13 research outputs found

    Sparse implicitization by interpolation: Geometric computations using matrix representations

    Full text link
    Based on the computation of a superset of the implicit support, implicitization of a parametrically given hyper-surface is reduced to computing the nullspace of a numeric matrix. Our approach exploits the sparseness of the given parametric equations and of the implicit polynomial. In this work, we study how this interpolation matrix can be used to reduce some key geometric predicates on the hyper-surface to simple numerical operations on the matrix, namely membership and sidedness for given query points. We illustrate our results with examples based on our Maple implementation

    Efficient contact determination between geometric models

    Get PDF
    http://archive.org/details/efficientcontact00linmN

    Interrogation of spline surfaces with application to isogeometric design and analysis of lattice-skin structures

    Get PDF
    A novel surface interrogation technique is proposed to compute the intersection of curves with spline surfaces in isogeometric analysis. The intersection points are determined in one-shot without resorting to a Newton-Raphson iteration or successive refinement. Surface-curve intersection is required in a wide range of applications, including contact, immersed boundary methods and lattice-skin structures, and requires usually the solution of a system of nonlinear equations. It is assumed that the surface is given in form of a spline, such as a NURBS, T-spline or Catmull-Clark subdivision surface, and is convertible into a collection of B\'ezier patches. First, a hierarchical bounding volume tree is used to efficiently identify the B\'ezier patches with a convex-hull intersecting the convex-hull of a given curve segment. For ease of implementation convex-hulls are approximated with k-dops (discrete orientation polytopes). Subsequently, the intersections of the identified B\'ezier patches with the curve segment are determined with a matrix-based implicit representation leading to the computation of a sequence of small singular value decompositions (SVDs). As an application of the developed interrogation technique the isogeometric design and analysis of lattice-skin structures is investigated. The skin is a spline surface that is usually created in a computer-aided design (CAD) system and the periodic lattice to be fitted consists of unit cells, each containing a small number of struts. The lattice-skin structure is generated by projecting selected lattice nodes onto the surface after determining the intersection of unit cell edges with the surface. For mechanical analysis, the skin is modelled as a Kirchhoff-Love thin-shell and the lattice as a pin-jointed truss. The two types of structures are coupled with a standard Lagrange multiplier approach

    Using semi-implicit representation of algebraic surfaces

    Get PDF
    In a previous work we introduced a new general representation of algebraic surfaces, that we called semi-implicit, which encapsulates both usual and less known surfaces. Here we specialize this notion in order to apply it in Solid Modeling: we view a surface in the real space as a one-parameter (algebraic) family of algebraic low-degree curves. The paper mainly addresses the topic of performing the usual CAD operations with semi-implicit representation of surfaces. We derive formulae for computing the normal and the curvatures at a regular point. We provide exact algorithms for computing self-intersections of a surface and more generally its singular locus. We also present some surface/surface intersection algorithms relying on generalized resultant calculations

    The intersection problems of parametric curve and surfaces by means of matrix based implicit representations

    Get PDF
    In this paper, we introduce and study a new implicit representation of parametric curves and parametric surfaces . We show how these representations which we will call the matrix implied, establish a bridge between geometry and linear algebra, thus opening the possibility of a more robust digital processing. The contribution of this approach is discussed and illustrated on important issues of geometric modeling and Computer Aided Geometric Design (CAGD) : The curve/curve, urve/surface and surface/surface intersection problems, the point-on-curve and inversion problems, the computation of singularities points

    Intersection entre courbes et surfaces rationnelles au moyen des représentations implicites matricielles

    Get PDF
    National audienceDans cet article, on introduit une nouvelle représentation implicite des courbes et des surfaces paramétrées rationelles, représentation qui consiste pour l'essentiel à les caractériser par la chute de rang d'une matrice plutôt que par l'annulation simultanée d'une ou plusieurs équations polynomiales. On montre comment ces représentations implicites, que l'on qualifiera de matricielles, établissent un pont entre la géométrie et l'algèbre linéaire, pont qui permet de livrer des problèmes géométriques à des algorithmes classiques et éprouvés d'algèbre linéaire, ouvrant ainsi la possibilité d'un traitement numérique plus robuste. La contribution de cette approche est discutée et illustrée sur des problèmes importants de la modélisation géométrique tels que la localisation (appartenance d'un point à un objet), le calcul d'intersection de deux objets, ou bien encore la détection d'un lieu singulier

    Computational Techniques to Predict Orthopaedic Implant Alignment and Fit in Bone

    Get PDF
    Among the broad palette of surgical techniques employed in the current orthopaedic practice, joint replacement represents one of the most difficult and costliest surgical procedures. While numerous recent advances suggest that computer assistance can dramatically improve the precision and long term outcomes of joint arthroplasty even in the hands of experienced surgeons, many of the joint replacement protocols continue to rely almost exclusively on an empirical basis that often entail a succession of trial and error maneuvers that can only be performed intraoperatively. Although the surgeon is generally unable to accurately and reliably predict a priori what the final malalignment will be or even what implant size should be used for a certain patient, the overarching goal of all arthroplastic procedures is to ensure that an appropriate match exists between the native and prosthetic axes of the articulation. To address this relative lack of knowledge, the main objective of this thesis was to develop a comprehensive library of numerical techniques capable to: 1) accurately reconstruct the outer and inner geometry of the bone to be implanted; 2) determine the location of the native articular axis to be replicated by the implant; 3) assess the insertability of a certain implant within the endosteal canal of the bone to be implanted; 4) propose customized implant geometries capable to ensure minimal malalignments between native and prosthetic axes. The accuracy of the developed algorithms was validated through comparisons performed against conventional methods involving either contact-acquired data or navigated implantation approaches, while various customized implant designs proposed were tested with an original numerical implantation method. It is anticipated that the proposed computer-based approaches will eliminate or at least diminish the need for undesirable trial and error implantation procedures in a sense that present error-prone intraoperative implant insertion decisions will be at least augmented if not even replaced by optimal computer-based solutions to offer reliable virtual “previews” of the future surgical procedure. While the entire thesis is focused on the elbow as the most challenging joint replacement surgery, many of the developed approaches are equally applicable to other upper or lower limb articulations

    The surface/surface intersection problem by means of matrix based representations

    Get PDF
    International audienceEvaluating the intersection of two rational parameterized algebraic surfaces is an important problem in solid modeling. In this paper, we make use of some generalized matrix based representations of parameterized surfaces in order to represent the intersection curve of two such surfaces as the zero set of a matrix determinant. As a consequence, we extend to a dramatically larger class of rational parameterized surfaces, the applicability of a general approach to the surface/surface intersection problem due to J.~Canny and D.~Manocha. In this way, we obtain compact and efficient representations of intersection curves allowing to reduce some geometric operations on such curves to matrix operations using results from linear algebra

    Changing representation of curves and surfaces: exact and approximate methods

    Get PDF
    Το κύριο αντικείμενο μελέτης στην παρούσα διατριβή είναι η αλλαγή αναπαράστασης γεωμετρικών αντικειμένων από παραμετρική σε αλγεβρική (ή πεπλεγμένη) μορφή. Υπολογίζουμε την αλγεβρική εξίσωση παρεμβάλλοντας τους άγνωστους συντελεστές του πολυωνύμου δεδομένου ενός υπερσυνόλου των μονωνύμων του. Το τελευταίο υπολογίζεται απο το Newton πολύτοπο της αλγεβρικής εξίσωσης που υπολογίζεται από μια πρόσφατη μέθοδο πρόβλεψης του συνόλου στήριξης της εξίσωσης. H μέθοδος πρόβλεψης του συνόλου στήριξης βασίζεται στην αραιή (ή τορική) απαλοιφή: το πολύτοπο υπολογίζεται από το Newton πολύτοπο της αραιής απαλοίφουσας αν θεωρίσουμε την παραμετροποίηση ως πολυωνυμικό σύστημα. Στα μονώνυμα που αντιστοιχούν στα ακέραια σημεία του Newton πολυτόπου δίνονται τιμές ώστε να σχηματίσουν έναν αριθμητικό πίνακα. Ο πυρήνα του πίνακα αυτού, διάστασης 1 σε ιδανική περίπτωση, περιέχει τους συντελεστές των μονωνύμων στην αλγεβρική εξίσωση. Υπολογίζουμε τον πυρήνα του πίνακα είτε συμβολικά είτε αριθμητικά εφαρμόζοντας την μέθοδο του singular value decomposition (SVD). Προτείνουμε τεχνικές για να διαχειριστούμε την περίπτωση ενός πολυδιάστατου πυρήνα το οποίο εμφανίζεται όταν το προβλεπόμενο σύνολο στήριξης είναι ένα υπερσύνολο του πραγματικού. Αυτό δίνει έναν αποτελεσματικό ευαίσθητο-εξόδου αλγόριθμο υπολογισμού της αλγεβρικής εξίσωσης. Συγκρίνουμε διαφορετικές προσεγγίσεις κατασκευής του πίνακα μέσω των λογισμικών Maple και SAGE. Στα πειράματά μας χρησιμοποιήθηκαν ρητές καμπύλες και επιφάνειες καθώς και NURBS. Η μέθοδός μας μπορεί να εφαρμοστεί σε πολυώνυμα ή ρητές παραμετροποιήσεις επίπεδων καμπυλών ή (υπερ)επιφανειών οποιασδήποτε διάστασης συμπεριλαμβανομένων και των περιπτώσεων με παραμετροποίηση σεσημεία βάσης που εγείρουν σημαντικά ζητήματα για άλλες μεθόδους αλγεβρικοποίησης. Η μέθοδος έχει τον εξής περιορισμό: τα γεωμετρικά αντικείμενα πρέπει να αναπαριστώνται από βάσεις μονωνύμων που στην περίπτωση τριγωνομετρικών παραμετροποιήσεων θα πρέπει να μπορούν να μετασχηματιστούν σε ρητές συναρτήσεις. Επιπλέον η τεχνική που προτείνουμε μπορεί να εφαρμοστεί σε μη γεωμετρικά προβλήματα όπως ο υπολογισμόςτης διακρίνουσας ενός πολυωνύμου με πολλές μεταβλητές ή της απαλοίφουσας ενός συστήματος πολυωνύμων με πολλές μεταβλητές.The main object of study in our dissertation is the representation change of the geometric objects from the parametric form to implicit. We compute the implicit equation interpolating the unknown coefficients of the implicit polynomial given a superset of its monomials. The latter is derived from the Newton polytope of the implicit equation obtained by the recently developed method for support prediction. The support prediction method we use relies on sparse (or toric) elimination: the implicit polytope is obtained from the Newton polytope of the sparse resultant of the system in parametrization, represented as polynomials. The monomials that correspond to the lattice points of the Newton polytope are suitably evaluated to build a numeric matrix, ideally of corank 1. Its kernel contains their coefficients in the implicit equation. We compute kernel of the matrix either symbolically, or numerically, applying singular value decomposition (SVD). We propose techniques for handling the case of the multidimensional kernel space, caused by the predicted support being a superset of the actual. This yields an efficient, output-sensitive algorithm for computing the implicit equation. We compare different approaches for constructing the matrix in Maple and SAGE software. In our experiments we have used classical algebraic curves and surfaces as well as NURBS. Our method can be applied to polynomial or rational parametrizations of planar curves or (hyper)surfaces of any dimension including cases of parameterizations with base points which raise important issues for other implicitization methods. The method has its limits: geometric objects have to be presented using monomial basis; in the case of trigonometric parametrizations they have to be convertible to rational functions. Moreover, the proposed technique can be applied for nongeometric problems such as the computation of the discriminant of a multivariate polynomial or the resultant of a system of multivariate polynomials
    corecore