563 research outputs found

    A Multiscale Finite Element Method for an Elliptic Distributed Optimal Control Problem with Rough Coefficients and Control Constraints

    Full text link
    We construct and analyze a multiscale finite element method for an elliptic distributed optimal control problem with pointwise control constraints, where the state equation has rough coefficients. We show that the performance of the multiscale finite element method is similar to the performance of standard finite element methods for smooth problems and present corroborating numerical results.Comment: 26 page

    Multiscale differential Riccati equations for linear quadratic regulator problems

    Get PDF
    We consider approximations to the solutions of differential Riccati equations in the context of linear quadratic regulator problems, where the state equation is governed by a multiscale operator. Similarly to elliptic and parabolic problems, standard finite element discretizations perform poorly in this setting unless the grid resolves the fine-scale features of the problem. This results in unfeasible amounts of computation and high memory requirements. In this paper, we demonstrate how the localized orthogonal decomposition method may be used to acquire accurate results also for coarse discretizations, at the low cost of solving a series of small, localized elliptic problems. We prove second-order convergence (except for a logarithmic factor) in the L2L^2 operator norm, and first-order convergence in the corresponding energy norm. These results are both independent of the multiscale variations in the state equation. In addition, we provide a detailed derivation of the fully discrete matrix-valued equations, and show how they can be handled in a low-rank setting for large-scale computations. In connection to this, we also show how to efficiently compute the relevant operator-norm errors. Finally, our theoretical results are validated by several numerical experiments.Comment: Accepted for publication in SIAM J. Sci. Comput. This version differs from the previous one only by the addition of Remark 7.2 and minor changes in formatting. 21 pages, 12 figure

    Waveform Relaxation for the Computational Homogenization of Multiscale Magnetoquasistatic Problems

    Full text link
    This paper proposes the application of the waveform relaxation method to the homogenization of multiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton--Raphson scheme. The resolution of many mesoscale problems per Gauss point allows to compute the homogenized constitutive law and its derivative by finite differences. In the proposed approach, the macroscale problem and the mesoscale problems are weakly coupled and solved separately using the finite element method on time intervals for several waveform relaxation iterations. The exchange of information between both problems is still carried out using the heterogeneous multiscale method. However, the partial derivatives can now be evaluated exactly by solving only one mesoscale problem per Gauss point.Comment: submitted to JC

    Interplay of Theory and Numerics for Deterministic and Stochastic Homogenization

    Get PDF
    The workshop has brought together experts in the broad field of partial differential equations with highly heterogeneous coefficients. Analysts and computational and applied mathematicians have shared results and ideas on a topic of considerable interest both from the theoretical and applied viewpoints. A characteristic feature of the workshop has been to encourage discussions on the theoretical as well as numerical challenges in the field, both from the point of view of deterministic as well as stochastic modeling of the heterogeneities

    Rate of Convergence of Phase Field Equations in Strongly Heterogeneous Media towards their Homogenized Limit

    Full text link
    We study phase field equations based on the diffuse-interface approximation of general homogeneous free energy densities showing different local minima of possible equilibrium configurations in perforated/porous domains. The study of such free energies in homogeneous environments found a broad interest over the last decades and hence is now widely accepted and applied in both science and engineering. Here, we focus on strongly heterogeneous materials with perforations such as porous media. To the best of our knowledge, we present a general formal derivation of upscaled phase field equations for arbitrary free energy densities and give a rigorous justification by error estimates for a broad class of polynomial free energies. The error between the effective macroscopic solution of the new upscaled formulation and the solution of the microscopic phase field problem is of order ϵ1/2\epsilon^1/2 for a material given characteristic heterogeneity ϵ\epsilon. Our new, effective, and reliable macroscopic porous media formulation of general phase field equations opens new modelling directions and computational perspectives for interfacial transport in strongly heterogeneous environments

    Dimensional reduction in nonlinear filtering: A homogenization approach

    Full text link
    We propose a homogenized filter for multiscale signals, which allows us to reduce the dimension of the system. We prove that the nonlinear filter converges to our homogenized filter with rate ε\sqrt{\varepsilon}. This is achieved by a suitable asymptotic expansion of the dual of the Zakai equation, and by probabilistically representing the correction terms with the help of BDSDEs.Comment: Published in at http://dx.doi.org/10.1214/12-AAP901 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Superconvergence of the effective Cauchy stress in computational homogenization of inelastic materials

    Get PDF
    We provide theoretical investigations and empirical evidence that the effective stresses in computational homogenization of inelastic materials converge with a higher rate than the local solution fields. Due to the complexity of industrial-scale microstructures, computational homogenization methods often utilize a rather crude approximation of the microstructure, favoring regular grids over accurate boundary representations. As the accuracy of such an approach has been under continuous verification for decades, it appears astonishing that this strategy is successful in homogenization, but is seldom used on component scale. A part of the puzzle has been solved recently, as it was shown that the effective elastic properties converge with twice the rate of the local strain and stress fields. Thus, although the local mechanical fields may be inaccurate, the averaging process leads to a cancellation of errors and improves the accuracy of the effective properties significantly. Unfortunately, the original argument is based on energetic considerations. The straightforward extension to the inelastic setting provides superconvergence of (pseudoelastic) potentials, but does not cover the primary quantity of interest: the effective stress tensor. The purpose of the work at hand is twofold. On the one hand, we provide extensive numerical experiments on the convergence rate of local and effective quantities for computational homogenization methods based on the fast Fourier transform. These indicate the superconvergence effect to be valid for effective stresses, as well. Moreover, we provide theoretical justification for such a superconvergence based on an argument that avoids energetic reasoning
    corecore