358 research outputs found

    Wavelet analysis of epileptic spikes

    Get PDF
    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.Comment: 4 pages, 3 figure

    Time-varying model identification for time-frequency feature extraction from EEG data

    Get PDF
    A novel modelling scheme that can be used to estimate and track time-varying properties of nonstationary signals is investigated. This scheme is based on a class of time-varying AutoRegressive with an eXogenous input (ARX) models where the associated time-varying parameters are represented by multi-wavelet basis functions. The orthogonal least square (OLS) algorithm is then applied to refine the model parameter estimates of the time-varying ARX model. The main features of the multi-wavelet approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-varying process parameters. Simulation studies and applications to real EEG data show that the proposed algorithm can provide important transient information on the inherent dynamics of nonstationary processes

    SEPARATION OF SPIKY TRANSIENTS IN EEG/MEG USING MORPHOLOGICAL FILTERS IN MULTI-RESOLUTION ANALYSIS

    Get PDF
    Epileptic electroencephalographic (EEG) data often contains a large number of sharp spiky transient patterns which are diagnostically important. Background activity is the EEG activity representing the normal pattern from the brain. Transient activity manifests itself as any non-structured sharp wave with dynamically short appearance as distinguished from the background EEG. Generally speaking, the amplitude change of background activity varies slowly with time and spiky transient activity varies quickly with pointed peaks.In this thesis, a method has been developed to automatically extract transient patterns based on morphological filtering in multiresolution representation. Using a simple structuring element (SE) to match a signal's geometrical shape, mathematical morphology is applied to detect the differences of morphological characteristics of signals. If a signal contains features consistent with the geometrical feature of the structuring element, a morphological filter can recognize and extract the signal of interest. The multiresolution scheme can be based on the wavelet packet transform which decomposes a signal into scaling and wavelet coefficients of different resolutions. The morphological separation filter is applied to these coefficients to produce two subsets of coefficients for each coefficient sequence: one representing the background activity and the other representing the transients. These subsets of coefficients are processed by the inverse wavelet transform to obtain the transient component and the background component. Alternatively, a morphological lifting scheme has been proposed for separation these two components. Experimental results on both synthetic data and real EEG data have shown that the developed methods are highly effective in automatic extraction of spiky transients in the epileptic EEG data.The interictal spike trains thus extracted from multiple electrode recordings are further analyzed. Their cross-correlograms are examined according to the stochastic point process model. Our experiment result has been verified by human experts' estimation
    • …
    corecore