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Abstract

The present article uses the collocation method based on Said-Ball polynomials to numerically solve the singular nonlinear
ordinary differential equations of various orders. An operational matrix form of these ordinary differential equations is
obtained from Said-Ball polynomial with variated solution relations and different derivatives. The presented method reduces
the given problem to a nonlinear algebraic equation system, which removes the singularity of ordinary differential equations.
The resulting system is solved using Newton's iteration method to get the coefficients of Said-Ball polynomials. We obtained
approximate solutions of the problem under study. Numerical results have been obtained and compared with exact and other
works. The presented method gives impressive solutions that show the accuracy and reliability of the proposed method.
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1. Introduction
We will consider the general form of the singular nonlinear ordinary differential equations of ordern + 1 (n = 1):

A A
yD =y 4yt fxy) =0, ¢y,
with initial conditions (ICs.)
y(0) = a,y(0) = y'(0) = y"(0) - = y™(0) = 0, (2)

with 1,, A, and «a are appropriate constants, f is given real values function of two variables x and y.
This type of differential equation with arbitrary values of components of Eq. (1) appears in various fields of science
and engineering, for instance, quantum and fluid mechanics, geophysics, chemical reactors, optimal design and so on.
See [1, 2, 3, 4, 5, 6] for more details.
Eq. (1) produces different types of famous equations. Some different order types of Emden-Fowler equations can be
derived from the following relation:

-l d -1 dk =0 3
| Y +fly) = 3)
Where [,k > 1 and [ is called the shape factor.
Fork =1,2,3,---,n we obtain the Emden-Fowler equation of the first kind, the second kind, and the third kind up to

(n + 1)th kind, respectively, as below:

+1 -1
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(CONR 34
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L+n nd—1) .
y@D 4 — y™ + —7 y® D+ flx,y) =0 ™
Where A, =l+kandA, =k(l—-1), k=12, ,n.

If n =1and A, = 0, then Eq. (1) becomes the Lane- Emden equation as the form:

A

Y'Y+ fay) =0 ®)
The standard Lane- Emden equation is produced from Eq. (8) when f(x, y) = g(y). For some appropriate fixed values
of 1, and g(¥), Eq. (8) models many mathematical physics and astrophysics phenomena. Some details you can find
in [7-17].
The difficulty in solving these types of equations is in the singularity at x = 0.
Various methods are used to solve the Emden - Fowler equations and the Lane- Emden equations numerically and
analytically.
Some of these methods, Adomian decomposition method [5, 18, 19, 20, 21],the homotopy analysis method [22, 23,
24],the variational iteration method [25, 26], for more different methods, see [27, 28, 29, 30, 31, 32, 33, 34, 35]. Lastly,
Gumgum [36] used Taylor wavelet method to solve linear and nonlinear Lane-Emden equations and modified Hermite
operational matrix method for the nonlinear Lane-Emden problem presented in [37]. In [38], Singh et al. used Haar
wavelet quasilinearization method to get the numerical solution of Emden—Fowler-type equations. Khred et al. used
Wang-Ball polynomials [39] and DP-Ball polynomials [40] to solve singular ordinary differential equations. [41]
Fayek et al. employed Bessel matrix method to solve the linear and nonlinear singular differential equations. Wang et
al. [42] solved the nonlinear singular two-point boundary value problems using Chebyshev collocation method. Bhatti
and Karim [43] used the least square method based on Wang Ball function to an approximate solution of higher order
ODEs by using the control points of Wang Ball curves. Khred et al. [44] solved the linear delay differential equations
of the first and second order using Said-Ball Polynomials. In this research, we also used Said-Ball Polynomials, but
this time for the purpose of solving singular nonlinear ordinary differential equations of different orders.

This paper is organized as follows: Section 2 presents some concepts of Ball polynomials, Said-Ball polynomials and

Said-Ball monomial formulas. Relations of the fundamental matrix are given in section 3. In section 4, numerical
examples are presented. The conclusion is presented in section 5.
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2. Ball polynomials
A. A. Ball introduced the Ball polynomial in his famous work aircraft design system CONSURF [45], which is
defined mathematically as a cubic polynomial from the components of the following polynomials:
(1-x)%2x(1—x)%2x*>(1—x),x%3, 0<x<1 9
Many studies debated high generalization of Ball polynomial and its properties, for instance, Said-Ball and Wang-
Ball, that are known of arbitrary degree [46]. For more Ball polynomial generalization, see the same reference and
[47].

2.1 Said-Ball Polynomial and Said-Ball monomial formulas:
Said-Ball Polynomial S (x) of degree m is defined as [47,48]:

lml +i . ImJH m
21 xt(1 =)z, OSiS[—]—l,
i 2
m
m — m m m
SM(x) =+ ) Fa-o7, i=?, (10)
2
m
SMm_(1-x), l?J+1SiSm,
Where |t| denotes the greatest integer less than or equal to t, and [t] denotes the least integer greater than or equal to
t.
Said-Ball curve S™(x) of degree m with m + 1 control points, denoted by {s;}/~,, can be expressed as the following
form in power basis:
m m
sm(x)zzzsuxf, 0<x<1, 1)
i=0 j=0

where

(—1)/ (i + ll%]) (l%]jil ) 0<is< [g] ~1,
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The Said-Ball monomial matrix is given by:

So0 So1 v "t Som
S0 S11 7t Sim

(13)

Sim+1)x(m+1) =
Sm,O Sm,l cee cee Sm,m

where s; ; is defined in Eq. (12).
To obtain approximate solutions of Eg. (1) with some appropriate initial conditions. We will use Said-Ball polynomials
in the form:

m

() = Y a ST (14)

i=0
Where a;,i = 0,1, ---,m are unknowns Said-Ball coefficients to be determined, m is any chosen positive integer, and
S™(x) are the Said-Ball polynomials.
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3. Relations of Fundamental Matrix
Here, we will write an approximate solution (14) as the form:
Ym(x) = AT S(x) 15)
Where S(x) = [ST(x) S™*(x) - SP()]T and AT =[ag a; - a,].
Eq.(15) can be written as:
Yn(x) = AT S Hy(x) = AT O (x) (16)
Where ®(x) =S Hp,(x), Hpy(x) =[1 x x%2 - x™]" and S is the monomial matrix, which is given in (13).

3.1. Matrix relation for the first derivative
The derivative of Eq.(15) is given by:
Ym(x) = AT S"(x)

= AT d'(x)
=ATSH',,(x)
S A5 (Hp()
de - ™
0
1
=ATS 2x ]
mx.m—l
0 0 0 - 0771
1 0 0 - 0] x
=A"S|o0 2 0 - Off«x?
0 - 0 m o0dLx™
=A"SV H,,(x)
=ATSVSS H,(x)
=A"DS H,(x)
=A" D d(x),
whereD =SV s~ L
Therefore,
Y (x) = ATD® & (x) 17)
where
o 0 0 - 0
10 0 - O
V=10 2 0 - 0
0 - 0 m O0lgminxmm+1)
Generally, we can deduce that
dn dn—l d dn—l dn—z
¥ ) = 2 (@) = 5 (Eym(x)> =" —= (0P o) = 4" —= (0P o)) = -

= ATD™ ¢ (x),
n=12- (18)
where D™ is the n* power of D.
Hence, Eq.(1) can be formulated by said-ball polynomials as the following form:

2 A
ATD™HD @(x) + ;1 ATD™ & (x) + x—i ATD™D d(x) = —F (x, AT d(x))

(19)
Eq. (19) can be written as the following residual equation:

A 2
R,,(x) = ATD™D d(x) + ;1 ATD®™ & (x) + x—z ATD®D d(x) + F(x, AT ®(x))
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(20)
The nonlinear system (20) components from (m + 1) equations that result from m — (r — 1) collocation points (r is
the number of given initial conditions) with the following appropriate points x; as:
m+1)) ,i=1,2,-m—r+1, 21)
which can be solved using any method to solve nonlinear systems to obtain unknown coefficients a;,i = 0,1, -+, m of
Said-Ball_polynomials. And hence, we finally get the solution of the given problem with some appropriate initial
conditions. We applied Newton's iterations method to solve nonlinear systems of unknown coefficients a;.

4. Residual error estimation and solutions accuracy
In this approach, we used the upper bound of the mean error to test the
accuracy of the obtained solutions. Then if we substituted the approximate solution y,,, (x) and its derivatives in the
residual equation (20), we obtain
Rn(x) =0,Vx; €[a,bl,t=0,1, (22)
or
R(x) <e (23)
where ¢ is a small positive quantity.
If m is sufficiently large enough, the error decreases, that is, R,, (x;) = 0.
Second hand, we can estimate the accuracy of the solution by using the residual function R, (x) and its mean value
of the function |R,,(x)| on the interval [a,b] as the upper bound of the mean error R,,, which is formed by the
following formula [49]:

1RO dx
b —

Rn(c) < =R, cE€]la,bl 24)

5. Numerical examples
This section presents five examples and compares our numerical results with the exact solutions and other works
[9,18, 34, 37]. See tables 1 and 3. To test the accuracy of the obtained solutions, we presented the upper bound of the
mean error R,,on the interval [0, 1] for example 2, see table 2.
The absolute error E (x,.) at the point x,. was calculated by using the form
E(xr) = |yexact solution (xr) - Yapproximate solution (xr)|' X € [0' 1]
Computations of the examples have been carried out using Maple program.

Example 1:
Consider the following Emden-Fowler equation [18]

y”+%y’+x3—2y=15—x4+y2, (25)
with ICs.

y(0)=0, y'(0)=0 (26)

The exact solution of this problem is y(x) = x2.
To apply the method of solution of this problem with m = 2, the residual equation of (25) is

(ATD(2> & (x) +; ATD® &(x) + x3—2 AT o(x) — (AT ¢(x))2> (1) +x*+15

=0, (27)
where
1 -2 1 1 1 1 0 0 O
s=lo 2 —2], 5—1=[o 1/2 1], v=1|1 o o]
0 O 1 0o 0 1 0 2 0
and the operational matrices D™ and D@ are given by
-2 -1 0
DD =svs?t=|2 0 —2],
0 1 2
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2 2 2
D® = [—4 —4 —4].
2 2 2
We note that the approximate solution is
1 -2 1 1
y(x) 2y, (x) =ATS(x) = AT ®(x) = AT S H,,(x) = [a, a, a,] [0 2 —2] [xl (28)
0 0 1 [lx?

The collocation points are x, = i, X1 = %, x, = 1. By collocating Eq. (27) with the collocation point x, = %and using
initial conditions in the last two rows in Eq. (27), we get the following system:

9 3 1 2 3839
—ay + 34a, + 15a,; — <Ea0 +§a1 +Ea2) ~Zge = 0,
ag = 0,
—2a,+2a; =0 (29)

In solving system (29), we get a, = 0, a; = 0, and a, = 1. By substituting these values into (28), we obtain an
approximate solution y,(x) = x2, which is identical to the exact solution, whereas Mutaish and Hasan in [18] have
an approximate solution.

Example 2:
Consider the Emden-Fowler equation [34]

Y +Iy +y5 =0, 0<x<1, (30)
with ICs.

y@=1  »'(0)=0 (€29)

The exact solution is y(x) = /3+3x2'

Tables 1 and 2 indicate the numerical results of the presented method comparing with [34] and the upper bound of the
mean error R, respectively, for Example 2.

Table 1: Comparison of the approximate solution for Example 2.

x Exact Sol. Method in [34] Present method
(S2KCWM)
m=2 m= m=

0.0 1.0000 0.9998 1.0000 1.0000
0.2 0.9934 0.9933 0.9937 0.9934
0.4 0.9744 0.9736 0.9746 0.9744
0.6 0.9449 0.9408 0.9429 0.9449
0.8 0.9078 0.8949 0.8985 0.9078
1.0 0.8660 0.8358 0.8414 0.8660

Table 2: The upper bound of the mean error R, for Example 2.
m 2 3 4 5 6 7

R 1.8690E-01 | 3.4447E-02 | 1.4538E-02 | 3.8690E-04 | 5.6169E-04 | 6.5376E-05

https://scholarworks.uaeu.ac.ae/ejer/vol27/iss4/4
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Itis clear from table 2 that the more increase of m, the fewer errors and the more accuracy of the presented method.

Example 3:
Consider the Lane-Emden equation [37]

y”+%y'+siny=0, 0<x<1, (32)
with ICs.

y0)=1, y'(0)=0 (33)

Table 3 indicates the comparison of the numerical results of the presented method and modified Hermite operational
matrix method (MHOMM) [37] for m = 8 with Adomian decomposition method (ADM) [9].

Table 3: Comparison of the approximate solution for Example 3.
x | (ADM) [9] (MHOMM) [37] Present method
m=28 m=28

Approx. sol. | Absolute error | Approx. sol. | Absolute error

0.0 | 1.0000000 1.000000 0.00000 1.000000 0.000000

0.1 | 0.998598 0.998588 0.00001 0.998598 0.000000
0.2 | 0.994396 0.994395 0.000001 0.994396 0.000000
0.5 | 0.965178 0.965177 0.000001 0.965178 0.000000
1.0 | 0.863681 0.863679 0.000002 0.863681 0.000000

Example 4:
Consider the Emden-Fowler equation [26]

Y'Y+ Sy = 6(10 + 2x% + x)e” =0, (34)
with ICs.

y(0)=0, y'(0)=0, y"(0)=0 (35)

The exact solution is y(x) = In (1 + x3).
Figures 1 and 2 illustrate an approximate, exact solution and the absolute error, respectively for this problem.
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0.8 1

0.6
0.5
04

0.3+

Fig. | Comparison of approximate solutions y,,, m = 4, 6, 8 with exact solution y,.

0.00010 7

0.000:03 4

0.00006 -

0.00004 1

absolute error

0.00002 4

0 S 'r — |r
0 02 0.4 0.6
X

[----- AbsError Atm= 8 AbsError Atm= 10|
Fig. 2 Plots of the absolute error for example 4 with m =8, 10.

From figures 1 and 2, it is clear that the presented method obtained highly accurate solutions when increasing
computational intervals.
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Example 5:
Consider the following singular ordinary differential equation [20]

y® + Ey“) —y?=72-x8, (36)
with ICs.

y(0)=0, y'(0)=0, y"(0)=0, y"0)=0 (37)
The exact solution of this problem is y(x) = x*.
We applied the method at m = 4 to get the approximate solution identical to the exact solution, y,(x) = x*.

5. Conclusion

Said-Ball Polynomials with collocation method have been employed to solve the singular nonlinear ordinary
differential equations of different orders. This method reduces the problem with suitable initial conditions into a
system of nonlinear algebraic equations, which we solved by using Newton's method to get the approximate solution.
The proposed method gave excellent numerical results compared with the other works and exact solutions, as shown
in tables and figures.
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