84 research outputs found

    Enhanced multiscale restriction-smoothed basis (MsRSB) preconditioning with applications to porous media flow and geomechanics

    Full text link
    A novel method to enable application of the Multiscale Restricted Smoothed Basis (MsRSB) method to non M-matrices is presented. The original MsRSB method is enhanced with a filtering strategy enforcing M-matrix properties to enable the robust application of MsRSB as a preconditioner. Through applications to porous media flow and linear elastic geomechanics, the method is proven to be effective for scalar and vector problems with multipoint finite volume (FV) and finite element (FE) discretization schemes, respectively. Realistic complex (un)structured two- and three-dimensional test cases are considered to illustrate the method's performance

    Multilevel techniques for Reservoir Simulation

    Get PDF

    A mimetic finite difference based quasi-static magnetohydrodynamic solver for force-free plasmas in tokamak disruptions

    Full text link
    Force-free plasmas are a good approximation where the plasma pressure is tiny compared with the magnetic pressure, which is the case during the cold vertical displacement event (VDE) of a major disruption in a tokamak. On time scales long compared with the transit time of Alfven waves, the evolution of a force-free plasma is most efficiently described by the quasi-static magnetohydrodynamic (MHD) model, which ignores the plasma inertia. Here we consider a regularized quasi-static MHD model for force-free plasmas in tokamak disruptions and propose a mimetic finite difference (MFD) algorithm. The full geometry of an ITER-like tokamak reactor is treated, with a blanket module region, a vacuum vessel region, and the plasma region. Specifically, we develop a parallel, fully implicit, and scalable MFD solver based on PETSc and its DMStag data structure for the discretization of the five-field quasi-static perpendicular plasma dynamics model on a 3D structured mesh. The MFD spatial discretization is coupled with a fully implicit DIRK scheme. The algorithm exactly preserves the divergence-free condition of the magnetic field under the resistive Ohm's law. The preconditioner employed is a four-level fieldsplit preconditioner, which is created by combining separate preconditioners for individual fields, that calls multigrid or direct solvers for sub-blocks or exact factorization on the separate fields. The numerical results confirm the divergence-free constraint is strongly satisfied and demonstrate the performance of the fieldsplit preconditioner and overall algorithm. The simulation of ITER VDE cases over the actual plasma current diffusion time is also presented.Comment: 43 page

    Decoupled, Linear, and Energy Stable Finite Element Method for the Cahn-Hilliard-Navier-Stokes-Darcy Phase Field Model

    Get PDF
    In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn—Hilliard—Navier—Stokes equations in the free flow region and Cahn—Hilliard—Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions. © 2018 Society for Industrial and Applied Mathematics

    Reactive Flows in Deformable, Complex Media

    Get PDF
    Many processes of highest actuality in the real life are described through systems of equations posed in complex domains. Of particular interest is the situation when the domain is changing in time, undergoing deformations that depend on the unknown quantities of the model. Such kind of problems are encountered as mathematical models in the subsurface, material science, or biological systems.The emerging mathematical models account for various processes at different scales, and the key issue is to integrate the domain deformation in the multi-scale context. The focus in this workshop was on novel techniques and ideas in the mathematical modelling, analysis, the numerical discretization and the upscaling of problems as described above

    Tracing back the source of contamination

    Get PDF
    From the time a contaminant is detected in an observation well, the question of where and when the contaminant was introduced in the aquifer needs an answer. Many techniques have been proposed to answer this question, but virtually all of them assume that the aquifer and its dynamics are perfectly known. This work discusses a new approach for the simultaneous identification of the contaminant source location and the spatial variability of hydraulic conductivity in an aquifer which has been validated on synthetic and laboratory experiments and which is in the process of being validated on a real aquifer

    Desenvolvimento de um simulador substituto de reservatório multiescala acoplado com geomecânica

    Get PDF
    Orientador: Philippe Remy Bernard DevlooTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de GeociênciasResumo: Os softwares de simulação de reservatórios são utilizados como ferramentas para o entendimento dos reservatórios de petróleo e eventualmente, para diagnosticar anomalias operacionais. O aumento da potência computacional permite aos engenheiros de reservatórios desenvolver modelos geológicos mais realistas, refinados e com uma grande quantidade de dados de entrada. Alguns exemplos são os modelos multi-físicos que acoplam efeitos geomecânicos, térmicos, geoquímicos e modelos que incluem múltiplas escalas inerentes aos modelos de campo completo. Estes modelos são geralmente caros, porque o cálculo direto de um modelo geocelular refinado gera enormes sistemas lineares de equações. Quando é considerado o efeito da deformação geomecânica com o fluxo de fluido através de meios porosos, um sistema muito grande de equações associado com a elasticidade é acoplado a um sistema igualmente grande de equações, associadas ao fluxo de fluido e ao transporte de massa. Portanto, a maioria das simulações são realizadas sem considerar o acoplamento geomecânico. Essas simulações ignoram fenômenos físicos que podem ter sérios impactos ambientais, como ativação de falhas, subsidência e outros. Neste trabalho desenvolve-se um inovador método multiescala que permite diretamente simular um modelo geocelular fino em uma maneira econômica. Um modelo substituto também foi desenvolvido para simular a deformação geomecânica acoplada ao modelo de fluido. O objetivo é obter aproximações do problema multifísico não linear descrito pelas equações multifásicas poroelásticas. Para atingir esse objetivo, diferentes tecnologias de elementos finitos são integradas dentro de um simulador de reservatórios, resolvendo problemas que incluem um modelo geocelular com diferentes escalas, acoplado a um modelo substituto de deformação geomecânica. O modelo matemático é escrito em uma forma adequada para a estrutura de elementos finitos do NeoPZ. Em cada passo de tempo, a aproximação é obtida como uma sequência de problemas elásticos, de Darcy e de transporte. Cada componente nesta sequência é tratado por um esquema numérico diferente e / ou espaço de aproximação; em primeiro lugar, um modelo substituto, inspirado na teoria das inclusões poroelásticas, é usado para o cálculo da deformação geomecânica das rochas; em segundo lugar, utiliza-se um método multi-escala baseado na aproximação mista de equações multifásicas; em terceiro lugar, para a convecção das fases, uma aproximação mista multi-escala do campo de velocidade de Darcy é usada, em conjunto com um esquema de upwind de primeira ordem. O potencial da abordagem numérica é demonstrado através de vários exemplos bidimensionais e tridimensionais, em que os reservatórios são simulados usando malhas não estruturadas. Todas as simulações foram executadas usando estruturas computacionais de baixo custoAbstract: Reservoir simulation softwares are used as a tool to understand the behavior of petroleum reservoirs and, eventually, to diagnose operating anomalies. The increased computational power allows reservoir engineers to develop more realistic geological models, that are very refined and have a large amount of input data. As an example, multi-physics models couple geomechanical, thermal, geochemical effects and include multiple scales inherent to full field models. These models are generally costly, because the direct calculation of a refined geocellular model, generates huge linear systems of equations. When coupling the geomechanical deformation with fluid flow through porous media, a very large system of equations associated with elasticity, is coupled to an equally large system of equations, which is associated with fluid flow and mass transport. Therefore, most simulations are performed without considering the geomechanical coupling. These simulations ignore physical phenomena that can have serious environmental impacts such as fault activation, land subsidence and others. In this work an innovative multiscale method is developed, allowing the direct simulation of a fine geocellular model in a cost-effective way. A surrogate model has also been developed for simulating the geomechanical deformation coupled to the fluid model. The goal is obtain approximations for the nolinear multiphysic problem decribed by the multiphase poroelastic equations. In order to attain this goal, different finite element technologies are integrated within a reservoir simulator, solving problems that include a geocellular model with different scales, coupled with a surrogate model of geomechanical deformation. The mathematical model is written in a form suitable for the NeoPZ finite element framework. At each timestep, the approximation is obtained as a sequence of elastic, Darcy's and transport problems. Each component in this sequence is treated by a different numerical scheme and/or approximation space; first, a surrogate model, inspired on the theory of poroelastic inclusions, is used for the calculation of the geomechanical deformation of rocks; second, a multiscale method based on mixed approximation of multiphase equations is used; third, for the convection of the phases, a mixed multiscale approximation of the Darcy's velocity field is used together with a first-order upwind scheme. The potential of the numerical approach is demonstrated through several bi-dimensional and three-dimensional examples, in which reservoirs are simulated using unstructured meshes. All simulations have been executed using low cost computational structuresDoutoradoExplotaçãoDoutor em Ciências e Engenharia de Petróle
    corecore