1,714 research outputs found

    Deformable Beamsplitters: Enhancing Perception with Wide Field of View, Varifocal Augmented Reality Displays

    Get PDF
    An augmented reality head-mounted display with full environmental awareness could present data in new ways and provide a new type of experience, allowing seamless transitions between real life and virtual content. However, creating a light-weight, optical see-through display providing both focus support and wide field of view remains a challenge. This dissertation describes a new dynamic optical element, the deformable beamsplitter, and its applications for wide field of view, varifocal, augmented reality displays. Deformable beamsplitters combine a traditional deformable membrane mirror and a beamsplitter into a single element, allowing reflected light to be manipulated by the deforming membrane mirror, while transmitted light remains unchanged. This research enables both single element optical design and correct focus while maintaining a wide field of view, as demonstrated by the description and analysis of two prototype hardware display systems which incorporate deformable beamsplitters. As a user changes the depth of their gaze when looking through these displays, the focus of virtual content can quickly be altered to match the real world by simply modulating air pressure in a chamber behind the deformable beamsplitter; thus ameliorating vergence–accommodation conflict. Two user studies verify the display prototypes’ capabilities and show the potential of the display in enhancing human performance at quickly perceiving visual stimuli. This work shows that near-eye displays built with deformable beamsplitters allow for simple optical designs that enable wide field of view and comfortable viewing experiences with the potential to enhance user perception.Doctor of Philosoph

    SUPER MULTI-VIEW NEAR-EYE DISPLAY WITH LED ARRAY AND WAVEGUIDE ILLUMINATION MODULE

    Get PDF
    A near-eye display includes an array of light sources, a reflective spatial light modulator (SLM) synchronized with the array of light sources and configured to modulate and reflect incident light beams to generate images, display optics configured to project the images generated by the reflective SLM to a user’s eye, and a waveguide between the display optics and the reflective SLM, where the waveguide is configured to guide light beams emitted by the array of light sources and direct the light beams towards the reflective SLM to illuminate the reflective SL

    Text Entry Performance and Situation Awareness of a Joint Optical See-Through Head-Mounted Display and Smartphone System

    Full text link
    Optical see-through head-mounted displays (OST HMDs) are a popular output medium for mobile Augmented Reality (AR) applications. To date, they lack efficient text entry techniques. Smartphones are a major text entry medium in mobile contexts but attentional demands can contribute to accidents while typing on the go. Mobile multi-display ecologies, such as combined OST HMD-smartphone systems, promise performance and situation awareness benefits over single-device use. We study the joint performance of text entry on mobile phones with text output on optical see-through head-mounted displays. A series of five experiments with a total of 86 participants indicate that, as of today, the challenges in such a joint interactive system outweigh the potential benefits.Comment: To appear in IEEE Transactions on Visualization and Computer Graphics On page(s): 1-17 Print ISSN: 1077-2626 Online ISSN: 1077-262

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201

    EVEN-VE: Eyes Visibility Based Egocentric Navigation for Virtual Environments

    Get PDF
    Navigation is one of the 3D interactions often needed to interact with a synthetic world. The latest advancements in image processing have made possible gesture based interaction with a virtual world. However, the speed with which a 3D virtual world responds to a user’s gesture is far greater than posing of the gesture itself. To incorporate faster and natural postures in the realm of Virtual Environment (VE), this paper presents a novel eyes-based interaction technique for navigation and panning. Dynamic wavering and positioning of eyes are deemed as interaction instructions by the system. The opening of eyes preceded by closing for a distinct time-threshold, activates forward or backward navigation. Supporting 2-Degree of Freedom head’s gestures (Rolling and Pitching) panning is performed over the xy-plane. The proposed technique was implemented in a case-study project; EWI (Eyes Wavering based Interaction). With EWI, real time detection and tracking of eyes are performed by the libraries of OpenCV at the backend. To interactively follow trajectory of both the eyes, dynamic mapping is performed in OpenGL. The technique was evaluated in two separate sessions by a total of 28 users to assess accuracy, speed and suitability of the system in Virtual Reality (VR). Using an ordinary camera, an average accuracy of 91% was achieved. However, assessment made by using a high quality camera testified that accuracy of the system could be raised to a higher level besides increase in navigation speed. Results of the unbiased statistical evaluations suggest/demonstrate applicability of the system in the emerging domains of virtual and augmented realities

    Vehicular Instrumentation and Data Processing for the Study of Driver Intent

    Get PDF
    The primary goal of this thesis is to provide processed experimental data needed to determine whether driver intentionality and driving-related actions can be predicted from quantitative and qualitative analysis of driver behaviour. Towards this end, an instrumented experimental vehicle capable of recording several synchronized streams of data from the surroundings of the vehicle, the driver gaze with head pose and the vehicle state in a naturalistic driving environment was designed and developed. Several driving data sequences in both urban and rural environments were recorded with the instrumented vehicle. These sequences were automatically annotated for relevant artifacts such as lanes, vehicles and safely driveable areas within road lanes. A framework and associated algorithms required for cross-calibrating the gaze tracking system with the world coordinate system mounted on the outdoor stereo system was also designed and implemented, allowing the mapping of the driver gaze with the surrounding environment. This instrumentation is currently being used for the study of driver intent, geared towards the development of driver maneuver prediction models
    corecore