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 للمعادلات التفاضلية العادية غير الخطية الشاذة باستخدام متعددات الحلول العددية 
 بول   -سعيد حدود

  
 ملخص 

لمعادلات التفاضلية العادية غير الخطية  العددي ل  حللإيجاد البول    - سعيدفي هذا البحث استخدمنا طريقة التجميع بالاعتماد على متعددات حدود  
ام من المعادلات  ظالى ن حولت المسألة المعطاة  هذه الطريقة  .  المختلفة  والمشتقات للحل    صيغ المصفوفة التشغيليةحصلنا على    حيث.  الشاذة

  معاملات حدود  على   بطريقة نيوتن للحصولتم حل هذا النظام غير الخطي  انهت شذوذ المعادلات التفاضلية العادية.    والتي الجبرية غير الخطية  
الطريقة    وفعالية دقة    النتائج العددية التي حصلنا عليها أثبتت  حصلنا على الحلول التقريبية للمسألة قيد الدراسة.  ثم   ومنبول    -سعيدمتعددات حدود  

              ة.  المقترح
 

Abstract  

 The present article uses the collocation method based on  Said-Ball polynomials to numerically solve the singular nonlinear 

ordinary differential equations of various orders. An operational matrix form of these ordinary differential equations is 

obtained from Said-Ball polynomial with variated solution relations and different derivatives. The presented method reduces 

the given problem to a nonlinear algebraic equation system, which removes the singularity of ordinary differential equations. 

The resulting system is solved using Newton's iteration method to get the coefficients of Said-Ball polynomials. We obtained 

approximate solutions of the problem under study. Numerical results have been obtained and compared with exact and other 

works. The presented method gives impressive solutions that show the accuracy and reliability of the proposed method.  

 

Keywords: Said-Ball polynomial, collocation method, singular differential equations, operational matrix form.   
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1. Introduction 

We will consider the general form of the singular nonlinear ordinary differential equations of order 𝑛 + 1  (𝑛 ≥ 1):  

  𝑦(𝑛+1) +
𝜆1
𝑥
𝑦(𝑛) +

𝜆2
𝑥2
𝑦(𝑛−1) +  𝑓(𝑥, 𝑦) = 0,                             (1) 

with initial conditions (ICs.) 

𝑦(0) = 𝛼, 𝑦(0) = 𝑦′(0) = 𝑦′′(0)⋯ = 𝑦(𝑛)(0) = 0,               (2) 
with 𝜆1, 𝜆2 and 𝛼 are appropriate constants,  𝑓 is given real values function of two variables 𝑥 and 𝑦.  

This type of differential equation with arbitrary values of components of Eq. (1)  appears in various fields of science 

and engineering, for instance, quantum and fluid mechanics, geophysics, chemical reactors, optimal design and so on. 

See [1, 2, 3, 4, 5, 6] for more details.   

Eq. (1) produces different types of famous equations. Some different order types of Emden-Fowler equations can be 

derived from the following relation: 

𝑥−𝑙  
𝑑

𝑑𝑥
[𝑥𝑙−1  

𝑑𝑘

𝑑𝑥𝑘
(𝑥 𝑦)] + 𝑓(𝑥, 𝑦) = 0                                      (3)  

Where 𝑙, 𝑘 ≥ 1 and 𝑙 is called the shape factor. 

For 𝑘 = 1, 2, 3,⋯ , 𝑛 we obtain the Emden-Fowler equation of the first kind, the second kind, and the third kind up to 

(𝑛 + 1)𝑡ℎ kind, respectively, as below: 

𝑦(2) +
𝑙 + 1

𝑥
𝑦(1) +

𝑙 − 1

𝑥2
𝑦 +  𝑓(𝑥, 𝑦) = 0                               (4) 

𝑦(3) +
𝑙 + 2

𝑥
𝑦(2) +

2(𝑙 − 1)

𝑥2
𝑦(1) +  𝑓(𝑥, 𝑦) = 0                     (5) 

𝑦(4) +
𝑙 + 3

𝑥
𝑦(3) +

3(𝑙 − 1)

𝑥2
𝑦(2) +  𝑓(𝑥, 𝑦) = 0                      (6) 

⋮ 

𝑦(𝑛+1) +
𝑙 + 𝑛

𝑥
𝑦(𝑛) +

𝑛(𝑙 − 1)

𝑥2
𝑦(𝑛−1) +  𝑓(𝑥, 𝑦) = 0           (7) 

Where  𝜆1 = 𝑙 + 𝑘 and 𝜆2 = 𝑘(𝑙 − 1),   𝑘 = 1, 2,⋯ , 𝑛. 

If 𝑛 = 1 and 𝜆2 = 0, then Eq. (1) becomes the Lane- Emden equation as the form: 

𝑦′′ +
𝜆1
𝑥
𝑦′ +  𝑓(𝑥, 𝑦) = 0                                                          (8) 

The standard Lane- Emden equation is produced from Eq. (8) when 𝑓(𝑥, 𝑦) = 𝑔(𝑦). For some appropriate fixed values 

of 𝜆1 and 𝑔(𝑦), Eq. (8)  models many mathematical physics and astrophysics phenomena. Some details you can find 

in [7-17].  

The difficulty in solving these types of equations is in the singularity at 𝑥 = 0.     

Various methods are used to solve the Emden - Fowler equations and the Lane- Emden equations numerically and 

analytically. 

Some of these methods, Adomian decomposition method [5, 18, 19, 20, 21],the homotopy analysis method [22, 23, 

24],the variational iteration method [25, 26], for more different methods, see [27, 28, 29, 30, 31, 32, 33, 34, 35]. Lastly, 

Gümgüm [36] used Taylor wavelet method to solve linear and nonlinear Lane-Emden equations and modified Hermite 

operational matrix method for the nonlinear Lane-Emden problem presented in [37]. In [38], Singh et al. used Haar 

wavelet quasilinearization method to get the numerical solution of Emden–Fowler-type equations. Khred et al. used 

Wang-Ball polynomials [39] and DP-Ball polynomials [40] to solve singular ordinary differential equations. [41] 

Fayek et al. employed Bessel matrix method to solve the linear and nonlinear singular differential equations. Wang et 

al. [42] solved the nonlinear singular two-point boundary value problems using Chebyshev collocation method. Bhatti 

and Karim [43] used the least square method based on Wang Ball function to an approximate solution of higher order 

ODEs by using the control points of Wang Ball curves.  Khred et al. [44] solved the linear delay differential equations 

of the first and second order using Said-Ball Polynomials. In this research, we also used Said-Ball Polynomials, but 

this time for the purpose of solving singular nonlinear ordinary differential equations of different orders.  

 

This paper is organized as follows: Section 2 presents some concepts of Ball polynomials, Said-Ball polynomials and 

Said-Ball monomial formulas. Relations of the fundamental matrix are given in section 3. In section 4, numerical 

examples are presented. The conclusion is presented in section 5.  
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2. Ball polynomials 

     A. A. Ball introduced the Ball polynomial in his  famous work aircraft design system CONSURF [45], which is 

defined mathematically as a cubic polynomial from the components of the following polynomials: 

(1 − 𝑥)2, 2𝑥(1 − 𝑥)2, 2𝑥2(1 − 𝑥), 𝑥2,       0 ≤ 𝑥 ≤ 1                            (9) 
Many studies debated high generalization of Ball polynomial and its properties, for instance, Said-Ball and Wang-

Ball, that are known of arbitrary degree [46]. For more Ball polynomial generalization, see the same reference and 

[47].  

   

2.1 Said-Ball Polynomial and Said-Ball monomial formulas: 

 Said-Ball Polynomial 𝑆𝑖
𝑚(𝑥) of degree 𝑚 is defined as [47,48]:  

 

𝑆𝑖
𝑚(𝑥) =

{
 
 
 

 
 
 (

⌊
𝑚
2
⌋ + 𝑖

𝑖
) 𝑥𝑖(1 − 𝑥)⌊

𝑚
2
⌋+1, 0 ≤ 𝑖 ≤ ⌈

𝑚

2
⌉ − 1,

(

𝑚

𝑚
2

) 𝑥
𝑚
2 (1 − 𝑥)

𝑚
2 ,                                              𝑖 =

𝑚

2
,

𝑆𝑚−𝑖
𝑚 (1 − 𝑥),                    ⌊

𝑚

2
⌋ + 1 ≤ 𝑖 ≤ 𝑚,   

        (10) 

Where ⌊𝑡⌋ denotes the greatest integer less than or equal to 𝑡, and ⌈𝑡⌉ denotes the least integer greater than or equal to 

𝑡.    
Said-Ball curve 𝑆𝑚(𝑥) of degree 𝑚 with 𝑚 + 1 control points, denoted by {𝑠𝑖}𝑖=0

𝑚 , can be expressed as the following 

form in power basis: 

𝑆𝑚(𝑥) = ∑∑𝑠𝑖,𝑗  𝑥
𝑗

𝑚

𝑗=0

𝑚

𝑖=0

,   0 ≤ 𝑥 ≤ 1,                                                      (11) 

where  

𝑠𝑖,𝑗 =

{
 
 
 

 
 
 (−1)𝑗−𝑖 (

𝑖 + ⌊
𝑚
2
⌋

𝑖
)(

⌊
𝑚
2
⌋ + 1 

𝑗 − 𝑖
) ,          0 ≤ 𝑖 ≤ ⌈

𝑚

2
⌉ − 1,                          

(−1)𝑗−𝑖 (
𝑚

𝑖
) (

𝑖 

𝑗 − 𝑖
) ,                           𝑖 =

𝑚

2
,                               (12)

(−1)𝑗−⌊
𝑚
2
⌋−1 (

 ⌊
𝑚
2
⌋ +𝑚 − 𝑖

𝑚 − 𝑖
)(

𝑚 − 𝑖 

𝑗 − ⌊
𝑚
2
⌋ − 1

) , ⌊
𝑚

2
⌋ + 1 ≤ 𝑖 ≤ 𝑚.

 

The Said-Ball monomial matrix is given by: 

 

𝒮(𝑚+1)×(𝑚+1) =

[
 
 
 
 
𝑠0,0 𝑠0,1      ⋯ ⋯ 𝑠0,𝑚
𝑠1,0 𝑠1,1      ⋯ ⋯ 𝑠1,𝑚
⋮      ⋮              ⋱      ⋱ ⋮
⋮     ⋮          ⋱    ⋱      ⋮
𝑠𝑚,0 𝑠𝑚,1      ⋯ ⋯ 𝑠𝑚,𝑚  ]

 
 
 
 

                           (13) 

 

where 𝑠𝑖,𝑗 is defined in Eq. (12). 

To obtain approximate solutions of Eq. (1) with some appropriate initial conditions. We will use Said-Ball polynomials 

in the form: 

 𝑦𝑚(𝑥) =∑𝑎𝑖

𝑚

𝑖=0

 𝑆𝑖
𝑚(𝑥)                                                                        (14) 

Where 𝑎𝑖 , 𝑖 = 0,1,⋯ ,𝑚 are unknowns Said-Ball coefficients to be determined, 𝑚 is any chosen positive integer, and 

𝑆𝑖
𝑚(𝑥) are the Said-Ball polynomials. 
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3. Relations of  Fundamental Matrix  

Here, we will write an approximate  solution (14) as the form: 

𝑦𝑚(𝑥) = 𝑨𝑇 𝑺(𝑥)                                                                                (15) 
Where 𝑺(𝑥) = [𝑆0

𝑚(𝑥)  𝑆1
𝑚(𝑥)  ⋯  𝑆𝑚

𝑚(𝑥)]𝑇 and 𝑨𝑇 = [𝑎0  𝑎1   ⋯  𝑎𝑚]. 
Eq.(15) can be written as: 

𝑦𝑚(𝑥) = 𝑨𝑇 𝑆 𝑯𝒎(𝒙) = 𝑨
𝑇 Φ(𝒙)                                                  (16) 

Where Φ(𝒙) = 𝒮 𝑯𝒎(𝒙),  𝑯𝒎(𝒙) = [1 𝑥 𝑥2     ⋯ 𝑥𝑚]𝑇 and  𝒮 is the monomial matrix, which is given in (13).  

 

3.1. Matrix relation for the first derivative  

 The derivative of Eq.(15) is given by: 

  𝑦𝑚
′ (𝑥) = 𝑨𝑇 𝑺′(𝑥)                                               

= 𝑨𝑇 Φ′(𝑥)                               
                                      = 𝑨𝑇 𝒮 𝑯′

𝒎(𝒙)                          

= 𝑨𝑇 𝒮 
𝑑

𝑑𝑥
( 𝑯𝒎(𝒙) )             

= 𝑨𝑇 𝒮 

[
 
 
 
 

0
1
2𝑥
⋮

𝑚 𝑥𝑚−1]
 
 
 
 

                      

      = 𝑨𝑇 𝒮

[
 
 
 
 
0 0 0
1 0 0
0 2 0

    
⋯ 0
⋯ 0
⋯ 0

⋮ ⋮ ⋱    ⋱ ⋮
0 ⋯ 0    𝑚 0]

 
 
 
 

[
 
 
 
 
1
𝑥
𝑥2

⋮
𝑥𝑚]
 
 
 
 

 

 = 𝑨𝑇 𝒮 𝑉 𝑯𝒎(𝒙)                     
= 𝑨𝑇 𝒮 𝑉 𝒮−1𝒮  𝑯𝒎(𝒙)        
= 𝑨𝑇 𝐷 𝒮  𝑯𝒎(𝒙)            
= 𝑨𝑇 𝐷 Φ(𝒙),                   

where 𝐷 = 𝒮 𝑉 𝒮−1. 
Therefore,       

    𝑦𝑚
′ (𝑥) = 𝑨𝑇𝐷(1) Φ(𝒙)                                                                     (17) 

where 

𝑽 =  

[
 
 
 
 
0 0 0
1 0 0
0 2 0

    
⋯ 0
⋯ 0
⋯ 0

⋮ ⋮ ⋱    ⋱ ⋮
0 ⋯ 0    𝑚 0]

 
 
 
 

(𝑚+1)×(𝑚+1)

  

Generally, we can deduce that 

𝑦𝑚
(𝒏)(𝑥) =

𝑑𝑛

𝑑𝑥𝑛
(𝑦𝑚(𝑥)) =

𝑑𝑛−1

𝑑𝑥𝑛−1
(
𝑑

𝑑𝑥
𝑦𝑚(𝑥)) = 𝑨

𝑇
𝑑𝑛−1

𝑑𝑥𝑛−1
(𝐷(1) Φ(𝒙)) = 𝑨𝑇  

𝑑𝑛−2

𝑑𝑥𝑛−2
(𝐷(2) Φ(𝒙)) = ⋯

=  𝑨𝑇𝐷(𝑛) Φ(𝒙),  
 𝑛 = 1,2,⋯        (18) 

where 𝐷(𝑛) is the 𝑛𝑡ℎ power of 𝐷.     

Hence, Eq.(1) can be formulated by said-ball polynomials as the following form: 

𝑨𝑇𝐷(𝑛+1) Φ(𝒙) +
𝜆1
𝑥
 𝑨𝑇𝐷(𝑛) Φ(𝒙) +

𝜆2
𝑥2
 𝑨𝑇𝐷(𝑛−1) Φ(𝒙) = −𝐹(𝑥, 𝑨𝑇 Φ(𝒙)) 

(19) 
Eq. (19) can be written as the following residual equation: 

ℜ𝑚(𝑥) = 𝑨𝑇𝐷(𝑛+1) Φ(𝒙) +
𝜆1
𝑥
 𝑨𝑇𝐷(𝑛) Φ(𝒙) +

𝜆2
𝑥2
 𝑨𝑇𝐷(𝑛−1) Φ(𝒙) + 𝐹(𝑥, 𝑨𝑇 Φ(𝒙)) 
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(20) 
The nonlinear system (20) components from (𝑚 + 1) equations that result from 𝑚 − (𝑟 − 1) collocation points (𝑟  is 

the number of given initial conditions) with the following appropriate points 𝑥𝑖 as: 

                       𝑥𝑖 =
1

2
(1 − cos(

(𝑖 + 1)𝜋

𝑚 + 1
))  , 𝑖 = 1, 2,⋯ ,𝑚 − 𝑟 + 1,                 (21) 

which can be solved using any method to solve nonlinear systems to obtain unknown coefficients 𝑎𝑖 , 𝑖 = 0,1,⋯ ,𝑚 of 

Said-Ball polynomials. And hence, we finally get the solution of the given problem with some appropriate initial 

conditions. We applied Newton's iterations method to solve nonlinear systems of unknown coefficients 𝑎𝑖.  
 

4. Residual error estimation and solutions accuracy  

    In this approach, we used the upper bound of the mean error to test the  

accuracy of the obtained solutions. Then if we substituted the approximate solution 𝑦𝑚(𝑥) and its derivatives in the 

residual equation (20), we obtain  

                   ℜ𝑚(𝑥𝑡) ≅ 0, ∀ 𝑥𝑡 ∈ [𝑎, 𝑏], 𝑡 = 0, 1,                                (22)  
or  

                           ℜ𝑚(𝑥𝑡) ≤ 𝜀,                                                                          (23) 
where 𝜀 is a small positive quantity.  

If 𝑚 is sufficiently large enough, the error decreases, that is, ℜ𝑚(𝑥𝑡) → 0. 

Second hand, we can estimate the accuracy of the solution by using the residual function ℜm(𝑥) and its mean value 

of the function |ℜm(𝑥)| on the interval [a, b] as the upper bound of the mean error ℜ̅m, which is formed by the 

following formula [49]: 

ℜm(c) ≤
∫ |ℜm(𝑥)|
𝑏

𝑎
 𝑑𝑥

𝑏 − 𝑎
= ℜ̅m,   𝑐 ∈ [𝑎, 𝑏].                                    (24) 

 

 

5. Numerical examples 

   This section presents five examples and compares our numerical results with the exact solutions and other works 

[9,18, 34, 37]. See tables 1 and 3. To test the accuracy of the obtained solutions, we presented the upper bound of the 

mean error ℜ̅mon the interval [0, 1] for example 2, see table 2. 

The absolute error 𝐸(𝑥𝑟) at the point 𝑥𝑟  was calculated by using the form 

𝐸(𝑥𝑟) = |𝑦exact solution(𝑥𝑟) − 𝑦approximate solution(𝑥𝑟)|, 𝑥𝑟 ∈ [0, 1] 

Computations of the examples have been carried out using Maple program. 

 

Example 1:  

Consider the following Emden-Fowler equation [18] 

𝑦′′ +
5

𝑥
𝑦′ +

3

𝑥2
𝑦 = 15 − 𝑥4 + 𝑦2,                                                      (25)  

with ICs.   

𝑦(0) = 0, 𝑦′(0) = 0                                                                       (26) 
The exact solution of this problem is 𝑦(𝑥) = 𝑥2. 
To apply the method of solution of this problem with 𝑚 = 2, the residual equation of (25) is  

(𝑨𝑇𝐷(2) Φ(𝒙) +
5

𝑥
 𝑨𝑇𝐷(1) Φ(𝒙) +

3

𝑥2
 𝑨𝑇 Φ(𝒙) − (𝑨𝑇 Φ(𝒙))

2
) (1) + 𝑥4 + 15

= 0,                                                                                           (27) 
where 

𝒮 = [
1 −2 1
0 2 −2
0 0 1

] , 𝒮−1 = [
1 1 1
0 1 2⁄ 1
0 0 1

] , 𝑉 = [
0 0 0
1 0 0
0 2 0

] 

and the operational matrices 𝑫(1) and 𝑫(2) are given by 

         𝑫(1) = 𝒮 𝑉 𝒮−1 = [
−2 −1 0
2 0 −2
0 1 2

],   

5
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𝑫(2) = [
2 2 2
−4 −4 −4
2 2 2

]. 

We note that the approximate solution is 

 𝑦(𝑥) ≅ 𝑦2(𝑥) = 𝑨
𝑇 𝑺(𝑥) = 𝑨𝑇 Φ(𝒙) = 𝑨𝑇  𝒮 𝑯𝒎(𝒙)  = [𝑎0  𝑎1  𝑎2] [

1 −2 1
0 2 −2
0 0 1

] [
1
𝑥
𝑥2
]                             (28)  

The collocation points are 𝑥0 =
1

4
, 𝑥1 =

3

4
, 𝑥2 = 1. By collocating Eq. (27) with the collocation point 𝑥0 =

1

4
 and using 

initial conditions in the last two rows in Eq. (27), we get the following system: 

{
 

 −𝑎0 + 34𝑎1 + 15𝑎2 − (
9

16
𝑎0 +

3

8
𝑎1 +

1

16
𝑎2)

2

−
3839

256
= 0,

𝑎0 = 0,                                                                                              
−2𝑎0 + 2𝑎1 = 0                                                                                     (29)  

 

In solving system (29), we get 𝑎0 = 0, 𝑎1 = 0,  and 𝑎2 = 1. By substituting these values into (28), we obtain an 

approximate solution 𝑦2(𝑥) = 𝑥2, which is identical to the exact solution, whereas Mutaish and Hasan in [18] have 

an approximate solution. 

 

Example 2:  

Consider the Emden-Fowler equation [34] 

𝑦′′ +
2

𝑥
𝑦′ + 𝑦5 = 0 ,       0 < 𝑥 < 1,                                                  (30)  

with ICs. 

𝑦(0) = 1, 𝑦′(0) = 0                                                                     (31) 

The exact solution is 𝑦(𝑥) = √
3

3+𝑥2
. 

Tables 1 and 2 indicate the numerical results of the presented method comparing with [34] and the upper bound of the 

mean error ℜ̅m respectively, for Example 2. 

 

Table 1: Comparison of the approximate solution for Example 2.  

𝑥 Exact Sol. Method in [34] 

(S2KCWM) 

Present method 

  𝑚 = 2 𝑚 = 2 𝑚 = 5 

0.0 1.0000 0.9998 1.0000 1.0000 

0.2 0.9934 0.9933 0.9937 0.9934 

0.4 0.9744 0.9736 0.9746 0.9744 

0.6 0.9449 0.9408 0.9429 0.9449 

0.8 0.9078 0.8949 0.8985 0.9078 

1.0 0.8660 0.8358 0.8414 0.8660 

 

 

 

 

Table 2: The upper bound of the mean error ℜ̅m for Example 2. 

𝑚 2 3 4 5 6 7 

ℜ̅m 1.8690E-01 3.4447E-02 1.4538E-02 3.8690E-04 5.6169E-04 6.5376E-05 
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It is clear from table 2 that the more increase of  𝑚, the fewer errors and the more accuracy of the presented method.  

 

Example 3:  

Consider the Lane-Emden equation [37] 

𝑦′′ +
2

𝑥
𝑦′ + sin 𝑦 = 0 ,       0 < 𝑥 < 1,                                             (32)  

with ICs. 

𝑦(0) = 1, 𝑦′(0) = 0                                                                     (33) 
Table 3 indicates the comparison of the numerical results of the presented method and modified Hermite operational 

matrix method (MHOMM) [37] for 𝑚 = 8 with Adomian decomposition method (ADM) [9]. 

 

Table 3: Comparison of the approximate solution for Example 3.  

𝑥 (ADM) [9]  (MHOMM) [37]  

𝑚 = 8 

Present method 

𝑚 = 8 

Approx. sol. Absolute error Approx. sol. Absolute error 

0.0 1.0000000 1.000000 0.00000 1.000000 0.000000 

0.1 0.998598 0.998588 0.00001 0.998598 0.000000 

0.2 0.994396 0.994395 0.000001 0.994396 0.000000 

0.5 0.965178 0.965177 0.000001 0.965178 0.000000 

1.0 0.863681 0.863679 0.000002 0.863681 0.000000 

 

Example 4:  

Consider the Emden-Fowler equation [26]  

𝑦′′′ +
6

𝑥
𝑦′′ +

6

𝑥2
𝑦′ − 6(10 + 2𝑥3 + 𝑥6)𝑒−3𝑦  = 0,                      (34)  

with ICs. 

𝑦(0) = 0, 𝑦′(0) = 0,             𝑦′′(0) = 0                                   (35) 
The exact solution is 𝑦(𝑥) = ln (1 + 𝑥3). 
Figures 1 and 2 illustrate an approximate, exact solution and the absolute error, respectively for this problem. 
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From figures 1 and 2, it is clear that the presented method obtained highly accurate solutions when increasing 

computational intervals.   
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Example 5:  

Consider the following singular ordinary differential equation [20] 

𝑦(4) +
2

𝑥
𝑦(3) − 𝑦2 = 72 − 𝑥8 ,                                                           (36)  

with ICs. 

𝑦(0) = 0,     𝑦′(0) = 0 , 𝑦′′(0) = 0 , 𝑦′′′(0) = 0          (37) 
The exact solution of this problem is 𝑦(𝑥) = 𝑥4. 

We applied the method at 𝑚 = 4 to get the approximate solution identical to the exact solution,  𝑦4(𝑥) = 𝑥4.   

 

5. Conclusion  

     Said-Ball Polynomials with collocation method have been employed to solve the singular nonlinear ordinary 

differential equations of different orders. This method reduces the problem with suitable initial conditions into a 

system of nonlinear algebraic equations, which we solved by using Newton's method to get the approximate solution. 

The proposed method gave excellent numerical results compared with the other works and exact solutions, as shown 

in tables and figures.  
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