4,858 research outputs found

    The Use of Features Extracted from Noisy Samples for Image Restoration Purposes

    Get PDF
    An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense. In the following we restrict the development to the problem of feature extracting unsupervised neural networks derived on the base of the biologically motivated Hebbian self-organizing principle which is conjectured to govern the natural neural assemblies and the classical principal component analysis (PCA) method used by statisticians for almost a century for multivariate data analysis and feature extraction. The research work reported in the paper aims to propose a new image reconstruction method based on the features extracted from the noise given by the principal components of the noise covariance matrix.feature extraction, PCA, Generalized Hebbian Algorithm, image restoration, wavelet transform, multiresolution support set

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Motion Switching with Sensory and Instruction Signals by designing Dynamical Systems using Deep Neural Network

    Full text link
    To ensure that a robot is able to accomplish an extensive range of tasks, it is necessary to achieve a flexible combination of multiple behaviors. This is because the design of task motions suited to each situation would become increasingly difficult as the number of situations and the types of tasks performed by them increase. To handle the switching and combination of multiple behaviors, we propose a method to design dynamical systems based on point attractors that accept (i) "instruction signals" for instruction-driven switching. We incorporate the (ii) "instruction phase" to form a point attractor and divide the target task into multiple subtasks. By forming an instruction phase that consists of point attractors, the model embeds a subtask in the form of trajectory dynamics that can be manipulated using sensory and instruction signals. Our model comprises two deep neural networks: a convolutional autoencoder and a multiple time-scale recurrent neural network. In this study, we apply the proposed method to manipulate soft materials. To evaluate our model, we design a cloth-folding task that consists of four subtasks and three patterns of instruction signals, which indicate the direction of motion. The results depict that the robot can perform the required task by combining subtasks based on sensory and instruction signals. And, our model determined the relations among these signals using its internal dynamics.Comment: 8 pages, 6 figures, accepted for publication in RA-L. An accompanied video is available at this https://youtu.be/a73KFtOOB5

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    Predictive Coding for Dynamic Visual Processing: Development of Functional Hierarchy in a Multiple Spatio-Temporal Scales RNN Model

    Get PDF
    The current paper proposes a novel predictive coding type neural network model, the predictive multiple spatio-temporal scales recurrent neural network (P-MSTRNN). The P-MSTRNN learns to predict visually perceived human whole-body cyclic movement patterns by exploiting multiscale spatio-temporal constraints imposed on network dynamics by using differently sized receptive fields as well as different time constant values for each layer. After learning, the network becomes able to proactively imitate target movement patterns by inferring or recognizing corresponding intentions by means of the regression of prediction error. Results show that the network can develop a functional hierarchy by developing a different type of dynamic structure at each layer. The paper examines how model performance during pattern generation as well as predictive imitation varies depending on the stage of learning. The number of limit cycle attractors corresponding to target movement patterns increases as learning proceeds. And, transient dynamics developing early in the learning process successfully perform pattern generation and predictive imitation tasks. The paper concludes that exploitation of transient dynamics facilitates successful task performance during early learning periods.Comment: Accepted in Neural Computation (MIT press

    A Functional Architecture Approach to Neural Systems

    Get PDF
    The technology for the design of systems to perform extremely complex combinations of real-time functionality has developed over a long period. This technology is based on the use of a hardware architecture with a physical separation into memory and processing, and a software architecture which divides functionality into a disciplined hierarchy of software components which exchange unambiguous information. This technology experiences difficulty in design of systems to perform parallel processing, and extreme difficulty in design of systems which can heuristically change their own functionality. These limitations derive from the approach to information exchange between functional components. A design approach in which functional components can exchange ambiguous information leads to systems with the recommendation architecture which are less subject to these limitations. Biological brains have been constrained by natural pressures to adopt functional architectures with this different information exchange approach. Neural networks have not made a complete shift to use of ambiguous information, and do not address adequate management of context for ambiguous information exchange between modules. As a result such networks cannot be scaled to complex functionality. Simulations of systems with the recommendation architecture demonstrate the capability to heuristically organize to perform complex functionality

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Connectionist techniques to approach sustainability modelling

    Get PDF
    When defining a context of sustainability, capturing the complexity of data and extracting as much information as possible are fundamental challenges. Normally, quantitative and qualitative indicators are defined. While the definition and calculation of the former is direct, the latter are difficult to manage. This document provides tools based on connectionist techniques for managing complex information combining the use of imprecise and qualitative variables. The application of these tools to evaluate non-numerical sustainability indicators is presented. The results obtained in some first approaches are briefly presented to illustrate the connectionist paradigm
    corecore