2,078 research outputs found

    Preconditioned Locally Harmonic Residual Method for Computing Interior Eigenpairs of Certain Classes of Hermitian Matrices

    Full text link
    We propose a Preconditioned Locally Harmonic Residual (PLHR) method for computing several interior eigenpairs of a generalized Hermitian eigenvalue problem, without traditional spectral transformations, matrix factorizations, or inversions. PLHR is based on a short-term recurrence, easily extended to a block form, computing eigenpairs simultaneously. PLHR can take advantage of Hermitian positive definite preconditioning, e.g., based on an approximate inverse of an absolute value of a shifted matrix, introduced in [SISC, 35 (2013), pp. A696-A718]. Our numerical experiments demonstrate that PLHR is efficient and robust for certain classes of large-scale interior eigenvalue problems, involving Laplacian and Hamiltonian operators, especially if memory requirements are tight

    A Self-learning Algebraic Multigrid Method for Extremal Singular Triplets and Eigenpairs

    Full text link
    A self-learning algebraic multigrid method for dominant and minimal singular triplets and eigenpairs is described. The method consists of two multilevel phases. In the first, multiplicative phase (setup phase), tentative singular triplets are calculated along with a multigrid hierarchy of interpolation operators that approximately fit the tentative singular vectors in a collective and self-learning manner, using multiplicative update formulas. In the second, additive phase (solve phase), the tentative singular triplets are improved up to the desired accuracy by using an additive correction scheme with fixed interpolation operators, combined with a Ritz update. A suitable generalization of the singular value decomposition is formulated that applies to the coarse levels of the multilevel cycles. The proposed algorithm combines and extends two existing multigrid approaches for symmetric positive definite eigenvalue problems to the case of dominant and minimal singular triplets. Numerical tests on model problems from different areas show that the algorithm converges to high accuracy in a modest number of iterations, and is flexible enough to deal with a variety of problems due to its self-learning properties.Comment: 29 page

    Homotopy Method for the Large, Sparse, Real Nonsymmetric Eigenvalue Problem

    Get PDF
    A homotopy method to compute the eigenpairs, i.e., the eigenvectors and eigenvalues, of a given real matrix A1 is presented. From the eigenpairs of some real matrix A0, the eigenpairs of A(t) ≡ (1 − t)A0 + tA1 are followed at successive "times" from t = 0 to t = 1 using continuation. At t = 1, the eigenpairs of the desired matrix A1 are found. The following phenomena are present when following the eigenpairs of a general nonsymmetric matrix: • bifurcation, • ill conditioning due to nonorthogonal eigenvectors, • jumping of eigenpaths. These can present considerable computational difficulties. Since each eigenpair can be followed independently, this algorithm is ideal for concurrent computers. The homotopy method has the potential to compete with other algorithms for computing a few eigenvalues of large, sparse matrices. It may be a useful tool for determining the stability of a solution of a PDE. Some numerical results will be presented

    High-Performance Solvers for Dense Hermitian Eigenproblems

    Full text link
    We introduce a new collection of solvers - subsequently called EleMRRR - for large-scale dense Hermitian eigenproblems. EleMRRR solves various types of problems: generalized, standard, and tridiagonal eigenproblems. Among these, the last is of particular importance as it is a solver on its own right, as well as the computational kernel for the first two; we present a fast and scalable tridiagonal solver based on the Algorithm of Multiple Relatively Robust Representations - referred to as PMRRR. Like the other EleMRRR solvers, PMRRR is part of the freely available Elemental library, and is designed to fully support both message-passing (MPI) and multithreading parallelism (SMP). As a result, the solvers can equally be used in pure MPI or in hybrid MPI-SMP fashion. We conducted a thorough performance study of EleMRRR and ScaLAPACK's solvers on two supercomputers. Such a study, performed with up to 8,192 cores, provides precise guidelines to assemble the fastest solver within the ScaLAPACK framework; it also indicates that EleMRRR outperforms even the fastest solvers built from ScaLAPACK's components

    Incremental eigenpair computation for graph Laplacian matrices: theory and applications

    Get PDF
    The smallest eigenvalues and the associated eigenvectors (i.e., eigenpairs) of a graph Laplacian matrix have been widely used for spectral clustering and community detection. However, in real-life applications, the number of clusters or communities (say, K) is generally unknown a priori. Consequently, the majority of the existing methods either choose K heuristically or they repeat the clustering method with different choices of K and accept the best clustering result. The first option, more often, yields suboptimal result, while the second option is computationally expensive. In this work, we propose an incremental method for constructing the eigenspectrum of the graph Laplacian matrix. This method leverages the eigenstructure of graph Laplacian matrix to obtain the Kth smallest eigenpair of the Laplacian matrix given a collection of all previously compute

    A Shift Selection Strategy for Parallel Shift-invert Spectrum Slicing in Symmetric Self-consistent Eigenvalue Computation

    Get PDF
    © 2020 ACM. The central importance of large-scale eigenvalue problems in scientific computation necessitates the development of massively parallel algorithms for their solution. Recent advances in dense numerical linear algebra have enabled the routine treatment of eigenvalue problems with dimensions on the order of hundreds of thousands on the world's largest supercomputers. In cases where dense treatments are not feasible, Krylov subspace methods offer an attractive alternative due to the fact that they do not require storage of the problem matrices. However, demonstration of scalability of either of these classes of eigenvalue algorithms on computing architectures capable of expressing massive parallelism is non-trivial due to communication requirements and serial bottlenecks, respectively. In this work, we introduce the SISLICE method: a parallel shift-invert algorithm for the solution of the symmetric self-consistent field (SCF) eigenvalue problem. The SISLICE method drastically reduces the communication requirement of current parallel shift-invert eigenvalue algorithms through various shift selection and migration techniques based on density of states estimation and k-means clustering, respectively. This work demonstrates the robustness and parallel performance of the SISLICE method on a representative set of SCF eigenvalue problems and outlines research directions that will be explored in future work
    • …
    corecore