330 research outputs found

    REAL-TIME VIDEO WATERMARKING FOR COPYRIGHT PROTECTION BASED ON HUMAN PERCEPTION

    Get PDF
    There is a need for real-time copyright logo insertion in emerging applications, such as Internet protocol television (IPTV). This situation arises in IP-TV and digital TV broadcasting when video residing in a server has to be broadcast by different stations and under different broadcasting rights. Embedded systems that are involved in broadcasting need to have embedded copyright protection. Existing works are targeted towards invisible watermarking, not useful for logo insertion. MPEG-4 is the mainstream exchangeable video format in the Internet today because it has higher and flexible compression rate, lower bit rate, and higher efficiency while superior visual quality.The main steps for MPEG-4 are color space conversion and sampling, DCT and its inverse (IDCT), quantization, zigzag scanning, motion estimation, and entropy coding. In this work a watermarking algorithm that performs the broadcaster\u27s logo insertion as watermark in the DCT domain is been presented. The robustness of DCT watermarking arises from the fact that if an attack tries to remove watermarking at mid frequencies, it will risk degrading the fidelity of the image\video because some perceptive details are at mid frequencies. The suggested methods has implemented in matlab

    Cognitive computation of compressed sensing for watermark signal measurement

    Get PDF
    As an important tool for protecting multimedia contents, scrambling and randomizing of original messages is used in generating digital watermark for satisfying security requirements. Based on the neural perception of high-dimensional data, compressed sensing (CS) is proposed as a new technique in watermarking for improved security and reduced computational complexity. In our proposed methodology, watermark signal is extracted from the CS of the Hadamard measurement matrix. Through construction of the scrambled block Hadamard matrix utilizing a cryptographic key, encrypting the watermark signal in CS domain is achieved without any additional computation required. The extensive experiments have shown that the neural inspired CS mechanism can generate watermark signal of higher security, yet it still maintains a better trade-off between transparency and robustness

    Robust Video Watermarking Scheme Based on Intra-Coding Process in MPEG-2 Style

    Get PDF
    The proposed scheme implemented a semi blind digital watermarking method for video exploiting MPEG-2 standard. The watermark is inserted into selected high frequency coefficients of plain types of discrete cosine transform blocks instead of edge and texture blocks during intra coding process. The selection is essential because the error in such type of blocks is less sensitive to human eyes as compared to other categories of blocks. Therefore, the perceptibility of watermarked video does not degraded sharply. Visual quality is also maintained as motion vectors used for generating the motion compensated images are untouched during the entire watermarking process. Experimental results revealed that the scheme is not only robust to re-compression attack, spatial synchronization attacks like cropping, rotation but also strong to temporal synchronization attacks like frame inserting, deleting, swapping and averaging. The superiority of the anticipated method is obtaining the best sturdiness results contrast to the recently delivered schemes

    Robust error detection methods for H.264/AVC videos

    Get PDF
    The 3rd generation of mobile systems is mainly focused on enabling multimedia services such as video streaming, video call and conferencing. In order to achieve this, the Universal Mobile Telecommunications System (UMTS), is the standard that has been developed by the 3rd Generation Partnership ect (3GPP) in Europe, including the baseline profile of H.264/AVC in the specification. With the union of both technologies a great improvement on video transmission over mobile networks, and even modification of the user habits towards the use of the mobile phone is expected. Nevertheless, video transmission has always been related to wired networks and unfortunately the migration to wireless networks is not as easy as it seems. In real time applications the delay is a critical constraint. Usually, transmission protocols without delivery warranties, like the User Network Protocol (UDP) for IP based networks, are used. This works under the assumption that in real time applications dropped packets are preferable to delayed packets. Moreover, in UMTS the network needs to be treated in a different way, thus the wireless channel is a prone error channel due to its high time variance. Typically, when transmitting video, the receiver checks whether the information packet is corrupted (by means of a checksum) or if its temporal mark exceeds the specified delay. This approach is suboptimal, due to the fact that perhaps the video information is not damaged and could still be used. Instead, residual redundancy on the video stream can be used to locate the errors in the corrupted packet, increasing the granularity of the typical upper-layer checksum error detection. Based on this, the amount of information previous to the error detection can be decoded as usually. The aim of this thesis is to combine some of the more effective methods concretely, Syntax check, Watermarking and Checksum schemes have been reformulated, combined and simulated
    • …
    corecore