70,549 research outputs found

    A nash game algorithm for the solution of coupled conductivity identification and data completion in cardiac electrophysiology

    Get PDF
    International audienceWe consider the identification problem of the conductivity coefficient for an elliptic operator using an incomplete over specified measures on the surface. Our purpose is to introduce an original method based on a game theory approach, and design a new algorithm for the simultaneous identification of conductivity coefficient and data completion process. We define three players with three corresponding criteria. The two first players use Dirichlet and Neumann strategies to solve the completion problem, while the third one uses the conductivity coefficient as strategy, and uses a cost which basically relies on an identifiability theorem. In our work, the numerical experiments seek the development of this algorithm for the electrocardiography imaging inverse problem, dealing with in-homogeneities in the torso domain. Furthermore, in our approach, the conductivity coefficients are known only by an approximate values. we conduct numerical experiments on a 2D torso case including noisy measurements. Results illustrate the ability of our computational approach to tackle the difficult problem of joint identification and data completion. Mathematics Subject Classification. 35J25, 35N05, 91A80. The dates will be set by the publisher

    A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems

    Get PDF
    We introduce a derivative-free computational framework for approximating solutions to nonlinear PDE-constrained inverse problems. The aim is to merge ideas from iterative regularization with ensemble Kalman methods from Bayesian inference to develop a derivative-free stable method easy to implement in applications where the PDE (forward) model is only accessible as a black box. The method can be derived as an approximation of the regularizing Levenberg-Marquardt (LM) scheme [14] in which the derivative of the forward operator and its adjoint are replaced with empirical covariances from an ensemble of elements from the admissible space of solutions. The resulting ensemble method consists of an update formula that is applied to each ensemble member and that has a regularization parameter selected in a similar fashion to the one in the LM scheme. Moreover, an early termination of the scheme is proposed according to a discrepancy principle-type of criterion. The proposed method can be also viewed as a regularizing version of standard Kalman approaches which are often unstable unless ad-hoc fixes, such as covariance localization, are implemented. We provide a numerical investigation of the conditions under which the proposed method inherits the regularizing properties of the LM scheme of [14]. More concretely, we study the effect of ensemble size, number of measurements, selection of initial ensemble and tunable parameters on the performance of the method. The numerical investigation is carried out with synthetic experiments on two model inverse problems: (i) identification of conductivity on a Darcy flow model and (ii) electrical impedance tomography with the complete electrode model. We further demonstrate the potential application of the method in solving shape identification problems by means of a level-set approach for the parameterization of unknown geometries

    On a continuation approach in Tikhonov regularization and its application in piecewise-constant parameter identification

    Full text link
    We present a new approach to convexification of the Tikhonov regularization using a continuation method strategy. We embed the original minimization problem into a one-parameter family of minimization problems. Both the penalty term and the minimizer of the Tikhonov functional become dependent on a continuation parameter. In this way we can independently treat two main roles of the regularization term, which are stabilization of the ill-posed problem and introduction of the a priori knowledge. For zero continuation parameter we solve a relaxed regularization problem, which stabilizes the ill-posed problem in a weaker sense. The problem is recast to the original minimization by the continuation method and so the a priori knowledge is enforced. We apply this approach in the context of topology-to-shape geometry identification, where it allows to avoid the convergence of gradient-based methods to a local minima. We present illustrative results for magnetic induction tomography which is an example of PDE constrained inverse problem

    Parameter Identification in a Probabilistic Setting

    Get PDF
    Parameter identification problems are formulated in a probabilistic language, where the randomness reflects the uncertainty about the knowledge of the true values. This setting allows conceptually easily to incorporate new information, e.g. through a measurement, by connecting it to Bayes's theorem. The unknown quantity is modelled as a (may be high-dimensional) random variable. Such a description has two constituents, the measurable function and the measure. One group of methods is identified as updating the measure, the other group changes the measurable function. We connect both groups with the relatively recent methods of functional approximation of stochastic problems, and introduce especially in combination with the second group of methods a new procedure which does not need any sampling, hence works completely deterministically. It also seems to be the fastest and more reliable when compared with other methods. We show by example that it also works for highly nonlinear non-smooth problems with non-Gaussian measures.Comment: 29 pages, 16 figure

    An integral equation method for the inverse conductivity problem

    Full text link
    We present an image reconstruction algorithm for the Inverse Conductivity Problem based on reformulating the problem in terms of integral equations. We use as data the values of injected electric currents and of the corresponding induced boundary potentials, as well as the boundary values of the electrical conductivity. We have used a priori information to find a regularized conductivity distribution by first solving a Fredholm integral equation of the second kind for the Laplacian of the potential, and then by solving a first order partial differential equation for the regularized conductivity itself. Many of the calculations involved in the method can be achieved analytically using the eigenfunctions of an integral operator defined in the paper.Comment: 15 pages, 8 figure

    Modeling active electrolocation in weakly electric fish

    Full text link
    In this paper, we provide a mathematical model for the electrolocation in weakly electric fishes. We first investigate the forward complex conductivity problem and derive the approximate boundary conditions on the skin of the fish. Then we provide a dipole approximation for small targets away from the fish. Based on this approximation, we obtain a non-iterative location search algorithm using multi-frequency measurements. We present numerical experiments to illustrate the performance and the stability of the proposed multi-frequency location search algorithm. Finally, in the case of disk- and ellipse-shaped targets, we provide a method to reconstruct separately the conductivity, the permittivity, and the size of the targets from multi-frequency measurements.Comment: 37 pages, 11 figure
    • …
    corecore