1,681 research outputs found

    Latency-Optimized and Energy-Efficient MAC Protocol for Underwater Acoustic Sensor Networks: A Cross-Layer Approach

    Get PDF
    Considering the energy constraint for fixed sensor nodes and the unacceptable long propagation delay, especially for latency sensitive applications of underwater acoustic sensor networks, we propose a MAC protocol that is latency-optimized and energy-efficient scheme and combines the physical layer and the MAC layer to shorten transmission delay. On physical layer, we apply convolution coding and interleaver for transmitted information. Moreover, dynamic code rate is exploited at the receiver side to accelerate data reception rate. On MAC layer, unfixed frame length scheme is applied to reduce transmission delay, and to ensure the data successful transmission rate at the same time. Furthermore, we propose a network topology: an underwater acoustic sensor network with mobile agent. Through fully utilizing the supper capabilities on computation and mobility of autonomous underwater vehicles, the energy consumption for fixed sensor nodes can be extremely reduced, so that the lifetime of networks is extended

    Internode Distance-Based Redundancy Reliable Transport in Underwater Sensor Networks

    Get PDF
    Underwater communication is a very challenging topic. Protocols used in terrestrial sensor networks cannot be directly applied in the underwater world. High-bit error rate and large propagation delay make the design of transport protocols especially awkward. ARQ-based reliable transport schemes are not appropriate in underwater environments due to large propagation delay, low communication bandwidth, and high error probability. Thus, we focus on redundancy-based transport schemes in this paper. We first investigate three schemes that employ redundancy mechanisms at the bit and/or packet level to increase the reliability in a direct link scenario. Then, we show that the broadcast property of the underwater channel allows us to extend those schemes to a case with node cooperative communication. Based on our analysis, an adaptive redundancy transport protocol (ARRTP) for underwater sensor networks is proposed. We suggest an architecture for implementation. For two kinds of topologies, namely, regular and random, we show that ARRTP presents a better transmission success probability and energy efficiency tradeoff for single- and multihop transmissions. We also offer an integrated case study to show that ARRTP is not only supplying reliability but also has some positive effect in guiding the deployment of underwater sensor nodes

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation
    corecore