14,747 research outputs found

    A Statistical Toolbox For Mining And Modeling Spatial Data

    Get PDF
    Most data mining projects in spatial economics start with an evaluation of a set of attribute variables on a sample of spatial entities, looking for the existence and strength of spatial autocorrelation, based on the Moran’s and the Geary’s coefficients, the adequacy of which is rarely challenged, despite the fact that when reporting on their properties, many users seem likely to make mistakes and to foster confusion. My paper begins by a critical appraisal of the classical definition and rational of these indices. I argue that while intuitively founded, they are plagued by an inconsistency in their conception. Then, I propose a principled small change leading to corrected spatial autocorrelation coefficients, which strongly simplifies their relationship, and opens the way to an augmented toolbox of statistical methods of dimension reduction and data visualization, also useful for modeling purposes. A second section presents a formal framework, adapted from recent work in statistical learning, which gives theoretical support to our definition of corrected spatial autocorrelation coefficients. More specifically, the multivariate data mining methods presented here, are easily implementable on the existing (free) software, yield methods useful to exploit the proposed corrections in spatial data analysis practice, and, from a mathematical point of view, whose asymptotic behavior, already studied in a series of papers by Belkin & Niyogi, suggests that they own qualities of robustness and a limited sensitivity to the Modifiable Areal Unit Problem (MAUP), valuable in exploratory spatial data analysis

    Constructing an overall dynamical model for a system with changing design parameter properties

    No full text
    This study considers the identification problem for a class of non-linear parameter-varying systems associated with the following scenario: the system behaviour depends on some specifically prescribed parameter properties, which are adjustable. To understand the effect of the varying parameters, several different experiments, corresponding to different parameter properties, are carried out and different data sets are collected. The objective is to find, from the available data sets, a common parameter-dependent model structure that best fits the adjustable parameter properties for the underlying system. An efficient Common Model Structure Selection (CMSS) algorithm, called the Extended Forward Orthogonal Regression (EFOR) algorithm, is proposed to select such a common model structure. Two examples are presented to illustrate the application and the effectiveness of the new identification approach
    corecore