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chronized EEG, phasic EEG, and slow EEG). This modi-
�cation leads to signi�cant overall improvement provided
that state classi�cation is correct.
Diambra and Malta [16] adopted nonlinear prediction

for epileptic spike detection. They demonstrated that
when the model's parameters are adjusted during the
\learning"phase to assure good predictive performance
for stochastic background 
uctuations, the appearance
of an interictal spike is marked by a very large forecast-
ing error. This novel approach is appealing because it
makes use of changes in EEG dynamics. One expects
good nonlinear predictive performance when the dynam-
ics of the EEG interval used for building up the model is
similar to the dynamics of the interval used for testing.
However, it is uncertain at this point whether it is possi-
ble to develop a robust spike detection algorithm based
solely on this idea.
As Clark et al. put it succinctly, automatic EEG anal-

ysis is a formidable task because of the lack of \...features
that re
ect the relevant information "[17]. Another dif-
�culty is the nonstationary nature of the spikes and the
background in which they are embedded. One technique
developed for the treatment of such nonstationary time
series is wavelet analysis [18, 19]. The goal of this paper
is to characterize the epileptic spikes and sharp waves in
terms of the properties of their wavelet transforms. In
particular, we search for features which could be impor-
tant in the detection of epileptic events.
The wavelet transform is an integral transform for

which the set of basis functions, known as wavelets, are
well localized both in time and frequency. Moreover, the
wavelet basis can be constructed from a single function
 (t) by means of translation and dilation:

 a;t0 =  

�
t� t0
a

�
: (1)

 (t) is commonly referred to as the mother function or
analyzing wavelet. The wavelet transform of function
h(t) is de�ned as

W (a; t0) =
1p
a

Z 1

�1

h(t) �a;t0dt; (2)

where  �(t) denotes the complex conjugate of  (t). The
continuous wavelet transform of a discrete time series
fhigN�1

i=0 of length N and equal spacing Æt is de�ned as

Wn(a) =

r
Æt

a

N�1X
n0=0

hn0 �
�
(n0 � n)Æt

a

�
: (3)

The above convolution can be evaluated for any of N
values of the time index n. However, by choosing all N
successive time index values, the convolution theorem al-
lows us to calculate all N convolutions simultaneously in
Fourier space using a discrete Fourier transform (DFT).
The DFT of fhigN�1

i=0 is

ĥk =
1

N

N�1X
n=0

hne
�2�ikn=N ; (4)

where k = 0; :::; N � 1 is the frequency index. If one
notes that the Fourier transform of a function  (t=a) is

jaj ̂(af) then by the convolution theorem

Wn(a) =
p
aÆt

N�1X
k=0

ĥn 
�(afk)e

2�ifknÆt; (5)

frequencies fk are de�ned in the conventional way. Us-
ing (5) and a standard fast Fourier transform (FFT) rou-
tine it is possible to eÆciently calculate the continuous
wavelet transform (for a given scale a) at all n simul-
taneously [20]. It should be emphasized that formally
equation (5) does not yield the discrete linear convolu-
tion corresponding to (3) but rather a discrete circular
convolution in which the shift n0 � n is taken modulo
N . However, in the context of this work, this problem
does not give rise to any numerical diÆculties. This is
because, for purely practical reasons, the beginning and
the end of the analyzed part of data stream are not taken
into account during the EEG spike detection.
From a plethora of available mother wavelets, we em-

ploy the Mexican hat

 (t) =
2p
3
��1=4(1� t2)e�t

2=2 (6)

which is particularly suitable for studying epileptic
events.
In the top panel of Fig. 1 we present two pieces of

the EEG recording joined at approximately t = 1s. The
digital 19 channel recording sampled at 240 Hz was ob-
tained from a juvenile epileptic patient according to the
international 10-20 standard with the reference average
electrode. The epileptic spike in this �gure (marked by
the arrow) is followed by two artifacts. The bottom panel
of Fig. 1 displays the contour map of the absolute value
of Mexican hat wavelet coeÆcients W (a; t0). It is ap-
parent that the red prominent ridges correspond to the
position of either spike or the motion artifacts. What
is most important, for small scales, a, the values of the
wavelet coeÆcients for the spike's ridge are much larger
than those for the artifacts. The peak value along the
spike ridge corresponds to a = 7. In sharp contrast, for
the range of scales used in Fig. 1 the absolute value of
coeÆcients W (a; t0) for the artifacts grow monotonically
with a.
The question arises as to whether the behavior of the

wavelet transform as a function of scale can be used to
develop a reliable detection algorithm. The �rst step in
this direction is to use the normalized wavelet power

w(a; t0) =W 2(a; t0)=�
2 (7)

instead of the wavelet coeÆcients to reduce the depen-
dence on the amplitude of the EEG recording. In the
above formula �2 is the variance of the portion of the sig-
nal being analyzed (typically we use pieces of length 1024
for EEG tracings sampled at 240 Hz). In actual numeri-
cal calculations we prefer to use the square of w(a; t0) to
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merely increase the range of values analyzed during the
spike detection process. In Fig. 2 w2 for the signal used
in Fig. 1 is plotted for three scales A = 3, B = 7 and
C = 20.
In the most straightforward approach, we identify an

EEG transient potential as a simple or isolated epileptic
spike if and only if:
� the value of w2 at a = 7 is greater than a predeter-

mined threshold value T1,
� the square of normalized wavelet power decreases

from scale a = 7 to a = 20,
� the value of w2 at a = 3 is greater than a predeter-

mined threshold value T2.
The threshold values T1 and T2 may be considered as

the model's parameters which can be adjusted to achieve
the desired sensitivity (the ratio of detected epileptic
events to the total number of epileptic events present
in the analyzed EEG tracing) and selectivity (the ratio
of epileptic events to the total number of events marked
by the algorithm as epileptic spikes).
While this simple algorithm is quite e�ective for simple

spikes such as one shown in Fig. 1 it fails for the com-
mon case of an epileptic spike accompanied by a slow
wave with comparable amplitude. The example of such
complex is given in Fig. 3(a). The overlap of the neg-
ative tail of the Mexican hat with the slow wave yields
the inherently low values of w2 at scale A (panel (b)) and
scale B (panel (c)) as compared to those characteristic of
the \isolated"spike. Nevertheless, the normalizedwavelet
power does decrease from scale B to C. Consequently,
in the same vein as the argument we presented above,
we can develop an algorithm which detects the epileptic
spike in the vicinity of a slow wave by calculating the
following linear combination of wavelet transforms:

~W (a; t0) = c1W (a; t0) + c2W (as; t0 + � ) (8)

and checking whether the square of corresponding nor-
malized power ~w(a; t0) = ~W 2(a; t0)=�2at scales a = 3

and a = 7 exceeds the threshold value ~T1 and ~T2, respec-
tively. The second term in (8) allows us to detect the
slow wave which follows the spike. The parameters as
and � are chosen to maximize the overlap of the wavelet
with the slow wave. For the Mexican hat we use as = 28
and � = 0:125s. By varying the values of coeÆcients c1
and c2, it is possible to control the relative contribution
of the spike and the slow wave to the linear combination

(8).

For testing purposes, we built up the database of arti-
facts and spikes. We made available some of these EEG
tracings at [21] along with the examples of the numeri-
cal calculations. While the analysis of the pieces of EEG
recordings such as those shown in Fig. 2 and 3 is essential
in determining the generic properties of epileptic events,
it can hardly re
ect the diÆculties one can encounter
in interpretation of clinical EEG. Therefore we selected
four challenging EEG tracings with 340 epileptic events.
The algorithm described in this work marked 356 events
out of which 239 turned out to be the epileptic events.
Thus the sensitivity of the algorithm was 70% and its se-
lectivity was equal to 67%. We then analyzed the same
tracings with the leading commercial spike detector de-
veloped by the Persyst Development Corporation (In-
sight 2001.07.12). This software marked 654 events out
of which 268 were epileptic events. Thus slightly better
sensitivity of 79% was achieved at the expense of the low
41% selectivity. The performance of preliminary numeri-
cal implementation of the detection algorithm presented
in this work is excellent and allows to process 24 hour
EEG recording (19 channels sampled at 240 Hz) in a
matter of minutes on the average personal computer.

The goal of wavelet analysis of the two types of spikes,
presented in this paper, was to elucidate the approach
to epileptic events detection which explicitly hinges on
the behavior of wavelet power spectrum of EEG signal
across scales and not merely on its values. Thus, this
approach is distinct not only from the detection algo-
rithms based upon discrete multiresolution representa-
tions of EEG recordings [22, 23, 24, 25, 26] but also from
the method developed by Senhadji and Wendling which
employs continuous wavelet transform [27].

Epilepsy is a common disease which a�ects 1-2% of
the population and about 4% of children [28]. In some
epilepsy syndromes interictal paroxysmal discharges of
cerebral neurons re
ect the severity of the epileptic dis-
order and themselves are believed to contribute to the
progressive disturbances in cerebral functions (eg. speech
impairment, behavioral disturbances) [29]. In such cases
precise quantitative spike analysis would be extremely
important. The epileptic event detector described in this
paper was developed with this particular goal in mind
and its application to the studies of the Landau-Kle�ner
syndrome will be presented elsewhere.
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FIG. 1: Top panel: simple epileptic spike (marked by S) fol-
lowed by two artifacts. Bottom panel: contour map of the
absolute value of the Mexican hat wavelet coeÆcients (arbi-
trary units) calculated for the EEG signal shown above. The
shades of blue correspond to low values and the shades of red
to high values.
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FIG. 2: Square of normalized wavelet power for three di�erent
scales A < B < C (Panels (b)-(d)). The EEG signal shown
in panel (a) is the same as the one used in Fig. 1
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FIG. 3: (a) Epileptic spike - slow wave complex. The ampli-
tude of the slow wave is comparable to that of the spike. The
square of normalized wavelet power for this signal is shown in
panels (b)-(d) for three di�erent scales A < B < C.


