11,682 research outputs found

    Scalable Deep Traffic Flow Neural Networks for Urban Traffic Congestion Prediction

    Full text link
    Tracking congestion throughout the network road is a critical component of Intelligent transportation network management systems. Understanding how the traffic flows and short-term prediction of congestion occurrence due to rush-hour or incidents can be beneficial to such systems to effectively manage and direct the traffic to the most appropriate detours. Many of the current traffic flow prediction systems are designed by utilizing a central processing component where the prediction is carried out through aggregation of the information gathered from all measuring stations. However, centralized systems are not scalable and fail provide real-time feedback to the system whereas in a decentralized scheme, each node is responsible to predict its own short-term congestion based on the local current measurements in neighboring nodes. We propose a decentralized deep learning-based method where each node accurately predicts its own congestion state in real-time based on the congestion state of the neighboring stations. Moreover, historical data from the deployment site is not required, which makes the proposed method more suitable for newly installed stations. In order to achieve higher performance, we introduce a regularized Euclidean loss function that favors high congestion samples over low congestion samples to avoid the impact of the unbalanced training dataset. A novel dataset for this purpose is designed based on the traffic data obtained from traffic control stations in northern California. Extensive experiments conducted on the designed benchmark reflect a successful congestion prediction

    An integrated method for short-term prediction of road traffic conditions for intelligent transportation systems applications

    Get PDF
    The paper deals with the short-term prediction of road traffic conditions within Intelligent Transportation Systems applications. First, the problem of traffic modeling and the potential of different traffic monitoring technologies are discussed. Then, an integrated method for short-term traffic prediction is presented, which integrates an Artificial Neural Network predictor that forecasts future states in standard conditions, an anomaly detection module that exploits floating car data to individuate possible occurrences of anomalous traffic conditions, and a macroscopic traffic model that predicts speeds and queue progressions in case of anomalies. Results of offline applications on a primary Italian motorway are presented

    Assessing spatiotemporal correlations from data for short-term traffic prediction using multi-task learning

    Get PDF
    Traffic flow prediction is a fundamental problem for efficient transportation control and management. However, most current data-driven traffic prediction work found in the literature have focused on predicting traffic from an individual task perspective, and have not fully leveraged the implicit knowledge present in a road-network through space and time correlations. Such correlations are now far easier to isolate due to the recent profusion of traffic data sources and more specifically their wide geographic spread. In this paper, we take a multi-task learning (MTL) approach whose fundamental aim is to improve the generalization performance by leveraging the domain-specific information contained in related tasks that are jointly learned. In addition, another common factor found in the literature is that a historical dataset is used for the calibration and the assessment of the proposed approach, without dealing in any explicit or implicit way with the frequent challenges found in real-time prediction. In contrast, we adopt a different approach which faces this problem from a point of view of streams of data, and thus the learning procedure is undertaken online, giving greater importance to the most recent data, making data-driven decisions online, and undoing decisions which are no longer optimal. In the experiments presented we achieve a more compact and consistent knowledge in the form of rules automatically extracted from data, while maintaining or even improving, in some cases, the performance over single-task learning (STL).Peer ReviewedPostprint (published version

    Machine learning for early detection of traffic congestion using public transport traffic data

    Get PDF
    The purpose of this project is to provide better knowledge of how the bus travel times is affected by congestion and other problems in the urban traffic environment. The main source of data for this study is second-level measurements coming from all buses in the Linköping region showing the location of each vehicle.The main goal of this thesis is to propose, implement, test and optimize a machine learning algorithm based on data collected from regional buses from Sweden so that it is able to perform predictions on the future state of the urban traffic.El objetivo principal de este proyecto es proponer, implementar, probar y optimizar un algoritmo de aprendizaje automático basado en datos recopilados de autobuses regionales de Suecia para que poder realizar predicciones sobre el estado futuro del tráfico urbano.L'objectiu principal d'aquest projecte és proposar, implementar, provar i optimitzar un algoritme de machine learning basat en dades recollides a partir d'autobusos regionals de Suècia de manera per poder realitzar prediccions sobre l'estat futur del trànsit urbà
    • …
    corecore