours
worked. As variations in hours worked are not required for the main argument here, we
consider L constant. Capital can be accumulated according to

Kt+1 = (1� �)Kt + It

Total factor productivity follows

At+1 = (1 + qt)At (8.4.1)

where

qt =

�
�q
0

�
with probability

�
pt
1� pt

: (8.4.2)

The probability depends on resources Rt invested into R&D,

pt = p (Rt) : (8.4.3)

Clearly, the function p (Rt) in this discrete time setup must be such that 0 � p (Rt) � 1:
The speci�cation of technological progress in (8.4.2) is probably best suited to point

out the di¤erences to RBC type approaches: The probability that a new technology occurs
is endogenous. This shows both the �new growth literature�tradition and the di¤erences
from endogenous growth type RBC models. In the latter approach, the growth rate is
endogenous but shocks are still exogenously imposed. Here, the source of growth and
�uctuations all stem from one and the same source, the jumps in qt in (8.4.2).

� Optimal behaviour by households

The resource constraint the economy needs to obey in each period is given by

Ct + It +Rt = Yt;

where Ct; It and Rt are aggregate consumption, investment and R&D expenditure, respec-
tively. Assume that optimal behaviour by households implies consumption and investment
into R&D amounting to

Ct = sCYt; Rt = sRYt;

where sC is the consumption and sR the saving rate in R&D. Both of them are con-
stant. This would be the outcome of a two-period maximization problem or an in�nite
horizon maximization problem with some parameter restriction. As the natural volatility
literature has various papers where the saving rate is not constant, it seems reasonable
not to develop an optimal saving approach here fully as it is not central to the natural
volatility view. See �further reading�, however, for references to papers which develop a
full intertemporal approach.
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8.4.3 Equilibrium

Equilibrium is determined by

Kt+1 = (1� �)Kt + Yt �Rt � Ct
= (1� �)Kt + (1� sR � sC)Yt:

plus the random realization of technology jumps, where the probability of a jump depends
on investment in R&D,

pt = p (sRYt) :

Assume we start with a technological level of A0. Let there be no technological progress
for a while, i.e. qt = 0 for a certain number of periods t. Then the capital stock converges
to its �temporary steady state�de�ned by Kt+1 = Kt � K;

�K = (1� sR � sC)A0K�L1�� , K1�� =
1� sR � sC

�
A0L

1��: (8.4.4)

In a steady state, all variables are constant over time. Here, variables are constant only
temporarily until the next technology jump occurs. This is why the steady state is said
to be temporary. The convergence behaviour to the temporary steady state is illustrated
in the following �gure.

Kt+1

Kt

Kt+1 =(1­δ)Kt +(1­sR­sC)A0Kt
αL1­α

Kt+1 =(1­δ)Kt +(1­sR­sC)A12Kt
αL1­α

K0

Figure 8.4.2 The Sisyphus economy - convergence to a temporary steady state

With a new technology coming in, say, period 12, the total factor productivity in-
creases, according to (8.4.1), from A0 to A12 = (1 + �q)A0: The Kt+1 line shifts upwards,
as shown in �g. 8.4.2. As a consequence, which can also be seen in (8.4.4), the steady
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state increases. Subsequently, the economy approaches this new steady state. As growth
is higher immediately after a new technology is introduced (growth is high when the econ-
omy is far away from its steady state), the growth rate after the introduction of a new
technology is high and then gradually falls. Cyclical growth is therefore characterized by
a Sisyphus-type behaviour: Kt permanently approaches the current, temporary steady
state. Every now and then, however, this steady state jumps outwards and capital starts
approaching it again.

8.5 Further reading and exercises

More on basic concepts of random variables than in ch. 7.1 and 7.2 can be found in Evans,
Hastings and Peacock (2000). A very useful reference is Spanos (1999) who also treats
functions of several random variables or Severini (2005). For a more advanced treatment,
see Johnson, Kotz and Balakrishnan (1995). The results on distributions here are used
and extended in Bossmann, Kleiber and Wälde (2007).
There is a long discussion on the application of laws of large numbers in economics.

An early contribution is by Judd (1985). See Kleiber and Kotz (2003) for more on
distributions.
The example for the value of an asset is inspired by Brennan (1979).
The literature on natural volatility can be found in ch. 11 on p. 293.
See any good textbook on Micro or Public economics (e.g. Mas-Colell et al., 1995,

Atkinson and Stiglitz, 1980) for a more detailed treatment of measures of risk aversion.
There are many papers using a CARA utility function. Examples include Hassler et al.
(2005), Acemoglu and Shimer (1999) and Shimer and Werning (2007, 2008).
Epstein-Zin preferences have been developed by Epstein and Zin (1989) for discrete

time setups and applied inter alia in Epstein and Zin (1991). For an application in
macroeconomics in discrete time building on the Kreps-Porteus approach, see Weil (1990).
The continuous time representation was developed in Svensson (1989). See also Obstfeld
(1994) or Epaulard and Pommeret (2003).
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Exercises Chapter 7 and 8
Applied Intertemporal Optimization
Stochastic di¤erence equations and

applications

1. Properties of random variables
Is the following function a density function? Draw this function.

f(x) = a�e�j�xj; � > 0: (8.5.1)

State possible assumptions about the range of x and values for a:

2. The exponential distribution
Assume the time between two rare events (e.g. the time between two earthquakes
or two bankruptcies of a �rm) is exponentially distributed.

(a) What is the distribution function of an exponential distribution?

(b) What is the probability of no event between 0 and �x?

(c) What is the probability of at least one event between 0 and �x?

3. The properties of uncertain technological change
Assume that total factor productivity in (8.1.2) is given by

(a)

At =

�
�A with p
A
¯
with 1-p

�
;

(b) the density function
f(At); At 2

�
A
¯
,Ā
�
;

(c) the probability function g(At); At 2 fA1; A2; :::; Ang ;
(d) At = Ai with probability pi and

(e) lnAt+1 = 
 lnAt + "t+1: Make assumptions for 
 and "t+1 and discuss them.

What is the expected total factor productivity and what is its variance? What is
the expected output level and what is its variance, given a technology as in (8.1.1)?
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4. Stochastic di¤erence equations
Consider the following stochastic di¤erence equation

yt+1 = byt +m+ vt+1; vt � N(0; �2v)

(a) Describe the limiting distribution of yt.

(b) Does the expected value of yt converge to its �xpoint monotonically? How does
the variance of yt evolve over time?

5. Saving under uncertainty
Consider an individual�s maximization problem

maxEt fu (ct) + �u (ct+1)g
subject to wt = ct + st; (1 + rt+1) st = ct+1

(a) Solve this problem by replacing her second period consumption by an expres-
sion that depends on �rst period consumption.

(b) Consider now the individual�s decision problem given the utility function u (ct) =
c�t : Should you assume a parameter restriction on �?

(c) What is your implicit assumption about �? Can it be negative or larger than
one? Can the time preference rate �; where � = (1 + �)�1 ; be negative?

6. Closed-form solution for a CRRA utility function
Let households maximize a CRRA-utility function

Ut = Et
�

c1��t + (1� 
) c1��t+1

�
= 
c1��t + (1� 
)Etc1��t+1

subject to budget constraints (8.1.6) and (8.1.7).

(a) Show that an optimal consumption-saving decision given budget constraints
(8.1.6) and (8.1.7) implies savings of

st =
wt

1 +
n



(1�
)�

o" ;
where " = 1=� is the intertemporal elasticity of substitution and� � Et

�
(1 + rt+1)

1���
is the expected (transformed) interest rate. Show further that consumption
when old is

ct+1 = (1 + rt+1)
wt

1 +
n



(1�
)�

o"
and that consumption of the young is

ct =

n



(1�
)�

o"
1 +

n



(1�
)�

o"wt: (8.5.2)



196 Chapter 8. Two-period models

(b) Discuss the link between the savings expression st and the one for the logarith-
mic case in (8.1.12). Point out why ct+1 is uncertain from the perspective of t:
Is ct uncertain from the perspective of t - and of t� 1?

7. OLG in general equilibrium
Build an OLG model in general equilibrium with capital accumulation and auto-
regressive total factor productivity, lnAt+1 = 
 lnAt + "t+1 with "t+1 � N ("; �2) :
What is the reduced form? Can a phase-diagram be drawn?

8. Asset pricing
Under what conditions is there a risk neutral valuation formula for assets? In other
words, under which conditions does the following equation hold?

pjo =
1

1 + r
Epj1



Chapter 9

Multi-period models

Uncertainty in dynamic models is probably most often used in discrete time models.
Looking at time with a discrete perspective has the advantage that timing issues are very
intuitive: Something happens today, something tomorrow, something the day before.
Time in the real world, however, is continuous. Take any two points in time, you will
always �nd a point in time in between. What is more, working with continuous time mod-
els under uncertainty has quite some analytical advantages which make certain insights -
after an initial heavier investment into techniques - much simpler. We will nevertheless
follow the previous structure of this book and �rst present models in discrete time.

9.1 Intertemporal utility maximization

Maximization problems in discrete times can be solved by using many methods. One
particularly useful one is - again - dynamic programming. We therefore start with this
method and consider the stochastic sibling to the deterministic case in ch. 3.3.

9.1.1 The setup with a general budget constraint

Due to uncertainty, our objective function is slightly changed. In contrast to (3.1.1), it
now reads

Ut = Et�
1
�=t�

��tu (c� ) ; (9.1.1)

where the only di¤erence lies in the expectations operator Et: As we are in an environment
with uncertainty, we do not know all consumption levels c� with certainty. We therefore
need to form expectations about the implied instantaneous utility from consumption,
u (c� ). The budget constraint is given by

xt+1 = f (xt; ct; "t) : (9.1.2)

This constraint shows why we need to form expectations about future utility: The value
of the state variable xt+1 depends on some random source, denoted by "t: Think of this
"t as uncertain TFP or uncertain returns on investment.

197
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9.1.2 Solving by dynamic programming

The optimal program is de�ned in analogy to (3.3.2) by

V (xt; "t) � max
fc�g

Ut subject to xt+1 = f (xt;ct; "t) :

The additional term in the value function is "t: It is useful to treat "t explicitly as a state
variable for reasons we will soon see. Note that this issue is related to the discussion of
�what is a state variable?�in ch. 3.4.2. In order to solve the maximization problem, we
again follow the three step scheme.

� DP1: Bellman equation and �rst-order conditions

The Bellman equation is

V (xt; "t) = max
ct
fu (ct) + �EtV (xt+1; "t+1)g :

It again exploits the fact that the objective function (9.1.1) is additively separable, de-
spite the expectations operator, assumes optimal behaviour as of tomorrow and shifts the
expectations operator behind instantaneous utility of today as u (ct) is certain given that
ct is a control variable. The �rst-order condition is

u0 (ct) + �Et

�
Vxt+1 (xt+1; "t+1)

@xt+1
@ct

�
= u0 (ct) + �Et

�
Vxt+1 (xt+1; "t+1)

@f (:)

@ct

�
= 0:

(9.1.3)
It corresponds to the �rst-order condition (3.3.5) in a deterministic setup. The �only�
di¤erence lies in the expectations operator Et:Marginal utility from consumption does not
equal the loss in overall utility due to less wealth but the expected loss in overall utility.
Equation (9.1.3) provides again an (implicit) functional relationship between consumption
and the state variable, ct = c (xt; "t) : As we know all state variables in t, we know the
optimal choice of our control variable. Be aware that the expectations operator applies
to all terms in the brackets. If no confusion arises, these brackets will be omitted in what
follows.

� DP2: Evolution of the costate variable

The second step under uncertainty also starts from the maximized Bellman equation.
The derivative of the maximized Bellman equation with respect to the state variable is
(using the envelope theorem)

Vxt (xt; "t) = �EtVxt+1 (xt+1; "t+1)
@xt+1
@xt

:

Observe that xt+1 by the constraint (9.1.2) is given by f (xt; ct; "t) ; i.e. by quantities that
are known in t: Hence, the derivative @xt+1=@xt = fxt is non-stochastic and we can write
this expression as (note the similarity to (3.3.6))

Vxt (xt; "t) = �fxtEtVxt+1 (xt+1; "t+1) : (9.1.4)
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This step clearly shows why it is useful to include "t as a state variable into the arguments
of the value function. If we had not done so, one could get the impression, for the same
argument that xt+1 is known in t due to (9.1.2), that the shadow price Vxt (xt+1; "t+1) is
non-stochastic as well and the expectations operator would not be needed. Given that the
value of the optimal program depends on "t; however, it is clear that the costate variable
V 0 (xt+1; "t+1) is random in t indeed. (Some of the subsequent applications will treat "t
as an implicit state variable and will not always be as explicit as here.)

� DP3: Inserting �rst-order conditions

Given that @f (:) =@ct = fct is non-random in t; we can rewrite the �rst-order con-
dition as u0 (ct)+ �fctEtVxt+1 (xt+1; "t+1) = 0: Inserting it into (9.1.4) gives Vxt (xt; "t) =

�fxt
fct
u0 (ct) : Shifting this expression by one period yields Vxt+1 (xt+1; "t+1) = �

fxt+1
fct+1

u0 (ct+1) :

Inserting Vxt (xt; "t) and Vxt+1 (xt+1; "t+1) into the costate equation (9.1.4) again, we obtain

u0 (ct) = �Et
fct
fct+1

fxt+1u
0 (ct+1) :

9.1.3 The setup with a household budget constraint

Let us now look at a �rst example - a household that maximizes utility. The objective
function is given by (9.1.1),

Ut = Et�
1
�=t�

��tu (c� ) :

It is maximized subject to the following budget constraint (of which we know from (2.5.13)
or (3.6.6) that it �ts well into a general equilibrium setup),

at+1 = (1 + rt) at + wt � ptct: (9.1.5)

Note that the budget constraint must hold after realization of random variables, not in
expected terms. From the perspective of t; all prices (rt, wt, pt) in t are known, prices in
t+ 1 are uncertain.

9.1.4 Solving by dynamic programming

� DP1: Bellman equation and �rst-order conditions

Having understood in the previous general chapter that uncertainty can be explicitly
treated in the form of a state variable, we limit our attention to the endogenous state
variable at here. It will turn out that this keeps notation simpler. The value of optimal
behaviour is therefore expressed by V (at) and the Bellman equation can be written as

V (at) = max
ct
fu (ct) + �EtV (at+1)g :
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The �rst-order condition for consumption is

u0 (ct) + �EtV
0 (at+1)

@at+1
@ct

= u0 (ct)� �EtV 0 (at+1) pt = 0;

where the second step computed the derivative by using the budget constraint (9.1.5).
Rewriting the �rst-order condition yields

u0 (ct) = �ptEtV
0 (at+1) (9.1.6)

as the price pt is known in t:

� DP2: Evolution of the costate variable

Di¤erentiating the maximized Bellman equation gives (using the envelope theorem)
V 0 (at) = �EtV

0 (at+1) @at+1=@at: Again using the budget constraint (9.1.5) for the partial
derivative, we �nd

V 0 (at) = � [1 + rt]EtV
0 (at+1) : (9.1.7)

Again, the term [1 + rt] was put in front of the expectations operator as rt is known
in t: This di¤erence equation describes the evolution of the shadow price of wealth in the
case of optimal consumption choices.

� DP3: Inserting �rst-order conditions

Inserting the �rst-order condition (9.1.6) gives V 0 (at) = [1 + rt]
u0(ct)
pt

: Inserting this
expression into the di¤erentiated maximized Bellman equation (9.1.7) twice gives a nice
Euler equation,

[1 + rt]
u0 (ct)

pt
= � [1 + rt]Et [1 + rt+1]

u0 (ct+1)

pt+1
, u0 (ct)

pt
= Et

�u0 (ct+1)

(1 + rt+1)
�1 pt+1

: (9.1.8)

Rewriting it as we did before with (8.2.7), we get

Et

�
�u0 (ct+1)

u0 (ct)

pt

(1 + rt+1)
�1 pt+1

�
= 1 (9.1.9)

which allows us to give the same interpretation as the �rst-order condition in a two-period
model, both deterministic (as in eq. (2.2.6) in ch. 2.2.2) and stochastic (as in eq. (8.2.5)
in ch. 8.2) and as in deterministic in�nite horizon models (as in eq. (3.1.6) in ch. 3.1.2):
Relative marginal utility must be equal to relative marginal prices - taking into account
that marginal utility in t + 1 is discounted at � and the price in t + 1 is discounted by
using the interest rate.
Using two further assumptions, the expression in (9.1.8) can be rewritten such that

we come even closer to the deterministic Euler equations: First, let us choose the output
good as numeraire and thereby set prices pt = pt+1 = �p as constant. This allows us to
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remove pt and pt+1 from (9.1.8). Second, we assume that the interest rate is known (say
we are in a small open economy with international capital �ows). Hence, expectations are
formed only with respect to consumption in t+1: Taking these two aspects into account,
we can write (9.1.8) as

u0 (ct)

�Etu0 (ct+1)
=

1

1= (1 + rt+1)
: (9.1.10)

This is now as close to (2.2.6) and (3.1.6) as possible. The ratio of (expected discounted)
marginal utilities is identical to the ratio of relative prices.

9.2 A central planner

Let us now consider the classic central planner problem for a stochastic growth economy.
We specify an optimal growth model where total factor productivity is uncertain. In
addition to this, we also allow for oil as an input good for production. This allows us to
understand how some variables can easily be substituted out in a maximization problem
even though we are in an intertemporal stochastic world.
Consider a technology where output is produced with oil Ot in addition to the standard

factors of production,
Yt = AtK

�
t O

�
t L

1����
t

Again, total factor productivity At is stochastic. Now, the price of oil, qt; is stochastic as
well. Let capital evolve according to

Kt+1 = (1� �)Kt + Yt � qtOt � Ct (9.2.1)

which is a trade balance and good market clearing condition all in one. The central
planner maximizes

max
fC� ;O�g

Et�
1
�=t�

��tu (C� )

by choosing a path of aggregate consumption �ows C� and oil consumption O� : At t, all
variables indexed t are known. The only uncertainty concerns TFP and the price of oil
in future periods.

� DP1: Bellman equation and �rst-order conditions

The Bellman equation reads V (Kt) = maxCt;Ot fu (Ct) + �EtV (Kt+1)g : The only
state variable included as argument is the capital stock. Other state variables (like the
price qt of oil) could be included but would not help in the derivation of optimality
conditions. See the discussion in ch. 3.4.2. The �rst-order condition for consumption is

u0 (Ct) + �Et
dV (Kt+1)

dKt+1

[�1] = 0, u0 (Ct) = �EtV
0 (Kt+1)



202 Chapter 9. Multi-period models

For oil it reads

�EtV
0 (Kt+1)

@

@Ot
[Yt � qtOt] = 0,

@Yt
@Ot

= qt:

The last step used the fact that all variables in t are known and the partial derivative with
respect to Ot can therefore be moved in front of the expectations operator - which then
cancels. We therefore have obtained a standard period-for-period optimality condition as
it is known from static problems. This is the typical result for a control variable which
has no intertemporal e¤ects as, here, imports of oil a¤ect output Yt and the costs qtOt in
the resource constraint (9.2.1) contemporaneously.

� DP2: Evolution of the costate variable

The derivative of the Bellman equation with respect to the capital stock Kt gives
(using the envelope theorem)

V 0 (Kt) = �Et
@

@Kt

V (Kt+1) = �

�
1� � + @Yt

@Kt

�
EtV

0 (Kt+1) (9.2.2)

just as in the economy without oil. The term
h
1� � + @Yt

@Kt

i
can be pulled out of the ex-

pectation operator as At and thereby @Yt
@Kt

is known at the moment of the savings decision.

� DP3: Inserting �rst-order conditions

Following the same steps as above without oil, we again end up with

u0 (Ct) = �Etu
0 (Ct+1)

�
1� � + @Yt+1

@Kt+1

�
The crucial di¤erence is, that now expectations are formed with respect to technological
uncertainty and uncertainty concerning the price of oil.

9.3 Asset pricing in a one-asset economy

This section returns to the question of asset pricing. Ch. 8.3.1 treated this issue in
a partial equilibrium setting. Here, we take a general equilibrium approach and use a
simple stochastic model with one asset, physical capital. We then derive an equation that
expresses the price of capital in terms of income streams from holding capital. In order
to be as explicit as possible about the nature of this (real) capital price, we do not choose
a numeraire good in this section.
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9.3.1 The model

� Technologies
The technology used to produce a homogeneous output good is of the simple Cobb-

Douglas form
Yt = AtK

�
t L

1��; (9.3.1)

where TFP At is stochastic. Labour supply L is exogenous and �x, the capital stock is
denoted by Kt:

� Households
Household preferences are standard and given by

Ut = Et�
1
�=t�

��tu (c� ) :

We start from a budget constraint that can be derived like the budget constraint
(2.5.10) in a deterministic world. Wealth is held in units of capital Kt where the price of
one unit is vt: When we de�ne the interest rate as

rt �
wKt
vt
� �; (9.3.2)

the budget constraint (2.5.10) reads

kt+1 = (1 + rt) kt +
wt
vt
� pt
vt
ct: (9.3.3)

� Goods market
Investment and consumption goods are traded on the same goods market. Total supply

is given by Yt; demand is given by gross investment Kt+1�Kt+ �Kt and consumption Ct.
Expressed in a well-known way, goods market equilibrium yields the resource constraint
of the economy,

Kt+1 = Kt + Yt � Ct � �Kt: (9.3.4)

9.3.2 Optimal behaviour

Firms maximize instantaneous pro�ts which implies �rst-order conditions

wt = pt@Yt=@L; wKt = pt@Yt=@Kt: (9.3.5)

Factor rewards are given by their value marginal products.
Given the households�preferences and the constraint in (9.3.3), optimal behaviour by

households is described by (this follows identical steps as for example in ch. 9.1.3 and is
treated in ex. 2),

u0 (Ct)

pt=vt
= Et

�u0 (Ct+1)

(1 + rt+1)
�1 pt+1=vt+1

: (9.3.6)

This is the standard Euler equation extended for prices, given that we have not chosen a
numeraire. We replaced ct by Ct to indicate that this is the evolution of aggregate (and
not individual) consumption.
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9.3.3 The pricing relationship

Let us now turn to the main objective of this section and derive an expression for the
real price of one unit of capital, i.e. the price of capital in units of the consumption good.
Starting from the Euler equation (9.3.6), we insert the interest rate (9.3.2) in its general
formulation, i.e. including all prices, and rearrange to �nd

u0 (Ct)
vt
pt
= �Etu

0 (Ct+1)

�
1 +

wKt+1
vt+1

� �
�
vt+1
pt+1

= �Etu
0 (Ct+1)

�
(1� �) vt+1

pt+1
+
@Yt+1
@Kt+1

�
:

(9.3.7)
Now de�ne a discount factor �t+1 � u0 (Ct+1) =u

0 (Ct) and dt as the �net dividend pay-
ments�, i.e. payments to the owner of one unit of capital. Net dividend payments per
unit of capital amount to the marginal product of capital @Yt=@Kt minus the share � of
capital that depreciates - that goes kaput - each period times the real price vt=pt of one
unit of capital, dt � @Yt

@Kt
� � vt

pt
: Inserting this yields

vt
pt
= �Et�t+1

�
dt+1 +

vt+1
pt+1

�
: (9.3.8)

Note that all variables uncertain from the perspective of today in t appear behind the
expectations operator.
Now assume for a second that we are in a deterministic world and the economy is

in a steady state. Equation (9.3.8) could then be written with �t+1 = 1 and without

the expectations operator as vt
pt
= �

h
dt+1 +

vt+1
pt+1

i
: Solving this linear di¤erential equation

forward, starting in vt and inserting repeatedly gives

vt
pt
= �

�
dt+1 + �

�
dt+2 + �

�
dt+3 + �

�
dt+4 +

vt+4
pt+4

����
= �dt+1 + �2dt+2 + �3dt+3 + �4dt+4 + �4

vt+4
pt+4

:

Continuing to insert, one eventually and obviously ends up with

vt
pt
= �Ts=1�

sdt+s + �T
vt+T
pt+T

:

The price vt of a unit of capital is equal to the discounted sum of future dividend payments
plus its discounted price (once sold) in t + T . In an in�nite horizon perspective, this
becomes

vt
pt
= �1s=1�

sdt+s + lim
T!1

�T
vt+T
pt+T

:

In our stochastic setup, we can proceed according to the same principles as in the
deterministic world but need to take the expectations operator and the discount factor
�t into account. We replace

vt+1
pt+1

in (9.3.8) by �Et+1�t+2
h
dt+2 +

vt+2
pt+2

i
and then vt+2=pt+2
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and so on to �nd

vt
pt
= �Et�t+1

�
dt+1 + �Et+1�t+2

�
dt+2 + �Et+2�t+3

�
dt+3 +

vt+3
pt+3

���
= Et

�
��t+1dt+1 + �2�t+1�t+2dt+2 + �3�t+1�t+2�t+3dt+3 + �3�t+1�t+2�t+3

vt+3
pt+3

�
= Et�

3
s=1�sdt+s + Et�3

vt+3
pt+3

; (9.3.9)

where we de�ned the discount factor to be

�s � �s�sn=1�t+n = �s�sn=1
u0 (Ct+n)

u0 (Ct+n�1)
= �s

u0 (Ct+s)

u0 (Ct)
:

The discount factor adjusts discounting by the preference parameter �; by relative mar-
ginal consumption and by prices. Obviously, (9.3.9) implies for larger time horizons
vt
pt
= Et�

T
s=1�sdt+s + Et�Tvt+T : Again, with an in�nite horizon, this reads

vt
pt
= Et�

1
s=1�sdt+s + lim

T!1
Et�Tvt+T : (9.3.10)

The real price vt=pt amounts to the discounted sum of future dividend payments dt+s: The
discount factor is �s which contains marginal utilities, relative prices and the individual�s
discount factor �: The term limT!1Et�Tvt+T is a �bubble term�for the price of capital
and can usually be set equal to zero. As the derivation has shown, the expression for the
price vt=pt is �simply�a rewritten version of the Euler equation.

9.3.4 More real results

� The price of capital again

The result on the determinants of the price of capital is useful for economic intuitions
and received a lot of attention in the literature. But can we say more about the real price
of capital? The answer is yes and it comes from the resource constraint (9.3.4). This
constraint can be understood as a goods market clearing condition. The supply of goods
Yt equals demand resulting from gross investment Kt+1 � Kt + �Kt and consumption.
The price of one unit of the capital good therefore equals the price of one unit of the
consumption and output good, provided that investment takes place, i.e. It > 0: Hence,

vt = pt:: (9.3.11)

The real price of capital vt=pt is just equal to one. Not surprisingly, capital goods and
consumption goods are traded on the same market.
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� The evolution of consumption (and capital)

When we want to understand what this model tells us about the evolution of consump-
tion, we can look at a modi�ed version of (9.3.6) by inserting the interest rate (9.3.2) with
the marginal product of capital from (9.3.5) and the price expression (9.3.11),

u0 (Ct) = �Etu
0 (Ct+1)

�
1 +

@Yt+1
@Kt+1

� �
�
:

This is the standard Euler equation (see e.g. (9.1.10)) that predicts how real consumption
evolves over time, given the real interest rate and the discount factor �:
Together with (9.3.4), we have a system in two equations that determine Ct and Kt

(given appropriate boundary conditions). The price pt and thereby the value vt can not
be determined (which is of course a consequence of Walras�law). The relative price is
trivially unity from (9.3.11), vt=pt = 1: Hence, the predictions concerning real variables
do not change when a numeraire good is not chosen.

� An endowment economy

Many papers work with pure endowment economies. We will look at such an economy
here and see how this can be linked to our setup with capital accumulation. Consider
an individual that can save in one asset and whose budget constraint is given by (9.3.3).
Let this household behave optimally such that optimal consumption follows (9.3.7). Now
change the capital accumulation equation (9.3.4) such that - for whatever reasons - K is
constant and let also, for simplicity, depreciation be zero, � = 0. Then, output is given
according to (9.3.1) by Yt = AtK

�L1��; i.e. it follows some exogenous stochastic process,
depending on the realization of At. This is the exogenous endowment of the economy for
each period t: Further, consumption equals output in each period, Ct = Yt:
Inserting output into the Euler equation (9.3.7) gives

u0 (Yt)
vt
pt
= �Etu

0 (Yt+1)

�
(1� �) vt+1

pt+1
+
@Yt+1
@Kt+1

�
The equation shows that in an endowment economy where consumption is exogenously
given at each point in time and households save by holding capital (which is constant on
the aggregate level), the price vt=pt of the asset changes over time such that households
want to consume optimally the exogenously given amount Yt: This equation provides a
description of the evolution of the price of the asset in an endowment economy. These
aspects were analyzed for example by Lucas (1978) and many others.
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9.4 Endogenous labour supply

� The maximization problem

The analysis of business cycles is traditionally performed by including an endogenous
labour supply decision in the consumption and saving framework we know from ch. 9.1.
We will now solve such an extended maximization problem.
The objective function (9.1.1) is extended to re�ect that households value leisure. We

also allow for an increase in the size of the household. The objective function now reads

Ut = Et�
1
�=t�

��tu (c� ; T � l� )n� ;

where T is the total endowment of this individual with time and l� is hours worked in
period � : Total time endowment T is, say, 24 hours or, subtracting time for sleeping
and other regular non-work and non-leisure activities, 15 or 16 hours. Consumption per
member of the family is given by c� and u (:) is instantaneous utility of this member. The
number of members in � is given by n� :
The budget constraint of the household is given by

ât+1 = (1 + rt) ât + ntltwt � ntct

where ât � ntat is household wealth in period t: Letting wt denote the hourly wage, ntltwt
stands for total labour income of the family, i.e. the product of individual income ltwt
times the number of family members. Family consumption in t is ntct:

� Solving by the Lagrangian

We now solve the maximization problem maxUt subject to the constraint by choosing
individual consumption c� and individual labour supply l� : We solve this by using a
Lagrange function. A solution by dynamic programming would of course also work.
For the Lagrangian we use a Lagrange multiplier �� for the constraint in � : This makes

it di¤erent to the Lagrange approach in ch. 3.1.2 where the constraint was an intertemporal
budget constraint. It is similar to ch. 3.7 where an in�nite number of multipliers is also
used. In that chapter, uncertainty is, however, missing. The Lagrangian here reads

L = Et�
1
�=t

�
���tu (c� ; T � l� )n� + �� [(1 + r� ) â� + n� l�w� � n�c� � â�+1]

	
:

We �rst compute the �rst-order conditions for consumption and hours worked for one
point in time s;

Lcs = Et

�
�s�t

@

@cs
u (cs; T � ls)ns � �sns

�
= 0; (9.4.1)

Lls = Et

�
�s�t

�
� @

@ (T � ls)
u (cs; T � ls)

�
ns + �snsws

�
= 0: (9.4.2)
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As discussed in 3.7, we also need to compute the derivative with respect to the state
variable. Consistent with the approach in the deterministic setup of ch. 3.8, we compute
the derivative with respect to the true state variable of the family, i.e. with respect to â� :
This derivative is

Lâs = Et f��s�1 + �s [1 + rs]g = 0
, Et�s�1 = Et f(1 + rs)�sg : (9.4.3)

This corresponds to (3.7.5) in the deterministic case, only that here we have an expecta-
tions operator.

� Optimal consumption

As the choice for the consumption level cs in (9.4.1) will be made in s, we can assume
that we have all information in s at our disposal. When we apply expectations Es, we see
that all expectations are made with respect to variables of s: Cancelling ns; we therefore
know that in all periods s we have

�s�t
@

@cs
u (cs; T � ls) = �s: (9.4.4)

We can now replace �s and �s�1 in (9.4.3) by the expressions we get from this equation
where �s is directly available and �s�1 is obtained by shifting the optimality condition
back in time, i.e. by replacing s by s� 1: We then �nd

Et

�
�s�1�t

@

@cs�1
u (cs�1; T � ls�1)

�
= Et

�
(1 + rs) �

s�t @

@cs
u (cs; T � ls)

�
,

Et

�
@

@cs�1
u (cs�1; T � ls�1)

�
= �Et

�
(1 + rs)

@

@cs
u (cs; T � ls)

�
:

Now imagine, we are in s� 1: Then we form expectations given all the information we
have in s� 1: As hours worked ls�1 and consumption cs�1 are control variables, they are
known in s� 1. Hence, using an expectations operator Es�1; we can write

Es�1

�
@

@cs�1
u (cs�1; T � ls�1)

�
=

@

@cs�1
u (cs�1; T � ls�1) = �Es�1

�
(1 + rs)

@

@cs
u (cs; T � ls)

�
:

Economically speaking, optimal consumption-saving behaviour requires marginal utility
from consumption by each family member in s�1 to equal marginal utility in s; corrected
for impatience and the interest rate. This condition is similar to the one in (9.1.8), only
that here, we have utility from leisure as well.
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� Labour-leisure choice

Let us now look at the second �rst-order condition (9.4.2) to understand the condition
for optimal intra-temporal labour supply. When an individual makes the decision of how
much to work in s; she actually �nds herself in s: Expectations are therefore formed in s
and replacing t by s and rearranging slightly, the condition becomes,

Es

��
@

@ (T � ls)
u (cs; T � ls)

�
ns

�
= Es f�snswsg :

As none of the variables in the curly brackets are random from the perspective of s;
after removing the expectations operator and cancelling ns on both sides, we obtain,

@
@(T�ls)u (cs; T � ls) = �sws:We �nally use (9.4.4) expressed for t = s and with ns cancelled

to obtain an expression for the shadow price �s; @
@cs
u (cs; T � ls) = �s: Inserting this yields

@
@(T�ls)u (cs; T � ls)

@
@cs
u (cs; T � ls)

= ws:

This is the standard condition known from static models. It also holds here as the
labour-leisure choice is a decision made in each period and has no intertemporal dimension.
The trade-o¤ is entirely intra-temporal. In optimum it requires that the ratio of marginal
utility of leisure to marginal utility of consumption is given by the ratio of the price of
leisure - the wage ws - to the price of one unit of the consumption good - which is 1 here.
Whether an increase in the price of leisure implies an increase in labour supply depends on
properties of the instantaneous utility function u (:) : If the income e¤ect caused by higher
ws dominates the substitution e¤ect, a higher wage would imply fewer hours worked.
More on this can be found in many introductory textbooks to Microeconomics.

9.5 Solving by substitution

This section is on how to do without dynamic programming. We will get to know a method
that allows us to solve stochastic intertemporal problems in discrete time without dynamic
programming. Once this chapter is over, you will ask yourself why dynamic programming
exists at all ...

9.5.1 Intertemporal utility maximization

The objective is again maxfctgE0�
1
t=0�

tu (ct) subject to the constraint at+1 = (1 + rt) at+
wt � ct: The household�s control variables are fctg ; the state variable is at; the interest
rate rt and the wage wt are exogenously given. Now rewrite the objective function and
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insert the constraint twice,

E0
�
�s�1t=0�

tu (ct) + �su (cs) + �s+1u (cs+1) + �
1
t=s+2�

tu (ct)
	

= E0�
s�1
t=0�

tu (ct) + E0�
su ((1 + rs)as + ws � as+1)

+ E0�
s+1u ((1 + rs+1) as+1 + ws+1 � as+2) + E0�

1
t=s+2�

tu (ct) :

Note that the expectations operator always refers to knowledge available at the beginning
of the planning horizon, i.e. to t = 0:
Now compute the �rst-order condition with respect to as+1: This is unusual as we

directly choose the state variable which is usually understood to be only indirectly in�u-
enced by the control variable. Clearly, however, this is just a convenient trick: by choosing
as+1; which is a state variable, we really choose cs. The derivative with respect to as+1
yields

E0�
su0 (cs) = E0�

s+1u0 (cs+1) (1 + rs+1):

This almost looks like the standard optimal consumption rule. The di¤erence lies in the
expectations operator being present on both sides. This is not surprising as we optimally
chose as+1 (i.e. cs), knowing only the state of the system in t = 0:
If we now assume we are in s; our expectations would be based on knowledge in s and

we could replace E0 by Es:We would then obtain Es�
su0 (cs) = �su0 (cs) for the left-hand

side and our optimality rule reads

u0 (cs) = �Esu
0 (cs+1) (1 + rs+1):

This is the rule we know from Bellman approaches, provided e.g. in (9.1.8).

9.5.2 Capital asset pricing

Let us now ask how an asset that pays an uncertain return in T periods would be priced.
Consider an economy with an asset that pays a return r in each period and one long-
term asset which can be sold only after T periods at a price pT which is unknown today.
Assuming that investors behave rationally, i.e. they maximize an intertemporal utility
function subject to constraints, the price of the long-term asset can be found most easily
by using a Lagrange approach or by straightforward inserting.
We assume that an investor maximizes her expected utility E0�Tt=0�

tu (ct) subject to
the constraints

c0 +m0p0 + a0 = w0;

ct + at = (1 + r)at�1 + wt; 1 � t � T � 1;
cT = m0pT + (1 + r) aT�1 + wT :

In period zero, the individual uses labour income w0 to pay for consumption goods c0; to
buy m0 units of the long-term asset and for �normal�assets a0. In periods one to T � 1;
the individual uses her assets at�1 plus returns r on assets and her wage income wt to
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�nance consumption and again buy assets at (or keep those from the previous period).
In the �nal period T; the long-term asset has a price of pT and is sold. Wealth from the
previous period plus interest plus labour income wT are further sources of income to pay
for consumption cT . Hence, the individual�s control variables are consumption levels ct
and the number m0 of long-term assets.
This maximization problem can be solved most easily by inserting consumption levels

for each period into the objective function. The objective function then reads

u (w0 �m0p0 � a0) + E0�
T�1
t=1 �

tu (wt + (1 + r)at�1 � at)
+ E0�

Tu(m0pT + (1 + r)aT�1 + wT ) :

What could now be called control variables are the wealth holdings at in periods t =
0; :::; T � 1 and (as in the original setup) the number of assets m0 bought in period zero.
Let us now look at the �rst-order conditions. The �rst-order condition for wealth in

period zero is
u0 (c0) = (1 + r) �E0u

0 (c1) : (9.5.1)

Wealth holdings in any period t > 0 are optimally chosen according to

E0�
tu0(ct) = E0�

t+1(1 + r)u0 (ct+1), E0u
0 (ct) = � (1 + r)E0u

0 (ct+1) : (9.5.2)

We can insert (9.5.2) into the �rst-period condition (9.5.1) su¢ ciently often and �nd

u0 (c0) = (1 + r)2 �2E0u
0 (c2) = ::: = (1 + r)T �TE0u

0 (cT ) (9.5.3)

The �rst-order condition for the number of assets is

p0u
0(c0) = �TE0u

0(cT )pT : (9.5.4)

When we insert combined �rst-order conditions (9.5.3) for wealth holdings into the
�rst-order condition (9.5.4) for assets, we obtain

p0(1 + r)
T�TE0u

0(cT ) = �TE0u
0(cT )pT ,

p0 = (1 + r)�TE0
u0(cT )

E0u0(cT )
pT :

which is an equation where we see the analogy to the two period example in ch. 8.3.1
nicely. Instead of pj0 = 1

1+r
E u0(c1)
Eu0(c1)

pj1 in (8.3.1) where we discount by one period only
and evaluate returns at expected marginal utility in period one, we discount by T periods
and evaluate returns at marginal utility in period T:
This equation also o¤ers a lesson for life when we assume risk-neutrality for simplicity:

if the payo¤ pT from a long-term asset is not high enough such that the current price is
higher than the present value of the payo¤, p0 > (1 + r)�TE0pT , then the long-term
asset is simply dominated by short-term investments that pay a return of r per period.
Optimal behaviour would imply not buying the long-term asset and just putting wealth
into �normal�assets. This should be kept in mind the next time you talk to your insurance
agent who tries to sell you life-insurance or private pension plans. Just ask for the present
value of the payo¤s and compare them to the present value of what you pay into the
savings plan.
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9.5.3 Sticky prices

� The setup

Sticky prices are a fact of life. In macroeconomic models, they are either assumed
right away, or assumed following Calvo price setting or result from some adjustment-cost
setup. Here is a simpli�ed way to derive sluggish price adjustment based on adjustment
cost.
The �rm�s objective function is to maximize its present value de�ned by the sum of

discounted expected pro�ts,

Vt = Et�
1
�=t

�
1

1 + r

���t
�� :

Pro�ts at a point � � t in time are given by

�� = p�x� � w� l� � � (p� ; p��1)

where � (p� ; p��1) are price adjustment costs. These are similar in spirit to the adjustment
costs presented in ch. 5.5.1. We will later use a speci�cation given by

� (p� ; p��1) =
�

2

�
p� � p��1
p��1

�2
: (9.5.5)

This speci�cation captures the essential mechanism that is required to make prices sticky,
there are increasing costs in the di¤erence p� � p��1: The fact that the price change is
squared is not essential - in fact, as with all adjustment cost mechanisms, any power larger
than 1 would do the job. More care about economic implications needs to be taken when
a reasonable model is to be speci�ed.
The �rm uses a technology

x� = A� l� :

We assume that there is a certain demand elasticity " for the �rm�s output. This can
re�ect a monopolistic competition setup. The �rm can choose its output x� at each point
in time freely by hiring the corresponding amount of labour l� : Labour productivity A�
or other quantities can be uncertain.

� Solving by substitution

Inserting everything into the objective function yields

Vt = Et�
1
�=t

�
1

1 + r

���t�
p�x� �

w�
A�
x� � � (p� ; p��1)

�
= Et

�
ptxt �

wt
At
xt � � (pt; pt�1)

�
+ Et

�
pt+1xt+1 �

wt+1
At+1

xt+1 � � (pt+1; pt)
�

+ Et�
1
�=t+2

�
1

1 + r

���t�
p�x� �

w�
A�
x� � � (p� ; p��1)

�
:
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The second and third line present a rewritten method which allows us to see the intertem-
poral structure of the maximization problem better. We now maximize this objective
function by choosing output xt for today. (Output levels in the future are chosen at a
later stage.)
The �rst-order condition is

Et

�
d [ptxt]

dxt
� wt
At
� d� (pt; pt�1)

dxt

�
� Et

d� (pt+1; pt)

dxt
= 0,

d [ptxt]

dxt
=
wt
At
+
d� (pt; pt�1)

dxt
+ Et

d� (pt+1; pt)

dxt
:

It has certain well-known components and some new ones. If there were no adjustment
costs, i.e. � (:) = 0; the intertemporal problem would become a static one and the
usual condition would equate marginal revenue d [ptxt] =dxt with marginal cost wt=At.
With adjustment costs, however, a change in output today not only a¤ects adjustment
costs today d�(pt;pt�1)

dxt
but also (expected) adjustment costs Et

d�(pt+1;pt)
dxt

tomorrow. As all
variables with index t are assumed to be known in t; expectations are formed only with
respect to adjustment costs tomorrow in t+ 1:
Specifying the adjustment cost function as in (9.5.5) and computing marginal revenue

using the demand elasticity "t gives

d [ptxt]

dxt
=
wt
At
+

d

dxt

"
�

2

�
pt � pt�1
pt�1

�2#
+ Et

d

dxt

"
�

2

�
pt+1 � pt

pt

�2#
,

dpt
dxt

xt + pt =
�
1 + "�1t

�
pt =

wt
At
+ �

�
pt � pt�1
pt�1

�
1

pt�1

dpt
dxt

+ Et

�
�

�
pt+1 � pt

pt

�
d

dxt

pt+1
pt

�
=
wt
At
+ �

�
pt � pt�1
pt�1

�
pt

xtpt�1
"�1t � Et

�
�

�
pt+1 � pt

pt

�
pt+1
p2t

dpt
dxt

�
,

�
1 + "�1t

�
pt =

wt
At
+ �

�
pt � pt�1
pt�1

�
pt

xtpt�1
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is the demand elasticity for the �rm�s good. Again, � = 0 would give

the standard static optimality condition
�
1 + "�1t

�
pt = wt=At where the price is a markup

over marginal cost. With adjustment costs, prices change only slowly.

9.5.4 Optimal employment with adjustment costs

� The setup

Consider a �rm that maximizes pro�ts as in ch. 5.5.1,

�t = Et�
1
�=t

1

(1 + r)��t
�� : (9.5.6)
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We are today in t; time extends until in�nity and the time between today and in�nity
is denoted by � : There is no particular reason why the planning horizon is in�nity in
contrast to ch. 5.5.1. Here we will stress that the optimality condition for employment is
identical to a �nite horizon problem.
Instantaneous pro�ts are given by the di¤erence between revenue in t; which is iden-

tical to output F (Lt) with an output price normalized to unity, labour cost wtLt and
adjustment cost � (Lt � Lt�1) ;

�t = F (Lt)� wtLt � � (Lt � Lt�1) : (9.5.7)

Costs induced by the adjustment of the number of employees between the previous period
and today are captured by � (:). Usually, one assumes costs both from hiring and from
�ring individuals, i.e. both for an increase in the labour force, Lt � Lt�1 > 0; and from a
decrease, Lt � Lt�1 < 0: A simple functional form for � (:) which captures this idea is a
quadratic form, i.e. � (Lt � Lt�1) = �

2
(Lt � Lt�1)2, where � is a constant.

Uncertainty for a �rm can come from many sources: Uncertain demand, uncertainty
concerning the production process, uncertainty over labour costs or other sources. As
we express pro�ts in units of the output good, we assume that the real wage wt, i.e. the
amount of output goods to be paid to labour, is uncertain. Adjustment cost � (Lt � Lt�1)
are certain, i.e. the �rm knows how many units of output pro�ts reduce by when employ-
ment changes by Lt � Lt�1:
As in static models of the �rm, the control variable of the �rm is employment Lt:

In contrast to static models, however, employment decisions today in t not only a¤ects
employment today but also employment tomorrow as the employment decision in t a¤ects
adjustment costs in t+ 1: There is therefore an intertemporal link the �rm needs to take
into account which is not present in the �rm�s static models.

� Solving by substitution

This maximization problem can be solved directly by inserting (9.5.7) into the objec-
tive function (9.5.6). One can then choose optimal employment for some point in time
t � s <1 after having split the objective function into several subperiods - as for example
in the previous chapter 9.5.1. The solution reads (to be shown in exercise 7)

F 0 (Lt) = wt + �
0 (Lt � Lt�1)� Et

�0 (Lt+1 � Lt)
1 + r

:

When employment Lt is chosen in t; there is only uncertainty concerning Lt+1: The current
wage wt (and all other deterministic quantities as well) are known with certainty. Lt+1 is
uncertain, however, from the perspective of today as the wage in � + 1 is unknown and
L�+1 will be have to be adjusted accordingly in � + 1: Hence, expectations apply only to
the adjustment-cost term which refers to adjustment costs which occur in period t + 1:
Economically speaking, given employment Lt�1 in the previous period, employment in t is
chosen such that marginal productivity of labour equals labour costs adjusted for current
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and expected future adjustment costs. Expected future adjustment costs are discounted
by the interest rate r to obtain its present value.
When we specify the adjustment cost function as a quadratic function, � (Lt � Lt�1) =

�
2
[Lt � Lt�1]2 ; we obtain

F 0 (Lt) = wt + � [Lt � Lt�1]� Et
� [Lt+1 � Lt]

1 + r
:

If there were no adjustment costs, i.e. � = 0; we would have F 0 (Lt) = wt: Employment
would be chosen such that marginal productivity equals the real wage. This con�rms
the initial statement that the intertemporal problem of the �rm arises purely from the
adjustment costs. Without adjustment costs, i.e. with � = 0; the �rm has the �standard�
instantaneous, period-speci�c optimality condition.

9.6 An explicit time path for a boundary condition

Sometimes, an explicit time path for optimal behaviour is required. The transversality
condition is then usually not very useful. A more pragmatic approach sets assets at some
future point in time at some exogenous level. This allows us to then (at least numerically)
compute the optimal path for all points in time before this �nal point easily.
Let T be the �nal period of life in our model, i.e. set aT+1 = 0 (or some other level

for example the deterministic steady state level). Then, from the budget constraint, we
can deduce consumption in T;

aT+1 = (1 + rT ) aT + wT � cT , cT = (1 + rT ) aT + wT :

Optimal consumption in T�1 still needs to obey the Euler equation, compare for example
to (9.1.9), i.e.

u0 (cT�1) = ET�1� [1 + rT ]u
0 (cT ) :

As the budget constraint requires

aT = (1 + rT�1) aT�1 + wT�1 � cT�1;

optimal consumption in T � 1 is determined by

u0 (cT�1) = ET�1� [1 + rT ]u
0
((1 + rT ) [(1 + rT�1) aT�1 + wT�1 � cT�1] + wT )

This is one equation in one unknown, cT�1, where expectations need to be formed
about rT and wT and wT�1 are unknown. When we assume a probability distribution for
rT and wT , we can replace ET�1 by a summation over states and solve this expression
numerically in a straightforward way.
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9.7 Further reading and exercises

A recent introduction and detailed analysis of discrete time models with uncertainty in
the real business cycle tradition with homogeneous and heterogenous agents is by Heer
and Mausner (2005). Stokey and Lucas take a more rigorous approach to the one taken
here (1989). An almost comprehensive in-depth presentation of macroeconomic aspects
under uncertainty is provided by Ljungqvist and Sargent (2004).
On capital asset pricing in one-sector economies, references include Jermann (1998),

Danthine, Donaldson and Mehra (1992), Abel (1990), Rouwenhorst (1995), Stokey and
Lucas (1989, ch. 16.2) and Lucas (1978). An overview is in ch. 13 of Ljungqvist and
Sargent (2004).
The example for sticky prices is inspired by Ireland (2004), going back to Rotemberg

(1982).
The statement that �the predictions concerning real variables do not change when a

numeraire good is not chosen� is not as obvious as it might appear from remembering
Walras� law from undergraduate micro courses. There is a literature that analyses the
e¤ects of the choice of numeraire for real outcomes for the economy when there is imperfect
competition. See e.g. Gabszewicz and Vial (1972) or Dierker and Grodahl (1995).
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Exercises Chapter 9
Applied Intertemporal Optimization

Discrete time in�nite horizon models under
uncertainty

1. Central planner
Consider an economy where output is produced by

Yt = AtK
�
t L

1��
t

Again, as in the OLG example in equation (8.1.1), total factor productivity At is
stochastic. Let capital evolve according to

Kt+1 = (1� �)Kt + Yt � Ct

The central planner maximizes

max
fC�g

Et�
1
�=t�

��tu (C� )

by again choosing a path of aggregate consumption �ows C� : At t, all variables
indexed t are known. The only uncertainty concerns At+1:What are the optimality
conditions?

2. A household maximization problem
Consider the optimal saving problem of the household in ch. 9.3. Derive the Euler
equation (9.3.6).

3. Endogenous labour supply
Solve the endogenous labour supply setup in ch. 9.4 by using dynamic programming.

4. Closed-form solution
Solve this model for the utility function u (C) = C1���1

1�� and for � = 1: Solve it for
a more general case (Benhabib and Rustichini, 1994).

5. Habit formation
Assume instantaneous utility depends, not only on current consumption, but also
on habits (see for example Abel, 1990). Let the utility function therefore look like

Ut = Et�
1
�=t�

��tu (c� ; v� ) ;
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where v� stands for habits like e.g. past consumption, v� = v (c��1; c��2; :::) : Let
such an individual maximize utility subject to the budget constraint

at+1 = (1 + rt) at + wt � ptct

(a) Assume the individual lives in a deterministic world and derive a rule for an
optimal consumption path where the e¤ect of habits are explicitly taken into
account. Specify habits by v� = c��1:

(b) Let there be uncertainty with respect to future prices. At a point in time t,
all variables indexed by t are known. What is the optimal consumption rule
when habits are treated in a parametric way?

(c) Choose a plausible instantaneous utility function and discuss the implications
for optimal consumption given habits v� = c��1.

6. Risk-neutral valuation
Under which conditions is there a risk neutral valuation relationship for contingent
claims in models with many periods?

7. Labour demand under adjustment cost
Solve the maximization problem of the �rm in ch. 9.5.4 by directly inserting pro�ts
(9.5.7) into the objective function (9.5.6) and then choosing Lt.

8. Solving by substitution
Solve the problem from ch. 9.5 in a slightly extended version, i.e. with prices pt.
Maximize E0�1t=0�

tu (ct) by choosing a time path fctg for consumption subject to
at+1 = (1 + rt) at + wt � ptct:

9. Matching on labour markets
Let employment Lt in a �rm follow

Lt+1 = (1� s)Lt + �Vt;

where s is a constant separation rate, � is a constant matching rate and Vt denotes
the number of jobs a �rm currently o¤ers. The �rm�s pro�ts �� in period � are
given by the di¤erence between revenue p�Y (L� ) and costs, where costs stem from
wage payments and costs for vacancies V� captured by a parameter 
;

�� = p�Y (L� )� w�L� � 
V� :

The �rm�s objective function is given by

�t = Et�
1
�=t�

��t�� ;

where � is a discount factor and Et is the expectations operator.
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(a) Assume a deterministic world. Let the �rm choose the number of vacancies
optimally. Use a Lagrangian to derive the optimality condition. Assume that
there is an interior solution. Why is this an assumption that might not always
be satis�ed from the perspective of a single �rm?

(b) Let us now assume that there is uncertain demand which translates into un-
certain prices p� which are exogenous to the �rm. Solve the optimal choice of
the �rm by inserting all equations into the objective function. Maximize by
choosing the state variable and explain also in words what you do. Give an
interpretation of the optimality condition. What does it imply for the optimal
choice of V�?

10. Optimal training for a marathon
Imagine you want to participate in a marathon or any other sports event. It will
take place in m days, i.e. in t +m where t is today. You know that taking part in
this event requires training e� ; � 2 [t; t+m] : Unfortunately, you dislike training,
i.e. your instantaneous utility u (e� ) decreases in e¤ort, u0 (e� ) < 0. On the other
hand, training allows you to be successful in the marathon: more e¤ort increases
your personal �tness F� . Assume that �tness follows F�+1 = (1� �)F� + e� , with
0 < � < 1; and �tness at t+m is good for you yielding happiness of h (Ft+m) :

(a) Formally formulate an objective function which captures the trade-o¤s in such
a training program.

(b) Assume that everything is deterministic. How would your training schedule
look (the optimal path of e� )?

(c) In the real world, normal night life reduces �tness in a random way, i.e. � is
stochastic. How does your training schedule look now?
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Part IV

Stochastic models in continuous time

221





223

Part IV is the �nal part of this book and, logically, analyzes continuous time models
under uncertainty. The choice between working in discrete or continuous time is partly
driven by previous choices: If the literature is mainly in discrete time, students will �nd
it helpful to work in discrete time as well. The use of discrete time methods seem to hold
for macroeconomics, at least when it comes to the analysis of business cycles. On the
other hand, when we talk about economic growth, labour market analyses and �nance,
continuous time methods are very prominent.

Whatever the tradition in the literature, continuous time models have the huge ad-
vantage that they are analytically generally more tractable, once some initial investment
into new methods has been digested. As an example, some papers in the literature have
shown that continuous time models with uncertainty can be analyzed in simple phase
diagrams as in deterministic continuous time setups. See ch. 10.6 and ch. 11.6 on further
reading for references from many �elds.

To facilitate access to the magical world of continuous time uncertainty, part IV
presents the tools required to work with uncertainty in continuous time models. It is
probably the most innovative part of this book as many results from recent research �ow
directly into it. This part also most strongly incorporates the central philosophy behind
writing this book: There will be hardly any discussion of formal mathematical aspects like
probability spaces, measurability and the like. While some will argue that one can not
work with continuous time uncertainty without having studied mathematics, this chapter
and the many applications in the literature prove the opposite. The objective here is to
clearly make the tools for continuous time uncertainty available in a language that is ac-
cessible for anyone with an interest in these tools and some �feeling�for dynamic models
and random variables. The chapters on further reading will provide links to the more
mathematical literature. Maybe this is also a good point for the author of this book to
thank all the mathematicians who helped him gain access to this magical world. I hope
they will forgive me for �betraying their secrets�to those who, maybe in their view, were
not appropriately initiated.

Chapter 10 provides the background for optimization problems. As in part II where
we �rst looked at di¤erential equations before working with Hamiltonians, here we will
�rst look at stochastic di¤erential equations. After some basics, the most interesting
aspect of working with uncertainty in continuous time follows: Ito�s lemma and, more
generally, change-of-variable formulas for computing di¤erentials will be presented. As
an application of Ito�s lemma, we will get to know one of the most famous results in
Economics - the Black-Scholes formula. This chapter also presents methods for how to
solve stochastic di¤erential equations or how to verify solutions and compute moments of
random variables described by a stochastic process.

Chapter 11 then looks once more at maximization problems. We will get to know
the classic intertemporal utility maximization problem both for Poisson uncertainty and
for Brownian motion. The chapter also shows the link between Poisson processes and
matching models of the labour market. This is very useful for working with extensions
of the simple matching model that allows for savings. Capital asset pricing and natural
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volatility conclude the chapter.



Chapter 10

SDEs, di¤erentials and moments

When working in continuous time, uncertainty enters the economy usually in the form of
Brownian motion, Poisson processes or Levy processes. This uncertainty is represented
in economic models by stochastic di¤erential equations (SDEs) which describe for exam-
ple the evolution of prices or technology frontiers. This section will cover a wide range
of di¤erential equations (and show how to work with them) that appear in economics
and �nance. It will also show how to work with functions of stochastic variables, for
example how output evolves given that TFP is stochastic or how wealth of a household
grows over time, given that the price of the asset held by the household is random. The
entire treatment here, as before in this book, will be non-rigorous and will focus on �how
to compute things�.

10.1 Stochastic di¤erential equations (SDEs)

10.1.1 Stochastic processes

We got to know random variables in ch. 7.1. A random variable relates in some loose
sense to a stochastic process of how (deterministic) static models relate to (deterministic)
dynamic models: Static models describe one equilibrium, dynamic models describe a
sequence of equilibria. A random variable has, �when looked at once�(e.g. when throwing
a die once), one realization. A stochastic process describes a sequence of random variables
and therefore, �when looked at once�, describes a sequence of realizations. More formally,
we have the following:

De�nition 10.1.1 (Ross, 1996) A stochastic process is a parameterized collection of ran-
dom variables

fX (t)gt2[t0;T ] :

Let us look at an example for a stochastic process. We start from the normal distribu-
tion of ch. 7.2.2 whose mean and variance are given by � and �2 and its density function is
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f (z) =
�p
2��2

��1
e�

1
2(

z��
� )

2

: Now de�ne a normally distributed random variable Z (t)

that has a variance that is a function of some t: instead of �2, write �2t: Hence, the

random variables we just de�ned have as density function f (z) =
�p
2��2t

��1
e
� 1
2

�
z��
�
p
t

�2
:

By having done so and by interpreting t as time, Z (t) is in fact a stochastic process: we
have a collection of random variables, all normally distributed, they are parameterized by
time t:
Stochastic processes can be stationary, weakly stationary or non-stationary. Station-

arity is a more restrictive concept than weak stationarity.

De�nition 10.1.2 (Ross, 1996, ch. 8.8): A process X (t) is stationary if X (t1) ; :::;
X (tn) and X (t1 + s) ; :::; X (tn + s) have the same joint distribution for all n and s:

An implication of this de�nition, which might help to get some �feeling� for this
de�nition, is that a stationary process X (t) implies that, being in t = 0, X (t1) and
X (t2) have the same distribution for all t2 > t1 > 0: A weaker concept of stationarity only
requires the �rst two moments of X (t1) and X (t2) (and a condition on the covariance)
to be satis�ed.

De�nition 10.1.3 (Ross, 1996) A process X (t) is weakly stationary if the �rst two mo-
ments are the same for all t and the covariance between X (t2) and X (t1) depends only
on t2 � t1;

E0X (t) = �; V arX (t) = �2; Cov (X (t2) ; X (t1)) = f (t2 � t1) ;

where � and �2 are constants and f (:) is some function.

De�nition 10.1.4 A process which is neither stationary nor weakly stationary is non-
stationary.

Probably the best-known stochastic process in continuous time is the Brownian mo-
tion. It is sometimes called the Wiener process after the mathematician Wiener who
provided the following de�nition.

De�nition 10.1.5 (Ross, 1996) Brownian motion
A stochastic process z (t) is a Brownian motion process if (i) z (0) = 0; (ii) the process has
stationary independent increments and (iii) for every t > 0; z (t) is normally distributed
with mean 0 and variance �2t:

The �rst condition z (0) = 0 is a normalization. Any z (t) that starts at, say z0,
can be rede�ned as z (t) � z0: The second condition says that for t4 > t3 � t2 > t1 the
increment z (t4)�z (t3) ; which is a random variable, is independent of previous increments,
say z (t2) � z (t1). �Independent increments�implies that Brownian motion is a Markov
process. Assuming that we are in t3 today, the distribution of z (t4) depends only on
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z (t3) ; i.e. on the current state, and not on previous states like z (t1). Increments are
said to be stationary if, according to the above de�nition of stationarity, the stochastic
process X (t) � z (t) � z (t� s) where s is a constant, has the same distribution for any
t. Finally, the third condition is the heart of the de�nition - z (t) is normally distributed.
The variance increases linearly in time; the Wiener process is therefore non-stationary.
Let us now de�ne a stochastic process which plays also a major role in economics.

De�nition 10.1.6 Poisson process (adapted following Ross 1993, p. 210)
A stochastic process q (t) is a Poisson process with arrival rate � if (i) q (0) = 0; (ii) the
process has independent increments and (iii) the increment q (�) � q (t) in any interval
of length � � t (the number of �jumps�) is Poisson distributed with mean � [� � t] ; i.e.
q (�)� q (t) �Poisson(� [� � t]) :

A Poisson process (and other related processes) are also sometimes called �counting
processes�as q (t) counts how often a jump has occurred, i.e. how often something has
happened.
There is a close similarity in the �rst two points of this de�nition with the de�nition

of Brownian motion. The third point here means more precisely that the probability that
the process increases n times between t and � > t is given by

P [q (�)� q (t) = n] = e��[��t]
(� [� � t])n

n!
; n = 0; 1; ::: (10.1.1)

We know this probability from the de�nition of the Poisson distribution in ch. 7.2.1.
This is probably where the Poisson process got its name from. Hence, one could think
of as many stochastic processes as there are distributions, de�ning each process by the
distribution of its increments.
The most common way to present Poisson processes is by looking at the distribution of

the increment q (�)�q (t) over a very small time interval [t; � ] : The increment q (�)�q (t)
for � very close to t is usually expressed by dq (t) : A stochastic process q (t) is then a
Poisson process if its increment dq (t) is driven by

dq (t) =
n
0 with prob. 1��dt
1 with prob. �dt ; (10.1.2)

where the parameter � is again called the arrival rate. A high � then means that the
process jumps on average more often than with a low �.
While this presentation is intuitive and widely used, one should note that the proba-

bilities given in (10.1.2) are an approximation of the ones in (10.1.1) for �� t = dt, i.e. for
very small time intervals. We will return to this below in ch. 10.5.2, see Poisson process
II.
These stochastic processes (and other processes) can now be combined in various

ways to construct more complex processes. These more complex processes can be well
represented by stochastic di¤erential equations (SDEs).
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10.1.2 Stochastic di¤erential equations

The most frequently used SDEs include Brownian motion as the source of uncertainty.
These SDEs are used to model for example the evolution of asset prices or budget con-
straints of households. Other examples include SDEs with Poisson uncertainty used ex-
plicitly in the natural volatility literature, in �nance, labour markets, international macro
or in other contexts mentioned above. Finally and more recently, Levy processes are used
in �nance as they allow for a much wider choice of properties of distributions of asset
returns than, let us say, Brownian motion. We will now get to know examples for each
type.

For all Brownian motions that will follow, we will assume, unless explicitly stated
otherwise, that increments have a standard normal distribution, i.e. Et [z (�)� z (t)] = 0
and vart [z (�)� z (t)] = � � t:We will call this standard Brownian motion. It is therefore
su¢ cient, consistent with most papers in the literature and many mathematical textbooks,
to work with a normalization of � in de�nition 10.1.5 of Brownian motion to 1:

� Brownian motion with drift

This is one of the simplest SDEs. It reads

dx (t) = adt+ bdz (t) : (10.1.3)

The constant a can be called drift rate, b2 is sometimes referred to as the variance rate
of x (t) : In fact, ch. 10.5.4 shows that the expected increase of x (t) is determined by
a only (and not by b). In contrast, the variance of x (�) for some future � > t is only
determined by b. The drift rate a is multiplied by dt; a �short�time interval, the variance
parameter b is multiplied by dz (t) ; the increment of the Brownian motion process z (t)
over a small time interval. This SDE (and all the others following later) therefore consist
of a deterministic part (the dt-term) and a stochastic part (the dz-term).

An intuition for this di¤erential equation can be most easily gained by undertaking a
comparison with a deterministic di¤erential equation. If we neglected the Wiener process
for a moment (set b = 0), divide by dt and rename the variable as y; we obtain the simple
ordinary di¤erential equation

_y (t) = a (10.1.4)

whose solution is y (t) = y0+ at:When we draw this solution and also the above SDE for
three di¤erent realizations of z (t), we obtain the following �gure.
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Figure 10.1.1 The solution of the deterministic di¤erential equation (10.1.4) and three
realizations of the related stochastic di¤erential equation (10.1.3)

Hence, intuitively speaking, adding a stochastic component to the di¤erential equation
leads to �uctuations around the deterministic path. Clearly, how much the solution of
the SDE di¤ers from the deterministic one is random, i.e. unknown. Further below in
ch. 10.5.4, we will understand that the solution of the deterministic di¤erential equation
(10.1.4) is identical to the evolution of the expected value of x (t) ; i.e. y (t) = E0x (t) for
t > 0:

� Generalized Brownian motion (Ito processes)

A more general way to describe stochastic processes is the following SDE

dx (t) = a (x (t) ; z (t) ; t) dt+ b (x (t) ; z (t) ; t) dz (t) : (10.1.5)

Here, one also refers to a (:) as the drift rate and to b2 (:) as the instantaneous variance
rate. Note that these functions can be stochastic themselves. In addition to arguments
x (t) and time, Brownian motion z (t) can be included in these arguments. Thinking of
(10.1.5) as a budget constraint of a household, an example could be that wage income or
the interest rate depend on the current realization of the economy�s fundamental source
of uncertainty, which is z (t) :

� Stochastic di¤erential equations with Poisson processes

Di¤erential equations that are driven by a Poisson process can, of course, also be
constructed. A very simple example is

dx (t) = adt+ bdq (t) : (10.1.6)

A realization of this path for x (0) = x0 is depicted in the following �gure and can be
understood very easily. As long as no jump occurs, i.e. as long as dq = 0; the variable
x (t) follows dx (t) = adt which means linear growth, x (t) = x0+at: This is plotted as the
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thin line. When q jumps, i.e. dq = 1; x (t) increases by b : writing dx (t) = ~x (t) � x (t) ;
where ~x (t) is the level of x immediately after the jump, and letting the jump be �very
fast�such that dt = 0 during the jump, we have ~x (t) � x (t) = b � 1; where the 1 stems
from dq (t) = 1: Hence,

~x (t) = x (t) + b: (10.1.7)

Clearly, the points in time when a jump occurs are random. A tilde (~) will always
denote in what (and in various papers in the literature) follows the value of a quantity
immediately after a jump.

Figure 10.1.2 An example of a Poisson process with drift (thick line) and a deterministic
di¤erential equation (thin line)

In contrast to Brownian motion, a Poisson process contributes to the increase of the
variable of interest: without the dq (t) term (i.e. for b = 0), x (t) would follow the thin
line. With occasional jumps, x (t) grows faster. In the Brownian motion case of the �gure
before, realizations of x (t) remained �close to�the deterministic solution. This is simply
due to the fact that the expected increment of Brownian motion is zero while the expected
increment of a Poisson process is positive.
Note that in the more formal literature, the tilde is not used but a di¤erence is made

between x (t) and x (t�) where t� stands for the point in time an �instant�before t. (This
is probably easy to understand on an intuitive level, thinking about it for too long might
not be a good idea as time is continuous ...) The process x (t) is a so called cádlág process.
The expression cádlág is an acronym from the french �continu a droite, limites a gauche�.
That is, the paths of x (t) are continuous from the right with left limits. This is captured
in the above �gure by the black dots (continuous from the right) and the white circles
(limits from the left). With this notation, one would express the change in x due to a
jump by x (t) = x (t�) + b as the value of x to which b is added is the value of x before
the jump. As the tilde-notation turned out to be relatively intuitive, we will follow it in
what follows.
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� A geometric Poisson process

An further example would be the geometric Poisson process

dx (t) = a (q (t) ; t)x (t) dt+ b (q (t) ; t)x (t) dq (t) : (10.1.8)

Processes are usually called geometric when they describe the rate of change of some RV
x (t) ; i.e. dx (t) =x (t) is not a function of x (t) : In this example, the deterministic part
shows that x (t) grows at the rate of a (:) in a deterministic way and jumps by b (:) percent,
when q (t) jumps. Note that in contrast to a Brownian motion SDE, a (:) here is not the
average growth rate of x (t) (see below on expectations).
Geometric Poisson processes as here are sometimes used to describe the evolution of

asset prices in a simple way. There is some deterministic growth component a (:) and some
stochastic component b (:) :When the latter is positive, this could re�ect new technologies
in the economy. When the latter is negative, this equation could be used to model negative
shocks like oil-price shocks or natural disasters.

� Aggregate uncertainty and random jumps

An interesting extension of a Poisson di¤erential equation consists in making the ampli-
tude of the jump random. Taking a simple di¤erential equation with Poisson uncertainty
as starting point, dA (t) = bA (t) dq (t) ; where b is a constant, we can now assume that
b (t) is governed by some distribution, i.e.

dA (t) = b (t)A (t) dq (t) ; where b (t) �
�
�; �2

�
: (10.1.9)

Assume that A (t) is total factor productivity in an economy. Then, A (t) does not change
as long as dq (t) = 0:When q (t) jumps, A (t) changes by b (t) ; i.e. dA (t) � ~A (t)�A (t) =
b (t)A (t) ; which we can rewrite as

~A (t) = (1 + b (t))A (t) ; 8t where q (t) jumps.

This equation says that whenever a jump occurs, A (t) increases by b (t) percent, i.e. by
the realization of the random variable b (t) : Obviously, the realization of b (t) matters only
for points in time where q (t) jumps.
Note that (10.1.9) is the stochastic di¤erential equation representation of the evolution

of the states of the economy in the Pissarides-type matching model of Shimer (2005),
where aggregate uncertainty, here A (t) follows from a Poisson process. The presentation
in Shimer�s paper is, �A shock hits the economy according to a Poisson process with arrival
rate �, at which point a new pair (p0; s0) is drawn from a state dependent distribution.�
(p. 34). Note also that using (10.1.9) and assuming large families such that there is no
uncertainty from labour income left on the household level would allow to analyze the
e¤ects of saving and thereby capital accumulation over the business cycle in a closed-
economy model with risk-averse households. The background for the saving decision
would be ch. 11.1.
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10.1.3 The integral representation of stochastic di¤erential equa-
tions

Stochastic di¤erential equations as presented here can also be represented by integral
versions. This is identical to the integral representations for deterministic di¤erential
equations in ch. 4.3.3. The integral representation will be used frequently when computing
moments of x (�). As an example, think of the expected value of x for some future point
in time � ; when expectations are formed today in t; i.e. information until t is available,
Etx (�) : See ch. 10.5.4 or 11.1.6.

� Brownian motion

Consider a di¤erential equation as (10.1.5). It can more rigorously be represented by
its integral version,

x (�)� x (t) =
Z �

t

a(x; s)ds+

Z �

t

b(x; s)dz (s) : (10.1.10)

This version is obtain by �rst rewriting (10.1.5) as dx (s) = a (x; s) ds +b (x; s) dz (s) ; i.e.
by simply changing the time index from t to s (and dropping z (s) and writing x instead
of x (s) to shorten notation). Applying then the integral

R �
t
on both sides gives (10.1.10).

This implies, inter alia, a �di¤erentiation rule�

d

�Z �

t

a(x; s)ds+

Z �

t

b(x; s)dz (s)

�
= d [x (�)� x (t)] = dx (�)

= a(x; �)d� + b(x; �)dz (�) :

� Poisson processes

Now consider a generalized version of the SDE in (10.1.6), with again replacing t by s,
dx (s) = a (x (s) ; q (s)) ds +b (x (s) ; q (s)) dq (s) : The integral representation reads, after
applying

R �
t
to both sides,

x (�)� x (t) =
Z �

t

a (x (s) ; q (s)) ds+

Z �

t

b (x (s) ; q (s)) dq (s) :

This can be checked by computing the di¤erential with respect to time � :

10.2 Di¤erentials of stochastic processes

Possibly the most important aspect when working with stochastic processes in continu-
ous time is that rules for computing di¤erentials of functions of stochastic processes are
di¤erent from standard rules. These rules are provided by various forms of Ito�s Lemma
or change of variable formulas (CVF). Ito�s Lemma is a �rule� of how to compute dif-
ferentials when the basic source of uncertainty is Brownian motion. The CVF provides
corresponding rules when uncertainty stems from Poisson processes or Levy processes.
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10.2.1 Why all this?

�Computing di¤erentials of functions of stochastic processes�sounds pretty abstract. Let
us start with an example from deterministic continuous time setups which gives an idea
about what the economic background for such di¤erentials are.
Imagine the capital stock of an economy follows _K (t) = I (t)��K (t) ; an ordinary dif-

ferential equation (ODE) known from ch. 4. Assume further that total factor productivity
grows at an exogenous rate of g; _A (t) =A (t) = g: Let output be given by Y (A (t) ; K (t) ; L)
and let us ask how output grows over time. The reply would be provided by looking at
the derivative of Y (:) with respect to time,

d

dt
Y (A (t) ; K (t) ; L) = YA

dA (t)

dt
+ YK

dK (t)

dt
+ YL

dL

dt
:

Alternatively, written as a di¤erential, we would have

dY (A (t) ; K (t) ; L) = YAdA (t) + YKdK (t) + YLdL:

We can now insert equations describing the evolution of TFP and capital, dA (t) and
dK (t) ; and take into account that employment L is constant. This gives

dY (A (t) ; K (t) ; L) = YAgA (t) dt+ YK [I (t)� �K (t)] dt+ 0:

Dividing by dt would give a di¤erential equation that describes the growth of Y; i.e. _Y (t) :
The objective of the subsequent sections is to provide rules on how to compute dif-

ferentials, of which dY (A (t) ; K (t) ; L) is an example, in setups where K (t) or A (t) are
described by stochastic DEs and not ordinary DEs as just used in this example.

10.2.2 Computing di¤erentials for Brownian motion

We will now provide various versions of Ito�s Lemma. For formal treatments, see the
references in �further reading�at the end of this chapter.

� One stochastic process

Lemma 10.2.1 Consider a function F (t; x) of the di¤usion process x 2 R that is at
least twice di¤erentiable in x and once in t. The di¤usion process is described by dx (t) =
a (x (t) ; z (t) ; t) dt+ b (x (t) ; z (t) ; t) dz (t) as in (10.1.5). The di¤erential dF reads

dF = Ftdt+ Fxdx+
1

2
Fxx(dx)

2 (10.2.1)

where (dx)2 is computed by using

dtdt = dtdz = dzdt = 0; dzdz = dt: (10.2.2)
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The �rules�in (10.2.2) can intuitively be understood by thinking about the �length of a
graph�of a function, more precisely speaking about the total variation. For di¤erentiable
functions, the variation is �nite. For Brownian motion, which is continuous but not
di¤erentiable, the variation goes to in�nity. As there is a �nite variation for di¤erentiable
functions, the quadratic (co)variations involving dt in (10.2.2) are zero. The quadratic
variation of Brownian motion, however, cannot be neglected and is given by dt: For details,
see the further-reading chapter 10.6 on �mathematical background�.
Let us look at an example. Assume that x (t) is described by a generalized Brownian

motion as in (10.1.5). The square of dx is then given by

(dx)2 = a2 (:) (dt)2 + 2a (:) b (:) dtdz + b2 (:) (dz)2 = b2 (:) dt;

where the last equality uses the �rules� from (10.2.2). The di¤erential of F (t; x) then
reads

dF = Ftdt+ Fxa (:) dt+ Fxb (:) dz +
1

2
Fxxb

2 (:) dt

=

�
Ft + Fxa (:) +

1

2
Fxxb

2 (:)

�
dt+ Fxb (:) dz: (10.2.3)

When we compare this di¤erential with the �normal�one, we recognize familiar terms:
The partial derivatives times deterministic changes, Ft + Fxa (:) ; would appear also in
circumstances where x follows a deterministic evolution. Put di¤erently, for b (:) = 0 in
(10.1.5), the di¤erential dF reduces to fFt + Fxa (:)g dt: Brownian motion therefore a¤ects
the di¤erential dF in two ways: �rst, the stochastic term dz is added and second, maybe
more �surprisingly�, the deterministic part of dF is also a¤ected through the quadratic
term containing the second derivative Fxx:

� The lemma for many stochastic processes

This was the simple case of one stochastic process. Now consider the case of many
stochastic processes. Think of the price of many stocks traded on the stock market. We
then have the following

Lemma 10.2.2 Consider the following set of stochastic di¤erential equations,

dx1 = a1dt+ b11dz1 + :::+ b1mdzm;

...

dxn = andt+ bn1dz1 + :::+ bnmdzm:

In matrix notation, they can be written as

dx = adt+ bdz(t)
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where

x =

0B@ x1
...
xn

1CA ; a =

0B@ a1
...
an

1CA ; b =

0B@ b11 ::: b1m
...

...
bn1 ::: bnm

1CA ; dz =

0B@ dz1
...

dzm

1CA :

Consider further a function F (t; x) from [0;1[�Rn to R with time t and the n processes
in x as arguments. Then

dF (t; x) = Ftdt+ �
n
i=1Fxidxi +

1

2
�ni=1�

n
j=1Fxixj [dxidxj] (10.2.4)

where, as an extension to (10.2.2),

dtdt = dtdzi = dzidt = 0 and dzidzj = �ijdt: (10.2.5)

When all zi are mutually independent then �ij = 0 for i 6= j and �ij = 1 for i = j: When
two Brownian motions zi and zj are correlated, �ij is the correlation coe¢ cient between
their increments dzi and dzj:

� An example with two stochastic processes

Let us now consider an example for a function F (t; x; y) of two stochastic processes.
As an example, assume that x is described by a generalized Brownian motion similar to
(10.1.5), dx = a (t; x; y) dt + b (t; x; y) dzx and the stochastic process y is described by
dy = c (t; x; y) dt+ g (t; x; y) dzy: Ito�s Lemma (10.2.4) gives the di¤erential dF as

dF = Ftdt+ Fxdx+ Fydy +
1

2

�
Fxx(dx)

2 + 2Fxydxdy + Fyy(dy)
2
�

(10.2.6)

Given the rule in (10.2.5), the squares and the product in (10.2.6) are

(dx)2 = b2 (t; x; y) dt; (dy)2 = g2 (t; x; y) dt; dxdy = �xyb (:) g (:) dt;

where �xy is the correlation coe¢ cient of the two processes. More precisely, it is the
correlation coe¢ cient of the two normally distributed random variables that underlie the
Wiener processes. The di¤erential (10.2.6) therefore reads

dF = Ftdt+ a (:)Fxdt+ b (:)Fxdzx + c (:)Fydt+ g (:)Fydzy

+
1

2

��
Fxxb

2 (:) dt+ 2�xyFxyb (:) g (:) dt+ Fyyg
2 (:) dt

��
=

�
Ft + a (:)Fx + c (:)Fy +

1

2

�
b2 (:)Fxx + 2�xyb (:) g (:)Fxy + g2 (:)Fyy

��
dt

+ b (:)Fxdzx + g (:)Fydzy (10.2.7)

Note that this di¤erential is almost simply the sum of the di¤erentials of each sto-
chastic process independently. The only term that is added is the term that contains
the correlation coe¢ cient. In other words, if the two stochastic processes were indepen-
dent, the di¤erential of a function of several stochastic processes equals the sum of the
di¤erential of each stochastic process individually.
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� An example with one stochastic process and many Brownian motions

A second example stipulates a stochastic process x (t) governed by dx = u1dt +
�mi=1vidzi: This corresponds to n = 1 in the lemma above. When we compute the square
of dx; we obtain

(dx)2 = (u1dt)
2 + 2u1dt [�

m
i=1vidzi] + (�

m
i=1vidzi)

2 = 0 + 0 + (�mi=1vidzi)
2 ;

where the second equality uses (10.2.2). The di¤erential of F (t; x) therefore reads from
(10.2.4)

dF (t; x) = Ftdt+ Fx [u1dt+ �
m
i=1vidzi] +

1

2
Fxx [�

m
i=1vidzi]

2

= fFt + Fxu1g dt+
1

2
Fxx [�

m
i=1vidzi]

2 + Fx�
m
i=1vidzi:

Computing the [�mi=1vidzi]
2 term requires to take potential correlations into account. For

any two uncorrelated increments dzi and dzj; dzidzj would from (10.2.5) be zero. When
they are correlated, dzidzj = �ijdt which includes the case of dzidzi = dt:

10.2.3 Computing di¤erentials for Poisson processes

When we consider the di¤erential of a function of the variable that is driven by the Poisson
process, we need to take the following CVFs into consideration.

� One stochastic process

Lemma 10.2.3 Let there be a stochastic process x (t) driven by Poisson uncertainty q (t)
described by the following stochastic di¤erential equation

dx (t) = a (:) dt+ b (:) dq (t) :

Consider the function F (t; x) : The di¤erential of this function is

dF (t; x) = Ftdt+ Fxa (:) dt+ fF (t; x+ b (:))� F (t; x)g dq: (10.2.8)

What was stressed before for Brownian motion is valid here as well: the functions a (:)
and b (:) in the deterministic and stochastic part of this SDE can have as arguments any
combinations of q (t) ; x (t) and t or can be simple constants.
The rule in (10.2.8) is very intuitive: the di¤erential of a function is given by the

�normal terms�and by a �jump term�. The �normal terms�include the partial derivatives
with respect to time t and x times changes per unit of time (1 for the �rst argument and
a (:) for x) times dt. Whenever the process q increases, x increases by the b (:) : The
�jump term�therefore captures that the function F (:) jumps from F (t; x) to F (t; ~x) =
F (t; x+ b (:)).
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� Two stochastic processes

Lemma 10.2.4 Let there be two independent Poisson processes qx and qy driving two
stochastic processes x (t) and y (t) ;

dx = a (:) dt+ b (:) dqx; dy = c (:) dt+ g (:) dqy

and consider the function F (x; y) : The di¤erential of this function is

dF (x; y) = fFxa (:) + Fyc (:)g dt+ fF (x+ b (:) ; y)� F (x; y)g dqx
+ fF (x; y + g (:))� F (x; y)g dqy: (10.2.9)

Again, this �di¤erentiation rule�consists of the �normal�terms and the �jump terms�.
As the function F (:) depends on two arguments, the normal term contains two drift
components, Fxa (:) and Fyc (:) and the jump term contains the e¤ect of jumps in qx
and in qy: Note that the dt term does not contain the time derivative Ft (x; y) as in this
example, F (x; y) is assumed not to be a function of time and therefore Ft (x; y) = 0: In
applications where F (:) is a function of time, the Ft (:) would, of course, have to be taken
into consideration. Basically, (10.2.9) is just the �sum�of two versions of (10.2.8). There
is no additional term as the correlation term in the case of Brownian motion in (10.2.7).
This is due to the fact that any two Poisson processes are, by construction, independent.
Let us now consider a case that is frequently encountered in economic models when

there is one economy-wide source of uncertainty, say new technologies arrive or commod-
ity price shocks occur according to some Poisson process, and many variables in this
economy (e.g. all relative prices) are a¤ected simultaneously by this one shock. The CVF
in situations of this type reads

Lemma 10.2.5 Let there be two variables x and y following

dx = a (:) dt+ b (:) dq; dy = c (:) dt+ g (:) dq;

where uncertainty stems from the same q for both variables. Consider the function
F (x; y) : The di¤erential of this function is

dF (x; y) = fFxa (:) + Fyc (:)g dt+ fF (x+ b (:) ; y + g (:))� F (x; y)g dq:

One nice feature about di¤erentiation rules for Poisson processes is their very intuitive
structure. When there are two independent Poisson processes as in (10.2.9), the change in
F is given by either F (x+ b (:) ; y)� F (x; y) or by F (x; y + g (:))� F (x; y) ; depending
on whether one or the other Poisson process jumps. When both arguments x and y are
a¤ected by the same Poisson process, the change in F is given by F (x+ b (:) ; y + g (:))�
F (x; y) ; i.e. the level of F after a simultaneous change of both x and y minus the pre-jump
level F (x; y).



238 Chapter 10. SDEs, di¤erentials and moments

� Many stochastic processes
We now present the most general case. Let there be n stochastic processes xi (t) and

de�ne the vector x (t) = (x1 (t) ; :::; xn (t))
T : Let stochastic processes be described by n

SDEs

dxi (t) = �i (:) dt+ �i1 (:) dq1 + :::+ �im (:) dqm; i = 1; : : : ; n; (10.2.10)

where �ij (:) stands for �ij (t; x (t)) : Each stochastic process xi (t) is driven by the same
m Poisson processes. The impact of Poisson process qj on xi (t) is captured by �ij (:) :
Note the similarity to the setup for the Brownian motion case in (10.2.4).

Proposition 10.2.1 Let there be n stochastic processes described by (10.2.10). For a
once continuously di¤erentiable function F (t; x), the process F (t; x) obeys

dF (t; x (t)) = fFt (:) + �ni=1Fxi (:)�i (:)g dt
+ �mj=1

�
F
�
t; x (t) + �j (:)

�
� F (t; x (t))

	
dqj, (10.2.11)

where Ft and Fxi, i = 1; : : : ; n, denote the partial derivatives of f with respect to t and
xi, respectively, and �j stands for the n-dimensional vector function

�
�1j; : : : ; �nj

�T
.

The intuitive understanding is again simpli�ed by focusing on �normal� continuous
terms and on �jump terms�. The continuous terms are as before and simply describe the
impact of the �i (:) in (10.2.10) on F (:) : The jump terms show how F (:) changes from
F (t; x (t)) to F

�
t; x (t) + �j (:)

�
when Poisson process j jumps. The argument x (t)+�j (:)

after the jump of qj is obtained by adding �ij to component xi in x; i.e. x (t) + �j (:) =�
x1 + �1j; x2 + �2j; :::; xn + �nj

�
:

10.2.4 Brownian motion and a Poisson process

There are much more general stochastic processes in the literature than just Brownian
motion or Poisson processes. This section provides a CVF for a function of a variable
which is driven by both Brownian motion and a Poisson process. More general processes
than just additive combinations are so-called Levy processes, which will be analyzed in
future editions of these notes.

Lemma 10.2.6 Let there be a variable x which is described by

dx = a (:) dt+ b (:) dz + g (:) dq (10.2.12)

and where uncertainty stems from Brownian motion z and a Poisson process q. Consider
the function F (t; x) : The di¤erential of this function is

dF (t; x) =

�
Ft + Fxa (:) +

1

2
Fxxb

2 (:)

�
dt+ Fxb (:) dz + fF (t; x+ g (:))� F (t; x)g dq:

(10.2.13)

Note that this lemma is just a �combination�of Ito�s Lemma (10.2.3) and the CVF
for a Poisson process from (10.2.8). For an arrival rate of zero, i.e. for dq = 0 at all times,
(10.2.13) is identical to (10.2.3). For b (:) = 0; (10.2.13) is identical to (10.2.8).
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10.3 Applications

10.3.1 Option pricing

One of the most celebrated papers in economics is the paper by Black and Scholes (1973)
in which they derived a pricing formula for options. This section presents the �rst steps
towards obtaining this pricing equation. The subsequent chapter 10.4.1 will complete the
analysis. This section presents a simpli�ed version (by neglecting jumps in the asset price)
of the derivation of Merton (1976). The basic question is: what is the price of an option
on an asset if there is absence of arbitrage on capital markets?

� The asset and option price

The starting point is the price S of an asset which evolves according to a geometric
process

dS

S
= �dt+ �dz: (10.3.1)

Uncertainty is modelled by the increment dz of Brownian motion. We assume that the
economic environment is such (inter alia short selling is possible, there are no transaction
costs) that the price of the option is given by a function F (:) having as arguments only
the price of the asset and time, F (t; S (t)): The di¤erential of the price of the option is
then given from (10.2.1) by

dF = Ftdt+ FSdS +
1

2
FSS [dS]

2 : (10.3.2)

As by (10.2.2) the square of dS is given by (dS)2 = �2S2dt; the di¤erential reads

dF =

�
Ft + �SFS +

1

2
�2S2FSS

�
dt+ �SFSdz ,

dF

F
� �Fdt+ �Fdz (10.3.3)

where the last step de�ned

�F =
Ft + �SFS +

1
2
�2S2FSS

F
; �F =

�SFS
F

: (10.3.4)

� Absence of arbitrage

Now comes the trick - the no-arbitrage consideration. Consider a portfolio that consists
of N1 units of the asset itself, N2 options and N3 units of some riskless assets, say wealth
in a savings account. The price of such a portfolio is then given by

P = N1S +N2F +N3M;
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whereM is the price of one unit of the riskless asset. The proportional change of the price
of this portfolio can be expressed as (holding the Nis constant, otherwise Ito�s Lemma
would have to be used)

dP = N1dS +N2dF +N3dM ,
dP

P
=
N1S

P

dS

S
+
N2F

P

dF

F
+
N3M

P

dM

M
:

De�ning shares of the portfolio held in these three assets by �1 � N1S=P and �2 � N2F=P;
inserting option and stock price evolutions from (10.3.1) and (10.3.2) and letting the
riskless asset M pay a constant return of r, we obtain

dP=P � �1�dt+ �1�dz + �2�Fdt+ �2�Fdz + (1� �1 � �2) rdt
= f�1 [�� r] + �2 [�F � r] + rg dt+ f�1� + �2�Fg dz: (10.3.5)

Now assume someone chooses weights such that the portfolio no longer bears any risk

�1� + �2�F = 0: (10.3.6)

The return of such a portfolio with these weights must then of course be identical to the
return of the riskless interest asset, i.e. identical to r;

dP=dt

P

����
riskless

= �1 [�� r] + �2 [�F � r] + rj�1�=��2�F = r , �� r
�

=
�F � r
�F

:

If the return of the riskless portfolio did not equal the return of the riskless interest rates,
there would be arbitrage possibilities. This approach is therefore called no-arbitrage
pricing.

� The Black-Scholes formula

Finally, inserting �F and �F from (10.3.4) yields the celebrated di¤erential equation
that determines the evolution of the price of the option,

�� r
�

=
Ft + �SFS +

1
2
�2S2FSS � rF

�SFS
, 1

2
�2S2FSS + rSFS � rF + Ft = 0: (10.3.7)

Clearly, this equation does not to say what the price F of the option actually is. It only
says how it changes over time and in reaction to S. But as we will see in ch. 10.4.1, this
equation can actually be solved explicitly for the price of the option. Note also that we
did not make any assumption so far about what type of option we are talking about.

10.3.2 Deriving a budget constraint

Most maximization problems require a constraint. For a household, this is usually the
budget constraint. It is shown here how the structure of the budget constraint depends
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on the economic environment the household �nds itself in and how the CVF needs to be
applied here.
Let wealth at time t be given by the number n (t) of stocks a household owns times

their price v (t), a (t) = n (t) v (t). Let the price follow a process that is exogenous to the
household (but potentially endogenous in general equilibrium),

dv (t) = �v (t) dt+ �v (t) dq (t) ; (10.3.8)

where � and � are constants. For � we require � > �1 to avoid that the price can
become zero or negative. Hence, the price grows with the continuous rate � and at
discrete random times it jumps by � percent. The random times are modeled by the
jump times of a Poisson process q (t) with arrival rate �, which is the �probability�that
in the current period a price jump occurs. The expected (or average) growth rate is then
given by �+ �� (see ch. 10.5.4).
Let the household earn dividend payments, � (t) per unit of asset it owns, and labour

income, w (t). Assume furthermore that it spends p (t) c (t) on consumption, where c (t)
denotes the consumption quantity and p (t) the price of one unit of the consumption good.
When buying stocks is the only way of saving, the number of stocks held by the household
changes in a deterministic way according to

dn (t) =
n (t)� (t) + w (t)� p (t) c (t)

v (t)
dt:

When savings n (t)� (t) + w (t) � p (t) c (t) are positive, the number of stocks held by
the household increases by savings divided by the price of one stock. When savings are
negative, the number of stocks decreases.
The change in the household�s wealth, i.e. the household�s budget constraint, is then

given by applying the CVF to a (t) = n (t) v (t). The appropriate CVF comes from (10.2.9)
where only one of the two di¤erential equations shows the increment of the Poisson process
explicitly. With F (x; y) = xy, we obtain

da (t) =

�
v (t)

n (t)� (t) + w (t)� p (t) c (t)
v (t)

+ n (t)�v (t)

�
dt

+ fn (t) [v (t) + �v (t)]� n (t) v (t)g dq (t)
= fr (t) a (t) + w (t)� p (t) c (t)g dt+ �a (t) dq (t) ; (10.3.9)

where the interest-rate is de�ned as

r (t) � � (t)

v (t)
+ �:

This is a very intuitive budget constraint: As long as the asset price does not jump, i.e.,
dq (t) = 0, the household�s wealth increases by current savings, r (t) a (t)+w (t)�p (t) c (t),
where the interest rate, r (t), consists of dividend payments in terms of the asset price plus
the deterministic growth rate of the asset price. If a price jump occurs, i.e., dq (t) = 1,
wealth jumps, as the price, by � percent, which is the stochastic part of the overall
interest-rate. Altogether, the average interest rate amounts to r (t) + �� (see ch. 10.5.4).
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10.4 Solving stochastic di¤erential equations

Just as there are theorems on uniqueness and existence of solutions for ordinary di¤erential
equations, there are theorems for SDEs on these issues. There are also solution methods
for SDEs. Here, we will consider some examples for solutions of SDEs.
Just as for ordinary deterministic di¤erential equations in ch. 4.3.2, we will simply

present solutions and not show how they can be derived. Solutions of stochastic di¤erential
equations d (x (t)) are, in analogy to the de�nition for ODE, again time paths x (t) that
satisfy the di¤erential equation. Hence, by applying Ito�s Lemma or the CVF, one can
verify whether the solutions presented here are indeed solutions.

10.4.1 Some examples for Brownian motion

This section �rst looks at SDEs with Brownian motion which are similar to the ones that
were presented when introducing SDEs in ch. 10.1.2: We start with Brownian motion
with drift as in (10.1.3) and then look at an example for generalized Brownian motion in
(10.1.5). In both cases, we work with SDEs which have an economic interpretation and
are not just SDEs. Finally, we complete the analysis of the Black-Scholes option pricing
approach.

� Brownian motion with drift 1

As an example for Brownian motion with drift, consider a representation of a produc-
tion technology which could be called a �di¤erential-representation� for the technology.
This type of presenting technologies was dominant in early contributions that used contin-
uous time methods under uncertainty but is sometimes still used today. A simple example
is

dY (t) = AKdt+ �Kdz (t) ; (10.4.1)

where Y (t) is output in t; A is a (constant) measure of total factor productivity, K is the
(constant) capital stock, � is some variance measure of output and z is Brownian motion.
The change of output at each instant is then given by dY (t). See �further reading�on
references to the literature.
What does such a representation of output imply? To see this, look at (10.4.1) as

Brownian motion with drift, i.e. consider A; K; and � to be a constant. The solution to
this di¤erential equation starting in t = 0 with Y0 and z (0) is

Y (t) = Y0 + AKt+ �K [z (t)� z (0)] :

To simplify an economic interpretation set Y0 = z (0) = 0: Output is then given by
Y (t) = (At+ �z (t))K: This says that with a constant factor input K; output in t is
determined by a deterministic and a stochastic part. The deterministic part At implies
linear (i.e. not exponential as is usually assumed) growth, the stochastic part �z (t) implies
deviations from the trend. As z (t) is Brownian motion, the sum of the deterministic and
stochastic part can become negative. This is an undesirable property of this approach.
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To see that Y (t) is in fact a solution of the above di¤erential-representation, just apply
Ito�s Lemma and recover (10.4.1).

� Brownian motion with drift 2

As a second example and in an attempt to better understand why output can become
negative, consider a standard representation of a technology Y (t) = A (t)K and let TFP
A follow Brownian motion with drift,

dA (t) = gdt+ �dz (t) ;

where g and � are constants. What does this alternative speci�cation imply?
Solving the SDE yields A (t) = A0+gt+�z (t) (which can again be checked by applying

Ito�s lemma). Output is therefore given by

Y (t) = (A0 + gt+ �z (t))K = A0K + gKt+ �Kz (t)

and can again become negative.

� Geometric Brownian motion

Let us now assume that TFP follows geometric Brownian motion process,

dA (t) =A (t) = gdt+ �dz (t) ; (10.4.2)

where again g and � are constants. Let output continue to be given by Y (t) = A (t)K:
The solution for TFP, provided an initial condition A (0) = A0, is given by

A (t) = A0e
(g� 1

2
�2)t+�z(t): (10.4.3)

At any point in time t; the TFP level depends on time t and the current level of the
stochastic process z (t) : This shows that TFP at each point t in time is random and
thereby unknown from the perspective of t = 0: Hence, a SDE and its solution describe
the deterministic evolution of a distribution over time. One could therefore plot a picture
of A (t) which in principle would look like the evolution of the distribution in ch. 7.4.1.
Interestingly, and this is due to the geometric speci�cation in (10.4.2) and impor-

tant for representing technologies in general, TFP can not become negative. While
Brownian motion z (t) can take any value between minus and plus in�nity, the term

e(g�
1
2
�2)t+�z(t) is always positive. With an AK speci�cation for output, output is always

positive, Y (t) = A0e
(g� 1

2
�2)t+�z(t)K. In fact, it can be shown that output and TFP are

lognormally distributed. Hence, the speci�cation of TFP with geometric Brownian mo-
tion provides an alternative to the di¤erential-representation in (10.4.1) which avoids the
possibility of negative output.
The level of TFP at some future point in time t is determined by a deterministic part,�

g � 1
2
�2
�
t; and by a stochastic part, �z (t) : Apparently, the stochastic nature of TFP
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has an e¤ect on the deterministic term. The structure (the factor 1=2 and the quadratic
term �2) reminds of the role the stochastic disturbance plays in Ito�s lemma. There as
well (see e.g. (10.2.3)), the stochastic disturbance a¤ects the deterministic component of
the di¤erential. As we will see later, however, this does not a¤ect expected growth. In
fact, we will show further below in (10.5.2) that expected output grows at the rate g (and
is thereby independent of the variance parameter �).
One can verify that (10.4.3) is a solution to (10.4.2) by using Ito�s lemma. To do so,

we need to bring (10.4.2) into a form which allows us to apply the formulas which we got
to know in ch. 10.2.2. De�ne x (t) �

�
g � 1

2
�2
�
t + �z (t) and A (t) � F (x (t)) = A0e

x(t):
As a consequence, the di¤erential for x (t) is a nice SDE, dx (t) =

�
g � 1

2
�2
�
dt+ �dz (t) :

As this SDE is of the form as in (10.1.5), we can use Ito�s lemma from (10.2.3) and �nd

dA (t) = dF (x (t)) =

�
Fx (x (t))

�
g � 1

2
�2
�
+
1

2
Fxx (x (t))�

2

�
dt+ Fx (x (t))�dz:

Inserting the �rst and second derivatives of F (x (t)) yields

dA (t) =

�
A0e

x(t)

�
g � 1

2
�2
�
+
1

2
A0e

x(t)�2
�
dt+ A0e

x(t)�dz ,

dA (t) =A (t) =

�
g � 1

2
�2 +

1

2
�2
�
dt+ �dz = gdt+ �dz;

where the �i¤� reinserted A (t) = A0e
x(t) and divided by A (t) : As A (t) from (10.4.3)

satis�es the original SDE (10.4.2), A (t) is a solution of (10.4.2).

� Option pricing

Let us come back to the Black-Scholes formula for option pricing. The SDE derived
above in (10.3.7) describes the evolution of the price F (t; S (t)) ; where t is time and S (t)
the price of the underlying asset at t. We now look at a European call option, i.e. an
option which gives the right to buy an asset at some �xed point in time T; the maturity
date of the option. The �xed exercise or strike price of the option, i.e. the price at which
the asset can be bought is denoted by P:
Clearly, at any point in time t when the price of the asset is zero, the value of the

option is zero as well. This is the �rst boundary condition for our partial di¤erential
equation (10.3.7). When the option can be exercised at T and the price of the asset is S;
the value of the option is zero if the exercise price P exceeds the price of the asset and
S � P if not. This is the second boundary condition.

F (t; 0) = 0; F (T; S) = max f0; S � Pg ;

In the latter case where S � P > 0, the owner of the option would in fact buy the asset.
Given these two boundary conditions, the partial di¤erential equation has the solution

F (t; S (t)) = S (t)� (d1)� Pe�r[T�t]� (d2) (10.4.4)
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where

� (y) =
1p
2�

Z y

�1
e�

u2

2 du;

d1 =
ln S(t)

P
+
�
r � r2

2

�
(T � t)

�
p
T � t

; d2 = d1 � �
p
T � t:

The expression F (t; S (t)) gives the price of an option at a point in time t � T where the
price of the asset is S (t) : It is a function of the cumulative standard normal distribution
� (y) : For any path of S (t) ; time up to maturity T a¤ects the option price through d1;
d2 and directly in the second term of the above di¤erence. More interpretation is o¤ered
by many �nance textbooks.

10.4.2 A general solution for Brownian motions

Consider the linear stochastic di¤erential equation for x (t) ;

dx (t) = fa (t)x (t) + b (t)g dt+ �mi=1 fci (t)x (t) + gi (t)g dzi (t) (10.4.5)

where a (t) ; b (t) ; ci (t) and gi (t) are functions of time and zi (t) are Brownian motions.
The correlation coe¢ cients of its increment with the increments of zj (t) are �ij: Let there
be a boundary condition x (0) = x0. The solution to (10.4.5) is

x (t) = ey(t)' (t) (10.4.6)

where

y (t) =

Z t

0

�
a (u)� 1

2
	 (u)

�
du+ �mi=1

Z t

0

ci (u) dzi (u) ; (10.4.7a)

' (t) = x0 +

Z t

0

e�y(s) fb (s)� � (s)g ds+ �mi=1
Z t

0

e�y(s)gi (s) dzi (s) ; (10.4.7b)

	(s) = �mi=1�
m
j=1�ijci (s) cj (s) ; (10.4.7c)

� (s) = �mi=1�
m
j=1�ijci (s) gi (s) : (10.4.7d)

To obtain some intuition for (10.4.6), we can �rst consider the case of certainty. For
ci (t) = gi (t) = 0; (10.4.5) is a linear ODE and the solution is

x (t) = e
R t
0 a(u)du

h
x0 +

R t
0
e�

R s
0 a(u)dub (s) ds

i
. This corresponds to the results we know from

ch. 4.3.2, see (4.3.7). For the general case, we now prove that (10.4.6) indeed satis�es
(10.4.5).
In order to use Ito�s Lemma, write the claim (10.4.6) as

x(t) = ey(t)'(t) � f(y(t); ' (t)) (10.4.8)
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where

dy(t) =

�
a (t)� 1

2
	 (t)

�
dt+ �mi=1ci (t) dzi (t) ; (10.4.9a)

d' (t) = e�y(t) fb (t)� � (t)g dt+ �mi=1e�y(t)gi (t) dzi (t) : (10.4.9b)

are the di¤erentials of (10.4.7a) and (10.4.7b).
In order to compute the di¤erential of x(t) in (10.4.8), we have to apply the multidi-

mensional Ito-Formula (10.2.6) where time is not an argument of f(:): This gives

dx(t) = ey(t)' (t) dy(t) + ey(t)d' (t) +
1

2

�
ey(t)' (t) [dy]2 + 2ey(t)[dydz] + 0 � [dz]2

	
:

(10.4.10)
As [dy]2 = [�mi=1ci (t) dzi (t)]

2 by (10.2.5) - all terms multiplied by dt equal zero - we obtain

[dy]2 = �mi=1�
m
j=1�ijci (t) cj (t) dt: (10.4.11)

Further, again by (10.2.5),

dydz = (�mi=1ci (t) dzi (t))
�
�mi=1e

�y(t)gi (t) dzi (t)
�

= e�y(t)�mi=1�
m
j=1�ijci (t) gi (t) dt: (10.4.12)

Hence, reinserting (10.4.6), (10.4.9), (10.4.11) and (10.4.12) in (10.4.10) gives

dx(t) = x(t)

��
a (t)� 1

2
	 (t)

�
dt+ �mi=1ci (t) dzi (t)

�
+ fb (t)� � (t)g dt+ �mi=1gi (t) dzi (t)

+
1

2

�
x(t)

�
�mi=1�

m
j=1�ijci (t) cj (t) dt

�
+ 2�mi=1�

m
j=1�ijci (t) gi (t) dt

�
Rearranging gives

dx(t) = fx(t)a (t) + b (t)g dt+ �mi=1 fx(t)ci (t) + gi (t)g dzi (t)

�
�
1

2
x(t)	 (t) + � (t)

�
dt

+

�
1

2
x(t)�mi=1�

m
j=1�ijci (t) cj (t) + �

m
i=1�

m
j=1�ijci (t) gi (t)

�
dt

= fx(t)a (t) + b (t)g dt+ �mi=1 fx(t)ci (t) + gi (t)g dzi (t) ;

where the last equality sign used (10.4.7c) and (10.4.7d). This is the original SDE in
(10.4.5) which shows that the claim (10.4.6) is indeed a solution of (10.4.5).
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10.4.3 Di¤erential equations with Poisson processes

The presentation of solutions and their veri�cation for Poisson processes follows a similar
structure as for Brownian motion. We start here with a geometric Poisson process and
compare properties of the solution with the TFP Brownian motion case. We then look
at a more general process - the description of a budget constraint - which extends the
geometric Poisson process. One should keep in mind, as stressed already in ch. 4.3.3,
that solutions to di¤erential equations are di¤erent from the integral representation of
e.g. ch. 10.1.3.

� A geometric Poisson process

Imagine that TFP follows a deterministic trend and occasionally makes a discrete
jump. This is captured by a geometric description as in (10.4.2), only that Brownian
motion is replaced by a Poisson process,

dA (t) =A (t) = gdt+ �dq (t) : (10.4.13)

Again, g and � are constant with � > �1.
The solution to this SDE is given by

A (t) = A0e
gt+[q(t)�q(0)] ln(1+�): (10.4.14)

Uncertainty does not a¤ect the deterministic part here, in contrast to the solution (10.4.3)
for the Brownian motion case. As before, TFP follows a deterministic growth component
and a stochastic component, [q (t)� q (0)] ln (1 + �). The latter makes future TFP un-
certain from the perspective of today.
The claim that A (t) is a solution can be proven by applying the appropriate CVF.

This will be done for the next, more general, example.

� A budget constraint

As a second example, we look at a dynamic budget constraint,

da (t) = fr (t) a (t) + w (t)� c (t)g dt+ �a (t) dq: (10.4.15)

De�ning � (s) � w (s) � c (s) ; the backward solution of (10.4.15) with initial condition
a (0) = a0 reads

a (t) = ey(t)
�
a0 +

Z t

0

e�y(s)� (s) ds

�
(10.4.16)

where y (t) is

y (t) =

Z t

0

r (u) du+ [q (t)� q (0)] ln (1 + �) : (10.4.17)

Note that the solution in (10.4.16) has the same structure as the solution to a deterministic
version of the di¤erential equation (10.4.15) (which we would obtain for � = 0). In
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fact, the structure of (10.4.16) is identical to the structure of (4.3.7). Put di¤erently,
the stochastic component in (10.4.15) only a¤ects the discount factor y (t) : This is not
surprising - in a way - as uncertainty is proportional to a (t) and the factor � can be seen
as the stochastic component of the interest payments on a (t) :
We have just stated that (10.4.16) is a solution. This should therefore be veri�ed. To

this end, de�ne

z(t) � a0 +

Z t

0

e�y(s)�(s)ds; (10.4.18)

and write the solution (10.4.16) as a(t) = ey(t)z(t) where from (10.4.17) and (10.4.18) and
Leibniz�rule (4.3.3),

dy(t) = r(t)dt+ ln(1 + �)dq(t); dz(t) = e�y(t)�(t)dt: (10.4.19)

We have thereby de�ned a function a (t) = F (y (t) ; z (t)) where the SDEs describing the
evolution of y (t) and z (t) are given in (10.4.19). This allows us to use the CVF (10.2.9)
which then says

dF = Fyr (t) dt+ Fze
�y(t)� (t) dt+ fF (y + ln (1 + �) ; z)� F (y; z)g dq ,

da(t) = ey(t)z(t)r(t)dt+ ey(t)e�y(t)�(t)dt+
�
ey(t)+ln(1+�)z(t)� ey(t)z(t)

	
dq

= fr (t) a (t) + � (t)g dt+ �a (t) dq:

This is the original di¤erential equation. Hence, a (t) in (10.4.16) is a solution for (10.4.15).

� The intertemporal budget constraint

In stochastic worlds, there is also a link between dynamic and intertemporal budget
constraints, just as in deterministic setups as in ch. 4.4.2. We can now use the solution
(10.4.16) to obtain an intertemporal budget constraint. We �rst present here a budget
constraint for a �nite planning horizon and then generalize the result.
For the �nite horizon case, we can rewrite (10.4.16) asZ t

0

e�y(s)c (s) ds+ e�y(t)a (t) = a0 +

Z t

0

e�y(s)w (s) ds: (10.4.20a)

This formulation suggests a standard economic interpretation. Total expenditure over the
planning horizon from 0 to t on the left-hand side must equal total wealth on the right-
hand side. Total expenditure consists of the present value of the consumption expenditure
path c (s) and the present value of assets a (t) the household wants to hold at the end of
the planning period, i.e. at t: Total wealth is given by initial �nancial wealth a0 and the
present value of current and future wage income w (s) : All discounting takes place at the
realized stochastic interest rate y (s) - no expectations are formed.
In order to obtain an in�nite horizon intertemporal budget constraint, the solution

(10.4.16) should be written more generally - after replacing t by � and 0 by t - as

a (�) = ey(�)at +

Z �

t

ey(�)�y(s) (w (s)� c (s)) ds (10.4.21)
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where y(�) is

y (�) =

Z �

t

r (u) du+ ln (1 + �) [q (�)� q (t)] : (10.4.22)

Multiplying (10.4.21) by e�y(�) and rearranging gives

a (�) e�y(�) +

Z �

t

e�y(s)(c (s)� w (s))ds = a(t):

Letting � go to in�nity, assuming a no-Ponzi game condition lim�!1 a (�) e
�y(�) = 0 and

rearranging again yieldsZ 1

t

e�y(s)c (s) ds = a(t) +

Z 1

t

e�y(s)w (s) ds:

The structure here and in (10.4.20a) is close to the one in the deterministic world.
The present value of consumption expenditure needs to equal current �nancial wealth
a (t) plus �human wealth�, i.e. the present value of current and future labour income.
Here as well, discounting takes place at the �risk-corrected�interest rate as captured by
y (�) in (10.4.22). Note also that this intertemporal budget constraint requires equality
in realizations, not in expected terms.

� A switch process

Here are two funny processes which have an interesting and simple solution. Consider
the initial value problem,

dx (t) = �2x (t) dq (t) ; x (0) = x0:

The solution is x (t) = (�1)q(t) x0; i.e. x (t) oscillates between �x0 and x0:
Now consider the transformation y = �y + x: It evolves according to

dy = �2 (y � �y) dq; y0 = �y + x0:

Its solution is y (t) = �y + (�1)q(t) x0 and y (t) oscillates now between �y � x0 and �y + x0:
This could be nicely used for models with wage uncertainty, where wages are sometimes

high and sometimes low. An example would be a matching model where labour income
is w (i.e. �y + x0) when employed and b (i.e. �y � x0) when unemployed. The di¤erence
between labour income levels is then 2x0. The drawback is that the probability of �nding
a job is identical to the probability of losing it.

10.5 Expectation values

10.5.1 The idea

What is the idea behind expectations of stochastic processes? When thinking of a sto-
chastic process X (t), either a simple one like Brownian motion or a Poisson process or
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more complex ones described by SDEs, it is useful to keep in mind that one can think of
the value X (�) the stochastic process takes at some future point � in time as a �normal�
random variable. At each future point in time X (�) is characterized by some mean, some
variance, by a range etc. This is illustrated in the following �gure.

Figure 10.5.1 The distribution of X (�) at � = :4 > t = 0

The �gure shows four realizations of the stochastic process X (t) : The starting point is
today in t = 0 and the mean growth of this process is illustrated by the dotted line. When
we think of possible realizations of X (�) for � = :4 from the perspective of t = 0; we can
imagine a vertical line that cuts through possible paths at � = :4:With su¢ ciently many
realizations of these paths, we would be able to make inferences about the distributional
properties of X (:4) : As the process used for this simulation is a geometric Brownian
motion process as in (10.4.2), we would �nd that X (:4) is lognormally distributed as
depicted above. Clearly, given that we have a precise mathematical description of our
process, we do not need to estimate distributional properties for X (�) ; as suggested by
this �gure, but we can explicitly compute them.
What this section therefore does is provide tools that allow to determine properties

of the distribution of a stochastic process for future points in time. Put di¤erently, un-
derstanding a stochastic process means understanding the evolution of its distributional
properties. We will �rst start by looking at relatively straightforward ways to compute
means. Subsequently, we provide some martingale results which allow us to then under-
stand a more general approach to computing means and also higher moments.
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10.5.2 Simple results

� Brownian motion I

Consider a Brownian motion process Z (�) ; � � 0: Let Z (0) = 0. From the de�nition
of Brownian motion in ch. 10.1.1, we know that Z (�) is normally distributed with mean
0 and variance �2� : Let us assume we are in t today and Z (t) 6= 0. What is the mean
and variance of Z (�) for � > t?

We construct a stochastic process Z (�)� Z (t) which at � = t is equal to zero. Now
imagining that t is equal to zero, Z (�) � Z (t) is a Brownian motion process as de�ned
in ch. 10.1.1. Therefore, Et [Z (�)� Z (t)] = 0 and vart [Z (�)� Z (t)] = �2 [� � t] : This
says that the increments of Brownian motion are normally distributed with mean zero
and variance �2 [� � t] : Hence, the reply to our question is

EtZ (�) = Z (t) ; vartZ (�) = �2 [� � t] :

For our convention � � 1 which we follow here as stated at the beginning of ch. 10.1.2,
the variance would equal vartZ (�) = � � t:

� Brownian motion II

Consider again the geometric Brownian process dA (t) =A (t) = gdt+�dz (t) describing

the growth of TFP in (10.4.2). Given the solution A (t) = A0e
(g� 1

2
�2)t+�z(t) from (10.4.3),

we would now like to know what the expected TFP level A (t) in t from the perspective
of t = 0 is. To this end, apply the expectations operator E0 and �nd

E0A (t) = A0E0e
(g� 1

2
�2)t+�z(t) = A0e

(g� 1
2
�2)tE0e

�z(t); (10.5.1)

where the second equality exploited the fact that e(g�
1
2
�2)t is non-random. As z (t) is

a standardized Brownian motion, z (t) � N (0; t), �z (t) is normally distributed with
N (0; �2t) : As a consequence (compare ch. 7.3.3, especially eq. (7.3.4)), e�z(t) is lognor-
mally distributed with mean e

1
2
�2t: Hence,

E0A (t) = A0e
(g� 1

2
�2)te

1
2
�2t = A0e

gt: (10.5.2)

The expected level of TFP growing according to a geometric Brownian motion process
grows at the drift rate g of the stochastic process. The variance parameter � does not
a¤ect expected growth.
Note that we can also determine the variance of A (t) by simply applying the variance

operator to the solution from (10.4.3),

var0A (t) = var0
�
A0e

(g� 1
2
�2)te�z(t)

�
= A20e

2(g� 1
2
�2)tvar0

�
e�z(t)

�
:
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We nowmake similar arguments to before when we derived (10.5.2). As �z (t) � N (0; �2t) ;

the term e�z(t) is lognormally distributed with, see (7.3.4), variance e�
2t
�
e�

2t � 1
�
: Hence,

we �nd

var0A (t) = A20e
2(g� 1

2
�2)te�

2t
�
e�

2t � 1
�
= A20e

(2(g� 1
2
�2)+�2)t

�
e�

2t � 1
�

= A20e
2gt
�
e�

2t � 1
�
:

This clearly shows that for any g > 0; the variance of A (t) increases over time.

� Poisson processes I

The expected value and variance of a Poisson process q (�) with arrival rate � are

Etq (�) = q (t) + � [� � t] ; � > t (10.5.3)

vartq (�) = � [� � t] :

As always, we compute moments from the perspective of t and � > t lies in the future. The
expected valueEtq (�) directly follows from the de�nition of a Poisson process in ch. 10.1.1,
see (10.1.1). As the number of jumps is Poisson distributed with mean � [� � t] and the
variance of the Poisson distribution is identical to its mean, the variance also follows from
the de�nition of a Poisson process. Note that there are simple generalizations of the
Poisson process where the variance di¤ers from the mean (see ch. 10.5.4).

� Poisson processes II

Poisson processes are widely used to understand events like �nding a job, getting
�red, developing a new technology, occurrence of an earthquake etc. One can model these
situations by a Poisson process q (t) with arrival rate �: In these applications, the following
questions are often asked.
What is the probability that q (t) will jump exactly once between t and �? Given

that by def. 10.1.6, e��[��t](�[��t])n
n!

is the probability that q jumped n times by � ; i.e.
q (�) = q (t) + n; this probability is given by P (q (�) = q (t) + 1) = e��[��t]� [� � t] : Note
that this is a function which is non-monotonic in time � ; as illustrated in �g. 10.5.2.
How can the expression P (q (�) = q (t) + 1) = e��[��t]� [� � t] be reconciled with the

usual description of a Poisson process, as e.g. in (10.1.2), where it says that the probability
of a jump is given by �dt?When we look at a small time interval dt; we can neglect e��dt

as it is �very close to one�and we get P (dq (t) = 1) = �dt: As over a very small instant
dt a Poisson process can either jump or not jump (it can not jump more than once in a
small instant dt), the probability of no jump is therefore P (dq (t) = 0) = 1� �dt:
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Figure 10.5.2 The probability of one jump by time � for a high arrival rate (peak at
around 3) and a low arrival rate (peak at around 11)

What is the length of time between two jumps or events? Clearly, we do not know
as jumps are random. We can therefore only ask what the distribution of the length of
time between two jumps is. To understand this, we start from (10.1.1) which tells us that
the probability that there is no jump by � is given by P [q (�) = q (t)] = e��[��t]: The
probability that there is at least one jump by � is therefore P [q (�) > q (t)] = 1� e��[��t]:
This term 1 � e��[��t] is the cumulative density function of an exponential distribution
for a random variable � � t (see ex. 2). Hence, the length � � t between two jumps is
exponentially distributed with density �e��[��t]:

� Poisson process III

Following the same structure as with Brownian motion, we now look at the geometric
Poisson process describing TFP growth (10.4.13). The solution was given in (10.4.14)
which reads, slightly generalized with the perspective of t and initial condition At; A (�) =
Ate

g[��t]+[q(�)�q(t)] ln(1+�): What is the expected TFP level in �?
Applying the expectation operator gives

EtA (�) = Ate
g[��t]�q(t) ln(1+�)Ete

q(�) ln(1+�) (10.5.4)

where, as in (10.5.1), we split the exponential growth term into its deterministic and
stochastic part. To proceed, we need the following

Lemma 10.5.1 (Posch and Wälde, 2006) Assume that we are in t and form expectations
about future arrivals of the Poisson process. The expected value of ckq(�), conditional on t
where q (t) is known, is

Et(c
kq(�)) = ckq(t)e(c

k�1)�(��t); � > t; c; k = const:
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Note that for integer k, these are the raw moments of cq(�):
Proof. We can trivially rewrite ckq(�) = ckq(t)ck[q(�)�q(t)]: At time t; we know the

realization of q(t) and therefore Etckq(�) = ckq(t)Etc
k[q(�)�q(t)]: Computing this expectation

requires the probability that a Poisson process jumps n times between t and � : Formally,

Etc
k[q(�)�q(t)] = �1n=0c

kn e
��(��t)(�(� � t))n

n!
= �1n=0

e��(��t)(ck�(� � t))n
n!

= e(c
k�1)�(��t)�1n=0

e��(��t)�(c
k�1)�(��t)(ck�(� � t))n

n!

= e(c
k�1)�(��t)�1n=0

e�c
k�(��t)(ck�(� � t))n

n!
= e(c

k�1)�(��t);

where e��� (��)n

n!
is the probability of q (�) = n and �1n=0

e�c
k�(��t)(ck�(��t))n

n!
= 1 denotes the

summation of the probability function over the whole support of the Poisson distribution
which was used in the last step. For a generalization of this lemma, see ex. 8.
To apply this lemma to our case Eteq(�) ln(1+�); we set c = e and k = ln (1 + �) :

Hence, Eteq(�) ln(1+�) = eln(1+�)q(t)e(e
ln(1+�)�1)�[��t] = eq(t) ln(1+�)e��[��t] = eq(t) ln(1+�)+��[��t]

and, inserted in (10.5.4), the expected TFP level is

EtA (�) = Ate
g[��t]�q(t) ln(1+�)eq(t) ln(1+�)+��[��t] = Ate

(g+��)[��t]:

This is an intuitive result: the growth rate of the expected TFP level is driven both by
the deterministic growth component of the SDE (10.4.13) for TFP and by the stochastic
part. The growth rate of expected TFP is higher, the higher the determinist part, the
g; the more often the Poisson process jumps on average (a higher arrival rate �) and the
higher the jump (the higher �).
This con�rms formally what was already visible in and informally discussed after �g.

10.1.2 of ch. 10.1.2: A Poisson process as a source of uncertainty in a SDE implies that
average growth is not just determined by the deterministic part of the SDE (as is the case
when Brownian motion constitutes the disturbance term) but also by the Poisson process
itself. For a positive �; average growth is higher, for a negative �; it is lower.

10.5.3 Martingales

Martingale is an impressive word for a simple concept. Here is a simpli�ed de�nition
which is su¢ cient for our purposes. For more complete de�nitions (in a technical sense),
see �further reading�.

De�nition 10.5.1 A stochastic process x (t) is a martingale if, being in t today, the
expected value of x at some future point � in time equals the current value of x;

Etx (�) = x (t) ; � � t: (10.5.5)
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As the expected value of x (t) is x (t) ; Etx (t) = x (t) ; this can easily be rewritten
as Et [x (�)� x (t)] = 0: This is identical to saying that x (t) is a martingale if the ex-
pected value of its increments between now t and somewhere at � in the future is zero.
This de�nition and the de�nition of Brownian motion imply that Brownian motion is a
martingale.
In what follows, we will use the martingale properties of certain processes relatively

frequently, for example when computing moments. Here are now some fundamental ex-
amples for martingales.

� Brownian motion

First, look at Brownian motion, where we have a central result useful for many applica-
tions where expectations and other moments are computed. It states that

R �
t
f (z (s) ; s) dz (s),

where f (:) is some function and z (s) is Brownian motion, is a martingale (Corollary 3.2.6,
Øksendal, 1998, p. 33). Hence,

Et

Z �

t

f (z (s) ; s) dz (s) = 0: (10.5.6)

� Poisson uncertainty

A similar fundamental result for Poisson processes exists. We will use in what follows
the martingale property of various expressions containing Poisson uncertainty. These
expressions are identical to or special cases of

R �
t
f (q (s) ; s) dq (s)��

R �
t
f (q (s) ; s) ds; of

which Garcia and Griego (1994, theorem 5.3) have shown that it is a martingale indeed.
Hence,

Et

�Z �

t

f (q (s) ; s) dq (s)� �
Z �

t

f (q (s) ; s) ds

�
= 0: (10.5.7)

As always, � is the (constant) arrival rate of q (s).

10.5.4 A more general approach to computing moments

When we want to understand moments of some stochastic process, we can proceed in
two ways. Either, a SDE is expressed in its integral version, expectations operators are
applied and the resulting deterministic di¤erential equation is solved. Or, the SDE is
solved directly and then expectation operators are applied. We already saw examples for
the second approach in ch. 10.5.2. We will now follow the �rst way as this is generally
the more �exible one. We �rst start with examples for Brownian motion processes and
then look at cases with Poisson uncertainty.
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� The drift and variance rates for Brownian motion

We will now return to our �rst SDE in (10.1.3), dx (t) = adt + bdz (t) ; and want to
understand why a is called the drift term and b2 the variance term. To this end, we
compute the mean and variance of x (�) for � > t:
We start by expressing (10.1.3) in its integral representation as in ch. 10.1.3. This

gives

x (�)� x(t) =
Z �

t

ads+

Z �

t

bdz(s) = a [� � t] + b [z(�)� z (t)] : (10.5.8)

The expected value Etx (�) is then simply

Etx(�) = x (t) + a [� � t] + bEt [z(�)� z (t)] = x (t) + a [� � t] ; (10.5.9)

where the second step used the fact that the expected increment of Brownian motion is
zero. As the expected value Etx(�) is a deterministic variable, we can compute the usual
time derivative and �nd how the expected value of x (�), being today in t, changes the
further the point � lies in the future, dEtx(�)=d� = a: This makes clear why a is referred
to as the drift rate of the random variable x (:) :
Let us now analyse the variance of x (�) where we also start from (10.5.8). The variance

can from (7.3.1) be written as vartx(�) = Etx
2(�)� [Etx(�)]2 : In contrast to the term in

(7.3.1) we need to condition the variance on t: If we computed the variance of x (�) from
the perspective of some earlier t; the variance would di¤er - as will become very clear from
the expression we will see in a second. Applying the expression from (7.3.1) also shows
that we can look at any x (�) as a �normal�random variable: Whether x (�) is described
by a stochastic process or by some standard description of a random variable, an x (�) for
any �x future point � in time has some distribution with corresponding moments. This
allows us to use standard rules for computing moments. Computing �rst Etx2(�) gives
by inserting (10.5.8)

Etx
2(�)

= Et
�
[x(t) + a [� � t] + b [z(�)� z (t)]]2

	
= Et

�
[x(t) + a [� � t]]2 + 2 [x(t) + a (� � t)] b [z(�)� z (t)] + [b (z(�)� z (t))]2

	
= [x(t) + a [� � t]]2 + 2 [x(t) + a (� � t)] bEt [z(�)� z (t)] + Et

�
[b (z(�)� z (t))]2

	
= [x(t) + a [� � t]]2 + b2Et

�
[z(�)� z (t)]2

	
; (10.5.10)

where the last equality used again that the expected increment of Brownian motion is
zero. As [Etx(�)]

2 = [x (t) + a [� � t]]2 from (10.5.9), inserting (10.5.10) into the variance
expression gives vartx(�) = b2Et

�
[z(�)� z (t)]2

	
:

Computing the mean of the second moment gives

Et
�
[z(�)� z (t)]2

	
= Et

�
z2(�)� 2z(�)z (t) + z2 (t)

	
= Et

�
z2(�)

	
� z2 (t) = vartz (�) ;
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where we used that z (t) is known in t and therefore non-stochastic, that Etz(�) = z(t)
and equation (7.3.1) again. We therefore found that vartx(�) = b2vartz (�) ; the variance
of x (�) is b2 times the variance of z (�) : As the latter variance is given by vartz (�) = ��t;
given that we focus on Brownian motion with standard normally distributed increments,
we found

vartx(�) = b2 [� � t] :

This equation shows why b is the variance parameter for x (:) and why b2 is called its
variance rate. The expression also makes clear why it is so important to state the current
point in time, t in our case. If we were further in the past or � is further in the future,
the variance would be larger.

� Expected returns - Brownian motion

Imagine an individual owns wealth a that is allocated to N assets such that shares
in wealth are given by �i � ai=a: The price of each asset follows a certain pricing rule,
say geometric Brownian motion, and let�s assume that total wealth of the household,
neglecting labour income and consumption expenditure, evolves according to

da (t) = a (t)
�
rdt+ �Ni=1�i�idzi (t)

�
; (10.5.11)

where r � �Ni=1�iri: This is in fact the budget constraint (with w � c = 0) which will be
derived and used in ch. 11.4 on capital asset pricing. Note that Brownian motions zi are
correlated, i.e. dzidzj = �ijdt as in (10.2.5). What is the expected return and the variance
of holding such a portfolio, taking �i and interest rates and variance parameters as given?
Using the same approach as in the previous example we �nd that the expected return

is simply given by r: This is due to the fact that the mean of the BMs zi (t) are zero. The
variance of a (t) is left as an exercise.

� Expected returns - Poisson

Let us now compute the expected return of wealth when the evolution of wealth is
described by the budget constraint in (10.3.9), da (t) = fr (t) a (t) + w (t)� p (t) c (t)g dt+
�a (t) dq (t). When we want to do so, we �rst need to be precise about what we mean
by the expected return. We de�ne it as the growth rate of the mean of wealth when
consumption expenditure and labour income are identical, i.e. when total wealth changes
only due to capital income.
Using this de�nition, we �rst compute the expected wealth level at some future point

in time � : Expressing this equation in its integral representation as in ch. 10.1.3 gives

a (�)� a (t) =
Z �

t

fr (s) a (s) + w (s)� p (s) c (s)g ds+
Z �

t

�a (s) dq (s) :
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Applying the expectations operator yields

Eta (�)� a (t) = Et

Z �

t

fr (s) a (s) + w (s)� p (s) c (s)g ds+ Et

Z �

t

�a (s) dq (s)

=

Z �

t

Etr (s)Eta (s) ds+ ��

Z �

t

Eta (s) ds: (10.5.12)

The second equality used an element of the de�nition of the expected return, i.e. w (s) =
p (s) c (s) ; that r (s) is independent of a (s) and the martingale result of (10.5.7). When
we de�ne the mean of a (s) from the perspective of t by � (s) � Eta (s) ; this equation
reads

� (�)� a (t) =
Z �

t

Etr (s)� (s) ds+ ��

Z �

t

� (s) ds:

Computing the derivative with respect to time � gives

_� (�) = Etr (�)� (�) + ��� (�), _� (�)

� (�)
= Etr (�) + ��: (10.5.13)

Hence, the expected return is given by Etr (�) + ��:
The assumed independence between the interest rate and wealth in (10.5.12) is useful

here but might not hold in a general equilibrium setup if wealth is a share of and the
interest rate a function of the aggregate capital stock. Care should therefore be taken
when using this result more generally.

� Expected growth rate

Finally, we ask what the expected growth rate and the variance of the price v (�) is
when it follows the geometric Poisson process known from (10.3.8), dv (�) = �v (�) d� +
�v (�) dq (�) :

The expected growth rate can be de�ned as Et
v(�)�v(t)
v(t)

: Given that v (t) is known in

t; we can write this expected growth rate as Etv(�)�v(t)
v(t)

where expectations are formed
only with respect to the future price v (�) : Given this expression, we can follow the usual
approach. The integral version of the SDE, applying the expectations operator, is

Etv (�)� v (t) = �Et

Z �

t

v (s) ds+ �Et

Z �

t

v (s) dq (s) :

Pulling the expectations operator inside the integral, using the martingale result from
(10.5.7) and de�ning � (s) � Etv (s) gives

� (�)� v (t) = �

Z �

t

� (s) ds+ ��

Z �

t

� (s) ds:

The time-� derivative gives _� (�) = �� (�) + ��� (�) which shows that the growth rate
of the mean of the price is given by � + ��: This is, as just discussed, also the expected
growth rate of the price v (�) :
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� Disentangling the mean and variance of a Poisson process

Consider the SDE dv (t) =v (t) = �dt+ ��dq (t) where the arrival rate of q (t) is given
by �=�: The mean of v (�) is Etv (�) = v (t) exp(�+��)(��t) and thereby independent of

�: The variance, however, is given by vartv1 (�) = [Etv (�)]
2
h
exp���

2[��t]�1
i
. A mean

preserving spread can thus be achieved by an increase of � : This increases the randomly
occurring jump �� and reduces the arrival rate �=� - the mean remains unchanged, the
variance increases.

� Computing the mean step-by-step for a Poisson example

Let us now consider some stochastic processesX (t) described by a di¤erential equation
and ask what we know about expected values of X (�) ; where � lies in the future, i.e.
� > t: We take as the �rst example a stochastic process similar to (10.1.8). We take as
an example the speci�cation for total factor productivity A,

dA (t)

A (t)
= �dt+ �1dq1 (t)� �2dq2 (t) ; (10.5.14)

where � and �i are positive constants and the arrival rates of the processes are given by
some constant �i > 0. This equation says that TFP increases in a deterministic way at
the constant rate � (note that the left hand side of this di¤erential equation gives the
growth rate of A (t)) and jumps at random points in time. Jumps can be positive when
dq1 = 1 and TFP increases by the factor �1; i.e. it increases by �1%; or negative when
dq2 = 1; i.e. TFP decreases by �2%:
The integral version of (10.5.14) reads (see ch. 10.1.3)

A (�)� A (t) =
Z �

t

�A (s) ds+

Z �

t

�1A (s) dq1 (s)�
Z �

t

�2A (s) dq2 (s)

= �

Z �

t

A (s) ds+ �1

Z �

t

A (s) dq1 (s)� �2
Z �

t

A (s) dq2 (s) : (10.5.15)

When we form expectations, we obtain

EtA (�)� A (t) = �Et

Z �

t

A (s) ds+ �1Et

Z �

t

A (s) dq1 (s)� �2Et
Z �

t

A (s) dq2 (s)

= �Et

Z �

t

A (s) ds+ �1�1Et

Z �

t

A (s) ds� �2�2Et
Z �

t

A (s) ds:

(10.5.16)

where the second equality used the martingale result from ch. 10.5.3, i.e. the expression
in (10.5.7). Pulling the expectations operator into the integral gives

EtA (�)� A (t) = �

Z �

t

EtA (s) ds+ �1�1

Z �

t

EtA (s) ds� �2�2
Z �

t

EtA (s) ds:
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When we �nally de�ne m1 (�) � EtA (�) ; we obtain a deterministic di¤erential equation
that describes the evolution of the expected value of A (�) from the perspective of t: We
�rst have the integral equation

m1 (�)� A (t) = �

Z �

t

m1 (s) ds+ �1�1

Z �

t

m1 (s) ds� �2�2
Z �

t

m1 (s) ds

which we can then di¤erentiate with respect to time � by applying the rule for di¤erenti-
ating integrals from (4.3.3),

_m1 (�) = �m1 (�) + �1�1m1 (�)� �2�2m1 (�)

= (�+ �1�1 � �2�2)m1 (�) : (10.5.17)

We now immediately see that TFP does not increase in expected terms, more precisely
EtA (�) = A (t) ; if �+�1�1 = �2�2: Economically speaking, if the increase in TFP through
the deterministic component � and the stochastic component �1 is �destroyed�on average
by the second stochastic component �2; TFP does not increase.

10.6 Further reading and exercises

� Mathematical background

There are many textbooks on di¤erential equations, Ito calculus, change of variable
formulas and related aspects in mathematics. One that is widely used is Øksendal (1998)
and some of the above material is taken from there. A more technical approach is pre-
sented in Protter (1995). Øksendal (1998, Theorem 4.1.2) covers proofs of some of the
lemmas presented above. A much more general approach based on semi-martingales, and
thereby covering all lemmas and CVFs presented here, is presented by Protter (1995). A
classic mathematical reference is Gihman and Skorohod (1972). See also Goodman (2002)
on an introduction to Brownian motion.
A special focus with a detailed formal analysis of SDEs with Poisson processes can

be found in Garcia and Griego (1994). They also provide solutions of SDEs and the
background for computing moments of stochastic processes. Further solutions, applied
to option pricing, are provided by Das and Foresi (1996). The CVF for the combined
Poisson-di¤usion setup in lemma 10.2.6 is a special case of the expression in Sennewald
(2007) which in turn is based on Øksendal and Sulem (2005). Øksendal and Sulem present
CVFs for more general Levy processes of which the SDE (10.2.12) is a very simple special
case.
The claim for the solution in (10.4.6) is an �educated guess�. It builds on Arnold

(1973, ch. 8.4) who provides a solution for independent Brownian motions.
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� A less technical background

A very readable introduction to stochastic processes is by Ross (1993, 1996). He writes
in the introduction to the �rst edition of his 1996 book that his text is �a nonmeasure
theoretic introduction to stochastic processes�. This makes this book highly accessible
for economists.
An introduction with many examples from economics is Dixit and Pindyck (1994).

See also Turnovsky (1997, 2000) for many applications. Brownian motion is treated
extensively in Chang (2004).
The CVF for Poisson processes is most easily accessible in Sennewald (2007) or Sen-

newald and Wälde (2006). Sennewald (2007) provides the mathematical proofs, Sen-
newald and Wälde (2006) has a focus on applications. Proposition 10.2.1 is taken from
Sennewald (2007) and Sennewald and Wälde (2006).
The technical background for the t� notation is the fact that the process x (t) is a

so called cádlág process (�continu a droite, limites a gauche�), i.e. the paths of x (t) are
continuous from the right with left limits. The left limit is denoted by x (t�) � lims"t x (s).
See Sennewald (2007) or Sennewald and Wälde (2006) for further details and references
to the mathematical literature.

� How to present technologies in continuous time

There is a tradition in economics starting with Eaton (1981) where output is repre-
sented by a stochastic di¤erential equation as presented in ch. 10.4.1. This and similar
representations of technologies are used by Epaulart and Pommeret (2003), Pommeret
and Smith (2005), Turnovsky and Smith (2006), Turnovsky (2000), Chatterjee, Giuliano
and Turnovsky (2004), and many others. It is well known (see e.g. footnote 4 in Grinols
and Turnovsky (1998)) that this implies the possibility of negative Y . An alternative
where standard Cobb-Douglas technologies are used and TFP is described by a SDE to
this approach is presented in Wälde (2005) or Wälde (2011).

� Application of Poisson processes in economics

The Poisson process is widely used in �nance (early references are Merton, 1969, 1971)
and labour economics (in matching and search models, see e.g. Pissarides, 2000, Burdett
and Mortenson, 1998 or Moscarini, 2005). See also the literature on the real options
approach to investment (McDonald and Siegel, 1986, Dixit and Pindyck, 1994, Chen and
Funke 2005 or Guo et al., 2005). It is also used in growth models (e.g. quality ladder
models à la Aghion and Howitt, 1992 or Grossman and Helpman, 1991), in analyses
of business cycles in the natural volatility tradition (e.g. Wälde, 2005), contract theory
(e.g. Guriev and Kvasov, 2005), in the search approach to monetary economics (e.g. Kiy-
otaki and Wright, 1993 and subsequent work) and many other areas. Further examples
include Toche (2005), Steger (2005), Laitner and Stolyarov (2004), Farzin et al. (1998),
Hassett and Metcalf (1999), Thompson and Waldo (1994), Palokangas (2003, 2005) and
Venegas-Martínez (2001).
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One Poisson shock a¤ecting many variables (as stressed in lemma 10.2.5) was used
by Aghion and Howitt (1992) in their famous growth model. When deriving the budget
constraint in Appendix 1 of Wälde (1999a), it is taken into consideration that a jump
in the technology level a¤ects both the capital stock directly as well as its price. Other
examples include the natural volatility papers by Wälde (2002, 2005) and Posch and
Wälde (2006).
�Disentangling the mean and variance of a Poisson process�is taken from Sennewald

and Wälde (2006). An alternative is provided by Steger (2005) who uses two symmetric
Poisson processes instead of one here. He obtains higher risk at an invariant mean by
increasing the symmetric jump size.

� Other

Solutions to partial di¤erential equations as in the option pricing example (10.4.4)
are more frequently used e.g. in physics (see Black and Scholes, 1973, p. 644). Partial
di¤erential equations also appear in labour economics, however. See the Fokker-Planck
equations in Bayer and Wälde (2010a,b).
De�nitions and applications of martingales are provided more stringently in e.g. Øk-

sendal (1998) or Ross (1996).
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Exercises Chapter 10
Applied Intertemporal Optimization

Stochastic di¤erential equations and rules
for di¤erentiating

1. Expectations

(a) Assume the price of bread follows a geometric Brownian motion. What is the
probability that the price will be 20% more expensive in the next year?

(b) Consider a Poisson process with arrival rate �: What is the probability that
a jump occurs only after 3 weeks? What is the probability that 5 jumps will
have occurred over the next 2 days?

2. Di¤erentials of functions of stochastic processes I
Assume x (t) and y (t) are two correlated Wiener processes. Compute d [x (t) y (t)],
d [x (t) =y (t)] and d lnx (t) :

3. Di¤erentials of functions of stochastic processes II

(a) Show that with F = F (x; y) = xy and dx = fx (x; y) dt + gx (x; y) dqx and
dy = f y (x; y) dt + gy (x; y) dqy, where qx and qy are two independent Poisson
processes, dF = xdy + ydx.

(b) Does this also hold for two Wiener processes qx and qy?

4. Correlated jump processes
Let qi (t) for i = 1; 2; 3 be three independent Poisson processes. De�ne two jump
processes by qx (t) � q1 (t) + q2 (t) and qy (t) � q1 (t) + q3 (t) : Given that q1 (t)
appears in both de�nitions, qx (t) and qy (t) are correlated jump processes. Let
labour productivity in sector X and Y be driven by

dA (t) = �dt+ �dqx (t) ;

dB (t) = 
dt+ �dqy (t) :

Let GDP in a small open economy (with internationally given constant prices px
and py) be given by

Y (t) � pxA (t)Lx + pyB (t)Ly:
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(a) Given an economic interpretation to equations dA (t) and dB (t), based on
qi (t) ; i = 1; 2; 3:

(b) How does GDP evolve over time in this economy if labour allocation Lx and
Ly is invariant? Express the di¤erential dY (t) by using dqx and dqy if possible.

5. Deriving a budget constraint
Consider a household who owns some wealth a = n1v1+ n2v2, where ni denotes the
number of shares held by the household and vi is the value of the share. Assume
that the value of the share evolves according to

dvi = �ividt+ �ividqi:

Assume further that the number of shares held by the household changes according
to

dni =
�i (�1n1 + �2n2 + w � e)

vi
dt;

where �i is the share of savings used for buying stock i:

(a) Give an interpretation (in words) of the last equation.

(b) Derive the household�s budget constraint.

6. Option pricing
Assume the price of an asset follows dS=S = �dt+ �dz+ �dq (as in Merton, 1976),
where z is Brownian motion and q is a Poisson process. This is a generalization of
(10.3.1) where � = 0: How does the di¤erential equation look like that determines
the price of an option on this asset?

7. Martingales

(a) The weather tomorrow will be just the same as today. Is this a martingale?

(b) Let z (s) be Brownian motion. Show that Y (t) de�ned by

Y (t) � exp
�
�
Z t

0

f (s) dz (s)� 1
2

Z t

0

f 2 (s) ds

�
(10.6.1)

is a martingale.

(c) Show that X (t) de�ned by

X (t) � exp
�Z t

0

f (s) dz (s)� 1
2

Z t

0

f 2 (s) ds

�
is also a martingale.
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8. Expectations - Poisson
Assume that you are in t and form expectations about future arrivals of the Poisson
process q (t). Prove the following statement by using lemma 10.5.1: The number of
expected arrivals in the time interval [� ; s] equals the number of expected arrivals
in a time interval of the length � � s for any s > t,

Et(c
k[q(�)�q(s)]) = E(ck[q(�)�q(s)]) = e(c

k�1)�(��s); � > s > t; c; k = const:

Hint: If you want to cheat, look at the appendix to Posch and Wälde (2006). It is
available for example on www.waelde.com/publications.

9. Expected values
Show that the growth rate of the mean of x (t) described by the geometric Brownian
motion

dx (t) = ax (t) dt+ bx (t) dz (t)

is given by a:

(a) Do so by using the integral version of this SDE and compute the increase of
the expected value of x (t).

(b) Do the same as in (a) but solve �rst the SDE and compute expectations by
using this solution.

(c) Compute the covariance of x (�) and x (s) for � > s � t:

(d) Compute the density function f(x(��)) for one speci�c point in time �� > t:
Hint: Compute the variance of x(��) and the expected value of x(��) as in (a) to
(c). What type of distribution does x(�) come from? Compute the parameters
� and �2 of this distribution for one speci�c point in time � = �� :

10. Expected returns
Consider the budget constraint

da (t) = fra (t) + w � c (t)g dt+ �a (t) dz (t) :

(a) What is the expected return for wealth? Why does this expression di¤er from
(10.5.13)?

(b) What is the variance of wealth?

11. �Di¤erential-representation�of a technology

(a) Consider the �di¤erential-representation� of a technology, dY (t) = AKdt +
�Kdz (t) ; as presented in (10.4.1). Compute expected output of Y (�) for
� > t and the variance of Y (�) :
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(b) Consider a more standard representation by Y (t) = A (t)K and let TFP follow
dA (t) =A (t) = gdt + �dz (t) as in (10.4.2). What is the expected output level
EtY (�) and what is its variance?

12. Solving stochastic di¤erential equations
Consider the di¤erential equation

dx (t) = [a (t)� x (t)] dt+ c1 (t)x (t) dz1 (t) + g2 (t) dz2 (t)

where z1 and z2 are two correlated Brownian motions.

(a) What is the solution of this di¤erential equation?

(b) Use Ito�s Lemma to show that your solution is a solution.

13. Dynamic and intertemporal budget constraints - Brownian motion
Consider the dynamic budget constraint

da (�) = (r (�) a (�) + w (�)� p (�) c (�)) dt+ �a (�) dz (�) ;

where z (�) is Brownian motion.

(a) Show that the intertemporal version of this budget constraint, using a no-Ponzi
game condition, can be written asZ 1

t

e�'(�)p (�) c (�) d� = at +

Z 1

t

e�'(�)w (�) d� (10.6.2)

where the discount factor ' (�) is given by

' (�) =

Z �

t

�
r (s)� 1

2
�2
�
ds+

Z �

t

�dz (�) :

(b) Now assume we are willing to assume that intertemporal budget constraints
need to hold in expectations only and not in realizations: we require only that
agents balance at each instant expected consumption expenditure to current
�nancial wealth plus expected labour income. Show that the intertemporal
budget constraint then simpli�es to

Et

Z 1

t

e�
R �
t (r(s)��2)dsp (�) c (�) d� = at + Et

Z 1

t

e�
R �
t (r(s)��2)dsw (�) d�

i.e. all stochastic terms drop out of the discount factor but the variance stays
there.
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In�nite horizon models

We now return to our main concern: How to solve maximization problems. We �rst look
at optimal behaviour under Poisson uncertainty where we analyse cases for uncertain asset
prices and labour income. We then switch to Brownian motion and look at capital asset
pricing as an application.

11.1 Intertemporal utility maximization under Pois-
son uncertainty

11.1.1 The setup

Let us consider an individual that tries to maximize his objective function that is given
by

U (t) = Et

Z 1

t

e��[��t]u (c (�)) d� : (11.1.1)

The structure of this objective function is identical to the one we know from deterministic
continuous time models in e.g. (5.1.1) or (5.6.1): We are in t today, the time preference
rate is � > 0; instantaneous utility is given by u (c (�)) : Given the uncertain environment
the individual lives in, we now need to form expectations as consumption in future points
� in time is unknown.
When formulating the budget constraint of a household, we have now seen at various

occasions that it is a good idea to derive it from the de�nition of wealth of a household.
We did so in discrete time models in ch. 2.5.5 and in continuous time models in ch. 4.4.2.
Deriving the budget constraint in stochastic continuous time models is especially impor-
tant as a budget constraint in an economy where the fundamental source of uncertainty
is Brownian motion looks very di¤erent from one where uncertainty stems from Poisson
or Levy processes. For this �rst example, we use the budget constraint (10.3.9) derived
in ch. 10.3.2,

da (t) = fr (t) a (t) + w (t)� pc (t)g dt+ �a (t) dq (t) ; (11.1.2)

267
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where the interest rate r (t) � � + � (t) =v (t) was de�ned as the deterministic rate of
change � of the price of the asset (compare the equation for the evolution of assets in
(10.3.8)) plus dividend payments � (t) =v (t) :We treat the price p here as a constant (see
the exercises for an extension). Following the tilde notation from (10.1.7), we can express
wealth ~a (t) after a jump by

~a (t) = (1 + �) a (t) : (11.1.3)

The budget constraint of this individual re�ects standard economic ideas about budget
constraints under uncertainty. As visible in the derivation in ch. 10.3.2, the uncertainty
for this household stems from uncertainty about the evolution of the price (re�ected in
�) of the asset he saves in. No statement was made about the evolution of the wage
w (t) : Hence, we take w (t) here as parametric, i.e. if there are stochastic changes, they
all come as a surprise and are therefore not anticipated. The household does take into
consideration, however, the uncertainty resulting from the evolution of the price v (t)
of the asset. In addition to the deterministic growth rate � of v (t) ; v (t) changes in a
stochastic way by jumping occasionally by � percent (again, see (10.3.8)). The returns to
wealth a (t) are therefore uncertain and are composed of the �usual�r (t) a (t) term and
the stochastic �a (t) term.
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11.1.2 Solving by dynamic programming

We will solve this problem as before by dynamic programming methods. Note, however,
that it is not obvious whether the above problem can be solved by dynamic program-
ming methods. In principle, a proof is required that dynamic programming indeed yields
necessary and su¢ cient conditions for an optimum. While proofs exist for bounded in-
stantaneous utility function u (t) ; such a proof did not exist until recently for unbounded
utility functions. Sennewald (2007) extends the standard proofs and shows that dynamic
programming can also be used for unbounded utility functions. We can therefore follow
the usual three-step approach to dynamic programming here as well.

� DP1: Bellman equation and �rst-order conditions

The �rst tool we need to derive rules for optimal behavior is the Bellman equation.
De�ning the optimal program as V (a) � maxfc(�)g U (t) subject to the constraint (11.1.2),
this equation is given by (see Sennewald and Wälde, 2006, or Sennewald, 2007)

�V (a (t)) = max
c(t)

�
u (c (t)) +

1

dt
EtdV (a (t))

�
: (11.1.4)

The Bellman equation has this basic form for �most�maximization problems in continuous
time. It can therefore be taken as the starting point for other maximization problems as
well, independently, for example, of whether uncertainty is driven by Poisson processes,
Brownian motion or Levy processes. We will see examples of related problems later (see
ch. 11.1.4, ch. 11.2.2 or ch. 11.3.2) and discuss then how to adjust certain features of
this �general�Bellman equation. In this equation, the variable a (t) represents the state
variable, in our case wealth of the individual. See ch. 6.1 on dynamic programming in a
deterministic continuous time setup for a detailed intuitive discussion of the structure of
the Bellman equation. The discussion on �what is a state variable�of ch. 3.4.2 applies
here as well.
Given the general form of the Bellman equation in (11.1.4), we need to compute the

di¤erential dV (a (t)) : Given the evolution of a (t) in (11.1.2) and the CVF from (10.2.8),
we �nd

dV (a) = V 0 (a) fra+ w � pcg dt+ fV (a+ �a)� V (a)g dq:
In contrast to the CVF notation in for example (10.2.8), we use here and in what follows
simple derivative signs like V 0 (a) as often as possible in contrast to for example Va (a) :
This is possible as long as the functions, like the value function V (a) here, have one
argument only. Forming expectations about dV (a (t)) is easy and they are given by

EtdV (a (t)) = V 0 (a) fra+ w � pcg dt+ fV (~a)� V (a)gEtdq:

The �rst term, the �dt-term�is known in t: The current state a (t) and all prices are known
and the shadow price V 0 (a) is therefore also known. As a consequence, expectations need
to be applied only to the �dq-term�. The �rst part of the �dq-term�, the expression
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V ((1 + �) a) � V (a) is also known in t as again a (t), parameters and the function V
are all non-stochastic. We therefore only have to compute expectations about dq: From
(10.5.3), we know that Et [q (�)� q (t)] = � [� � t] : Now replace q (�) � q (t) by dq and
� � t by dt and �nd Etdq = �dt: The Bellman equation therefore reads

�V (a) = max
c(t)
fu (c (t)) + V 0 (a) [ra+ w � pc] + � [V ((1 + �) a)� V (a)]g : (11.1.5)

Note that forming expectations the way just used is, say, informal. Doing it in the more
stringent way introduced in ch. 10.5.4 would, however, lead to identical results.
The �rst-order condition is

u0 (c) = V 0 (a) p: (11.1.6)

As always, (current) utility from an additional unit of consumption u0 (c) must equal
(future) utility from an additional unit of wealth V 0 (a), multiplied by the price p of the
consumption good, i.e. by the number of units of wealth for which one can buy one unit
of the consumption good.

� DP2: Evolution of the costate variable

In order to understand the evolution of the marginal value V 0 (a) of the optimal pro-
gram, i.e. the evolution of the costate variable, we need to (i) compute the partial deriv-
ative of the maximized Bellman equation with respect to assets and (ii) compute the
di¤erential dV 0 (a) by using the CVF and insert the partial derivative into this expres-
sion. These two steps correspond to the two steps in DP2 in the deterministic continuous
time setup of ch. 6.1.
(i) In the �rst step, we state the maximized Bellman equation from (11.1.5) as the

Bellman equation where controls are replaced by their optimal values,

�V (a) = u (c (a)) + V 0 (a) [ra+ w � pc (a)] + � [V (~a)� V (a)] :

We then compute again the derivative with respect to the state - as in discrete time and
deterministic continuous time setups - as this gives us an expression for the shadow price
V 0 (a). In contrast to the previous emphasis on Ito�s Lemmas and CVFs, we can use for
this step standard rules from algebra as we compute the derivative for a given state a - the
state variable is held constant and we want to understand the derivative of the function
V (a) with respect to a:We do not compute the di¤erential of V (a) and ask how the value
function changes as a function of a change in a. Therefore, using the envelope theorem,

�V 0 (a) = V 0 (a) r + V 00 (a) [ra+ w � pc] + � [V 0 (~a) [1 + �]� V 0 (a)] : (11.1.7)

We used here the de�nition of ~a given in (11.1.3).
(ii) In the second step, the di¤erential of the shadow price V 0 (a) is computed. Here,

we do need a change of variable formula. Hence, given the evolution of a (t) in (11.1.2),

dV 0 (a) = V 00 (a) [ra+ w � pc] dt+ [V 0(~a)� V 0(a)] dq: (11.1.8)
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Finally, replacing V 00 (a) [ra+ w � pc] in (11.1.8) by the same expression from (11.1.7)
gives

dV 0 (a) = f(�� r)V 0 (a)� � [V 0 (~a) [1 + �]� V 0 (a)]g dt+ fV 0 (~a)� V 0 (a)g dq:

� DP3: Inserting �rst-order conditions

Finally, we can replace the marginal value by marginal utility from the �rst-order
condition (11.1.6). In this step, we employ that p is constant and therefore dV 0 (a) =
p�1du0 (c). Hence, the rule describing the evolution of marginal utility reads

du0 (c) = f(�� r)u0 (c)� � [u0 (~c) [1 + �]� u0 (c)]g dt+ fu0 (~c)� u0 (c)g dq: (11.1.9)

Note that the constant price p dropped out. This rule shows how marginal utility changes
in a deterministic and stochastic way.

11.1.3 The Keynes-Ramsey rule

The dynamic programming approach provided us with an expression in (11.1.9) which
describes the evolution of marginal utility from consumption. While there is a one-to-one
mapping from marginal utility to consumption which would allow some inferences about
consumption from (11.1.9), it would nevertheless be more useful to have a Keynes-Ramsey
rule for optimal consumption itself.

� The evolution of consumption

If we want to know more about the evolution of consumption, we can use the CVF
formula as follows. Let f (:) be the inverse function for u0; i.e. f (u0 (c)) = c; and apply
the CVF to f (u0 (c)) : This gives

df (u0 (c)) = f 0 (u0 (c)) f(�� r)u0 (c)� � [u0 (~c) [1 + �]� u0 (c)]g dt
+ ff (u0 (~c))� f (u0 (c))g dq:

As f (u0 (c)) = c; we know that f (u0 (~c)) = ~c and f 0 (u0 (~c)) � df(u0(c))
du0(c) = dc

du0(c) =
1

u00(c) :
Hence,

dc =
1

u00 (c)
f(�� r)u0 (c)� � [u0 (~c) [1 + �]� u0 (c)]g dt+ f~c� cg dq ,

�u
00 (c)

u0 (c)
dc =

�
r � �+ �

�
u0 (~c)

u0 (c)
[1 + �]� 1

��
dt� u00 (c)

u0 (c)
f~c� cg dq: (11.1.10)

This is the Keynes-Ramsey rule that describes the evolution of consumption under optimal
behaviour for a household that faces interest rate uncertainty resulting from Poisson
processes. This equation is useful to understand, for example, economic �uctuations in a
natural volatility setup. It corresponds to its deterministic pendant in (5.6.4) in ch. 5.6.1:
By setting � = 0 here (implying dq = 0), noting that we treated the price as a constant
and dividing by dt, we obtain (5.6.4).
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� A speci�c utility function

Let us now assume that the instantaneous utility function is given by the widely used
constant relative risk aversion (CRRA) utility function,

u (c (�)) =
c (�)1�� � 1
1� � ; � > 0: (11.1.11)

Then, the Keynes-Ramsey rule becomes

�
dc

c
=
n
r � �+ �

h
(1 + �)

�c
~c

��
� 1
io

dt+ �

�
~c

c
� 1
�
dq: (11.1.12)

The left-hand side gives the proportional change of consumption times �; the inverse of the
intertemporal elasticity of substitution ��1: This corresponds to � _c=c in the deterministic
Keynes-Ramsey rule in e.g. (5.6.5). Growth of consumption depends on the right-hand
side in a deterministic way on the usual di¤erence between the interest rate and time
preference rate plus the ���term�which captures the impact of uncertainty. When we
want to understand the meaning of this term, we need to �nd out whether consumption
jumps up or down, following a jump of the Poisson process. When � is positive, the
household holds more wealth and consumption increases. Hence, the ratio c=~c is smaller
than unity and the sign of the bracket term (1 + �)

�
c
~c

�� � 1 is qualitatively unclear. If it
is positive, consumption growth is faster in a world where wealth occasionally jumps by
� percent.
The dq-term gives discrete changes in the case of a jump in q: It is, however, tautolog-

ical: When q jumps and dq = 1 and dt = 0 for this small instant of the jump, (11.1.12)
says that �dc=c on the left-hand side is given by � f~c=c� 1g on the right hand side. As the
left hand side is by de�nition of dc given by � [~c� c] =c; both sides are identical. Hence,
the level of ~c after the jump needs to be determined in an alternative way.

11.1.4 Optimal consumption and portfolio choice

This section analyses a more complex maximization problem than the one presented in
ch. 11.1.1. In addition to the consumption-saving trade-o¤, it includes a portfolio choice
problem. Interestingly, the solution is much simpler to work with as ~c can explicitly be
computed and closed-form solutions can easily be found.

� The maximization problem

Consider a household that is endowed with some initial wealth a0 > 0. At each instant,
the household can invest its wealth a (t) in both a risky and a safe asset. The share of
wealth the household holds in the risky asset is denoted by � (t). The price v1 (t) of one
unit of the risky asset obeys the SDE

dv1 (t) = r1v1 (t) dt+ �v1 (t) dq (t) ; (11.1.13)
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where r1 2 R and � > 0. That is, the price of the risky asset grows at each instant with a
�xed rate r1 and at random points in time it jumps by � percent. The randomness comes
from the well-known Poisson process q (t) with arrival rate �. The price v2 (t) of one unit
of the safe asset is assumed to follow

dv2 (t) = r2v2 (t) dt; (11.1.14)

where r2 � 0. Let the household receive a �xed wage income w and spend c (t) � 0 on
consumption. Then, in analogy to ch. 10.3.2, the household�s budget constraint reads

da (t) = f[� (t) r1 + (1� � (t)) r2] a (t) + w � c (t)g dt+ �� (t) a (t) dq (t) : (11.1.15)

We allow wealth to become negative but we could assume that debt is always covered
by the household�s lifetime labour income discounted with the safe interest rate r2, i.e.
a (t) > �w=r2.
Let intertemporal preferences of households be identical to the previous maximization

problem - see (11.1.1). The instantaneous utility function is again characterized by CRRA
as in (11.1.11), u(c) = (c1�� � 1) = (1� �) : The control variables of the household are the
nonnegative consumption stream fc (t)g and the share f� (t)g held in the risky asset. To
avoid a trivial investment problem, we assume

r1 < r2 < r1 + ��: (11.1.16)

That is, the guaranteed return of the risky asset, r1, is lower than the return of the riskless
asset, r2, whereas, on the other hand, the expected return of the risky asset, r1+��, shall
be greater than r2. If r1 was larger than r2, the risky asset would dominate the riskless
one and no one would want to hold positive amounts of the riskless asset. If r2 exceeded
r1 + ��; the riskless asset would dominate.

� DP1: Bellman equation and �rst-order conditions

Again, the �rst step of the solution of this maximization problem requires a Bellman
equation. De�ne the value function V again as V (a (t)) � maxfc(�);�(�)g U (t) : The basic
Bellman equation is taken from (11.1.4). When computing the di¤erential dV (a (t)) and
taking into account that there are now two control variables, the Bellman equation reads

�V (a) = max
c(t);�(t)

fu(c) + [(�r1 + (1� �) r2) a+ w � c]V 0 (a) + � [V (~a)� V (a)]g ;

(11.1.17)
where ~a � (1 + ��) a denotes the post-jump wealth if at wealth a a jump in the risky
asset price occurs. The �rst-order conditions which any optimal path must satisfy are
given by

u0 (c) = V 0 (a) (11.1.18)

and
V 0 (a) (r1 � r2) a+ �V 0 (~a) �a = 0: (11.1.19)
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While the �rst �rst-order condition equates as always marginal utility with the shadow
price, the second �rst-order condition determines optimal investment of wealth into assets
1 and 2; i.e. the optimal share �: The latter �rst-order condition contains a deterministic
and a stochastic term and households hold their optimal share if these two components
just add up to zero. Assume, consistent with (11.1.16), that r1 < r2: If we were in a
deterministic world, i.e. � = 0; households would then only hold asset 2 as its return is
higher. In a stochastic world, the lower instantaneous return on asset 1 is compensated by
the fact that, as (11.1.13) shows, the price of this asset jumps up occasionally by the per-
centage �: Lower instantaneous returns r1 paid at each instant are therefore compensated
for by large occasional positive jumps.
As this �rst-order condition also shows, returns and jumps per se do not matter: The

di¤erence r1 � r2 in returns is multiplied by the shadow price V 0 (a) of capital and the
e¤ect of the jump size times its frequency, ��; is multiplied by the shadow price V 0 (~a)
of capital after a jump. What matters for the household decision is therefore the impact
of holding wealth in one or the other asset on the overall value from behaving optimally,
i.e. on the value function V (a). The channels through which asset returns a¤ect the
value function is �rst the impact on wealth and second the impact of wealth on the value
function i.e. the shadow price of wealth.
We can now immediately see why this more complex maximization problem yields

simpler solutions: Replacing in equation (11.1.19) V 0 (a) with u0 (c) according to (11.1.18)
yields for a 6= 0

u0 (~c)

u0 (c)
=
r2 � r1
��

; (11.1.20)

where ~c denotes the optimal consumption choice for ~a. Hence, the ratio for optimal
consumption after and before a jump is constant. If we assume, for example, a CRRA
utility function as in (11.1.11), this jump is given by

~c

c
=

�
��

r2 � r1

�1=�
: (11.1.21)

No such result on relative consumption before and after the jump is available for the
maximization problem without a choice between a risky and a riskless asset.
Since by assumption (11.1.16) the term on the right-hand side is greater than 1,

this equation shows that consumption jumps upwards if a jump in the risky asset price
occurs. This result is not surprising, as, if the risky asset price jumps upwards, so does
the household�s wealth.

� DP2: Evolution of the costate variable
In the next step, we compute the evolution of V 0 (a (t)), the shadow price of wealth. As-

sume that V is twice continuously di¤erentiable. Then, due to budget constraint (11.1.15),
the CVF from (10.2.8) yields

dV 0 (a) = f[�r1 + (1� �) r2] a+ w � cgV 00 (a) dt

+ fV 0 (~a)� V 0 (a)g dq (t) : (11.1.22)
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Di¤erentiating the maximized Bellman equation yields under application of the envelope
theorem

�V 0(a) = f[�r1 + (1� �) r2] a+ w � cgV 00(a)

+ f�r1 + [1� �] r2gV 0 (a) + � fV 0 (~a) [1 + ��]� V 0 (a)g :

Rearranging gives

f[�r1 + (1� �) r2] a+ w � cgV 00(a)

= f�� [�r1 + (1� �) r2]gV 0(a)� � fV 0 (~a) [1 + ��]� V 0 (a)g :

Inserting this into (11.1.22) yields

dV 0 (a) =

�
f�� [�r1 + (1� �) r2]gV 0 (a)
�� f[1 + ��]V 0 (~a)� V 0 (a)g

�
dt+ fV 0 (~a)� V 0 (a)g dq (t) :

� DP3: Inserting �rst-order conditions

Replacing V 0 (a) by u0 (c) following the �rst-order condition (11.1.18) for optimal con-
sumption, we obtain

du0 (c) =

�
f�� [�r1 + (1� �) r2]gu0 (c)
�� f[1 + ��]u0 (~c)� u0 (c)g

�
dt+ fu0 (~c)� u0 (c)g dq (t) :

Now applying the CVF again to f (x) = (u0)�1 (x) and using (11.1.20) leads to the Keynes-
Ramsey rule for general utility functions u,

�u
00 (c)

u0 (c)
dc =

�
�r1 + [1� �] r2 � �+ �

�
r2 � r1
��

[1 + ��]� 1
��

dt� u00 (c)

u0 (c)
f~c� cg dq (t) :

As ~c is also implicitly determined by (11.1.20), this Keynes-Ramsey rule describes the
evolution of consumption under Poisson uncertainty without the ~c term. This is the crucial
modelling advantage of introducing an additional asset into a standard consumption-
saving problem. Apart from this simpli�cation, the structure of this Keynes-Ramsey rule
is identical to the one in (11.1.10) without a second asset.

� A speci�c utility function

For the CRRA utility function as in (11.1.11), the elimination of ~c becomes even
simpler and we obtain with (11.1.21)

dc (t)

c (t)
=
1

�

�
r2 � �

�
1� r2 � r1

��

�
� �
�
dt+

(�
��

r2 � r1

�1=�
� 1
)
dq (t) :

The optimal change in consumption can thus be expressed in terms of well-known para-
meters. As long as the price of the risky asset does not jump, optimal consumption grows
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constantly by the rate
h
r2 � �

�
1� r2�r1

��

�
� �
i
=�. The higher the risk-free interest rate,

r2, and the lower the guaranteed interest rate of the risky asset, r1, the discrete growth
rate, �, the probability of a price jump, �, the time preference rate, �, and the risk aversion
parameter, �, the higher becomes the consumption growth rate. If the risky asset price
jumps, consumption jumps as well to its new higher level c (t) = [(��) = (r2 � r1)]1=� c (t).
Here the growth rate depends positively on �, �, and r1, whereas r2 and � have a negative
in�uence.

11.1.5 Other ways to determine ~c

The question of how to determine ~c without an additional asset is in principle identical
to determining the initial level of consumption, given a deterministic Keynes-Ramsey
rule as in for example (5.1.6). Whenever a jump in c following (11.1.12) occurs, the
household faces the issue of how to choose the initial level of consumption after the jump.
In principle, the level ~c is therefore pinned down by some transversality condition. In
practice, the literature o¤ers two ways, as to how ~c can be determined.

� One asset and idiosyncratic risk

When households determine optimal savings only, as in our setup where the only
�rst-order condition is (11.1.6), ~c can be determined (in principle) if we assume that the
value function is a function of wealth only - which would be the case in our household
example if the interest rate and wages did not depend on q. This would naturally be the
case in idiosyncratic risk models where aggregate variables do not depend on individual
uncertainty resulting from q: The �rst-order condition (11.1.6) then reads u0 (c) = V 0 (a)
(with p = 1). This is equivalent to saying that consumption is a function of the only state
variable, i.e. wealth a, c = c (a) : An example for c (a) is plotted in the following �gure.

N

N

a

c(a)

a0 a1 a2

c

ec
c

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

dq = 1 N
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s

Figure 11.1.1 Consumption c as a function of wealth a
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As consumption c does not depend on q directly, we must be at the same consumption
level c (a) ; no matter �how we got there�, i.e. no matter how many jumps took place
before. Hence, if we jump from some a1 to a2 because dq = 1; we are at the same
consumption level c (a2) as if we had reached a2 smoothly without jump. The consumption
level ~c after a jump is therefore the consumption level that belongs to the asset level after
the jump according to the policy function c (a) plotted in the above �gure, ~c = c (a2). See
Schlegel (2004) for a numerical implementation of this approach.

� Finding value functions

A very long tradition exists in economics where value functions are found by an �edu-
cated guess�. Experience tells us - based on �rst examples by Merton (1969, 1971) - what
value functions generally look like. It is then possible to �nd, after some attempts, the
value function for some speci�c problem. This then implies explicit - so called closed-form
solutions - for consumption (or any other control variable). For the saving and investment
problem in ch. 11.1.4, Sennewald and Wälde (2006, sect. 3.4) presented a value function
and closed-form solutions for a 6= 0 of the form

V (a) =
 ��

h
a+ w

r2

i1��
� ��1

1� � ; c =  

�
a+

w

r2

�
; � =

"�
��

r2 � r1

� 1
�

� 1
#
a+ w

r2

�a
:

Consumption is a constant share ( is a collection of parameters) out of the total wealth,
i.e. �nancial wealth a plus �human wealth�w=r2 (the present value of current and future
labour income). The optimal share � depends on total wealth as well, but also on interest
rates, the degree of risk-aversion and the level � of the jump of the risky price in (11.1.13).
Hence, it is possible to work with complex stochastic models that allow to analyse many
interesting real-world features and nevertheless end up with explicit closed-form solutions.
Many further examples exist - see ch. 11.6 on �further reading�.

� Finding value functions for special cases

As we have just seen, value functions and closed-form solutions can be found for
some models which have �nice features�. For a much larger class of models - which are
then standard models - closed-form solutions cannot be found for general parameter sets.
Economists then either go for numerical solutions, which preserves a certain generality
as in principle the properties of the model can be analyzed for all parameter values, or
they restrict the parameter set in a useful way. Useful means that with some parame-
ter restriction, value functions can be found again and closed-form solutions are again
possible.

11.1.6 Expected growth

Let us now try to understand the impact of uncertainty on expected growth. In order to
compute expected growth of consumption from realized growth rates (11.1.12), we rewrite
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this equation as

�dc (t) =

�
r (t)� �+ �

�
(1 + �)

�
c (t)

~c (t)

��
� 1
��

c (t) dt+ � f~c (t)� c (t)g dq:

Expressing it in its integral version as in (10.5.15), we obtain for � > t;

� [c (�)� c (t)] =
Z �

t

�
r (s)� �+ �

�
(1 + �)

�
c (s)

~c (s)

��
� 1
��

c (s) ds

+ �

Z �

t

f~c (s)� c (s)g dq (s) :

Applying the expectations operator, given knowledge in t; yields

Etc (�)� c (t) =
1

�
Et

Z �

t

�
r (s)� �+ �

�
(1 + �)

�
c (s)

~c (s)

��
� 1
��

c (s) ds

+ Et

Z �

t

f~c (s)� c (s)g dq (s) :

Using again the martingale result from ch. 10.5.3 as already in (10.5.16), i.e. the expression
in (10.5.7), we replace Et

R �
t
f~c (s)� c (s)g dq (s) by �Et

R �
t
f~c (s)� c (s)g ds; i.e.

Etc (�)� c (t) =
1

�
Et

Z �

t

�
r (s)� �+ �

�
(1 + �)

�
c (s)

~c (s)

��
� 1
��

c (s) ds

+ �Et

Z �

t

f~c (s)� c (s)g ds:

Di¤erentiating with respect to time � yields

dEtc (�) =d� =
1

�
Et

��
r (�)� �+ �

�
(1 + �)

�
c (�)

~c (�)

��
� 1
��

c (�)

�
+�Et f~c (�)� c (�)g :

Let us now put into the perspective of time � ; i.e. let�s move time from t to � and let�s
ask what expected growth of consumption is. This shift in time means formally that our
expectations operator becomes E� and we obtain

dE�c (�) =d�

c (�)
=
1

�
E�

�
r (�)� �+ �

�
(1 + �)

�
c (�)

~c (�)

��
� 1
��
+ �E�

�
~c (�)

c (�)
� 1
�
:

In this step we used the fact that due to this shift in time, c (�) is now known and we can
pull it out of the expectations operator and divide by it. Combining brackets yields

dE�c (�) =d�

c (�)
=
1

�
E�

�
r (�)� �+ �

�
(1 + �)

�
c (�)

~c (�)

��
� 1
�
+ ��

�
~c (�)

c (�)
� 1
��

=
1

�
E�

�
r (�)� �+ �

�
(1 + �)

�
c (�)

~c (�)

��
+ �

~c (�)

c (�)
� 1� �

��
:
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11.2 Matching on the labour market: where value
functions come from

Value functions are widely used in matching models. Examples are unemployment with
frictions models of the Mortensen-Pissarides type or shirking models of unemployment a
la Shapiro and Stiglitz (1984). These value functions can be understood very easily on an
intuitive level, but they really come from a maximization problem of households. In order
to understand when value functions as the ones used in the just-mentioned examples can
be used (e.g. under the assumption of no saving, or being in a steady state), we now derive
value functions in a general way and then derive special cases used in the literature.

11.2.1 A household

Let wealth a of a household evolve according to

da = fra+ z � cg dt:

Wealth increases per unit of time dt by the amount da which depends on current savings
ra+ z � c: Labour income is denoted by z which includes income w when employed and
unemployment bene�ts b when unemployed, z = w; b: Labour income follows a stochastic
Poisson di¤erential equation as there is job creation and job destruction. In addition, we
assume technological progress that implies a constant growth rate g of labour income.
Hence, we can write

dz = gzdt��dqw +�dqb;
where � � w � b: Job destruction takes place at an exogenous, state-dependent, arrival
rate s (z) : The corresponding Poisson process counts how often our household moved from
employment into unemployment which is qw: Job creation takes place at an exogenous
rate � (z) which is related to the matching function presented in (5.6.17). The Poisson
process related to the matching process is denoted by qb: It counts how often a household
leaves its �b-status�, i.e. how often a job is found. As an individual cannot lose his job
when he does not have one and as �nding a job makes (in this setup) no sense for someone
who has a job, both arrival rates are state dependent. As an example, when an individual
is employed, � (w) = 0; when he is unemployed, s (b) = 0:

z w b

� (z) 0 �
s (z) s 0

Table 11.2.1 State dependent arrival rates

Let the individual maximize expected utility Et
R1
t
e��[��t]u (c (�)) d� ; where instan-

taneous utility is of the CES type, u (c) = c1���1
1�� with � > 0:
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11.2.2 The Bellman equation and value functions

The state space is described by a and z: The Bellman equation has the same structure
as in (11.1.4). The adjustments that need to be made here follow from the fact that we
have two state variables instead of one. Hence, the basic structure from (11.1.4) adopted
to our problem reads �V (a; z) = maxc

�
u (c) + 1

dt
EtdV (a; z)

	
: The change of V (a; z) is,

given the evolution of a and z from above and the CVF from (10.2.11),

dV (a; z) = fVa [ra+ z � c] + Vzgzg dt
+ fV (a; z ��)� V (a; z)g dqw + fV (a; z +�)� V (a; z)g dqb:

Forming expectations, remembering that Etdqw = s (z) dt and Etdqb = � (z) dt; and �di-
viding�by dt gives the Bellman equation

�V (a; z) = max
c

�
u (c) + Va [ra+ z � c] + Vzgz

+s (z) [V (a; z ��)� V (a; z)] + � (z) [V (a; z +�)� V (a; z)]

�
:

(11.2.1)
The value functions in the matching literature are all special cases of this general Bellman
equation.
Denote by U � V (a; b) the expected present value of (optimal behaviour of a worker)

being unemployed (as in Pissarides, 2000, ch. 1.3) and by W � V (a; w), the expected
present value of being employed. As the probability of losing a job for an unemployed
worker is zero, s (b) = 0; and � (b) = �; the Bellman equation (11.2.1) reads

�U = max
c
fu (c) + Ua [ra+ b� c] + Uzgb+ � [W � U ]g ;

where we used thatW = V (a; b+�) :When we assume that agents behave optimally, i.e.
we replace control variables by their optimal values, we obtain the maximized Bellman
equation,

�U = u (c) + Ua [ra+ b� c] + Uzgb+ � [W � U ] :

When we now assume that households can not save, i.e. c = ra+ b; and that there is
no technological progress, g = 0; we obtain

�U = u (ra+ b) + � [W � U ] :

Assuming further that households are risk-neutral, i.e. u (c) = c; and that they have no
capital income, i.e. a = 0, consumption is identical to unemployment bene�ts c = b: If
the interest rate equals the time preference rate, we obtain eq. (1.10) in Pissarides (2000),

rU = b+ � [W � U ] :
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11.3 Intertemporal utility maximization under Brown-
ian motion

11.3.1 The setup

Consider an individual whose budget constraint is given by

da = fra+ w � pcg dt+ �adz:

The notation is as always, uncertainty stems from Brownian motion z: The individual
maximizes a utility function as given in (11.1.1), U (t) = Et

R1
t
e��[��t]u (c (�)) d� . The

value function is de�ned by V (a) = maxfc(�)g U (t) subject to the constraint. We again
follow the three step scheme for dynamic programming.

11.3.2 Solving by dynamic programming

� DP1: Bellman equation and �rst-order conditions

The Bellman equation is given for Brownian motion by (11.1.4) as well. When a
maximization problem other than one where (11.1.4) is suitable is to be formulated and
solved, �ve adjustments are, in principle, possible for the Bellman equation. First, the
discount factor � might be given by some other factor - for example the interest rate r
when the present value of some �rm is maximized. Second, the number of arguments
of the value function needs to be adjusted to the number of state variables. Third, the
number of control variables depends on the problem that is to be solved and, fourth, the
instantaneous utility function is replaced by what is found in the objective function -
which might be, for example, instantaneous pro�ts. Finally and obviously, the di¤erential
dV (:) needs to be computed according to the rules that are appropriate for the stochastic
processes which drive the state variables.
As the di¤erential of the value function, following Ito�s Lemma in (10.2.3), is given by

dV (a) =

�
V 0 (a) [ra+ w � pc] + 1

2
V 00 (a) �2a2

�
dt+ V 0 (a) �adz;

forming expectations Et and dividing by dt yields the Bellman equation for our speci�c
problem

�V (a) = max
c(t)

�
u (c (t)) + V 0 (a) [ra+ w � pc] + 1

2
V 00 (a) �2a2

�
and the �rst-order condition is

u0 (c (t)) = V 0 (a) p (t) : (11.3.1)
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� DP2: Evolution of the costate variable
(i) The derivative of the maximized Bellman equation with respect to the state variable

gives (using the envelope theorem) an equation describing the evolution of the costate
variable,

�V 0 = V 00 [ra+ w � pc] + V 0r +
1

2
V 000�2a2 + V 00�2a,

(�� r)V 0 = V 00 [ra+ w � pc] + 1
2
V 000�2a2 + V 00�2a: (11.3.2)

Not surprisingly, given that the Bellman equation already contains the second derivative
of the value function, the derivative of the maximized Bellman equation contains its third
derivative V 000.
(ii) Computing the di¤erential of the shadow price of wealth V 0 (a) gives, using Ito�s

Lemma (10.2.3),

dV 0 = V 00da+
1

2
V 000�2a2dt

= V 00 [ra+ w � pc] dt+ 1
2
V 000�2a2dt+ V 00�adz;

and inserting into the partial derivative (11.3.2) of the maximized Bellman equation yields

dV 0 = (�� r)V 0dt� V 00�2adt+ V 00�adz

=
�
(�� r)V 0 � V 00�2a

	
dt+ V 00�adz: (11.3.3)

As always at the end of DP2, we have a di¤erential equation (or di¤erence equation in
discrete time) which determines the evolution of V 0 (a) ; the shadow price of wealth.

� DP3: Inserting �rst-order conditions
Assuming that the evolution of aggregate prices is independent of the evolution of

the marginal value of wealth, we can write the �rst-order condition for consumption in
(11.3.1) as du0 (c) = pdV 0 + V 0dp: This follows, for example, from Ito�s Lemma (10.2.6)
with �pV 0 = 0: Using (11.3.3) to replace dV

0; we obtain

du0 (c) = p
��
(�� r)V 0 � V 00�2a

	
dt+ V 00�adz

�
+ V 0dp

=
�
(�� r)u0 (c)� u00 (c) c0 (a) �2a

	
dt+ u00 (c) c0 (a) �adz + u0 (c) dp=p; (11.3.4)

where the second equality uses the �rst-order condition u0 (c (t)) = V 0p (t) to replace V 0

and the partial derivative of this �rst-order condition with respect to assets, u00 (c) c0 (a) =
V 00p; to replace V 00:
When comparing this with the expression in (11.1.9) where uncertainty stems from a

Poisson process, we see two common features: First, both Keynes-Ramsey rules have a
stochastic term, the dz-term here and the dq-term in the Poisson case. Second, uncertainty
a¤ects the trend term for consumption in both terms. Here, this term contains the second
derivative of the instantaneous utility function and c0 (a) ; in the Poisson case, we have
the ~c terms. The additional dp-term here stems from the assumption that prices are not
constant. Such a term would also be visible in the Poisson case with �exible prices.
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11.3.3 The Keynes-Ramsey rule

Just as in the Poisson case, we want a rule for the evolution of consumption here as well.
We again de�ne an inverse function and end up in the general case with

� u00

u0
dc =

�
r � �+ u00 (c)

u0 (c)
ca�

2a+
1

2

u000 (c)

u0 (c)
[ca�a]

2

�
dt (11.3.5)

�u
00 (c)

u0 (c)
ca�adz �

dp

p
:

With a CRRA utility function, we can replace the �rst, second and third derivative of
u (c) and �nd the corresponding rule

�
dc

c
=

�
r � �� �ca

c
�2a+

1

2
� [� + 1]

hca
c
�a
i2�

dt (11.3.6)

+�
ca
c
�adz � dp

p
:

11.4 Capital asset pricing

Let us again consider a typical CAP problem. This follows and extends Merton (1990,
ch. 15; 1973). The presentation is in a simpli�ed way.

11.4.1 The setup

The basic structure of the setup is identical as before. There is an objective function and
a constraint. The objective function captures the preferences of our agent and is described
by a utility function as in (11.1.1). The constraint is given by a budget constraint which
will now be derived, following the principles of ch. 10.3.2.
Wealth a of households consist of a portfolio of assets i

a = �Ni=1pini;

where the price of an asset is denoted by pi and the number of shares held, by ni. The
total number of assets is given by N . Let us assume that the price of an asset follows
geometric Brownian motion,

dpi
pi
= �idt+ �idzi; (11.4.1)

where each price is driven by its own drift parameter �i and its own variance parameter �i:
Uncertainty results from Brownian motion zi which is also speci�c for each asset. These
parameters are exogenously given to the household but would in a general equilibrium
setting be determined by properties of, for example, technologies, preferences and other
parameters of the economy.
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Households can buy or sell assets by using a share �i of their savings,

dni =
1

pi
�i
�
�Ni=1�ini + w � c

	
dt: (11.4.2)

When savings are positive and a share �i is used for asset i; the number of stocks held in i
increases. When savings are negative and �i is positive, the number of stocks i decreases.
The change in the households wealth is given by da = �Ni=1d (pini) : The wealth held

in one asset changes according to

d (pini) = pidni + nidpi = �i
�
�Ni=1�ini + w � c

	
dt+ nidpi:

The �rst equality uses Ito�s Lemma from (10.2.6), taking into account that second deriv-
atives of F (:) = pini are zero and that dni in (11.4.2) is deterministic and there-
fore dpidni = 0: Using the pricing rule (11.4.1) and the fact that shares add to unity,
�Ni=1�i = 1, the budget constraint of a household therefore reads

da =
�
�Ni=1�ini + w � c

	
dt+ �Ni=1nipi [�idt+ �idzi]

=

�
�Ni=1

�i
pi
nipi + nipi�i + w � c

�
dt+ �Ni=1nipi�idzi

=

�
�Ni=1ai

�
�i
pi
+ �i

�
+ w � c

�
dt+ �Ni=1ai�idzi:

Now de�ne �i as always as the share of wealth held in asset i; �i � ai=a: Then, by
de�nition, a = �Ni=1�ia and shares add up to unity, �

N
i=1�i = 1: We rewrite this for later

purposes as
�N = 1� �N�1i=1 �i (11.4.3)

De�ne further the interest rate for asset i and the interest rate of the market portfolio by

ri �
�i
pi
+ �i; r � �Ni=1�iri: (11.4.4)

This gives us the budget constraint,

da =
�
a�Ni=1�iri + w � c

	
dt+ a�Ni=1�i�idzi

= fra+ w � cg dt+ a�Ni=1�i�idzi: (11.4.5)

11.4.2 Optimal behaviour

Let us now consider an agent who behaves optimally when choosing her portfolio and in
making her consumption-saving decision. We will not go through all the steps to derive
a Keynes-Ramsey rule as asset pricing requires only the Bellman equation and �rst-order
conditions.
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� The Bellman equation

The Bellman equation is given by (11.1.4), i.e. �V (a) = maxc(t);�i(t)
�
u (c (t)) + 1

dt
EtdV (a)

	
.

Hence, we need again the expected change of the value of one unit of wealth. With one
state variable, we simply apply Ito�s Lemma from (10.2.1) and �nd

1

dt
EtdV (a) =

1

dt
Et

�
V 0 (a) da+

1

2
V 00 (a) [da]2

�
: (11.4.6)

In a �rst step required to obtain the explicit version of the Bellman equation, we com-
pute the square of da: It is given, taking (10.2.2) into account, by [da]2 = a2

�
�Ni=1�i�idzi

�2
:

When we compute the square of the sum, the expression for the product of Brownian
motions in (10.2.5) becomes important as correlation coe¢ cients need to be taken into
consideration. Denoting the covariances by �ij � �i�j�ij, we get

[da]2 = a2 [�1�1dz1 + �2�2dz2 + :::+ �n�ndzn]
2

= a2
�
�21�

2
1dt+ �1�1�2�2�12dt+ :::+ �2�2�1�1�12dt+ �22�

2
2dt+ :::+ :::

�
= a2�Nj=1�

N
i=1�i�j�ijdt: (11.4.7)

Now rewrite the sum in (11.4.7) as follows

�Nj=1�
N
i=1�j�i�ij = �

N�1
j=1 �

N
i=1�j�i�ij + �

N
i=1�i�N�iN

= �N�1j=1 �
N�1
i=1 �j�i�ij + �

N
i=1�i�N�iN + �

N�1
j=1 �N�j�Nj

= �N�1j=1 �
N�1
i=1 �j�i�ij + �

N�1
i=1 �i�N�iN + �

N�1
j=1 �N�j�Nj + �2N�

2
N

= �N�1j=1 �
N�1
i=1 �j�i�ij + 2�

N�1
i=1 �i�N�iN + �2N�

2
N

As the second term, using (11.4.3), can be written as�N�1i=1 �i�N�iN =
�
1� �N�1j=1 �i

�
�N�1i=1 �i�iN ;

our (da)2 reads

(da)2 = a2
n
�N�1j=1 �

N�1
i=1 �j�i�ij + 2

�
1� �N�1j=1 �i

�
�N�1i=1 �i�iN +

�
1� �N�1j=1 �i

�2
�2N

o
dt

= a2
n
�N�1j=1 �

N�1
i=1 �j�i(�ij � 2�iN) + 2�N�1i=1 �i�iN +

�
1� �N�1i=1 �i

�2
�2N

o
dt: (11.4.8)

The second preliminary step for obtaining the Bellman equation uses (11.4.3) again
and expresses the interest rate from (11.4.4) as a sum of the interest rate of asset N (which
could but does not need to be a riskless asset) and weighted excess returns ri � rN ;

r = �N�1i=1 �iri +
�
1� �N�1i=1 �i

�
rN = rN + �

N�1
i=1 �i [ri � rN ] : (11.4.9)

The Bellman equation with (11.4.8) and (11.4.9) now �nally reads

�V (a) = max
c(t);�i(t)

�
u (c) + V 0 (a)

�
(rN + �

N�1
i=1 �i[ri � rN ])a+ w � c

�
+
1

2
V 00 (a) [da]2

�
;

where (da)2 should be thought of representing (11.4.8).
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� First-order conditions

The �rst-order conditions are the �rst-order condition for consumption,

u0 (c) = V 0 (a) ;

and the �rst-order condition for assets. The �rst-order condition for consumption has the
well-known form.
To compute �rst-order conditions for shares �i, we compute d f:g =d�i for (11.4.8),
d f:g
d�i

= �N�1j=1 �j(�ij � 2�iN) + �N�1i=1 �i(�ij � 2�iN) + 2�iN � 2
�
1� �N�1j=1 �i

�
�2N

= 2
�
�N�1j=1 �j(�ij � 2�iN) + �iN �

�
1� �N�1j=1 �i

�
�2N
	

= 2
�
�N�1j=1 �j(�ij � �iN) +

�
1� �N�1j=1 �i

� �
�iN � �2N

�	
= 2�Nj=1�i [�ij � �iN ] : (11.4.10)

Hence, the derivative of the Bellman equation with respect to �i is with (11.4.9) and
(11.4.10)

V 0a[ri � rN ] +
1

2
V 002a2�Nj=1�i[�ij � �iN ] = 0,

ri � rN = �
V 00

V 0 a�
N
j=1�i [�ij � �iN ] : (11.4.11)

The interpretation of this optimality rule should take into account that we assumed that
an interior solution exists. This condition, therefore, says that agents are indi¤erent
between the current portfolio and a marginal increase in a share �i if the di¤erence in
instantaneous returns, ri � rN , is compensated by the covariances of of assets i and N:
Remember that from (11.4.4), instantaneous returns are certain at each instant.

11.4.3 Capital asset pricing

Given optimal behaviour of agents, we now derive the well-known capital asset pricing
equation. Start by assuming that asset N is riskless, i.e. �N = 0 in (11.4.1). This implies
that it has a variance of zero and therefore a covariance �Nj with any other asset of zero
as well, �Nj = 0 8j: De�ne further 
 � �aV

00

V 0 ; the covariance of asset i with the market
portfolio as �iM � �Nj=1�j�ij; the variance of the market portfolio as �2M � �Nj=1�i�iM
and the return of the market portfolio as r � �Ni=1�iri as in (11.4.4).
We are now only few steps away from the CAP equation. Using the de�nition of 


and �iM allows to rewrite the �rst-order condition for shares (11.4.11) as

ri � rN = 
�iM : (11.4.12)

Multiplying this �rst-order condition by the share �i gives �i [ri � rN ] = �i
�iM : Summing
up all assets, i.e. applying �Nj=1 to both sides, and using the above de�nitions yields

r � rN = 
�2M :
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Dividing this expression by version (11.4.12) of the �rst-order condition yields the capital
asset pricing equation,

ri � rN =
�iM
�2M

(r � rN) :

The ratio �iM=�2M is what is usually called the �-factor.

11.5 Natural volatility II

Before this book comes to an end, the discussion of natural volatility models in ch. 8.4 is
completed in this section. We will present a simpli�ed version of those models that appear
in the literature which are presented in stochastic continuous time setups. The usefulness
of Poisson processes will become clear here. Again, more background is available on
http://www.waelde.com/nv.html.

11.5.1 An real business cycle model

This section presents the simplest general equilibrium setup that allows to study �uctua-
tions stemming from occasional jumps in technology. The basic belief is that economically
relevant changes in technologies are rare and occur every 5-8 years. Jumps in technology
means that the technological level, as captured by the TFP level, increases. Growth cycles
therefore result without any negative TFP shocks.

� Technologies

The economy produces a �nal good by using a Cobb-Douglas technology

Y = K� (AL)1�� : (11.5.1)

Total factor productivity is modelled as labour augmenting labour productivity. While
this is of no major economic importance given the Cobb-Douglas structure, it simpli�es
the notation below. Labour productivity follows a geometric Poisson process with drift

dA=A = gdt+ 
dq; (11.5.2)

where g and 
 are positive constants and � is the exogenous arrival rate of the Poisson
process q. We know from (10.5.17) in ch. 10.5.4 that the growth rate of the expected
value of A is given by g + �
:
The �nal good can be used for consumption and investment, Y = C+I; which implies

that the prices of all these goods are identical. Choosing Y as the numeraire good, the
price is one for all these goods. Investment increases the stock of production units K if
investment is larger than depreciation, captured by a constant depreciation rate �;

dK = (Y � C � �K) dt: (11.5.3)

There are �rms who maximize instantaneous pro�ts. They do not bear any risk and
pay factors r and w; marginal productivities of capital and labour.

http://www.waelde.com/nv.html
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� Households

Households maximize their objective function

U (t) = Et

Z 1

t

e��[��t]u (c (�)) d�

by choosing the consumption path fc (�)g : Instantaneous utility can be speci�ed by

u (c) =
c1�� � 1
1� � : (11.5.4)

Wealth of households consists of shares in �rms which are denoted by k: This wealth
changes in a deterministic way (we do not derive it here but it could be done following
the steps in ch. 10.3.2), despite the presence of TFP uncertainty. This is due to two facts:
First, wealth is measured in units of physical capital, i.e. summing k over all households
gives K: As the price of one unit of K equals the price of one unit of the output good
and the latter was chosen as numeraire, the price of one unit of wealth is non-stochastic.
This di¤ers from (10.3.8) where the price jumps when q jumps. Second, a jump in q does
not a¤ect k directly. This could be the case when new technologies make part of the old
capital stock obsolete. Hence, the constraint of households is a budget constraint which
reads

dk = (rk + w � c) dt: (11.5.5)

The interest rate is given by the di¤erence between the marginal product of capital and
the depreciation rate, r = @Y=@K � �:

� Optimal behaviour

When computing optimal consumption levels, households take the capital stock k and
the TFP level A as their state variables into account. This setup is therefore similar to
the deterministic two-state maximization problem in ch. 6.3. Going through similar steps
(concerning, for example, the substituting of cross derivatives in step DP2) and taking
the speci�c aspects of this stochastic framework into account, yields following optimal
consumption (see exercise 8)

�
dc

c
=
n
r � �+ �

h�c
~c

��
� 1
io

dt+

�
~c

c
� 1
�
dq: (11.5.6)

Despite the deterministic constraint (11.5.5) and due to TFP jumps in (11.5.2), consump-
tion jumps as well: a dq�term shows up in this expression and marginal utility levels
before (c��) and after (~c��) the jump, using the notation from (10.1.7) appear as well.
Marginal utilities appear in the deterministic part of this rule due to precautionary saving
considerations. The reason for the jump is straightforward: whenever there is a discrete
increase in the TFP level, the interest rate and wages jump. Hence, returns for savings or
households change and the household adjusts its consumption level. This is in principle
identical to the behaviour in the deterministic case as illustrated in �g. 5.6.1 in ch. 5.6.1.
(Undertaking this here for this stochastic case would be very useful.)
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� General equilibrium

We are now in a position to start thinking about the evolution of the economy as
a whole. It is described by a system in three equations. Labour productivity follows
(11.5.2). The capital stock follows

dK =
�
K� (AL)1�� � C � �K

�
dt

from (11.5.1) and (11.5.3). Aggregate consumption follows

�
dC

C
=

(
�

�
AL

K

�1��
� � � �+ �

��
C
~C

��
� 1
�)

dt+

(
~C

C
� 1
)
dq

from aggregating over households using (11.5.6). Individual consumption c is replaced by
aggregate consumption C and the interest rate is expressed by marginal productivity of
capital minus depreciation rate. This system looks fairly similar to deterministic models,
the only substantial di¤erence lies in the dq term and the post-jump consumption levels
~C:

� Equilibrium properties for a certain parameter set

The simplest way to get an intuition about how the economy evolves consists in looking
at an example, i.e. by looking at a solution of the above system that holds for a certain
parameter set. We choose as example the parameter set for which the saving rate is
constant and given by s = 1���1: The parameter set for which C = (1� s)Y is optimal,
is given by � =

�
�+ � � �

�
(1 + 
)1�� � 1

��
= (�� � (1� �) g) : As we need � > 1 for a

meaningful saving rate, the intertemporal elasticity of substitution ��1 is smaller than one.
For a derivation of this result, see the section on �Closed-form solutions with parameter
restrictions�in �further reading�.
The dynamics of capital and consumption can then be best analyzed by looking at

auxiliary variables, in this case capital per e¤ective worker, K̂ = K=A. This auxiliary
variable is needed to remove the trend out of capital K: The original capital stock grows
without bound, the auxiliary variable has a �nite range. Using auxiliary variables of this
type has a long tradition in growth models as detrending is a common requirement for
an informative analysis. The evolution of this auxiliary variable is given by (applying the
appropriate CVF)

dK̂ =
n
�1K̂

�L1�� � �2K̂
o
dt� �3K̂dq; (11.5.7)

where �i are functions of preference and technology parameters of the model. One can
show that 0 < �3 < 1: The evolution of this capital stock per e¤ective worker can be
illustrated by using a �gure which is similar to those used to explain the Solow growth
model. The following �gure shows the evolution of the capital stock per worker on the
left and the evolution of GDP on the right.



290 Chapter 11. In�nite horizon models

Figure 11.5.1 Cyclical growth

Assume the initial capital stock K̂ is given by K̂0: Assume also, for the time being, that
there is no technology jump, i.e. dq = 0: The capital stock K̂ then increases smoothly over
time and approaches a temporary steady state K̂� which follows from (11.5.7) with dq = 0
and dK̂ = 0: This temporary steady state is given by K̂� = (�1L

1��=�2)
1=(1��) and has

properties in perfect analogy to the steady state in the Solow model. When a technology
jump occurs, the capital stock per e¤ective worker diminishes as the denominator in
K̂ = K=A increases but the capital stock in the numerator in the instant of the jump
does not change. The capital stock per e¤ective worker is �thrown back�, as indicated by
the arrow in the left panel above. After that, the capital stock K̂ again approaches the
temporary steady state K̂�:
The right panel of the above �gure shows what these technology jumps do to GDP. As

long as there is no technology jump, GDP approaches an upper limit Y �
q which is speci�c to

the technology level q: A technology jump increases GDP Yq instantaneously as TFP goes
up. (This increase could be very small, depending on what share of production units enjoy
an increase in TFP.) The more important increase, however, results from the the shift
in the upper limit from Y �

q to Y
�
q+1: Capital accumulation following the technology jump

increases TFP which now approaches the new upper limit. This process of endogenous
growth cycles continues ad in�nitum.

11.5.2 A natural volatility model

The above analysis can be extended to allow for endogenous technology jumps. As in
the discrete time version of this setup, the probability that a technology jump occurs is
made a function of resources R invested into R&D. In contrast to (8.4.3), however, it is
the arrival rate and not the probability itself which is a function of R;

� = � (R) :

This is a requirement of continuous time setups and is builds on a long tradition in
continuous time models with Poisson processes. The resource constraint of the economy
is then extended accordingly to

dK = (Y � C �R� �K) dt
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by including the resources R:
A model of this type can then be solved as before. Either one considers special pa-

rameter values and obtains closed-form solutions or one performs a numerical analysis
(see below). The qualitative properties of cyclical growth are identical to the ones pre-
sented before in �g. 11.5.1. The crucial economic di¤erence consists in the fact that the
frequency of technology jumps, i.e. the average length of a business cycle, depend on de-
cisions of households. If households �nd it pro�table to shift a larger amount of resources
into R&D, business cycles will be shorter. Not only the long-run growth rate, but also
short-run �uctuations are in�uenced by fundamental parameters of the model as also by
government policy. All these questions are analyzed in detail in the �natural volatility�
literature.

11.5.3 A numerical approach

It is helpful for a numerical solution to have a model description in stationary variables.
To this end, de�ne auxiliary variables K̂ = K=A and Ĉ = C=A. The one for capital is
the same as was used in (11.5.7), the one for consumption is new as we will now not work
with a closed-form solution. Let us look at a situation with exogenous arrival rates, i.e. at
the RBC model of above, to illustrate the basic approach for a numerical solution. When
computing the dynamics of these variables (see �further reading�for references), we �nd

�
dĈ

Ĉ
=

(
�

�
L

K̂

�1��
� � � �� �g + �

" 
Ĉ

(1 + 
)
~̂
C

!�
� 1
#)

dt+ �

(
~̂
C

Ĉ
� 1
)
dq;

(11.5.8)

dK̂ =
n
Ŷ � (� + g) K̂ � Ĉ

o
dt� 


1 + 

K̂dq: (11.5.9)

When we look at these equations, they �almost�look like ordinary di¤erential equa-

tions. The only di¢ culty is contained in the term ~̂
C: To understand the solution proce-

dure, think of the saddle-path trajectory in the optimal growth model - see �g. 5.6.2 in
ch. 5.6.3. Given the transformation undertaken here, the solution of this system is given
by a policy function Ĉ

�
K̂
�
which is not a function of the technological level A: The ob-

jective of the solution therefore consists of �nding this Ĉ
�
K̂
�
; a saddle path in analogy

to the one in �g. 5.6.2. The term ~̂
C stands for the consumption level after the jump. As

the functional relationship is independent of A and thereby the number of jumps, we can

write ~̂C =Ĉ
�

1
1+


K̂
�
; i.e. it is the consumption level at the capital stock 1

1+

K̂ after a

jump. As 
 > 0; a jump implies a reduction in the auxiliary, i.e. technology-transformed,
capital stock K̂:
The �trick�in solving this system now consists of providing not only two initial con-

ditions but one initial condition for capital an initial path for consumption Ĉ
�
K̂
�
. This

initial path is then treated as an exogenous variable in the denominator of (11.5.8) and
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the above di¤erential equations have been transformed into a system of ordinary di¤er-
ential equations! Letting the initial paths start at the origin and making them linear, the
question then simply consists of �nding the right slope such that the solution of the above
system identi�es a saddle path and steady state. For more details and an implementation,
see �Numerical solution�in �further reading�.

11.6 Further reading and exercises

� Mathematical background on dynamic programming

There are many, and in most cases much more technical, presentations of dynamic
programming in continuous time under uncertainty. A classic mathematical reference
is Gihman and Skorohod (1972) and a widely-used mathematical textbook is Øksendal
(1998); see also Protter (1995). These books are probably useful only for those wishing
to work on the theory of optimization and not on applications of optimization methods.
Kushner (1967) and Dempster (1991) have a special focus on Poisson processes. Op-
timization with unbounded utility functions by dynamic programming was studied by
Sennewald (2007).
With SDEs we need boundary conditions as well. In the in�nite horizon case, we would

need a transversality condition (TVC). See Smith (1996) for a discussion of a TVC in a
setup with Epstein-Zinn preferences. Sennewald (2007) has TVCs for Poisson uncertainty.

� Applications

Books in �nance that use dynamic programming methods include Du¢ e (1988, 2001)
and Björk (2004). Stochastic optimization for Brownian motion is also covered nicely in
Chang (2004).
A maximization problem of the type presented in ch. 11.1 was �rst analyzed in Wälde

(1999, 2008). This chapter combines these two papers. These two papers were also jointly
used in the Keynes-Ramsey rule appendix to Wälde (2005). It is also used in Posch and
Wälde (2006), Sennewald and Wälde (2006) and elsewhere.
Optimal control in stochastic continuous time setups is used in many applications.

Examples include issues in international macro (Obstfeld, 1994, Turnovsky, 1997, 2000),
international �nance and debt crises (Stein, 2006) and also the analysis of the permanent-
income hypothesis (Wang, 2006) or of the wealth distribution hypothesis (Wang, 2007),
and many others. A �rm maximization problem with risk-neutrality where R&D increases
quality of goods, modelled by a stochastic di¤erential equation with Poisson uncertainty,
is presented and solved by Dinopoulos and Thompson (1998, sect. 2.3).
The Keynes-Ramsey rule in (11.3.4) was derived in a more or less complex framework

by Breeden (1986) in a synthesis of his consumption based capital asset pricing model,
Cox, Ingersoll and Ross (1985) in their continuous time capital asset pricing model, or
Turnovsky (2000) in his textbook. Cf. also Obstfeld (1994).
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There are various recent papers which use continuous time methods under uncertainty.
For examples from �nance and monetary economics, see DeMarzo and Uro�evíc (2006),
Gabaix et al. (2006), Maenhout (2006), Piazzesi (2005), examples from risk theory and
learning include Kyle et al. (2006) and Keller and Rady (1999), for industrial organiza-
tion see, for example, Murto (2004). In spatial economics there is, for example, Gabaix
(1999), the behaviour of households in the presence of durable consumption goods is an-
alyzed by Bertola et al. (2005), R&D dynamics are investigated by Bloom (2007) and
mismatch and exit rates in labour economics are analyzed by Shimer (2007,2008). The
e¤ect of technological progress on unemployment is analyzed by Prat (2007). The real
options approach to investment or hiring under uncertainty is another larger area. See,
for example, Bentolila and Bertola (1990) or Guo et al. (2005). Further references to
papers that use Poisson processes can be found in ch. 10.6.

� Closed form solutions

Closed-form solutions and analytical expressions for value functions have been derived
by many authors. This approach was pioneered by Merton (1969, 1971) for Brownian
motion. Chang (2004) devotes an entire chapter (ch. 5) to closed-form solutions for
Brownian motion. For setups with Poisson-uncertainty, Dinopoulos and Thompson (1998,
sect. 2.3), Wälde (1999b) or Sennewald and Wälde (2006, ch. 3.4) derive closed-form
solutions. An overview is provided by Wälde (2011).
Closed-form solutions for Levy processes are available, for example, from Aase (1984),

Framstad, Øksendal and Sulem (2001) and in the textbook by Øksendal and Sulem (2005).

� Closed-form solutions with parameter restrictions

Sometimes, restricting the parameter set of the economy in some intelligent way allows
to provide closed-form solutions for very general models. These solutions provide insights
which cannot be obtained that easily by numerical analysis. Early examples are Long
and Plosser (1983) and Benhabib and Rustichini (1994) who obtain closed-form solutions
for a discrete-time stochastic setup. In deterministic, continuous time, Xie (1991, 1994)
and Barro, Mankiw and Sala-i-Martin (1995) use this approach as well. Wälde (2005)
and Wälde and Posch (2006) derive closed-form solutions for business cycle models with
Poisson uncertainty. Sennewald and Wälde (2006) study an investment and �nance prob-
lem. The example in section 11.5.1 is taken from Schlegel (2004). The most detailed
step-by-step presentation of the solution technique is in the Referees�appendix to Wälde
(2005).

� Natural volatility

The expression �natural volatility� represents a certain view about why almost any
economic time series exhibits �uctuations. Natural volatility says that �uctuations are
natural, they are intrinsic to any growing economy. An economy that grows is also an
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economy that �uctuates. Growth and �uctuations are �two sides of the same coin�, they
have the same origin: new technologies.
Published papers in this literature are (in sequential and alphabetical order) Fan

(1995), Bental and Peled (1996), Freeman, Hong and Peled (1999), Matsuyama (1999,
2001), Wälde (1999, 2002, 2005), Li (2001) Francois and Lloyd-Ellis (2003,2008), Maliar
and Maliar (2004) and Phillips and Wrase (2006).

� Numerical solution

The numerical solution was analyzed and implemented by Schlegel (2004).

� Matching and saving

Ch. 11.2 shows where value functions in the matching literature come from. This
chapter uses a setup where uncertainty in labour income is combined with saving. It
thereby presents the typical setup of the saving and matching literature. The setup used
here was explored in more detail by Bayer and Wälde (2010a, b) and Bayer et al. (2010,
).
The matching and saving literature in general builds on incomplete market models

where households can insure against income risk by saving (Huggett, 1993; Aiyagari, 1994;
Huggett and Ospina, 2001; Marcet et al., 2007). First analyses of matching and saving
include Andolfatto (1996) and Merz (1995) where individuals are fully insured against
labour income risk as labour income is pooled in large families. Papers which exploit
the advantage of CARA utility functions include Acemoglu and Shimer (1999), Hassler
et al. (2005), Shimer and Werning, (2007, 2008) and Hassler and Rodriguez Mora, 1999,
2008). Their closed-form solutions for the consumption-saving decision cannot always rule
out negative consumption levels for poor households. Bils et al. (2007, 2009), Nakajima
(2008) and Krusell et al. (2010) work with a CRRA utility function in discrete time.
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Exercises Chapter 11
Applied Intertemporal Optimization

Dynamic Programming in continuous time
under uncertainty

1. Optimal saving under Poisson uncertainty with two state variables
Consider the objective function

U (t) = Et

Z 1

t

e��[��t]u (c (�)) d�

and the budget constraint

da (t) = fra (t) + w � p (t) c (t)g dt+ �a (t) dq (t) ;

where r and w are constant interest and wage rates, q (t) is a Poisson process with
an exogenous arrival rate � and � is a constant as well. Letting g and � denote
constants, assume that the price p (t) of the consumption good follows

dp (t) = p (t) [gdt+ �dq (t)] :

(a) Derive a rule which optimally describes the evolution of consumption. Deriving
this rule in the form of marginal utility, i.e. du0 (c (t)) is su¢ cient.

(b) Derive a rule for consumption, i.e. dc (t) = :::

(c) Derive a rule for optimal consumption for � = 0 or � = 0:

2. Optimal saving under Brownian motion
Derive the Keynes-Ramsey rules in (11.3.5) and (11.3.6), starting from the rule for
marginal utility in (11.3.4).

3. Adjustment cost
Consider a �rm that maximizes its present value de�ned by� = Et

R1
t
e�r[��t]� (�) d� :

The �rm�s pro�t � is given by the di¤erence between revenues and costs, � = px�ci2;
where output is assumed to be a function of the current capital stock, x = k�: The
�rm�s control variable is investment i that determines its capital stock,

dk = (i� �k) dt:
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The �rm operates in an uncertain environment. Output prices and costs for invest-
ment evolve according to

dp=p = �pdt+ �pdzp; dc=c = �cdt+ �cdzc;

where zp and zc are two independent stochastic processes.

(a) Assume zp and zc are two independent Brownian motions. Set �p = �p = 0;
such that the price p is constant. What is the optimal investment behaviour
of the �rm?

(b) Consider the alternative case where costs c are constant but prices p follow the
above SDE. How much would the �rm now invest?

(c) Provide an answer to the question in a) when zc is a Poisson process.

(d) Provide an answer to the question in b) when zp is a Poisson process.

4. Firm speci�c technological progress
Consider a �rm facing a demand function with price elasticity "; x = �p�"; where
p is the price and � is a constant. Let the �rm�s technology be given by x = aql
where a > 1: The �rm can improve its technology by investing in R&D. R&D is
modelled by the Poisson process q which jumps with arrival rate � (lq) where lq is
employment in the research department of the �rm. The exogenous wage rate the
�rm faces amounts to w:

(a) What is the optimal static employment level l of this �rm for a given techno-
logical level q?

(b) Formulate an intertemporal objective function given by the present value of
the �rms pro�t �ows over an in�nite time horizon. Continue to assume that
q is constant and let the �rm choose l optimally from this intertemporal per-
spective. Does the result change with respect to (a)?

(c) Using the same objective function as in (b), let the �rm now determine both l
and lq optimally. What are the �rst-order conditions? Give an interpretation
in words.

(d) Compute the expected output level for � > t, given the optimal employment
levels l� and l�q : In other words, compute Etx (�) : Hint: Derive �rst a stochastic
di¤erential equation for output x (t) :

5. Budget constraints and optimal saving and �nance decisions
Imagine an economy with two assets, physical capital K (t) and government bonds
B (t). Let wealth a (t) of households be given by a (t) = v (t) k (t) + b (t) where
v (t) is the price of one unit of capital, k (t) is the number of stocks and b (t) is the
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nominal value of government bonds held by the household. Assume the price of
stocks follows

dv (t) = �v (t) dt+ �v (t) dq (t) ;

where � and � are constants and q (t) is a Poisson process with arrival rate �:

(a) Derive the budget constraint of the household. Use � (t) � v (t) k (t) =a (t) as
the share of wealth held in stocks.

(b) Derive the budget constraint of the household by assuming that q (t) is Brown-
ian motion.

(c) Now let the household live in a world with three assets (in addition to the two
above, there are assets available on foreign markets). Assume that the budget
constraint of the household is given by

da (t) = fr (t) a (t) + w (t)� p (t) c (t)g dt+�k�k (t) a (t) dq (t)+�f�f (t) a (t) dqf (t) ;

where
r (t) = �k (t) rk + �f (t) rf + (1� �k (t)� �f (t)) rb

is the interest rate depending on weights �i (t) and constant instantaneous
interest rates rk; rf and rb: Let q (t) and qf (t) be two Poisson processes. Given
the usual objective function

U (t) = Et

Z 1

t

e��[��t]u (c (�)) d� ;

what is the optimal consumption rule? What can be said about optimal shares
��k and �

�
f?

6. Capital asset pricing in ch. 11.4.3
The covariance of asset i with the market portfolio is denoted by �iM ; the variance
of the market portfolio is �2M and the return of the market portfolio is rM � �i�iri:

(a) Show that the covariance of asset i with the market portfolio �iM is given by
�Nj=1�j�ij:

(b) Show that �Nj=1�i�iM is the variance of the market portfolio �2M .
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7. Standard and non-standard technologies
Let the social welfare function of a central planner be given by

U (t) = Et

Z 1

t

e��[��t]u (C (�)) d� :

(a) Consider an economy where the capital stock follows dK = AK�L1�� [�dt+ �dz]�
(�K + C) dt where dz is the increment of Brownian motion and � and � are
constants. Derive the Keynes-Ramsey rule for this economy.

(b) Assume that dY = � [�dt+ �dz] and that � is constant. What is the expected
level of Y (�) for � > t; i.e. EtY (�)?

(c) Consider an economy where the technology is given by Y = AK�L1�� with
dA = 
Adt+ �Adz; where z is Brownian motion. Let the capital stock follow
dK = (Y � �K � C) dt: Derive the Keynes-Ramsey rule for this economy as
well.

(d) Is there a parameter constellation under which the Keynes-Ramsey rules are
identical?

8. Standard and non-standard technologies II
Provide answers to the same questions as in "Standard and non-standard technolo-
gies" but assume that z is a Poisson process with arrival rate �: Compare your result
to (11.5.6).
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Miscellanea, references and index

The concept of time

What is time? Without getting into philosophical details, it is useful to be precise
here about how time is denoted. Time is always denoted by � : Time can take di¤erent
values. The most important (frequently encountered) one is the value t where t stands for
today. This is true both for the discrete and for the continuous time context. In a discrete
time context, t+ 1 is then obviously tomorrow or the next period. Another typical value
of time is t0; which is usually the point in time for which initial values of some process
are given. Similarly, T denotes a future point in time where, for example, the planning
horizon ends or for which some boundary values are given. In most cases, time � refers
to some future point in time in the sense of � � t:
Given these de�nitions, how should one present generic transition equations, in most

examples above budget constraints? Should one use time t as argument or time �? In
two-period models, it is most natural to use t for today and t + 1 for tomorrow. This is
the case in the two-period models of ch. 2, for example, in the budget constraints (2.1.2)
and (2.1.3).
This choice becomes less obvious in multi-period models of ch. 3. When the �rst

transition equation appears in (3.3.1) and the �rst dynamic (in contrast to intertemporal)
budget constraint in (3.4.1), one can make arguments both in favour of t or � as time
argument. Using � would be most general: The transition equation is valid for all periods
in time, hence one should use � : On the other hand, when the transition equation is valid
for t as today and as we know that tomorrow will be �today�tomorrow (or: �today turned
into yesterday tomorrow - morgen ist heute schon gestern�) and that any future point in
time will be today at some point, we could use t as well.
In most cases, the choice of t or � as time argument is opportunistic: When a maxi-

mization method is used where the most natural representation of budget constraints is
in t; we will use t: This is the case for the transition equation (3.3.1) where the maximiza-
tion problem is solved by using a Bellman equation. Using t is also most natural when
presenting the setup of a model as in ch. 3.6.
If by contrast, the explicit use of many time periods is required in a maximization

299
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problem (like when using the Lagrangian with an intertemporal budget constraint as in
(3.1.3) or with a sequence of dynamic budget constraints in (3.7.2)), budget constraints
are expressed with time � as argument. Using � as argument in transition equations is
also more appropriate for Hamiltonian problems where the current value Hamiltonian is
used - as throughout this book. See, for example, the budget constraint (5.1.2) in ch. 5.1.
In the more formal ch. 4 on di¤erential equations, it is also most natural (as this is

the case in basically all textbooks on di¤erential equations) to represent all di¤erential
equation with t as argument. When we solve di¤erential equations, we need boundary
conditions. When we use initial conditions, they will be given by t0: If we use a terminal
condition as boundary condition, we use T > t to denote some future point in time. (We
could do without t0; use � as argument and solve for t0 � � � T: While this would be
more consistent with the rest of the book, it would be less comparable to more specialized
books on di¤erential equations. As we believe that the �inconsistency�is not too strong,
we stick to the more standard mathematical notation in ch. 4).
Here is now a summary of points in time and generic time

t a point in time t standing for today (discrete and continuous time)
t generic time (for di¤erential equations in ch. 4 and for model presentations)
t+ 1 tomorrow (discrete time)
� some future point in time, � � t (discrete and continuous time)
� generic time (for di¤erential equations in some maximization problems

- e.g. when Hamiltonians are used)
t0 a point in time, usually in the past (di¤erential equations)
T a point in time, usually in the future (di¤erential equations

and terminal point for planning horizon)
0 today when t is normalized to zero (only in the examples of ch. 5.5.1)

More on notation

The notation is as homogeneous as possible. Here are the general rules but some
exceptions are possible.

� Variables in capital, like capital K or consumption C denote aggregate quantities,
lower-case letters pertain to the household level

� A function f (:) is always presented by using parentheses (:) ; where the parenthe-
ses give the arguments of functions. Brackets [:] always denote a multiplication
operation

� A variable xt denotes the value of x in period t in a discrete time setup. A variable
x (t) denotes its value at a point in time t in a continuous time setup. We will
stick to this distinction in this textbook both in deterministic and stochastic setups.
(Note that the mathematical literature on stochastic continuous time processes, i.e.
what is treated here in part IV, uses xt to express the value of x at a point in time
t:)
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� A dot indicates a time derivative, _x (t) � dx=dt:

� A derivative of a function f (x) where x is a scalar and not a vector is abbreviated
by f 0 (x) � df (x) =dx: Partial derivatives of a function f (x; y) are denoted by for
example, fx (x; y) = fx (:) = fx � @f (x; y) =@x:

Variables

Here is a list of variables and abbreviations which shows that some variables have
multi-tasking abilities, i.e. they have multiple meanings

� Greek letters

� output elasticity of capital
� = 1= (1 + �) discount factor in discrete time

 preference parameter on �rst period utility in two-period models
� depreciation rate
� share of wealth held in the risky asset
�i share of wealth held in asset i
� instantaneous pro�ts, i.e. pro�ts �t in period t or � (t) at point in time t
� time preference rate, correlation coe¢ cient between random variables
�ij correlation coe¢ cient between two random variables i and j
� see above on �the concept of time�
�i the share of savings used for buying stock i
" > misprint

� adjustment cost function

� Latin letters

fc�g the time path of c from t to in�nity, i.e. for all � � t, fc�g � fct; ct+1; :::g
fc (�)g the time path of c from t to in�nity, i.e. for all � � t
CVF change of variable formula
e expenditure e = pc; e¤ort, exponential function
f (x+ y) a function f (:) with argument x+ y
f [x+ y] some variable f times x+ y
q (t) Poisson process
r interest rate
RBC real business cycle
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RV random variable
SDE stochastic di¤erential equation
t; T; t0 see above on �the concept of time�
TVC transversality condition
TFP total factor productivity
u instantaneous utility (see also �)
wt; w

L
t wage rate in period t; factor reward for labour. wLt is used to stress di¤erence to w

K
t

wKt factor reward for capital in period t
x� �xpoint of a di¤erence or di¤erential equation (system)
z (t) Brownian motion, Wiener process
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adjustment costs
deterministic, continuous time, 117
stochastic, discrete time, 212, 213

backward solution, see ordinary di¤erential
equation

Bellman equation
adjusting the basic form, 281
basic form, 269
deterministic
continuous time, 142
discrete time, 50, 53, 58

stochastic
continuous time, 280, 281, 285
discrete time, 198, 199, 201

Bellman equation, basic structure
stochastic
continuous time, 269

Bellman equation, maximized
de�nition, 51, 270
deterministic
discrete time, 58

stochastic
continuous time, 144, 280
discrete time, 198, 200

boundary condition
initial condition, 30, 31, 33, 35, 36, 59,

65, 80, 82, 84, 95, 97, 114, 118, 129,
133, 172, 181, 243, 247, 253, 272,
290

terminal condition, 59, 80, 96, 101, 114,
115

boundedness condition, 99, 113, 124
Brownian motion, 225, 226, 228, 233, 242,

251, 255, 281, 302

de�nition, 226
standard Brownian motion, 228

budget constraint
derivation in continuous time, 98, 240
derivation in discrete time, 37
dynamic, 57, 59, 72, 98, 105, 107, 123,

197, 199, 247, 266, 267, 281, 284
de�nition, 59

from dynamic to intertemporal
continuous time, 99
discrete time, 52, 60

from intertemporal to dynamic
continuous time, 105
discrete time, 72

intertemporal, 12, 28, 45, 52, 60, 72, 99,
105, 121, 248, 266

de�nition, 59

capital asset pricing (CAP), 188, 283
CARA utility, see instantaneous utility func-

tion
central planner, 25, 48, 72, 138, 201, 217
CES utility, see instantaneous utility func-

tion
closed-form solution

de�nition, 15
deterministic
continuous time, 124
discrete time, 15

stochastic
Cobb-Douglas utility, 178
continuous time, 272, 293
CRRA utility function, 195
discrete time, 178, 185, 217

closed-loop solution, 15
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Cobb-Douglas utility, see instantaneous util-
ity function

conditional distribution, 169, 170
consumption level and interest rate, 123
control variable, 110, 132, 144, 177, 209,

211, 280
de�nition, 50

costate variable
de�nition, 52
dynamic programming
continuous time, 144, 146, 270, 274,
282

discrete time, 51, 54, 199
Hamiltonian, 108, 111, 117, 133
interpretation, 145

interpretation for Hamiltonian, 111
CRRA utility, see instantaneous utility func-

tion
CVF (change of variable formula), 232, 237,

241, 270, 271

density, 162, 163, 171, 189
of a function of a random variable, 166

depreciation rate, 28
di¤erence equation

de�nition of a solution, 33
deterministic, 32, 35, 49, 55, 59
non-linear, 30, 65

expectational, 200
stochastic, 168, 173, 180

di¤erential equation (DE), see ordinary DE
or stochastic DE

elasticity of substitution
alternative expression, 18
de�nition, 18

envelope theorem, 47
application, 49, 54, 144, 198, 202, 270,

275, 282
Euler equation, 17, 55, 108, 200, 203, 206,

215
Euler theorem, 26, 27
expectations operator

continuous time, 255, 259, 278
discrete time, 169, 177, 179, 200, 210

expected value, 252, 259

felicity function, see instantaneous utility
function, 14, 127

�rms, intertemporal optimization, 116, 212
�rst-order condition with economic interpre-

tation, 51, 54, 58, 131, 143, 178, 184,
198, 213, 270, 274, 286

�xpoint, 36, 86
two-dimensional, 84
uniquness, 84

forward solution, see ordinary di¤erential
equation

goods market equilibrium, 28

Hamiltonian, 107, 111
current-value, 108, 112, 117, 131, 145
present-value, 108, 132, 134

heterogeneous agents, 172, 183

identically and independently distributed (iid),
168, 172, 175

initial condition, see boundary condition
instantaneous utility function

CARA, 182
CES, 53
Cobb-Douglas, 14, 178
CRRA, 182, 195
exponential, 182
logarithmic as a special case of CES, 55

integral representation of di¤erential equa-
tions, 97, 232, 256, 259, 278

integration by parts, 94, 105, 110, 134
interest rate, de�nition

continuous time, 98, 100
discrete time, 29, 38

intertemporal elasticity of substitution, 18
CES utility function, 19
continuous time, 122
de�nition, 19
empirical estimates, 125, 136



INDEX 317

logarithmic utility function, 19
intertemporal utility maximization, 11, 45,

52, 107, 141, 176, 197, 209, 267, 281
investment

gross, 28
net, 28

Ito�s Lemma, 232, 245, 282

Keynes-Ramsey rule, 108, 123, 128, 144, 271,
272, 275

L�Hôspital�s rule, 55
Lagrange multiplier, 13, 21, 25, 66, 109, 122,

145, 207
de�nition, 23
sign, 13, 26, 67

Lagrangian
continuous time, 109, 122, 133
derivation, 24, 68
in�nite number of constraints, 66, 69,

207
in�nite-horizon problem, 46
static problem, 25
two-period problem, 13, 14, 16

Leibniz rule, 93
level e¤ect

dynamic, 59, 123
log utility, see instantaneous utility function

marginal rate of substitution
and time preference rate, 20
de�nition, 17

martingale, 254, 255, 278
matching, 129

large �rms, 130
value functions, 279

maximisation problem
without solution, 120

natural volatility, 189, 271, 287
no-Ponzi game condition, 60, 61, 99, 115,

249
numeraire good, 14, 63, 202, 206, 287
numerical solution, 215

ordinary di¤erential equation
backward solution, 95
de�nition, 79
de�nition of solution, 94
forward solution, 95

Poisson process, 225, 227, 236, 260, 263, 267
mean and variance, 252, 259, 262

Poisson processes
dependent jump processes, 263
independence, 237

random variable
functions of and their densities, 166

random walk, 181
reduced form, de�nition, 29
representative agent assumption, 183
resource constraint, 25, 28, 48, 63, 66, 127,

191, 203, 290
risk aversion

absolute, 182
relative, 182

shadow price, 24�26, 52, 111, 131
solution

de�nition, 15
vs Euler equation, 17
vs necessary condition, 17

solvency condition, see also no-Ponzi game
condition, 99

solving a maximization problem, 17
solving by inserting

principle, 15
state variable, 55, 110, 114, 132, 145, 198,

209, 269, 282
de�nition, 50, 56

steady state, 120, 129, 150
and limiting distribution, 170
continuous time, 86, 87
de�nition, 65
discrete time, 30, 31, 67
temporary, 192, 290

sticky prices, 212
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stochastic di¤erential equation, 228, 229, 234,
236, 242, 245

solution, 242, 243, 245, 247
stochastic di¤erential equations

de�nition of solution, 242
substitution, see elasticity of substitution,

see intertemporal elasticity of sub-
stitution, see marginal rate of sub-
stitution

switch process, 249

terminal condition, see boundary condition
time preference rate

and discount factor, 20
de�nition, 20

transversality condition, 99, 102, 115, 292

variance
de�nition, 165
of Brownian motion, 226, 256
of capital stock, 181
of continuous-time process, 252
of discrete-time process, 169
of lognormal distribution, 167
of Poisson process, 252, 259
properties, 165

Wiener process, 226, 302

zero-motion line, 85, 87, 128
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