337 research outputs found

    A Two-Dimensional Chebyshev Wavelet Method for Solving Partial Di erential Equations

    Get PDF
    In this paper, we introduce a two-dimensional Chebyshev wavelet method (TCWM) for solving partial di erential equations (PDEs) in L2(R) space. In this method, the spatial variables appearing in the PDE each has its own kernel, as well as wavelet coecient for approxi- mating the unknown solution of the equation. The approximated solu- tion of the equation is fast and has higher number of vanishing moments as compared to the Chebyshev wavelet method with only one wavelet coecient for two or more separated kernels for the variables appearing in the PDE

    Fractional Bernstein operational matrices for solving integro-differential equations involved by Caputo fractional derivative

    Get PDF
    The present work is devoted to developing two numerical techniques based on fractional Bernstein polynomials, namely fractional Bernstein operational matrix method, to numerically solving a class of fractional integro-differential equations (FIDEs). The first scheme is introduced based on the idea of operational matrices generated using integration, whereas the second one is based on operational matrices of differentiation using the collocation technique. We apply the Riemann–Liouville and fractional derivative in Caputo’s sense on Bernstein polynomials, to obtain the approximate solutions of the proposed FIDEs. We also provide the residual correction procedure for both methods to estimate the absolute errors. Some results of the perturbation and stability analysis of the methods are theoretically and practically presented. We demonstrate the applicability and accuracy of the proposed schemes by a series of numerical examples. The numerical simulation exactly meets the exact solution and reaches almost zero absolute error whenever the exact solution is a polynomial. We compare the algorithms with some known analytic and semi-analytic methods. As a result, our algorithm based on the Bernstein series solution methods yield better results and show outstanding and optimal performance with high accuracy orders compared with those obtained from the optimal homotopy asymptotic method, standard and perturbed least squares method, CAS and Legendre wavelets method, and fractional Euler wavelet method

    NUMERICAL SOLUTIONS OF SINGULAR NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS USING SAID-BALL POLYNOMIALS

    Get PDF
    In this article, the collocation method based on Said-Ball polynomials have been used to solve the singular nonlinear ordinary differential equations of various orders numerically. An operational matrix forms of these ordinary differential equations are obtained from Said-Ball polynomial with variated relations of solution and different derivatives. The presented method reduces the given problem to a system of nonlinear algebraic equations, which removed the singularity of ordinary differential equations. Resulting system is solved using Newton\u27s iteration method to get the coefficients of Said-Ball polynomials. We obtained approximate solutions of the problem under study. Numerical results have been obtained and compared with exact and other works. The presented method gives impressive solutions, that show the accuracy and reliability of the proposed method

    Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem

    Get PDF
    في هذا البحث، تم تنفيذ الطريقة الحسابية الفعالة (ECM) المستندة إلى متعددة الحدود القياسية الأحادية لحل مشكلة تدفق جيفري-هامل غير الخطية. علاوة على ذلك، تم تطوير واقتراح الطرق الحسابية الفعالة الجديدة في هذه الدراسة من خلال وظائف أساسية مناسبة وهي متعددات الحدود تشيبشيف، بيرنشتاين، ليجندر، هيرمت. يؤدي استخدام الدوال الأساسية إلى تحويل المسألة غير الخطية إلى نظام جبري غير خطي من المعادلات، والذي يتم حله بعد ذلك باستخدام برنامج ماثماتيكا®١٢. تم تطبيق تطوير طرق حسابية فعالة (D-ECM) لحل مشكلة تدفق جيفري-هامل غير الخطية، ثم تم عرض مقارنة بين الطرق. علاوة على ذلك، تم حساب الحد الأقصى للخطأ المتبقي ( )، لإظهار موثوقية الطرق المقترحة. تثبت النتائج بشكل مقنع أن ECM و D-ECM دقيقة وفعالة وموثوقة للحصول على حلول تقريبية للمشكلة.In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum error remainder ( ) has been calculated to exhibit the reliability of the suggested methods. The results persuasively prove that ECM and D-ECM are accurate, effective, and reliable in getting approximate solutions to the problem
    corecore