5 research outputs found

    Preserving data integrity of encoded medical images: the LAR compression framework

    Get PDF
    International audienceThrough the development of medical imaging systems and their integration into a complete information system, the need for advanced joint coding and network services becomes predominant. PACS (Picture Archiving and Communication System) aims to acquire, store and compress, retrieve, present and distribute medical images. These systems have to be accessible via the Internet or wireless channels. Thus protection processes against transmission errors have to be added to get a powerful joint source-channel coding tool. Moreover, these sensitive data require confidentiality and privacy for both archiving and transmission purposes, leading to use cryptography and data embedding solutions. This chapter introduces data integrity protection and developed dedicated tools of content protection and secure bitstream transmission for medical encoded image purposes. In particular, the LAR image coding method is defined together with advanced securization services

    An integrated multiplesubstream unequal error protection and error concealment algorithm for Internet video applications,” presented at the

    No full text
    This paper presents a coordinated multiple-substream unequal error protection and error concealment algorithm for SPIHT-coded bitstreams transmitted over lossy channels. In the proposed scheme, we divide the video sequence corresponding to a group of pictures into two sub-sequences in the temporal domain and independently encode each sub-sequence with a 3-D SPIHT algorithm to generate two independent substreams. Each substream is protected by an FEC-based unequal error protection algorithm that assigns unequal forward error correction codes for each substream with bit-plane granularity. The information that is lost during transmission for one substream is estimated at the receiver by using the correlation between the two substreams and the smoothness of the video signal. Simulation results show that the proposed multiple-substream UEP algorithm is simple, fast, and robust in hostile network conditions, and that the proposed error concealment algorithm achieves about 1-3 dB PSNR gain over the case where there is no error concealment at high packet loss rates. 1

    DYNAMIC RESOURCE ALLOCATION FOR MULTIUSER VIDEO STREAMING

    Get PDF
    With the advancement of video compression technology and wide deployment of wired/wireless networks, there is an increasing demand of multiuser video communication services. A multiuser video transmission system should consider not only the reconstructed video quality in the individual-user level but also the service objectives among all users on the network level. There are many design challenges to support multiuser video communication services, such as fading channels, limited radio resources of wireless networks, heterogeneity of video content complexity, delay and decoding dependency constraints of video bitstreams, and mixed integer optimization. To overcome these challenges, a general strategy is to dynamically allocate resources according to the changing environments and requirements, so as to improve the overall system performance and ensure quality of service (QoS) for each user. In this dissertation, we address the aforementioned design challenges from a resource-allocation point of view and two aspects of system and algorithm designs, namely, a cross-layer design that jointly optimizes resource utilization from physical layer to application layer, and multiuser diversity that explores the source and channel heterogeneity among different users. We also address the impacts on systems caused by dynamic environment along time domain and consider the time-heterogeneity of video sources and time-varying characteristics of channel conditions. To achieve the desired service objectives, a general resource allocation framework is formulated in terms of constrained optimization problems to dynamically allocate resources and control the quality of multiple video bitstreams. Based on the design methodology of multiuser cross-layer optimization, we propose several systems to efficiently transmit multiple video streams, encoded by current and emerging video codecs, over major types of wireless networks such as 3G cellular system, Wireless Local Area Network, 4G cellular system, and future Wireless Metropolitan Area Networks. Owing to the integer nature of some system parameters, the formulated optimization problems are often integer or mixed integer programming problem and involve high computation to search the optimal solutions. Fast algorithms are proposed to provide real-time services. We demonstrate the advantages of dynamic and joint resource allocation for multiple video sources compared to static strategy. We also show the improvement of exploring diversity on frequency, time, and transmission path, and the benefits from multiuser cross-layer optimization

    Progressive Source-Channel Coding for Multimedia Transmission over Noisy and Lossy Channels with and without Feedback

    Get PDF
    Rate-scalable or layered lossy source-coding is useful for progressive transmission of multimedia sources, where the receiver can reconstruct the source incrementally. This thesis considers ``joint source-channel'' schemes for such a progressive transmission, in the presence of noise or loss, with and without the use of a feedback link. First we design image communication schemes for memoryless and finite state channels using limited and explicitly constrained use of the feedback channel in the form of a variable incremental redundancy Hybrid ARQ protocol. Constraining feedback allows a direct comparison with schemes without feedback. Optimized feedback based systems are shown to have useful gains. Second, we develop a controlled Markov chain approach for constrained feedback Hybrid ARQ protocol design. The proposed methodology allows the protocol to be chosen from a collection of signal flow graphs, and also allows explicit control over the tradeoffs in throughput, reliability and complexity. Next we consider progressive image transmission in the absence of feedback. We assign unequal error protection to the bits of a rate-scalable source-coder using rate compatible channel codes. We show that, under the framework, the source and channel bits can be ``scheduled'' in a single bitstream in such a way that operational optimality is retained for different transmission budgets, creating a rate-scalable joint source-channel coder. Next we undertake the design of a joint source-channel decoder that uses ``distortion aware'' ACK/NACK feedback generation. For memoryless channels, and Type-I HARQ, the design of optimal ACK/NACK generation and decoding by packet combining is cast and solved as a sequential decision problem. We obtain dynamic programming based optimal solutions and also propose suboptimal, lower complexity distortion-aware decoders and feedback generation rules which outperform conventional BER based rules such as CRC-check. Finally we design operational rate-distortion optimal ACK/NACK feedback generation rules for transmitting a tree structured quantizer over a memoryless channel. We show that the optimal feedback generation rules are embedded, that is, they allow incremental switching to higher rates during the transmission. Also, we obtain the structure of the feedback generation rules in terms of a feedback threshold function that simplifies the implementation
    corecore