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Rate-scalable or layered lossy source-coding is useful forprogressivetransmission

of multimedia sources, where the receiver can reconstruct the source incrementally. This

thesis considers “joint source-channel” schemes for such aprogressive transmission, in

the presence of noise or loss, with and without the use of a feedback link.

First we design image communication schemes for memorylessand finite state chan-

nels usinglimited and explicitly constraineduse of the feedback channel in the form of a

variable incremental redundancy Hybrid ARQ protocol. Constraining feedback allows a

direct comparison with schemes without feedback. Optimized feedback based systems

are shown to have useful gains.



Second, we develop a controlled Markov chain approach for constrained feedback

Hybrid ARQ protocol design. The proposed methodology allows the protocol to be

chosen from a collection of signal flow graphs, and also allows explicit control over the

tradeoffs in throughput, reliability and complexity.

Next we consider progressive image transmission in the absence of feedback. We

assign unequal error protection to the bits of a rate-scalable source-coder using rate

compatible channel codes. We show that, under the framework, the source and channel

bits can be “scheduled” in a single bitstream in such a way that operational optimality is

retained for different transmission budgets, creating a rate-scalable joint source-channel

coder.

Next we undertake the design of a joint source-channel decoder that uses “distor-

tion aware” ACK/NACK feedback generation. For memoryless channels, and Type-I

HARQ, the design of optimal ACK/NACK generation and decoding by packet combin-

ing is cast and solved as a sequential decision problem. We obtain dynamic program-

ming based optimal solutions and also propose suboptimal, lower complexity distortion-

aware decoders and feedback generation rules which outperform conventional BER

based rules such as CRC-check.

Finally we design operational rate-distortion optimal ACK/NACK feedback gener-

ation rules for transmitting a tree structured quantizer over a memoryless channel. We

show that the optimal feedback generation rules are embedded, that is, they allow incre-

mental switching to higher ratesduring the transmission. Also, we obtain the structure

of the feedback generation rules in terms of a feedback threshold function that simplifies

the implementation.
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Chapter 1

Introduction

1.1 Multimedia Sources over Noisy Channels

The past decade has been one of the most exciting times to be a communications engi-

neer. Last ten years have seen an explosive growth in telecommunications technology

and its deployment. The Internet has already become so indispensable that we some-

times wonder how people could do without it earlier.

The ultimate dream is that of complete connectivity across space and time, where a

person anywhere on the globe, can instantly connect to everyother person or institution,

and has unrestricted, fast, up-to-date and economical access to collective knowledge and

wisdom that humanity has to offer. In addition, such a personwould like to be mobile

without losing connectivity.

Along with data sources such as text, numbers, software programs and computer

binaries, multimedia sources such as images, video, speech, music and graphics form

significant part of the services that such a globally connected society would like to make

available to its members. It has been predicted that the digital multimedia may soon

become the dominant traffic on the Internet.

Digitally encoded multimedia sources, primarily images, video and audio, behave

1



differently than data. Firstly, they are “high-bandwidth”sources, that is, in the raw form,

they demand relatively large digital memory storage. Secondly, sources such as video

and audio are real-time so they put real-time restrictions on delays and jitter. Thirdly,

and most importantly for our discussion, unlike data, they are loss tolerant, that is, they

allow approximate reproductions. They can be compressed ina “lossy” manner,i.e.

they have a “rate-distortion” tradeoff in their digital representations. Also, this property

introduces robustness as the information conveyed by them is not significantly altered if

the reproduction at the receiver is not exactly what was transmitted.

This thesis deals with the techniques ofprogressivecommunication of such loss-

tolerant multimedia sources over noisy channels. Progressive communication allows

the receiver to reconstruct the source at increasing fidelity as it receives bits or channel

symbols from the transmitter.

Thoughembeddedor rate scalablesource coders, whose output bit streams have a

progressive reconstruction capability, exist, progressive transmission in the presence of

channel impairments presents new challenges.

In this thesis we consider problems in joint source-channelframework and hence

our principal objective is to maximize the end-to-end quality of the source reproduction

at the receiver in a giventransmission budgetexpressed in channels uses per source

sample. We consider problems that fall in two broad categories. (i) First, we consider

transmission of lossy sources over a noisy channelwhen a feedback channel is available

from the receiver to the transmitter. (ii) Second, we consider progressive transmission

of a lossy source over a channel in the absence of a feedback channel.

Before we embark on addressing the specific problems, in the following sections

we discuss the research in the relevant topics, - namely joint source-channel coding,

embedded or rate scalable source coding, progressive transmission and finally the use

2



of feedback channel in communication problems.

1.2 Joint Source-Channel Coding

There is a large and still growing body of research in the areaof Joint Source-Channel

coding. Despite Shannon’s “separation theorem” for memoryless channels [19], it is

realized that for finite delays and non-asymptotic block lengths, it may be better to have

some coupling between the compression schemes and the errorcontrol schemes, espe-

cially for loss tolerant sources like images and video. Throughout the thesis, by “source-

coding” we refer to the map from the source domain to bits. It includes the quantizer as

well as entropy coding if any. The source-coder output is a representation of the source

at a certain encoding rate (or just “rate”) that allows an approximate reconstruction of

the source. The goodness of the approximation is measured bysome distortion metric

between the original and the reconstructed realization.

This coupling between the source-coding and the channel coding is implemented in

a plethora of ways which can be classified broadly as follows.(i) Tightly coupled sys-

tems:Combined source-channel coding is where the source vectorsare directly mapped

to channel alphabet, and received channel symbols are directly used for estimating the

source, without any explicit channel coding (e.g. [23]). Such approach, though optimal

in operational rate distortion performance, is constrained by design and implementation

complexity. (ii) Source-aware channel encoding:- Unequal Error Protection (UEP) is

used when either the source, a transform or the compressed bit stream can be partitioned

into portions with different sensitivity to channel noise and impairment. Error control

codes of different strengths are assigned for different portions. Design procedure in-

volve partitioning, sensitivity determination and resource allocation (e.g. [29, 46, 63]).
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(iii) Source-aware channel decoding:- Such approaches use prior information (such as

residual statistical dependence after compression) of thecompressed source bitstream

to obtain better estimates of channel coded bits (e.g. Source-Controlled Channel de-

coding [30, 60]). (iv)Robust Source Encoding:Modifying source coders to prevent

error propagation is typically accomplished by fixed lengthquantization, packetization

and resynchronization schemese.g. [33], terminations for entropy coders, (e.g. [44]),

source-interleavers(e.g. [51, 10]). (v) Channel aware source-decoding:Maximum A

Posteriori (MAP) and Minimum Mean Squared Error (MMSE) estimation of the source,

error detection and masking schemes, error concealmente.g.[69]), bad-frame masking,

decoding for variable length codes.

The latest research in these areas focuses on efficient use ofthe available information

at the decoding, turbo-like structurese.g. [25, 60], multiple description source-coding

for networks (e.g.[54]), multicasting over noisy channels and delay constrained delivery

(e.g..[17]), and power and energy efficient source-channel coding (e.g.[41])

1.3 Rate-scalable or Embedded Source Coding and Pro-

gressive Transmission

The concept of rate-scalable source-coder is analogous to the decimal or binary expan-

sion of a real number, where the real number is approximated more and more closely

by adding more digits. A rate-scalable source-coder allowsrepresentation of the source

at two or more different rates, where the representation at alower rate is a prefix of

that at the higher rate. Technically, all source coders are rate-scalable, as given any

representation, some approximate reconstruction of the source, however bad, can al-

ways be obtained from any prefix of it. We are more concerned with goodrate-scalable
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source coders which perform well at both the rates. Rate scalability is also referred to

as SNR-scalability, and rate-scalable source-coding is also variously called successive

approximation coding, layered coding, successively-refined coding, fine-grain scalable

coding and embedded coding. In information theory, a successively refinable source is

one for which a sequence of coding schemes exist which, asymptotically in blocklength,

achieve minimum distortions at two different rates simultaneously. Not all sources are

successively refinable in the information theoretic sense [21], but good rate scalable

coders can still be designed.

Progressive transmission is the transmission of a multimedia source in layers, where

the bits in “enhancement” layer further improve the qualityof the reconstruction ob-

tained by decoding the bits in the “base” layers. The size of the layers could be large

- or it could be fine grained. In the absence of channel noise and impairments, the

concept of progressive transmission is just semantically different from that of a layered

or rate scalable source-coder. In the case where the transmission channel is noisy we

distinguish between the source coding and the process of transmission.

1.4 Feedback Channel

Most modern communications systems allow simultaneous twoway communication

between the sender and the receiver on a link. The nature of the channels on forward

and reverse links may be asymmetric, such as in communication from a stationary base

station with high powered antenna to a mobile operating on low battery in a interference-

ridden environment, or in a hybrid network with broadcasting satellite and a terrestrial

uplink. But if such a channel is available, it can be exploited for efficient communica-

tion.
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Again, the use of feedback is proved to have no effect on the information theoretic

channel capacity of a discrete memoryless channel. It increases the capacity of a Gaus-

sian channel only slightly [19]. Despite this result about asymptotic futility of feedback

for increasing the capacity, Shannon indicated that feedback can be used to simplify

the coding and communication. We find that, for schemes of comparable complexity,

good transmission schemes using feedback indeed outperform schemes not using the

feedback channel.

The techniques in literature which use feedback from the receiver to the transmitter

can be classified as using the feedback in the form of (i) Information feedback [47,

48], (ii) Channel state feedback in the context of time varying channels (iii) Decision

(ACK/NACK) feedback (e.g.[32], hosts of ARQ based methods [67])

Information Feedback: This is the most general form of feedback, where it is assumed

that at each instant the receiver and the transmitter share the same information. This

would be achieved if the receiver transmits all the raw received data (or observations

or measurements) of the possibly corrupted received data back to the transmitter, in-

stantly and accurately. In practice, this would imply that there is more traffic in the

reverse direction than in the forward direction (e.g. in a BPSK encoded transmission

of bits, information feedback would require that the floating point number generated by

the matched filter for each transmitted bit, be sent back to the transmitter in an error free

manner.) Though some clever schemes have been devised whichmake use of informa-

tion feedback [47, 48], information feedback has limited applicability in the scenario of

multimedia transmission to say, a mobile.

Channel State Feedback:In case of time varying channels, or even in case of mem-

oryless channels, some side information about the channel behavior - such as observed

channel SNR in mobile communication - may be known at the receiver at the time of
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the transmission.. This information can be made available to the transmitter by a feed-

back channel. This information is typically independent ofthe actual symbols being

transmitted over the channel.

Decision (ACK/NACK) feedback: A complete information feedback is typically im-

practical. The reverse link may have limited data rate, probably a non-zero transmission

delay, and may be error prone. In such cases receiver can use the feedback channel in a

restricted way. A widely used feedback is Decision Feedbackor ACK/NACK feedback.

In such feedback, the receiver periodically generates a onebit feedback (ACK/NACK)

about the acceptability of the received noisy symbols. In case of acceptability, ACK is

sent or otherwise NACK is sent. Based on this feedback, the transmitter decides the

next action, such as retransmission. ACK/NACK feedback, though restrictive, has the

advantage that it is simple to generate and that it does not place too many demands on

the reverse link. We shall exclusively look at ACK/NACK feedback in this thesis.

1.5 Contribution of the Thesis and its Overview

The thesis for the first time attempts to achieve progressivetransmission of lossy sources

in the presence of channel impairments and also addresses the ways to use a feedback

channel. The contribution of the thesis can be categorized in in the following four cate-

gories, which form the four main chapters of the thesis.

(1) System design for progressive image transmission over noisy channels with

feedback: Researchers have designed specific systems for transmission of images over

noisy channels where they control the image coder, introduce robustness by carefully

selecting the error protection for components of the image coder output and provide de-

coders which are targeted specifically towards images. All of the research did not use
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the feedback channel. We design a progressive image transmission system which uses

the feedback channel. We design the transmission protocol to obtain the best end to end

performance and then undertake direct comparison between the state-of-the-art image

transmission systems which do not use feedback. We carry outthe design for memo-

ryless channels and for certain finite state channels. We observe an end-to-end gain of

nearly 1 dB in average PSNR of the image for the channels and images selected. This

work is presented in Chapter 2.

(2) Constrained feedback HARQ design for error control: This work concretizes

the methodology used in the previous chapter for packetizedtransmission of general

data over noisy channels. The system in Chapter 2 is a hybrid Forward Error Correc-

tion/Automatic Repeat Query (HARQ) protocol for transmission. Specifying a HARQ

protocol requires describing its components codes and the transmission strategy -i.e. the

finite state machine describing the sequence in which the bits of the component codes

are transmitted. The sequence of transmissions can be described by a signal flow graph.

Conventionally Hybrid ARQ schemes are designed and analyzed by first selecting com-

ponent codes and the transmission strategy, and then analyzing the graph of the protocol

by signal flow graph techniques for different channel parameters[13]. If we know the

channel statistics, something better can be done. Instead of choosing a fixed protocol

- i.e. the component codes and the graph first, we consider a class ofprotocols -i.e.

a collection of codes and graphs at once. This allows us to consider a more general

class of Hybrid ARQ protocols - namely variable-rate incremental-redundancy hybrid

ARQ protocols - where the number of bits transmitted betweentwo ACK/NACKs is

allowed to be different. We provide a Controlled Markov Chain based design scheme

which, unlike existing design schemes for hybrid ARQ, allows optimization of param-

eters over a collection of graphs, and provides direct control over the tradeoff between
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main performance measures of a hybrid ARQ protocol - namely throughput and re-

liability. In addition, an important performance measure is the average usage of the

feedback channel - which, by counting decoding attempts perinformation packet, is di-

rectly related to the computational complexity of the protocol. The controlled Markov

Chain based design methodology, allows constraining the feedback usage too and hence

is dubbed Constrained Feedback HARQ design. The ability to control the tradeoff be-

tween throughput, reliability and feedback channel usage,allows comparison of HARQ

schemes with pure Forward Error Correction techniques too.This work forms Chapter

3.

(3) Progressive joint-source channel coder in the absence of feedback or design

of unequal error protections for progressive transmissionof rate scalable image

coders: Typically, the bits output by a rate-scalable source coder have differing sen-

sitivities to channel impairements. Hence, in the absence of a feedback channel, there

is a need for unequal error protection of the source coder output bits. Also, the optimal

allocation of unequal error protection turns out to be different for different transmission

budgets, even for transmission over stationary and memoryless bit error channels. We

provide an algorithm to obtain the optimal unequal error protection profile from a given

family of embedded error protection codes, so as to maximizethe quality of the image

at a given transmission budget. In addition, we show a way toschedulethe error protec-

tion bits and the source coder bits in such a way that the optimal unequal error protection

profiles for different transmission budgets can be obtainedfrom a single bit stream. In

this sense weextend the notion of a rate-scalable source coder to a rate-scalable joint

source-channel coder.Transmitting the output of the joint source-channel coder results

in optimized progressive transmission of the source. This work, presented in Chapter 4

is a dual of Chapter 2, where a feedback channel is available to carry out progressive
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transmission of images. Chapter 4 also presents the resultsfor transmission of images

over stationary and memoryless bit-error channels. Chapter 5 presents a small extension

of the technique and presents image transmission results for compound packet erasure

channels.

(4) Optimal use of ACK/NACK feedback for joint source-channel decoding:Chap-

ter 6 considers the transmission scenario with the feedbackchannel again. We go back

to first principles and consider the problem of design of a source-channel decoder for

transmission of a general vector quantized source (not necessarily a scalable coder or

an image coder,) over a noisy memoryless channel with a retransmission based pro-

tocol such as ARQ or Type-I hybrid ARQ. Conventionally ACK/NACK feedback is

generated at the receiver by means of an error detection mechanism such as cyclic re-

dundancy check (CRC). This feedback generation, though computationally efficient, is

suboptimal for distortion-rate tradeoff. We address the problem of designing “distortion

aware” feedback generation rules which obtain the best possible distortion-rate tradeoffs

in the case when the transmitter does a pure retransmission and the receiver does packet

combining of the received noisy copies of codewords. First we show that the problem

of design of optimal ACK/NACK generation and decoding by packet combining can

be cast and solved as a sequential decision problem. The optimal solutions found by

dynamic programming give feedback generation rules which depend explicitly on the

distortion metric. The Lagrangian of rate and distortion isshown to be the Bayesian risk

of the corresponding sequential decision problem. Consequently, the optimal scheme

for feedback generation and decoding is obtained by dynamicprogramming over the

state space of posterior probabilities of the transmit codewords. Next, based on the

structure of the optimal solution, we propose suboptimal joint source-channel decoders

and “distortion aware” feedback generation rules, which outperform conventional pure
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channel-decoders and CRC/BER based rules.

(5) Progressive transmission with ACK/NACK feedback and pruned TSVQ in the

presence of noise:The last contribution of the thesis is Chapter 7 which extends the

definition of NACK feedback. NACK feedback generally denotes that the receiver finds

the received bits unacceptable or unreliable. A better way of looking at NACK feedback

in the context of joint source-channel coding is as arequest to continue transmission

about the same source symbols.We consider an extended joint source-channel system

with ACK/NACK feedback where a tree structured quantizer istransmitted with one

feedback per stage. The best feedback generation schemes are those whose operating

points lie on the lower convex hull of the operational rate-distortion region. We show

that the convex hull, similarly to an analogous property of Pruned TSVQs [15], can be

traced by a collection of feedback generation schemes - all of which areembedded, in

the sense that a higher transmission rate operating point can never send NACK where

an ACK was sent by a scheme operating at a lower transmission budget. We also char-

acterize the operating feedback generation policies by a “feedback threshold function”

which makes the implementation of the feedback generation scheme easier.

1.6 The Issue of Delay and Transmission of Real-Time

Sources

Extensive literature exists that deals with the communication of real-time sources, speech,

audio and video over noisy and lossy channels for either streaming or real-time inter-

active applications. In this thesis we do not consider the time based deadlines and real

time sources directly. Still, the concepts of progressive transmission and the necessity

of constraining the feedback channel usage in the context ofACK/NACK feedback has
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implications on delay performance of a multimedia communication system. These is-

sues have been concurrently addressed by other researchersand the ideas presented in

this thesis can be effectively combined with techniques fordelivery of delay sensitive

multimedia over error and loss prone channels and networks.Some of the works which

are closely related to the ideas presented in the thesis and applied to delivery of real time

sources are in Chou et al [16, 17]. An overview of the collection of techniques avail-

able for video transmission can be obtained from the books byHanzo et al for wireless

[31], Sun et al for compressed transmission of video over networks [62], and the review

articles and special issues in [20, 69, 2, 7, 27].

1.7 Overview

Figure 1.1 describes how the different chapters in the thesis are related. The chapters

are designed to be self contained and the necessary introduction and literature review is

provided at the beginning of each chapter. Concluding remarks are presented in Chapter

8.

Design

Source−Channel Decoding 

with Optimal use of Feedback Channel

Pruned Tree Structured Quantization

In the presence of Noise and Feedback

Controlled Markov Chain Approach to

Constrained Feedback Hybrid ARQ
Progressive Image Transmission over

Noisy Channels with Feedback

Pogressive Source−Channel Coding

for Multimedia Transmission

over Noisy and Lossy Channels

with and without Feedback

in the absence of Feedback Channel

Progressive Unequal Error Protection Dissertation:

Figure 1.1: Thesis Organization and summary
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Chapter 2

Image Communication over Noisy Channels with

Feedback

2.1 Motivation

In addition to its evident relevance in delivery of multimedia to a wireless Internet user,

digital image communication over noisy channels has applications in tele-medicine and

modern battlefield. As argued in the introduction, an image is a loss-tolerant source,

that is, typically, it can withstand errors and loss to a certain extent without compro-

mising the visual information conveyed. It is of considerable interest to design efficient

communication systems for image transmission over noisy and lossy channels. The

problem has received much attention in the recent past A number of techniques have

been suggested, which include suggestions for robust source coding (e.g. [14, 51]) Un-

equal Error Protection of subband coded images and recent works on error protection

of progressively coded images [57, 59, 11, 58, 1, 39]. These techniques are primarily

Forward Error Correction (FEC) based, and are designed for aone-way communication

channel.

Most mobile communication systems allow two-way communication and hence there
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is a feedback channel available from the receiver to the transmitter. We address the

problem of image transmission over noisy channels when sucha feedback channel is

available from the receiver to the transmitter. In this chapter, which describes the work

at a system design level, we design an image communication system using limited feed-

back and obtain results superior to the state-of-the-art schemes not using feedback. We

show how feedback can be effectively used in an image transmission system employ-

ing an embedded image compression algorithm like that of Said and Pearlman [52] and

a family of embedded channel codes like Rate Compatible Punctured Convolutional

(RCPC) codes [29]. We design the system for memoryless bit error channel and for 2-

state Gilbert-Eliot channel. In the system design, we introduce the new concepts of (1)

variable incremental redundancyhybrid ARQ-FEC protocol (2)a Controlled Markov

Chain approachto design of such a protocol,with constraints on the feedback chan-

nel usage, (3) a quick design technique for such a protocol. Detailed discussion of the

protocol design is provided in Chapter 3. In this chapter we describe the problem for

memoryless and two state Gilbert-Eliot channels, describethe design, the optimization

problem and its solution, followed by simulation results.

2.2 Transmission over Memoryless Channels

We first consider the problem of image transmission over a memoryless bit error channel

with feedback.

2.2.1 The Feedback Channel

The challenge is to use the feedback channel in an efficient way so as to maximize the

end-to-end quality of the image, for a given transmission budget (also called transmis-
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sion rate) expressed in bits (or channel symbols) per pixel.

Information theory dictates that the capacity of a memoryless bit error channel (also

known as binary symmetric channel) does not increase with feedback [19]. Notwith-

standing this asymptotic result, in many practical systems, useful improvements in the

throughput can be obtained by use of Hybrid Automatic RepeatReQuest (ARQ)/Forward

Error Correction (FEC) protocols instead of pure FEC protocols [29, 67].

There are ways of using the feedback channel which are more sophisticated than

just the ACK/NACK feedback, such as a complete information feedback [47, 48], like-

lihood ratio feedback [65], and channel state feedback in the case of time varying chan-

nels. Complete information feedback is most general, but itmay require a large data

rate on the feedback channel. In fact, if the transmit information is binary and the re-

ceived symbols are continuous valued then complete information feedback may require

data rate much larger in the reverse direction than in the forward direction. Transmis-

sion of floating point numbers for the likelihood ratio feedback also has that drawback.

Also, possibility of channel errors in the feedback channelalso needs to be addressed

satisfactorily.

Restricting the possible feedbacks to only two values of feedbacks has a possible

drawback of sub-optimality. On the other hand, ACK/NACK feedbacks have the ad-

vantage that they are simple to generate, require low bandwidth to transmit over the

feedback channel and, if necessary, can be protected easilyby error correcting codes or

by simple repetition. We use ACK/NACK feedbacks for our system. Consequently, for

error control, we restrict our attention to the class of error control schemes which use

Forward Error Correction as well as ACK/NACK feedbacks. Such a class of protocols

is called Hybrid ARQ/FEC protocols or just HARQ protocols [67].
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2.2.2 Selection of the Source-Coder

Consider a protocol for error control based on ACK/NACK feedbacks. In such a proto-

col, a ACK is sent from the receiver to the transmitter if the receiver is able to reliably

recover the transmit information bits from the possibly corrupted received channel sym-

bols. Otherwise a NACK is sent and additional transmissionsfor the same information

bits are requested.

Note that such a protocol based on ACK/NACK feedbacks is inherently sequential.

Also note that the number of channel symbols that need to be transmitted over the for-

ward channel before a set of information bits is accepted by the receiver is a random

variable. Conversely, the number of information bits recovered after the transmission of

a fixed number of channel symbols is also a random variable.

The design objective is to maximize the average quality of the received image in

a fixed transmission budget -expressed as total channel symbols transmitted over the

forward channel. Clearly, this is accomplished if the quality of the received image is

maximized for each channel realization. This will happen ifthe information bits recov-

ered when the transmission budget is exhausted, give the best image representation for

that rate.

The need for excellent image representation at a variable number of bit rates in the

same stream is fulfilled by fine-grain rate-scalable or embedded image coders. The bit-

stream output by an embedded image coder is such that its every prefix, can be used

to reconstruct the image, and the image quality improves with the length of the prefix,

that is, a longer prefix results in a higher quality reconstruction. In addition, embedded

image coders such as the SPIHT coder [52] are endowed with excellent rate distortion

performance at all rates. The JPEG 2000 standard also incorporates highly efficient rate

scalable image coding [44, 50]. The high flexibility in the selection of operating point
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on the operational rate distortion curve also makes them suitable for any transmission

budget. The state-of-the-art image communication systemsdesigned for noisy chan-

nel without feedback are designed as strong error protection applied to such embedded

image coders [57, 59].

Consequently a high-performance fine-grain rate-scalableimage coder is a natural

choice for a source coder to be used with an ACK/NACK based error control protocol.

We use the SPIHT image coder as the image coder of our choice.

One drawback of the embedded image coders such as SPIHT are such that, if some

portion of the bitstream is not available or is irrecoverable from errors, then the bits that

come after the missing portion cannot be used effectively inincreasing the quality of the

image, even if they are error free (see Figure 2.1). If some portion of the bitstream has

undetected errors in it, then the bits following that portion maydecrease the qualityof

the image.

Bits Useful for reconstruction Unusable Bits

Damaged
or Lost Bits

Figure 2.1: Typically, for a SPIHT like image coder, only thelargest available prefix of

the bitstream can be used for image reconstruction.

Therefore, on one hand, using a Hybrid ARQ protocol to transmit the output of an

embedded source coder sequentially, will ensure that, the image is constructed to the

highest possible quality from the successfully decoded bits, in every channel realiza-

tion. On the other hand, the underlying protocol must have high reliability. That is,

the probability of undetected post-decoding errors,i.e. the probability that an ACK is

transmitted while the information bits are decoded incorrectly must be kept very low.
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Therefore, given the choice of the source-coder, the task maximizing the quality of

the received image reduces to the task of maximizing the throughput of the hybrid ARQ

protocol, subject to high reliability.

2.3 Variable Incremental Redundancy Hybrid ARQ pro-

tocol

Keeping with the spirit of joint source-channel coding literature, we assume that the

channel statistics (in this case, the bit error rate (BER)) are known. Hence for a given

BER, we design a protocol which maximizes the throughput, subject to system con-

straint, which are, (i) computational constraints, (ii) available channel code family.

The block diagram of the transmission scheme is described inFigure 2.2.
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Figure 2.2: Block Schematic of Designed Scheme for Image Transmission

First, the output of an embedded image compression algorithm like that of Said and
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Pearlman [52] is organized in fixed length packets; each packet is protected by error

correcting codes and transmitted over a noisy channel. For now, let us consider the

transmission of a single packet ofrs bits over the noisy channel. The protocol employed

is as follows.

At the encoder, the packet is encoded by a concatenated channel code consisting

of an outer error detection code (such as Cyclic Redundancy Check (CRC)) and an

inner error correction code chosen from a family of RCPC codes. The output of the

channel encoder is transmitted over the channel. Upon receiving the bits, the channel

decoder attempts to correct the channel errors and recover the packet. The success or

failure of decoding is determined by the error detection mechanism (we assume that the

probability of undetected errors is zero). This result (success or failure) is conveyed

back to the encoder by sending one bit (ACK/NACK) through thefeedback channel

(assumed to be error free).

On success, the encoder stops transmission for the current packet and proceeds with

the transmission of the next packet. On failure, the encoder, according to adecision

policy, switches to a stronger channel code and transmits on the channel only the extra

bits needed for the chosen code. The decoder, on receiving the additional bits, makes

another attempt at decoding the packet and verifies the outcome by the error detection

mechanism. Because of rate compatibility of the underlyingfamily of codes, the de-

coder can make use of the received bits from allprevioustransmissions to decode the

packet. Again, the decoder conveys a success or failure bit back to the encoder through

the feedback channel. The procedure is continued until, either the packet is successfully

decoded, or the strongest channel code that can be chosen by the encoder’s decision pol-

icy is used. In the latter event ofpacket decoding failure, the transmission for the packet

is abandoned. We allow the number of these bits transmitted between two feedbacks
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to be different and hence dub the protocol a Variable Incremental Redundancy HARQ

protocol.

The transmission of the image is stopped when the target transmission rate is reached.

The source decoder reconstructs a replica of the image from the received packets.

2.3.1 Gain of using the Feedback Channel

Why should a scheme which uses a feedback channel in the way described above be

expected to do better than a pure Forward Error Correction code and no feedback?

The gain obtained by using feedback is due to the fact that there is a nonzero proba-

bility that a packet protected by a weak channel code is decoded correctly by the decoder.

This gain is maximized if we use one feedback bit for every transmitted bit. But note

that, for schemes using decision feedback, the feedback channel usage is related to the

computational complexity. For HARQ protocols, the generation of each feedback re-

quires a channel-decoding operation, and hence a heavy use of feedback implies a large

number of computations at the receiver.

Hence, a scheme which uses feedback in very small steps is impractical as it leads

to a large feedback channel bandwidth, delay and most importantly, complexity. It turns

out that most of the performance gain over pure FEC schemes can be obtained by a care-

ful but limited use of feedback in a variable incremental redundancy HARQ protocol.

In the next section we design the protocol for given channel statistics, by developing

a decision policy that minimizes the average number of bits transmitted on the channel

for each packet under an explicit constraint on the feedbackchannel usage. This policy

depends on the channel BER, the performance of each code in the family of RCPC

codes, the bandwidth of the available feedback channel and the maximum tolerable

probability of packet decoding failure.

20



2.4 The Design Problem and the Solution

We seek a decision policy for the encoder such that the average number of transmit bits

per packet is minimized subject to (i) an upper bound on the number of feedback bits

per source packet and (ii) an upper bound on the probability of packet decoding failure.

We define thedecision instantfor the encoder to be at the end of receiving a feedback

bit. At a decision instant, the state of the encoder is described most generally by the

sequence of channel codes used by it and the sequence of feedback bits received. Any

general decision policy is described by specifying the nextchannel code to be used given

the state of the encoder.

Using this notion of encoder state we translate the design problem to a a discrete

optimization problem, which can be mapped to a finite horizonMarkov Decision Pro-

cess (MDP) problem [4]. The optimal policy obtained for the MDP (also called the

controlled Markov chain) by dynamic programming yields a sequence of channel codes

to be used in the protocol described in Section 2.3.

Let C = {c1, c2, . . . cJ} denote a family of RCPC codes such that the code rates

are decreasing,i.e. rc(c1) > rc(c2) > . . . > rc(cJ). Let us also include in the family

a ‘null’ or ‘trivial’ code c0 which corresponds to transmitting nothing and hence has

rc(c0) = ∞. For a fixed binary symmetric channel, letAcj
denote the event that a

packet encoded with codecj is decoded successfully by the decoder. Let the probability

of A
′

cj
(complement ofAcj

) be denoted byPe(cj). ClearlyPe(c0) = 1. Then we make

the following assumption.

Assumption: For the family of RCPC codesC, assume that,Aci
⊂ Acj

wheneveri ≤ j.

This assumption impliesPe(c1) ≥ Pe(c2) ≥ . . . ≥ Pe(cJ). Further, this assumption

means that the probability of the event that a weaker code succeeds but a stronger code

fails is zero. This is a reasonable assumption which is corroborated by simulations.
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Consider the encoder at a decision instant. Letcj be the last channel code used. If

the last feedback bit denotes successful decoding, the decision of the encoder is clear;

namely, that of stopping further transmission. So the decision policy must select a next

channel code only if the last feedback bit has signaled a failure.

Under the above assumption, fori < j < k, the eventAck
is conditionally inde-

pendent of the eventAci
givenA

′

cj
(or Acj

). Therefore the encoder decisions need not

depend on the complete sequence of channel codes used. This simplifies the notion of

encoder state. We define theencoder stateas the pair corresponding to the index of the

last channel code used and the value of the last feedback received.

Therefore, the decision policy can be completely specified by a sequence of channel

codes of decreasing code rates.So, by a policyπ for transmitting a packet we mean an

ordered subset of the collectionC

π
def
= (c0π, c

1
π, c

2
π, . . . c

n(π)
π ), (2.1)

wherec0π = c0. The number of non-trivial codes used by the policyπ is n(π) and

maximum number of feedback bits for the policyπ is given byn(π)−1. The probability

of packet decoding failure for the policyπ isPe(c
n(π)
π ). Note thatn(π) = 1 corresponds

to no feedback. We impose a constraint that the packet decoding failure probability

be less than a certain thresholdpe. To reflect the constraint on the feedback channel

bandwidth, we require the maximum number of feedback bits per packet to be less than

or equal toM − 1.

Now consider the transmission of a packet using a policyπ. The event that trans-

mission stops (i.e. ACK is received) after transmitting exactlyrs

rc(ck
π)

bits, is given by
(
∩k−1

i=1A
′

ci
π

)
∩ Ack

π
=
(
∪k−1

i=1Aci
π

)′
∩ Ack

π
, which, by the assumption, isA

′

ck−1
π

∩ Ack
π
.

Again, by the same assumption, the probability of this eventisPe(c
k−1
π ) − Pe(c

k
π).

Hence, given a policyπ, the expected number of bits per packet to be transmitted on
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the channel can be written as,

R(π)
def
=

n(π)∑

k=1

rs

rc(ckπ)
(Pe(c

k−1
π ) − Pe(c

k
π)) +

rs

rc(c
n(π)
π )

Pe(c
n(π)
π ). (2.2)

The last term represents the contribution of the event of packet decoding failure, namely

A
′

c
n(π)
π

.

The problem of minimizing the average transmission rate is written as,

min
π
R(π) subject toPe(c

n(π)
π ) ≤ pe andn(π) ≤M. (2.3)

We describe a simple dynamic programming based solution to this discrete opti-

mization problem below. But it is particularly insightful to use a Controlled Markov

chain framework. We develop the Controlled Markov Chain framework in detail in the

next chapter.

To obtain the solution of problem (2.3), define, for any policy π, 1 ≤ m ≤ n(π) and

0 ≤ j ≤ m− 1,

r(π, j,m)
def
=

m∑

k=j+1

rs

rc(ckπ)
(Pe(c

k−1
π ) − Pe(c

k
π)) +

rs

rc(cmπ )
Pe(c

m
π ). (2.4)

Definer(π,m,m)
def
= rs

rc(cm
π )
Pe(c

m
π ). Also define, for codescinit, cf ∈ C with rc(cf ) <

rc(cinit), 0 ≤ j ≤ m− 1,

r∗(cinit, cf , j,m)
def
= min

π:cj
π=cinit, cm

π =cf

r(π, j,m). (2.5)

Then for0 ≤ j ≤ m− 1, it is easy to see thatr(π, j,m) admits the following decompo-

sition.

r(π, j,m) =
rs

rc(c
j+1
π )

(Pe(c
j
π) − Pe(c

j+1
π )) + r(π, j + 1, m) (2.6)

Now, asr(π, j + 1, m) does not depend oncjπ, and cj+1
π is the ‘initial’ code in

r(π, j+1, m), we have, by the optimality principle, the following dynamic programming

equation.
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r∗(cinit, cf , j,m) = min
c∈C:rc(cf )≤rc(c)<rc(cinit)

rs

rc(c)
(Pe(cinit) − Pe(c)) + r∗(c, cf , j + 1, m)

(2.7)

Notice that, in (2.3), the constraintPe(c
n(π)
π ) ≤ pe is satisfied by selecting the weak-

est (highestrc(c)) code with desired error performance,i.e. cn(π)
π = argmaxc∈C, Pe(c)≤pe

rc(c).

Let this code be denoted byc∗f . Then by the notation developed, the solution to problem

(2.3) isr∗(c0, c∗f , 0,M). The optimal policy is obtained by recursively solving eq. (2.7)

and setting thejth code in the policy to be the one achieving the minimum in (2.7).

Again, as the output of the image compression system is embedded, minimizing the

(average) number of transmit bits per packet is equivalent to maximizing the (average)

number of source packets for a target transmission rate in bits/pixel, which, in turn, is

equivalent to maximizing the (average) Peak Signal-to-Noise-Ratio (PSNR) for a target

transmission rate.

2.5 Results for Memoryless Channel

In the paper by Sherwood and Zeger, [57], the authors reported some of the best re-

sults for transmission of images over memoryless bit error channels in the absence of

feedback. We undertook the task of determining the performance improvement over

the scheme in [57] that can be achieved by feedback and the scheme described in the

previous sections. The average PSNR (dB) results of transmitting the grey-scale test-

image LENNA over binary symmetric channels for different target transmission rates

for different channel BER’s are reported in Figure 2.3 and the values of PSNR for some

transmission budgets are tabulated in Table 2.1.

The image Lenna, of dimensions 512x512 was compressed with the Said and Pearl-
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man coder [52] with arithmetic coding. The family of channelcodes,C, was chosen from

Rate Compatible Punctured Convolutional (RCPC) codes in [29]. The source-coder out-

put was divided into source-packets of size 32 bytes each (b = 256). A two-byte CRC

was used as an outer error-detection code. The inner error-correction code family were

the collection of RCPC codes similar to those used in [57]. Specifically, a mother code

for BER of 0.1 was a 64 state rate 1/3 code, while that for BER of0.01 was a 16 state

rate 1/4 code taken from [29]. List Viterbi (LV) Decoding ( [55],[57],) was used with

hamming distance as path-metric and a search depth of 100 in both cases. That is, for

error detection with LV decoding, a feedback of NACK is sent from the receiver to the

transmitter if the CRC is not satisfied in the top 100 paths of the trellis. The system with

a maximum feedback of zero bits corresponds closely to that in [57].

One can observe from Table 2.1 that irrespective of the target transmission rate, a

carefully chosen feedback of just a few bits per source packet, ( less than0.01 feedback

bits per source bit) can consistently improve the PSNR by about 1 dB over a system

which uses no feedback. Notice that most of the gain is obtained by introducing the

feedback of just one bit per source-packet. Additional gains are obtained by allowing

more feedbacks. The gain is nearly 1.2 dB the case of BER 0.01 with only 1 feedback

bit per source packet. It was observed that the improvement in performance on further

increasing the feedback was negligible.

From Figure 2.3, it can be observed that the gain of a system with feedback over one

without feedbackincreaseswith transmission rate. This phenomenon can be explained

by the following. At high source-coding rates, the PSNR(dB)-source-coding-rate curves

for coders like SPIHT are nearly linear. For noisy channels,the higher throughput ob-

tained by introducing feedback, yields a PSNR-transmission rate curve with a steeper

slope than one for system with no feedback. Hence the performance gap between the
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two systems widens with transmission rate.

Maximum Feedback in Transmission Rate bits/pixel
bits per source packet

BER 0.1 0.25 0.5 1.0
3 29.53 32.48 35.53
2 29.45 32.36 35.41
1 29.32 32.09 35.21
0 28.56 31.50 34.36

BER 0.01
1 33.16 36.26 39.37
0 31.98 35.07 38.12

Table 2.1: PSNR (dB) Results for Image LENNA over BSC’s.

2.6 Extension to Finite State Channels

The gains obtained in the previous section over systems not using feedback indicate that

it is indeed worthwhile to use a feedback channel if one is available, even for memory-

less channels.

In this section we extend the results for memoryless channels to the Gilbert-Elliot

channel. Such finite-state Markov channel models have been shown to be good approx-

imations for binary transmission over slowly varying flat fading channels [66].

Gilbert-Elliot channel model is a Markov channel model withtwo states. The chan-

nel is assumed to be a binary symmetric channel (BSC) in each state. The bit-error rates

(BER) in the good state G and the bad state B are denoted byǫG,andǫB respectively.

The transitions between the states are Markov and are assumed to be unknown at the

receiver or the transmitter. The model is specified by the BERs ǫG, ǫB, the steady state

probability of stateB, PB, and the average sojourn time of stateB, TB.

The Gilbert-Elliot model is depicted in Figure 2.4. We shallrefer to the BSC’s with

BER ǫG andǫB asBSCG andBSCB respectively.
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Figure 2.3: Performance Comparison for progressive transmission of image LENNA

over BSC, with and without a feedback channel. BER 0.01 and 0.1
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Figure 2.4: Gilbert-Elliot channel

The system schematic for this channel can also be described by Figure 2.2. The

transmission protocol is slightly modified and is describedin the next section.

As earlier, the usage of the feedback channel is an additional design parameter for

such a scheme. We demonstrate that in this case, significant performance gains over a

system without feedback, can be achieved with moderate use of the feedback channel.

2.6.1 Gain of using the Feedback Channel

As we have seen in previous sections, careful use of feedbackachieves throughput gains

for memoryless channels. In addition, for finite state channels, the gain obtained by the

proposed schemes which use feedback, can be attributed to another factor. Essentially,

the proposed combination of embedded source-coder and a HARQ protocol accom-

plishes an implicit adaptation of the instantaneous allocation of source-coding rate and

channel-coding rate according to the channel conditions. The adaptation of the channel-

coding rate, according to the channel conditions, is accomplishedwithout explicit trans-

mission of the channel state informationusing decision feedbacks (ACK/NACK) from

the receiver to the transmitter. We shall see that the systemwith feedback outperforms ,

with larger gains compared with the memoryless case, the state-of-the-art pure Forward

Error Correction systems designed for the channel, such as [59].
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2.7 Changes in the Protocol

The protocol for finite state channels is a slight modification of the protocol for the

memoryless channel described in Section 2.3. Again, LetC = {c1, c2, . . . , cJ} ∪ {c0}

denote the available family of rate compatible channel codes used for error correction.

Each codec ∈ C is a ( b
rc(c)

, b) block code where channel code-raterc(c) includes the

code-rate for the error detection code. Then the HARQ protocol employed is described

by specifying apolicy π
def
= (c0π, c

1
π, c

2
π, . . . , c

n(π)
π ), which is a subset ofC ordered by

decreasing code-ratesand wherec0π = c0. A fixed length source-packet is transmit-

ted using the variable incremental redundancy HARQ protocol described in Section 2.3.

Because the finite state channel can go into a severe state,it is possible that the strongest

channel code in the policy may not be able to correct all the errors. We call this event a

policy-failurefor the source-packet. In the event of a policy-failure,all the received bits

for the packet are discarded and the transmission for the source-packet is started from

the beginning, i.e. from the first code in the policy. In other words, for each packet the

system emulates a generalization of Type I HARQ [67] where retransmission of a code-

word is done in several steps of incremental redundancy, as determined by the policy.

This modification is chosen because it yields a tractable throughput approximation. The

same policy is applied to the transmission of all the source-packets.

The transmission of the source-packets is stopped when the transmission budget is

exhausted. The image is reconstructed from the successfully received source-packets,

which form an error-free representation of the source at some rate. This way the system

dynamically trades source-bits for channel-bits whenevernecessary.
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2.8 The New Problem and the Solution

Now let us consider the design of a transmission policy with at the mostM steps.

Among all the allowed policies, (all the subsets ofC with M or less elements), the

task is to select a policy so that, in a given transmission budget in bits per pixel, the av-

erage number of source-bits that are delivered reliably at the receiver is maximized. We

look at a normalized version of the above objective function, namely, thethroughputof

the policy over the channel. The throughputη(π) of a policyπ is defined as the average

number of source-bits correctly received per channel-bit transmitted. It is independent

of the transmission budget. Hence, the best policy withM steps is the one which solves,

max
π

η(π) subject ton(π) ≤M. (2.8)

Note thatM = 1 corresponds to the conventional Type I HARQ, whileM = 2 and

higher are the schemes based on decoding by code-combining ([67]).

To limit further the average number of feedbacks sent per source-packet, we may

impose the following implicit constraint on the average number of feedbacks per source-

packet for the allowed policies. LetPG
e (π) denote the probability of policy-failure when

a source-packet is transmitted overBSCG while using the policyπ. Similarly define

PB
e (π). Then, we may require,

max(PG
e (π), PB

e (π)) ≤ pe, (2.9)

for some small numberpe. Any policy π, satisfying the constraint (2.9) has an average

feedback less thann(π)/(1 − pe) per source-packet in each state of the Gilbert-Elliot

channel and hence in the channel itself.
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2.8.1 Throughput Estimation

LetE(R(π)|G) andE(R(π)|B) denote the expected number of channel-bits transmit-

ted for successful transmission of a source packet by policyπ, over channelsBSCG and

BSCB respectively. Now, for the Gilbert-Elliot channel, if the sojourn times of states

G andB are much larger thanE(R(π)|G) andE(R(π)|B) then the throughputη(π) of

the policyπ can be approximated by,

η(π) ≈
bPG

E(R(π)|G)
+

bPB

E(R(π)|B)
. (2.10)

HerePG andPB are the steady state probabilities of the two channel states.

This can be simply seen as follows. If the sojourn times of statesG andB are

long compared toE(R(π)|G) andE(R(π)|B), the transmission of single packet does

not encounter a channel-state change. So in essence, for a fractionPB of time, the

transmission is like that overBSCB. The throughput in that case is b
E(R(π)|B)

. Similarly,

throughput for the portion of time when channel is in stateG is b
E(R(π)|G)

. Averaging by

the steady state probabilities, we get the expression in eq.(2.10).

The valuesE(R(π)|G) andE(R(π)|B) are estimated by the technique outlined in

2.4 as follows. LetPG
e (c) denote the probability that a source-packet encoded with

channel codec ∈ C and transmitted over the channelBSCG could not be decoded

successfully. Then for the policyπ, E(R(π)|G) can be approximately written as

E(R(π)|G) ≈

(∑n(π)
k=1

b
rc(ck

π)
(PG

e (ck−1
π ) − PG

e (ckπ)) + b

rc(c
n(π)
π )

PG
e (c

n(π)
π )

)

(1 − PG
e (c

n(π)
π ))

(2.11)

HerePG
e (c0π) = 1. Other probabilitiesPG

e (c) are obtained by simulation. AlsoPG
e (π) ≈

PG
e (c

n(π)
π ). SimilarlyE(R(π)|B) andPB

e (π) can be computed. This is an approxima-

tion as it is based on the assumption in Section 2.4.

Very interestingly, if eq. (2.11) is used forE(R(π)|G), then the estimate of the

throughput, described by eq. (2.10) remains valid under a weaker assumption. Instead
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of assuming that the channel state does not change during thetransmission of an entire

source-packet, if we just assume that the channel state doesnot change before a packet

decoding failure, we get the same expression for throughput. This is so because, as the

protocol discards all the previously received bits after a packet decoding failure, a packet

decoding failure is a renewal instant.

The optimal policy solving equation (2.8) is obtained by exhaustively searching over

all the policies meeting the desired constraints.

2.9 Simulation Results for Gilbert Elliot Channels

For simulations, image Lenna, was compressed with the Said and Pearlman coder [52]

with arithmetic coding. The family of channel codes,C, was chosen from Rate Com-

patible Punctured Convolutional (RCPC) codes in [29]. The source-coder output was

divided into source-packets of size 32 bytes each (b = 256). A two-byte CRC was used

as an outer error-detection code. The inner error-correction code family was the collec-

tion of RCPC codes obtained from a 16 state, rate 1/4 code taken from [29]. List Viterbi

(LV) Decoding (e.g.[57],) was used with hamming distance as path-metric and a search

depth of 10. For error detection with LV decoding, a feedbackof NACK is sent from

the receiver to the transmitter if the CRC is not satisfied in the top 10 paths of the trellis.

The simulation results are presented for a class of channelswith the following

parameters: (1) Bit Error RatesǫB = 0.1, ǫG = 0.001, (2) Different steady state

probabilitiesPB ∈ {0.1, 0.2}, (3) Different average sojourn times for state B in bits

TB ∈ {400, 2000, 10000}. We compare three systems in this section. System A is a

scheme which uses feedback, when the implicit constraint onthe feedback, given by

equation (2.9), is not applied. The scheme chooses to maximize the throughput estimate

32



given by equation (2.8) over all the allowed policies. System B is a scheme which puts a

constraint on the feedback channel usage, irrespective of the channel state, by requiring

that (2.9) be satisfied. System C is a scheme without feedbackgiven in the paper by

Sherwood and Zeger [59]. For error correction, it uses a product code of RCPC-CRC

code and Reed Solomon codes, with interleaving for recoveryfrom burst errors induced

by the channel entering in bad state. The results are obtained from the throughput cal-

culations reported in [59].
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Figure 2.5: Average PSNR (dB) Performance comparison for different schemes for Lenna:

Gilbert-Elliot Channel withPB = 0.1, TB = 400 bits.

Figure 2.9 shows the average PSNR performance of Systems A, Band C for a

Gilbert-Elliot Channel with parametersPB = 0.1, TB = 400bits, ǫB = 0.1, ǫG = 0.001

for the transmission of the image Lenna, as a function of transmission budget in bits per
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pixel. Let us first look at the designed system with unconstrained feedback, System A,

and the system with no feedback, System C. First notice that for this channel, even the

simplest case of System A, namely the one withM = 1, can perform significantly (up to

2 dB) better than System C which, to our knowledge, reports the best results reported for

a scheme without feedback. Increasing the number of steps inthe policy, (i.e. making

M > 1,) gives further, though relatively small,(up to 0.3 dB) gains at all transmission

rates. This can be explained as follows. For the given channel, System A withM = 1

chooses a high-rate code of code-rate 0.82. This code is sufficient to recover the source-

packet reliably when the channel is in the good state (ǫG = 0.001), but almost always

fails when the channel is in the bad state (ǫB = 0.1). When the channel is in a bad state,

the policy repeatedly request a retransmission, until the bad state is over. This way, the

policy automatically implements an “outage”, which, in this case, is favorable for the

throughput. Therefore, despite the high throughput, the usage of the feedback channel

is high, especially in the bad state.

The feedback channel usage is explicitly controlled in systemB, where constraint

(2.9) is satisfied forpe = 0.01. For M=1, this results in a highly conservative system,

designed for the worst case, such that its performance for the channel is inferior to that

of System C, which has no feedback. But if a single intermediate step is allowed in

the policy (M=2), then the constrained feedback scheme, system B, performs close to

System A. The optimal policy for system B, M =2 contains codeswith rate 0.82 and

0.264. Hence Systems A and B with a policies designed this waycan switch adaptively

between channel code rates so as to suit the channel state. Note that no explicit channel

state information is obtained or transmitted.

Table 2.2 lists the average PSNR performance of the systems Aand B for the image

Lenna, for different channel parameters, for transmissionrates 0.25 and 1.00 bits per
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pixel. Increasing the number of steps fromM = 1 to M = 3, yields PSNR gains of

up to 0.25 dB at all transmission rates over System A withM = 1. Table 2.3 gives

the comparison of the observed throughput with the estimated throughput given by eq.

(2.10). As expected the analytical approximation of the throughput becomes closer to

the true throughput as the average sojourn time for the bad state increases. Table 2.4

gives illustrative results for the average number of feedbacks needed per source-packet

for the two schemes, for the channel withPB = 0.2 and different values ofTB. It is

evident that System A, forM = 1, requires a large number of retransmissions. On the

other hand, System B forM = 1 requires a very small number of retransmissions, but

provides a low throughput. Allowing one intermediate step in transmission,i.e.M = 2,

increases the throughput of both the systems, whilereducing the feedback channel

usage for System A radically. It can also be observed that, for the casesM > 1, the

additional implicit feedback constraint, eq. (2.9), does not reduce the feedback by a

large margin.

Table 2.5 gives illustrative results for the Mean Absolute Difference (MAD) and

Standard Deviation (STD) of the observed PSNR for two different transmission rates

for the image Lenna. The variations in PSNR decrease with increasing transmission

rate and increasingM , though the latter trend is not quite consistent.

2.10 Conclusion

In the presence of a feedback channel, the combination of an embedded image coder, a

rate compatible family of channel codes, and transmission using a HARQ protocol, pro-

vides a simple and efficient scheme for image transmission. The system trades source-

bits for channel bits achieving adaptive and dynamic allocation of source coding rate
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PB TB n(π) Syst. A Syst. B
0.25bpp 1.0bpp 0.25bpp 1.0bpp

0.1 400 1 32.48 38.67 28.56 34.35
2 32.64 38.77 32.50 38.58
3 32.75 38.92 32.72 38.90

2000 1 32.75 38.88 28.55 34.35
2 32.89 39.06 32.87 39.01
3 32.98 39.12 32.94 39.10

10000 1 32.72 39.01 28.55 34.35
2 32.85 39.04 32.76 39.05
3 33.08 39.16 32.96 39.15

0.2 400 1 31.61 37.86 28.55 34.35
2 32.04 38.18 31.64 37.79
3 32.24 38.38 32.19 38.27

2000 1 31.90 38.40 28.55 34.35
2 32.45 38.76 32.39 38.54
3 32.56 38.85 32.49 38.74

10000 1 31.94 38.40 28.55 34.34
2 32.41 38.76 32.53 38.68
3 32.58 38.85 32.64 38.80

Table 2.2: PSNR (dB) Performance of optimized policies over G-E channel with different
parameters: 1) System A - unconstrained feedback 2) System B- constrained feedback, Image:
Lenna.

and channel coding rate for a realization of the channel. Theuse of feedback can yield

significant improvement in the quality of the received imageover a system not using

feedback, especially for time varying channels such as the Gilbert-Elliot channel. The

complexity of the system and the usage of the feedback channel for the proposed sys-

tems can be controlled by constraining the search space for policies appropriately. We

obtain nearly 1 dB gain in average received PSNR over state ofthe art systems not using

feedback in the case of memoryless channels. The gains are over 2 dB for the Gilbert

Elliot channel. Simulation results indicate that a system with constrained but carefully

designed feedback can achieve a large fraction of gains withsmall usage of the feedback

channel and consequently a small number of decoding attempts. The transmission of the

image is progressive by design. Overall, it may be worthwhile to exploit the feedback
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PB TB n(π) Syst. A Syst. B
Est.η η Est.η η

0.1 400 1 0.740 0.685 0.264 0.261
2 0.769 0.700 0.766 0.673
3 0.773 0.721 0.773 0.718

2000 1 0.740 0.716 0.264 0.261
2 0.769 0.744 0.766 0.737
3 0.773 0.754 0.772 0.752

10000 1 0.740 0.738 0.264 0.261
2 0.769 0.744 0.766 0.745
3 0.773 0.762 0.772 0.760

0.2 400 1 0.658 0.559 0.264 0.261
2 0.716 0.595 0.710 0.562
3 0.723 0.635 0.722 0.632

2000 1 0.658 0.622 0.264 0.261
2 0.716 0.683 0.710 0.669
3 0.723 0.698 0.722 0.695

10000 1 0.658 0.644 0.264 0.260
2 0.716 0.701 0.710 0.690
3 0.723 0.715 0.722 0.706

Table 2.3:Throughput observed vs. estimated, for G-E channel with different parameters: 1)
System A - unconstrained feedback 2) System B - constrained feedback.

channel for image transmission if it is available.
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TB n(π) Syst. A Syst. B
400 1 1.46 1.000

2 1.217 1.198
3 1.235 1.231

2000 1 1.288 1.001
2 1.114 1.105
3 1.159 1.151

Table 2.4: Average number of feedbacks per source-packet for Gilbert Elliot Channel with
PB = 0.2.

TB n(π) 0.25 bpp 1.00bpp
MAD STD MAD STD

400 1 0.18 0.24 0.12 0.15
2 0.11 0.13 0.07 0.08
3 0.10 0.12 0.04 0.05

2000 1 0.24 0.30 0.15 0.19
2 0.16 0.20 0.08 0.10
3 0.18 0.23 0.08 0.08

Table 2.5:Variation of the PSNR (dB) from the mean value for System A,PB = 0.1 for Lenna.
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Chapter 3

Constrained Feedback Hybrid ARQ Design

3.1 Introduction

Transmissions over wireless channels experience large biterror rates due to fading and

interference. Hence strong error control needs to be employed. In situations when

two-way communication is possible, the error control protocols can make use of the

feedback channel for better or more efficient error correction. It has been established

that the information theoretic capacity of a memoryless channel is not increased in the

presence of a feedback channel [19]. But in practice a combination of Forward Error

Correction and Automatic Repeat Query, called Hybrid FEC/ARQ (HARQ) can have

better throughput than pure ARQ and pure FEC for comparable reliability [35, 67].

HARQ protocols are typically implemented by transmission of incremental redun-

dancy for an embedded (rate-compatible) family of channel codes at the transmitter

(e.g.Rate Compatible Punctured Convolutional Codes [29], or punctured Reed Solomon

Codes [68]) and by code-combining [13] at the decoder. The performance of a HARQ

protocol is measured bythroughput andreliability. In HARQ, the generation of each

feedback bit requires a decoding operation. Hence the average number of feedback bits

for the channel is a measure of the complexity of the protocol.
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The techniques to analyze the performance of fixed HARQ protocols for different

channel conditions are well developed in literature [67, 35, 36]. They make extensive

use of the underlying signal flow graph of the protocol (e.g. [38, 67]), and compute

the performance measures such as the throughput and the reliability from its transfer

function. In this chapter we address the dual problem, namely, that of designing the

best HARQ protocol from a collection of protocols fora given channel condition.That

is, we consider packetized transmission over a memoryless noisy channel with known

Bit Error Rate or Symbol Error Rate and investigate the design of the best protocol for

that channel from a collection of HARQ protocols with possibly different underlying

signal flow graphs. Recognizing the fact that forcing the thenumber of bits between

two ACK/NACK feedback to be equal is too restrictive, we allow them to be variable,

i.e. we consider Variable Incremental Redundancy HARQ protocols. It increases the

complexity of buffer management slightly but results in gains in throughput.

The conventional analysis approach focuses on a single signal flow graph and hence

is inadequate as the search space of the protocols contains protocols with different un-

derlying graphs.

Our methodology allows us to address the problem of HARQ design when there is

a constraint on theaverage feedback channel usage.This is relevant, as, although in-

cremental transmission of redundancy in very fine increments has maximal throughput,

it may not be computationally feasible. Also, in a multicasting scenario, such a design

might result in a feedback implosion.

We show that, for a fixed channel, both the problems - namely the task of choosing

the optimal HARQ protocol from a given family of channel codes, under unconstrained

or constrained feedback, can be mapped to a Markov Decision Process (MDP) with dis-

crete states, alternatively called a controlled Markov chain (CMC) [4] problem. The
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protocol maximizing the throughput is obtained by solving the optimization of the con-

trolled Markov chain through dynamic programming. The constraint on the feedback

is achieved by the use of Lagrange Multipliers. The Lagrangian, the weighted sum of

transmission costs and feedback costs, also arises naturally when carrying of the perfor-

mance computation with transmission delays and overheads.

The contributions of the chapter are, (i) the variable incremental redundancy con-

strained feedback HARQ protocol, with useful performance improvement over conven-

tional Type I or Type II HARQ protocols, (ii) the MDP or CMC framework for design

of such a protocol, which allows operationally optimal tradeoffs between performance

metrics. The methodology improves over the conventional signal flow graph approach.

In addition, we illustrate our methodology by designing HARQ protocols with Reed

Solomon Codes. We also develop analytical expressions and approximations for esti-

mating the transition probabilities.

The chapter is organized as follows. In the next section, Section 3.2, we describe

general ARQ and HARQ protocols. Section 3.3 we describe the design problem as a

Controlled Markov Chain. Section 3.4 describes how throughput, reliability and av-

erage feedback are calculated. In section 3.5 the underlying optimization problem is

set up and the solution is described. In section 3.6, simulation results using Punctured

Reed Solomon Codes are presented. 3.8 describes the analytical expressions for cal-

culation/approximation of the transition probability in aPunctured Reed Solomon code

family. Section 3.7 is the concluding section.
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3.2 ARQ and Hybrid ARQ Protocols

ARQ based protocols have been extensively used at the link layer level for point to

point communication on a noisy two way link. Retransmissions are also used in end-to-

end error recovery at the transport layer, for communication over a lossy packet based

network[64, 5]. In apure ARQprotocol for packetized transmission over a noisy chan-

nel, the transmitter encodes every packet with an error detection code. A packet is

transmitted repeatedly until it is received “correctly” bythe receiver as decided by the

error detection code and as conveyed to the transmitter by ACK/NACK feedback. The

three standard flavors of a pure ARQ protocol are the basicStop and Wait (SW)scheme,

theGo-Back-N (GBN)scheme, which requires buffers at the transmitter, and theSelec-

tive Repeat (SR)Scheme, which requires buffers at the transmitter and the receiver. The

GBN and the SR schemes are ways of statistical multiplexing across packets, to keep

the channel busy and achieve higher throughput in the presence of propagation/queuing

delays.

In a HARQ protocol [67, 35], the transmitter encodes every packet with an error

correcting code (FEC) which also allows error detection at the receiver. When such a

channel code fails to correct the errors at the receiver, theerror detection mechanism

is used to detect the failure. The result is conveyed to the transmitter by ACK/NACK

feedback.

The simplest HARQ protocol is a Type-I hybrid ARQ protocol, where, like a pure

ARQ, copies of a packet encoded by a fixed channel code are transmitted repeatedly

till ACK is received. A generalization of HARQ protocol is obtained when the the

protocol allows transmission of the channel codeword (information symbols and parity

check symbols) in increments. Mandelbaum proposed this technique of incremental

transmission of redundancyin [43] where he recognized the usefulness of MDS property
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of Reed Solomon Codes for this purpose. Rate Compatible Punctured Convolutional

(RCPC) codes [29] are convolutional codes which allow such incremental transmission.

The notion dual to such incremental transmission of redundancy at the transmitter,

is packet combiningor code combiningat the receiver [13, 67]. In packet combining

or diversity combining, several noisycopies of the same codewordare combined at the

receiver to decode (estimate) the transmit packet better. Code combining is a generaliza-

tion of packet combining and is a concept similar to sensor fusion. A receiver is said to

do code combining when it combines several noisy codewords or codeword fragments,

obtained by encoding the same packet by possiblydifferentchannel codes, in order to

decode the packet.

HARQ protocol for transmission of a single packet, over a memoryless noisy chan-

nel can be described by a finite state machine or a signal flow graph. The protocol starts

in a states0, and if necessary, goes through statess1, s2, s3, . . . , sN in a prespecified

order, according to the underlying signal flow graph, beforeterminating in statesT .

Figure 3.1 shows the signal flow graph of a variation of Type IIHARQ protocol.

Figure 3.2 shows the bare-bones of signal flow graph of a general HARQ protocol under

the assumption of error free feedback and no timeout.

Under these assumptions, for such a protocol, in each states the transmitter transmits

a prespecified set of bitsg(s) for the packet. The receiver receives a noisy version of it

and decodes it and sends a ACK/NACK feedback. Figure 3.2 alsoshows the bare-bones

of the protocol of Figure 3.1 and that of a Type I HARQ protocol. In the next section,

we see how the figure can be interpreted as the State-Action diagram of a policy of a

controlled Markov Chain.
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3.3 Controlled Markov Chain for HARQ

We consider a basic transmission scheme which is similar to aSelective-Repeat HARQ

system with ACK/NACK feedback except that we allow a variable number of bits to

be transmitted between two feedback requests. We assume that the buffer-size at the

transmitter and receiver is infinite, so that the propagation delay does not affect the

throughput.

Consider the transmission of a singlek bit long source-packet over amemoryless

noisy channel. We are provided with a family of channel codesC = {c1, . . . cJ},

some of which are embedded (rate compatible). We assume thateach channel code

is equipped with an error detection mechanism. The source packet is encoded with a

channel code and transmitted over the noisy channel. The decoder attempts a decoding

and checks the success of its decoding by the error detectionmechanism. On success,

it transmits a ACK on the feedback channel. Else it transmitsa NACK. We assume that

the feedback channel is error and loss free and hence, all ACKs and NACKs are received

correctly.

The Controlled Markov Chain framework is clear when we realize that, on receiving

a NACK, the encoder can take one of the followingactions: (i) transmitting additional

parity check bits, (ii) transmitting copies of some of the previously transmitted bits for

the packet, (iii) transmitting the packet encoded with a different channel code, according

to a policy until an ACK is received. By allowing the decoder to combine previous

transmissions for the packet, the above scheme can emulate code-combining, diversity-

combining and Type-I and Type-II HARQ systems [67]. If the decoder has the ability

to combine output from at mostb previous transmissions, then the indices of the lastb

channel codes and previousb feedbacks form thestateof the encoder. At each decision

instant, i.e. after receiving a feedback, the encoder and the decoder share the same
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knowledge of the state.1

Let the collection of states beS∗ = S∪{s0, sT}, wheres0 andsT denote the starting

state and the terminating state respectively. When in states ∈ S ∪ {s0}, the encoder

takes an actionu from possible set of actionsU(s), putsg(s, u) bits on the channel

and receives one bit feedback. With probabilityP sT
s (u) it receives an ACK and the

terminates in statesT . With probabilityP τ(u,s)
s (u) = 1 − P sT

s (u), it receives a NACK

and makes a transition to a unique stateτ(u, s) ∈ S. Let h(s, u) be the probability that

actionu results in a ACK with anundetected error. Under this framework, we see that

the transmission of a packet is a controlled Markov chain, which starts in states0, and

with probability 1 terminates in the absorbing statesT . Let us callg(s, u), h(s, u) and

f(s, u), thetransmission cost, reliability costandfeedback costrespectively.

1Note that this notion of the “state” is limited and is applicable only for tracking of the protocol at

the transmitter and the receiver. Firstly, this notion of the state indicates that the action taken by the

encoder, which governs the evolution of the protocol, depends only on the information provided by the

knowledge of this state. Note that the encoder has access to the actual information bits but it is allowed

to use them only for transmission and not for controlling theprotocol. Secondly, this notion of the state

is also not used for error correction purposes at the decoderas it does not form or contribute to the

sufficient statistics of the information bits encoded in thepacket. In principle the sufficient statistics for

error correction purposes are the posterior probabilitiesof the information bits given the received channel

symbols. Thirdly, to keep the state space finite and small, later we shall resort to some approximations.

In that case, even for a memoryless channel, the states may not be Markovian, that is, they may not

decorrelate the past and the future evolution of the protocol perfectly. But in the chapter we assume that

the states are defined so that they are Markovian.
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3.4 Performance Computation for a HARQ Protocol

Under the CMC framework, an HARQ protocol can be completely described by speci-

fying the action to be taken in each state.We define a protocolor apolicy π to be a map

from S ∪ {s0} to ∪s∈S∪{s0}U(s), defined such thatπ(s) ∈ U(s), ∀s. A policy tells the

next set of bits to be transmitted for the packet given the current state. Figure 3.1 shows

the state-action diagram for a variation of Type-II Hybrid ARQ protocol [68].
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s0 1 − P 1
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P 1
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1 − P 2

1

sT

1 − P 1
2
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(g2, h2)

P 1
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P 2
1

s1

(g1, h1)

Figure 3.1: State-action diagram for Type-II HARQ with direct combination

The throughput, the reliability and the average number of feedback bits can be cal-

culated as follows.

For s ∈ S ∪ {s0}, let V π(s), Hπ(s) andF π(s) denote, respectively the expected

transmission cost, expected reliability cost and expectedfeedback cost for a source-

packet when the system starts in states and terminates into statesT while following a

policy π. Then the throughput of policyπ is given byη(π) = k
V π(s0)

. The probability of

undetected packet error is given byHπ(s0) and the average number of decoding attempts

is given byF π(s0).

V π(s0), H
π(s0) andF π(s0) are computed either from the transfer function obtained

by applying Mason’s Gain Formula [38] to the signal flow graphor by direct computa-
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Figure 3.2: State-action diagram for general HARQ with error free feedback and no

timeouts

tion from the following equations. For alls ∈ S ∪ {s0}, if u = π(s),

V π(s) = g(s, u) + P τ(s,u)
s (u)V π(τ(u, s)) (3.1)

Hπ(s) = h(s, u) + P τ(s,u)
s (u)Hπ(τ(u, s)) (3.2)

F π(s) = f(s, u) + P τ(s,u)
s (u)F π(τ(u, s)) (3.3)

These are linear equations with almost decoupled structureand can be solved straight-

forwardly.

In the next section we see that the CMC structure can be used toobtain optimal
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HARQ policy from a collection of policies.

3.5 Constrained Feedback HARQ Design

An intuitive justification for the superior performance of HARQ over pure FEC, even

for memoryless channels, was provided in Chapter 2. Supposethe application can toler-

ate an undetected error probability of10−6 per packet. In Pure FEC, only one decoding

attempt is allowed per packet. Hence the error correction must be strong enough to cor-

rect the channel induced errors, to the desired reliability, with probability 1 for the first

transmission of the packet. On the other hand, in HARQ protocol, which uses incremen-

tal transmission of parity check bits, the first transmission need not be strong enough to

correct all errors, so long as the uncorrected errors aredetectedwith high reliability.

Hence the number of parity check bits in the first transmission can be less (sometimes

significantly so) than the case for pure FEC. If the first transmission is able to correct

all errors with, say, probability 0.5, (and detect the uncorrected errors with probability

approaching 1), the extra parity check bits do not need to be transmitted with probability

0.5, and hence higher throughput is achieved. Incremental transmission of redundancy,

hence, is designed to “build up” the error correction code till it is strong enough to

correct all errors up to the desired reliability. This argument clearly indicates that, in

principle, the highest throughput will be achieved if the transmission of redundancy is

done in small increments, such as one channel symbol per transmission.

But the argument presented above fails to consider the following drawbacks of re-

dundancy transmission in fine increments.

• Complexity: Note that each incremental transmission requires one ACK/NACK

feedback from the decoder, and each feedback generation requires a decoding
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operation. Hence, if a scheme transmits a packet in 5 increments, the decoding

complexity is increased 5 times over pure FEC transmission.

• Delay: Each independent incremental transmission may suffer a separate trans-

mission delay and queuing delay. If a scheme transmits a packet in 5 increments,

then, irrespective of the buffering scheme used, the delay before an ACK is gen-

erated can be nearly 5 times that of a pure FEC transmission.

• Overhead: Each incremental transmission may go over the channel as a separate

logical entity (such as an IP packet) and hence may need to be provided with

separate header and sequence number. This overhead will diminish the promised

throughput.

Nevertheless, pure FEC is only at one end of the spectrum of complexity vs. through-

put tradeoff and if it is possible, the available feedback channel must be exploited for

better performance. The proposed methodology provides a way of achieving this trade-

off in an operationally optimal fashion. As the usage of feedback channel,i.e. the num-

ber of ACK/NACKs per packet is directly related to complexity, delay and overheads,

we would like to design an HARQ protocol for a given channel such that the through-

put is maximized but the use of feedback channel is constrained. The feedback channel

usage can limited directly by constraining either (i) the maximum number of feedbacks

allowed per packet ( similar to Chapter 2) or (ii) the averagenumber of feedbacks al-

lowed per packet. For this chapter we consider the latter technique. The proposed

methodology also allows a direct control of the reliabilityof the protocol, provided ap-

propriate probability computations can be done. We take a Lagrangian approach where

we express the constraints by minimizing a weighted sum of reciprocal of throughput,

feedback channel usage and probability of undetected error.
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Hence the design of an HARQ protocol involves, finding from the set of all allowed

HARQ policies, a policy which yields maximum throughput without violating the con-

straints on maximum tolerable probability of undetected error and on the average num-

ber of feedback bits. That is, solving following design problem.

CHARQ Protocol Design Problem:

min
π
V π(s0) subject toF π(s0) ≤ F0 andHπ(s0) ≤ H0 (3.4)

Equivalently, the optimal policy must be an unconstrained minimizer of a Lagrangian

cost,

min
π
V π(s0) + λpuH

π(s0) + λfbF
π(s0) (3.5)

for some Lagrange multipliersλpu ≥ 0, λfb ≥ 0.

Equation (3.5) is a problem of minimization of total expected cost before termina-

tion for a controlled Markov chain. The search for optimal policy is accomplished by

dynamic programming [4].

For the givenλpu, λfb, the optimal policyπ∗ satisfies the following Bellman equa-

tions of optimality. For eachs ∈ {s0} ∪ S,

V π∗

(s) + λfbF
π∗

(s) + λpuH
π∗

(s)

= min
u∈U(s)

(g(s, u) + λfbf(s, u) + λpuh(s, u) +

P τ(u,s)
s (u)(V π∗

(τ(u, s)) + λfbF
π∗

(τ(u, s)) +

λpuH
π∗

(τ(u, s)))). (3.6)

The set of equations (3.6) is solved by the algorithms of value iteration or policy

iteration [4]. Let numerical superscripts denote the iteration index. Then the algorithm

is described as follows.
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Value Iteration Algorithm:

1. Setk = 0. Set, arbitrarily,V k(s) = 0, F k(s) = 1 andHk(s) = 1.

2. For alls ∈ {s0} ∪ S, setvalues, Jk(s) = V k(s) + λpuH
k(s) + λfbF

k(s).

3. For alls ∈ {s0} ∪ S, set

Jk+1(s) = min
u∈U(s)

(
(g(s, u) + λfbf(s, u) + λpuh(s, u)) + P τ(u,s)

s (u)(Jk(τ(u, s)))
)

4. Setπk+1(s) to the minimizer action (u) in the above minimization.

5. For some small numberǫ, if maxs∈{s0}∪S |J
k+1(s) − Jk(s)| < ǫ, stop, and select

π∗ = πk+1. Else, incrementk and go to step 3.

Policy Iteration Algorithm:

1. Setk = 0. Initializeπk(s) = u for some arbitraryu ∈ U(s).

2. Obtainsteady state values forπk, Jk(s) for s ∈ {s0} ∪ S by solving of linear

equations given by,

Jk(s) = g(s, πk(s)) + λfbf(s, πk(s)) + λpuh(s, π
k(s))

+P τ(s,πk(s))
s (πk(s))Jk(τ(πk(s), s)).

3. Set

πk+1(s) = arg min
u∈U(s)

(
g(s, u) + λfbf(s, u) + λpuh(s, u) + P τ(u,s)

s (u)Jk(τ(u, s))
)

4. If, for all s ∈ {s0} ∪ S, πk+1(s) = πk(s) then stop and selectπ∗ = πk+1. Else

incrementk and go to step 2.

The values of individual performance parameters can be obtained by solving equa-

tions 3.1 for the selected protocol.
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3.5.1 Interpretation of the Lagrangian

Note that the optimization problem could have been set in alternative ways. For exam-

ple, to maximize the throughput subject to a constraint on the feedback, we could have

solved,

min
π

−
k

V π(s0)
+ λF π(s0). (3.7)

But the optimization problem in eq. (3.7) does not yield itself to elegant solution by

the theory of Controlled Markov Chains unlike the problem ineq. (3.5).

The Lagrangian in equation (3.5) also arises naturally whenanalyzing the HARQ

protocol in the following situation.

Delay and Overhead Analysis in Stop and Wait based HARQ protocol: Consider a

Stop and Wait based HARQ protocol executing a policyπ. Suppose at every transmis-

sion step the transmitter must append a header of lengthlh bits to the (partial) channel

codeword. This is an overhead that grows with the number of steps needed for transmis-

sion. The total number of bits put on the channel before receiving an ACK is given by

V π(s0)+lhF
π(s0). Similarly, letTs denote the baud period,i.e. the time taken to put one

bit over the channel. Let the transmission delay for each step beTd and let the decoding

delay - the delay for generating a feedback beTdec. LetTf denote the time taken for the

feedback to reach the transmitter. Then, the total delay from the start of transmission of

a packet to the time when an ACK is received by the receiver, iscomputed as,

Ttotal = V π(s0)Ts + (lhTs + Tdec + Td + Tf )F
π(s0). (3.8)

Similar expression holds for expected total delay when the delays are not determin-

istic but are independent random variables with finite means. The total channel usage

V π(s0)+lhF
π(s0) as well as the total delay in eq. (3.8) are of the form of the Lagrangian

52



in eq. (3.5). Hence the Lagrangian has a physical meaning in this situation.

3.5.2 Feasibility

The second part of the design procedure is the search for Lagrange Multipliers which

will make the solutions meet the constraints. The problem stated in eq. (3.4) may not

have a solution at all. Note that, as a pure FEC transmission is a special case of the

HARQ protocol, all values ofF0 ≥ 1 in the problem (eq. 3.4) can be met by some

policy. The reliability constraint is harder to meet and some values ofH0 may not have

any solution in the set of policies.

If such a solution exists, the determination of the two parametersλfb andλpu re-

quires solving a linear program. Also, the dynamic range of numbers for probability of

undetected error is much smaller than that for feedback, andhence the sensitivity of the

two Lagrange multipliers is widely different.

A faster method can be devised if one is willing to tolerate approximate meeting of

the reliability constraint. Note that in practice, reliability constraint, or probability of

undetected error, is typically specified in logarithmic scale, or described by “orders of

magnitude” such as10−5 and10−6. Consider a protocol given by policyπ. A close

upper bound on the probability of undetected errorHπ(s0) is given by,

Hπ(s0) ≤ F π(s0)( max
s∈{s0}∪S

h(s, π(s))).

This upper bound allows us to drop the reliability constraint in the Lagrangian by in-

corporating it directly in the search. If the action setU(s) at each states is modified to

U ′(s)
def
= {u : u ∈ U(s), h(s, u) ≤ H0}, then the solution obtained by settingλpu = 0

(unconstrained reliability), will satisfyHπ(s0) ≤ F π(s0)H0, which has the same “order

of magnitude” asH0. Modifying the action set toU ′′(s)
def
= {u : u ∈ U(s), h(s, u) ≤
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H0

F0
}, results in a solution guaranteed to meet the reliability constraint. Determination

of a single Lagrange multiplierλfb can be handled by the relatively quick descent or

bisection techniques.

3.6 Results with Reed Solomon Codes

The design procedure of previous section yields the optimalpolicy or protocol for a

given memoryless channel for essentially arbitrary selection of channel codes and error

detection mechanisms. The essential part of the design is knowledge of the transition

probabilities of the Controlled Markov Chain. These probabilities can be obtained ana-

lytically or by simulation.

We illustrate the technique by using a family of channel codes which consist of punc-

tured codes obtained from a mother Reed-Solomon Code. (RateCompatible ) Punctured

Reed-Solomon codes have been considered good codes for wireless error control, espe-

cially for hybrid ARQ. This is because of several reasons. Firstly, they have an opti-

mality property that they are Maximum Distance Separable (MDS), i.e. they meet the

Singleton bound [6] with equality and each additional symbol increases the minimum

distance of the code by one [68]. Secondly, the Berlekemp-Massey decoding algorithm

can be used when there are symbol errors as well as symbol erasures [67]. This is es-

pecially suitable for a fading channel where a deep fade, if detected, results in symbol

erasure. Thirdly, the weight distribution of MDS codes is completely determined. It can

be used to analytically compute or estimate the transition probabilities.

We consider a family of(n, k) punctured RS-codes overGF (q) for nmin ≤ n ≤

nmax. These are punctured versions of a(nmax, k) parent-code. We usebounded dis-

tance decodingas the decoding method. With each block lengthn, nmin ≤ n ≤ nmax,
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there is a decoding diameterddec(n). A received word̄y(n) is accepted if

dH(ȳ(n), c) ≤ ⌊ddec(n)/2⌋for some codewordc (3.9)

wheredH is the hamming distance. (Decodingradiusis analogously defined asre(n)
def
=

⌊ddec(n)/2⌋). We assume asymbol-symmetric channelwith symbol error ratepe, i.e.

Forα, β ∈ GF (q), β 6= α

P [y = α|x = α]
def
= 1 − pe andP [y = β, |x = α] = pe

q−1
.

The Markov Chain is set up as follows. Exploiting the MDS property of RS-codes,

we define the states as{s0, sT} ∪ {sn, nmin ≤ n ≤ nmax}, where the system is in state

sn if blocklengthn was used in the decoding for generating the last feedback. Anac-

tion u ≡ (n1, n3) in a statesn, consists of discardingn1 symbols and requestingn3 new

symbols. Under these definitions, the probability of retransmission1−P sT
s (u) and prob-

ability of termination with undetected errorh(s, u) can be computed or approximated

from the distance properties of the MDS codes. Please note that, this notion of state, as

information decorrelating the past and the future, is an approximation, which is exact in

the first two transmissions but remains a good approximationfor further transmissions.

In Section 3.8, we derive the analytical expressions and obtain approximations for the

computation of transition probabilities.

Figures 3.3 to 3.10 and show the results obtained for a symbolsymmetric channel

overGF (32). The RS code family used an(n, 8) code family overGF (32) obtained by

puncturing a(31, 8) RS code.

The schemes indexed with the prefixesT1 andT2 are the conventional Type I and

Type II Hybrid ARQ schemes. The schemes indexed byCF andCR are respectively

the proposed schemes for different values of the Lagrangianpenaltiesλfb andλpu. The

constrained feedback schemes indexed byCF haveλfb > 0 andλpu = 0. (Still, the

decoding radii of the code family are chosen to maintain a minimum level of reliabil-
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ity of 7, (that ish(s, u) < 10−7∀s andu, as in the discussion in Section 3.5.2). The

constrained reliability schemesCR haveλpu > 0.

Refer to Figures 3.3 to 3.5, which are 2 dimensional projections of performance

triplets (Table 3.1) in the space of Throughput, Reliability and Feedback, for a channel

with symbol error probability of 0.1.

It is evident that the proposed approach captures the tradeoff between the three

competing requirements, namely high throughput, high reliability and low computa-

tion, quite well. Constrained Feedback schemes, such as CF-2, achieve about 20% gain

in throughput over the closest conventional Type-II scheme(TF-5), while maintaining

reliability over 7 but allowing nearly 0.5 NACKS on an average. If the NACKS are al-

lowed to increase, a scheme such as CR-3 achieves this throughput gain while retaining

reliability better than8, albeit at the expense of increased feedback. .

Figures 3.6 to 3.8 and table 3.2 show similar trend and trade offs for pe = 0.05.

Similar, though, not as prominent tradeoffs are observed inchannels with lower symbol

error probabilities. Figures 3.9 and 3.10 are condensed versions of similar results for

channels with symbol error probability of 0.01,0.001 and 0.0001.

3.7 Conclusion

We propose a dynamic programming based technique for designof Hybrid ARQ system

for error control in wireless channels [9]. It is more flexible than the conventional signal

flow graph based techniques in the sense that it allows tighter control over through-

put/feedback and throughput/reliability tradeoff. The results indicate that, if the system

can support a little extra complexity and more feedback thensignificant improvements

in throughput can be obtained by careful design.
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Figure 3.8: Reliability Vs. Throughput Performance of Various Schemes:Pe = 0.05
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Figure 3.9: Performance of various schemes for channels with Pe = 0.01 andPe =

0.0005.
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Figure 3.10: Performance of various schemes for channels with Pe = 0.001 andPe =

0.0001.
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3.8 Appendix: Transition Probabilities for CHARQ with

Reed Solomon Codes

In this section we derive the formulas for computation/approximation of the transition

probabilities of the controlled Markov chain. We need the following results.

Weight Distribution of Reed Solomon Codes:Reed Solomon codes are Maximum

Distance Separable (MDS), and their weight distribution iscompletely determined[6,

45]. For a(n, k) MDS code overGF (q), letAj(n, k, q) denote the number of codewords

of weightj. ThenA0 = 1, Aj = 0 for j = 1, . . . d∗ − 1, whered∗ = n− k + 1, and for

j ≥ d∗,

Aj(n, k, q) =

(
n

j

)
(q − 1)

j−d∗∑

i=0

(−1)i

(
j − 1

i

)
qj−d∗−i (3.10)

A very interesting property of the MDS codes is their symmetry with respect to distribu-

tion of zero symbols in a codeword. The number of codewords ofweightj with zeros in

fixedn−j locations, does not depend of the location of zeros - or the “zero-distribution-

pattern”. Therefore, denote byMj(n, k, q) = 1

( n
n−j)

Aj(n, k, q) the number of codewords

of weightj with a fixed zero-distribution pattern.

This property helps us calculate 2-step and 3 step Weight Distribution functions,

useful for the calculation of transition probabilities.

Proposition 1 LetA2
j1j2

(n1, n2, q, k) denote 2-step Weight Distribution function, that is,

the number of codewords of a(n1 + n2, k) RS code overGF (q), which have weightj1

in first n1 coordinates, andj2 in nextn2 coordinates. LetA3
j1j2j3

(n1, n2, n3, q, k) denote

the number of codewords of a(n1 +n2 +n3, k) RS code overGF (q),which have weight

j1 in first n1 coordinates,j2 in nextn2 coordinates andj3 in nextn3 coordinates. Then,
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by the symmetry of zero distributions the following holds.

A2
j1j2

(n1, n2, q, k) =

(
n1

j1

)(
n2

j2

)
(

n1+n2

j1+j2

) Aj1+j2(n1 + n2, q, k). (3.11)

A3
j1j2j3

(n1, n2, n3, q, k) =

(
n1

j1

)(
n2

j2

)(
n3

j3

)
(

n1+n2+n3

j1+j2+j3

) Aj1+j2+j3(n1 + n2 + n3, q, k). (3.12)

Puncturing: An (n, k) block code can be punctured to obtain a(n1, k) code by dropping

n − n1coordinates of the codewords. It can be easily shown that punctured versions of

MDS codes are also MDS. Consequently, the distance properties of the punctured codes

are independent of thepuncturing table,that is, the coordinates dropped. The weight

distribution of the punctured code is again given by the expression above.

Counting error patterns within decoding spheres: [6] Consider an(n, k) code over

GF (q). Let T (n, j, w, s) denote number of error patterns of weightw at a Hamming

distances from a fixed codeword of weightj. Then

T (n, j, w, s) =
∑

0≤a≤n 0≤b≤n;a+2b+w=s+j

(
n− j

b+ w − j

)(
j

a

)(
j − a

b

)
(q−1)b+w−j(q−2)a

(3.13)

Figure 3.11 shows how equation (3.13) can be derived.

Let 0 ≤ s ≤ ⌊d∗−1
2

⌋. Let ζ(n, j, w, s) denote the set of error patterns of weight

w, which are at a Hamming distances from at least one codeword of weightj. Then

|ζ(n, j, w, s)|, the size of the set, is given byAj(n, k, q)T (n, j, w, s).

Symmetry in error patterns: As the code is symmetric with respect to zero-distribution

patterns, so is the setζ(n, j, w, s). Hence the number of error patterns of weightw,

which have exactlyz1 non-zero symbols in firstn1 coordinates, is given by
(

n1

z1

)(
n−n1

w−z1

)
(

n

w

) Aj(n, k, q)T (n, j, w, s) (3.14)

These equations are valid under the convention that
(

m

z

)
= 0 wheneverm < 0 or z < 0

or z > m.
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Figure 3.11: Error Pattern of weightw, and codeword of weightj. Non-zero coordinates

in the error pattern disagree ata places. Zero coordinates disagree atb places.

Symbol Symmetric Memoryless Channel:Consider transmission of a codeword over

a symbol symmetric channel with symbol error probabilitype. The probability thatw

out ofn symbols are received in error is given by
(

n

w

)
pw

e (1 − pe)
n−w.

Bounded Distance Decoding:For every codeword lengthn, we associate a decoding

radiusre(n) ≤ ⌊d∗−1
2

⌋ . A codewordc is decoded if the Hamming distance between

the received word and the codeword is less thanre(n). If no such codeword is found,

a decoding failure is declared, which will be used to generate NACK feedback in the

HARQ protocol.

States of the Controlled Markov Chain: As described earlier, we define the states as

{s0, sT} ∪ {sn, nmin ≤ n ≤ nmax}, where the system is in statesn if blocklengthn was

used in the decoding for generating the last feedback.

Deriving probabilities of the controlled Markov Chain: At any decision instant,

which has resulted in a NACK, the receiver must take an action. The action consists
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of receivingn3 additional symbols, discardingn1 past received symbols, while retain-

ing pastn2 symbols. We shall calculate the first step transition probabilities as follows.

Without loss of generality, we assume that the all zero codeword of lengthn1+n2+n3 is

transmitted over a memoryless symbol symmetric channel with symbol error probability

pe. Let e1, e2 and e3 denote the (random) received error patterns of lengthsn1,n2 andn3

respectively. LetW (e) denote the weight of an error pattern e. LetD12 denote the event

thatn1+n2 symbols are transmitted over the memoryless channel and thetransmit code-

word is decoded correctlyW (e1 + e2) ≤ re(n1 + n2). Here+ for error patterns denotes

concatenation. LetU12 denote the event that the received codeword is decoded incor-

rectly. LetZ12(c, r12
e denote a decoding sphere of dimensionsn1+n2 of decoding radius

r12
e around a codewordc. ThenU12 is the event e1 + e2 ∈ ∪c 6=0Z

12(c, r12
e ). Analogously,

defineD23 andU23 to be the events e2 + e3 ∈ Z23(0, r23
e ) and e2 + e3 ∈ ∪c 6=0Z

23(c, r23
e ).

Approximating Transition Probabilities: Consider a HARQ protocol that starts in

states0 and requests a feedback after transmittingn1 + n2 symbols. The feedback will

be an ACK if eventD12 ∪ U12 happens. Otherwise the feedback will be a NACK and

the system will move to a new states1. All actions taken in stateu have transition

probabilities conditioned on the event(D12 ∪U12)
′. A typical actionu in states1 can be

represented by integersu ≡ n1, n3, which corresponds to requestingn3 new symbols,

discardingn1 of the old symbols, and making a decoding attempt by combining the

retainedn2 symbols with the newn3 symbols. Note that, because of the MDS property

of the RS codes, and the fact that the previous state wass0, the specific locations of the

discardedn1 symbols does not matter for the calculation of state transition probabilities.

We are interested in the probabilitiesP [D23|(D12∪U12)
′] andP [U23|(D12∪U12)

′], which

are the probabilities of correct decoding and undetected error respectively, when action

u is taken in states1. Probability that a NACK is generated on actionu is P [(D23 ∪
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U23)
′|(D12 ∪ U12)

′] = 1 − P [D23|(D12 ∪ U12)
′] + P [U23|(D12 ∪ U12)

′].

ConsiderP [A|(D12 ∪ U12)
′] for some eventA. Note thatD12 andU12 are mutually

exclusive events. ThereforeP [(D12 ∪ U12)
′] = P [D′

12] − P [U12] and we have

P [A|(D12∪U12)
′] =

P [A ∩D′
12 ∩ U

′
12]

P [D′
12 ∩ U

′
12]

=
P [A ∩D′

12 ∩ U
′
12]

P [D′
12] − P [U12]

=
P [A ∩D′

12] − P [A ∩ U12]

P [D′
12] − P [U12]

Now if P [D′
12] ≫ P [U12], i.e. P [U12]

P [D′

12]
≪ 1, we can neglectP [U12] in the denominator

and obtain an approximation toP [A|(D12 ∪ U12)
′] as follows.

P [A|(D12 ∪ U12)
′] ≈ P [A|D′

12] −
P [A ∩ U12]

P [D′
12]

. (3.15)

The right hand side is a close lower bound onP [A|(D12 ∪ U12)
′] as the ratio of the

error to the true value,
P [A|(D12∪U12)′]−P [A|D′

12]+
P [A∩U12]

P [D′

12
]

P [A|(D12∪U12)′]
= P [U12]

P [D′

12]
is small by assump-

tion. The assumption is justified as Reed Solomon Codes are not “well packed” i.e. the

number of codewords of given dimensions are much smaller than that promised by the

Sphere Packing Bound[6]. The lower-bound in eq. 3.15 can be effectively used as an

approximation toP [A|(D12 ∪ U12)
′] no matter how small the probability of the event

A is. A coarser boundP [A|(D12 ∪ U12)
′] ≈ P [A|D′

12] can be obtained by neglecting

P [A∩U12]
P [D′

12]
≤ P [U12]

P [D′

12]
in the numerator too. In that case, the absolute value of the error

|P [A|(D12 ∪ U12)
′] − P [A|D′

12]| ≤ 2| P [U12]
P [D′

12]
| is small in absolute terms. But this bound

does not guarantee that, relative toP [A|(D12 ∪ U12)
′] the error will be small.

Probability of Correct Decoding: Consider the computation ofP [D23|D
′
12] where the

eventD23, as described earlier, denotes the probability of correct decoding when the

lastn2 symbols from then1 +n2 symbols received are combined withn3 new requested

symbols to form a codeword. ThenP [D23|D
′
12] is exactlygiven by the following ex-
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pression.

P [D23|D
′
12]

=
P [D23 ∩D′

12]

P [D′
12]

=

∑n2

z2=0 P [W (e2) = z2,W (e1) + z2 > re12,W (e3) + z2 ≤ re23 ]∑n2

z2=0 P [W (e2) = z2,W (e1) + z2 > re12 ]

Where

P [W (e2) = z2,W (e1) + z2 > re12,W (e3) + z2 ≤ re23 ]

=
∑

{z1,z3:0≤z1≤n1,
0≤z3≤n3,

z1+z2>re12 ,

z3+z2≤re23}

(
n2

z2

)(
n1

z1

)(
n3

z3

)(
pe

1 − pe

)z1+z2+z3

(1 − pe)
n1+n2+n3,(3.16)

and,

P [W (e2) = z2,W (e1) + z2 > re12 ]

=
∑

{z1:0≤z1≤n1,
z1+z2>re12}

(
n2

z2

)(
n1

z1

)
pz1+z2

e (1 − pe)
n1+n2−z1−z2 . (3.17)

Probability of Undetected Error: To computeP [U23|D′
12] consider the following.

P [U23|D
′
12] =

P [U23∩D′

12]

P [D′

12]
=
(∑n2

z2=0 P [U23 ∩D
′
12|W (e2) = z2]P [W (e2) = z2]

)
(P [D′

12])
−1

=
(∑n2

z2=0 P [U23|W (e2) = z2]P [D′
12|W (e2) = z2]P [W (e2) = z2]

)
(P [D′

12])
−1

Now

P [D′
12|W (e2) = z2] = P [W (e1)+z2 > re12 ] =

n1∑

z1=0

(
n1

z1

)
χ{z1+z2>re12}

pz1
e (1−pe)

n1−z1 .

P [U23|W (e2) = z2] an be computed as follows. For compactness, letn23
def
= n2 + n3 .
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Consider

P [U23 ∩W (e2) = z2]

= P [{e1 + e2 ∈ ∪c∈C23
RS

,c 6=0Z
23(c, re23)} ∩ {W (e2) = z2}]

=

n3∑

z3=0

re23∑

s=0

(
n2

z2

)(
n3

z3

)
(

n23

z2+z3

)
n23∑

j=n23−k+1

Aj(n23, q, k)T (n23, j, z2 + z3, s)

(
pz2+z3

e (1 − pe)
n23−z2−z3

(q − 1)z2+z3

)
.

Therefore

P [U23|W (e2) = z2]

= P [e1 + e2 ∈ ∪c∈C23
RS

,c 6=0Z
23(c, re23)|W (e2) = z2]

=
P [{e1 + e2 ∈ ∪c∈C23

RS
,c 6=0Z

23(c, re23)} ∩ {W (e2) = z2}]

P [{W (e2) = z2}]

=

n3∑

z3=0

re23∑

s=0

(
n3

z3

)
(

n23

z2+z3

)
n23∑

j=n23−k+1

Aj(n23, q, k)T (n23, j, z2 + z3, s)
pz3

e (1 − pe)
n3−z3

(q − 1)z2+z3
(3.18)

The expression uses the fact that the number of error patterns e2 + e3 of weight z2 in

first n2 coordinates andz3 in nextn3 coordinates , which are at a distances from some

nonzero codeword inC23
RS , is given by eq. 3.14 as

(
n2

z2

)(
n3

z3

)
(

n23

z2+z3

)
n23∑

j=n23−k+1

Aj(n23, q, k)T (n23, j, z2 + z3, s).

To calculate a the second term in the approximation, namelyP [U12 ∩ U23]/P [D′
12],

we need thethree-stepweight distribution function of the underlying mother code.

We have,

P [U12 ∩ U23] = P [{e1 + e2 ∈ ∪c 6=0Z
12(c, re12)} ∩ {e2 + e3 ∈ ∪c 6=0Z

23(c, re23)}].

The expression forP [U12 ∩ U23] is given by,

∑

z1,z2,z3∈Bz

j1,j2,j3∈BJ
s1,s2,s3∈BS

A3
j1j2j3

(n1, n2, n3, q, k)

3∏

i=1

T (ni, ji, zi, si)

(
pe

q − 1

)∑3
i=1 zi

(1 − pe)
∑3

i=1(ni−zi)
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whereBz
def
= {z1,z2, z3 : 0 ≤ zi ≤ ni; z1 + z2 + z3 6= 0} denotes the collection of error

pattern distributions in the three sets of coordinatesn1n2, n3. BJ
def
= {j1, j2,j3 : 0 ≤

ji ≤ ni; j1 + j2 + j3 ≥ n1 + n2 + n3 − k+ 1} denotes the possible weights of non-zero

codewords in the the coordinates. FinallyBS
def
= {s1, s2, s3 : 0 ≤ si ≤ ni, s1 + s2 ≤

re12 , s2 +s3 ≤ re23} denotes the set of distances of error patterns from codewords which

will result in the eventU12 ∩U23. Note that the constraintss1 + s2 ≤ re12, s2 + s3 ≤ re23

ensure that no error pattern is counted more than once.
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Scheme Throughput Reliability Avg. Feedback (NACKs)

pe = 0.1
CF-1 0.5690 6.9446 0.6611
CF-2 0.5603 6.9702 0.4722
CF-3 0.5180 7.4478 0.2089
CF-4 0.4928 7.7394 0.0778
CF-5 0.4685 7.1192 0.0248

CR-1 0.5917 7.0956 2.3210
CR-2 0.5807 7.4042 2.0775
CR-3 0.5643 8.0662 1.7867
CR-4 0.5312 8.6273 0.6324
CR-5 0.5078 9.1885 0.4484

T1-1 0.4658 7.7293 0.0734
T1-2 0.4602 7.1245 0.0226
T1-3 0.4319 9.2092 0.0290
T1-4 0.4174 8.6405 0.0087
T1-5 0.3990 8.1228 0.0024
T1-6 0.3797 10.1992 0.0033

T2-1 0.3881 8.3359 0.7179
T2-2 0.4463 7.2248 0.3788
T2-3 0.4037 9.3570 0.4154
T2-4 0.4504 8.4845 0.1841
T2-5 0.4699 7.7601 0.0684
T2-6 0.4622 7.1343 0.0222
T2-7 0.4356 9.2216 0.0282
T2-8 0.4188 8.6443 0.0086
T2-9 0.3995 8.1238 0.0024

Table 3.1: Performance of various schemes for symbol symmetricGF (32) channel with
pe = 0.1

70



Scheme Throughput Reliability Feedback

pe = 0.05
CF-1 0.6649 6.8446 0.6082
CF-2 0.6653 6.8581 1.0302
CF-3 0.6485 6.9565 0.4679
CF-4 0.6071 7.1893 0.1722
CF-5 0.6021 7.3797 0.1411
CF-6 0.5695 7.1622 0.0357

T1-1 0.5320 8.5284 0.1566
T1-2 0.5543 7.7346 0.0310
T1-3 0.5304 7.0479 0.0055
T1-4 0.4965 9.4175 0.0071

T2-1 0.5420 8.5916 0.1354
T2-2 0.5548 7.7479 0.0301
T2-3 0.5304 7.0503 0.0055

Table 3.2: Performance of various schemes for symbol symmetricGF (32) channel with
pe = 0.05
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Chapter 4

Progressive Unequal loss Protection in the absence of

Feedback

4.1 Introduction

The high data rate, loss-tolerant and sometimes delay-sensitive nature of multimedia

sources like images and video signals is in contrast with thedelay-insensitive but loss-

intolerant nature of data. Traditional transmission schemes and protocols developed for

wireless transmission of data may be inefficient or overly conservative for the transmis-

sion of multimedia sources. As a large and increasing fraction of the network traffic

comprises multimedia applications, their transmission over noisy channels and lossy

networks merits special attention. Hence there has been much research in the last few

years on devising “joint” source and channel coding schemesfor transmission of specific

sources over noisy channels and lossy networks.

Embeddedness (successive refinability) or scalability in bit rate is a desirable prop-

erty for a source coder as it provides flexibility and the capability to progressively re-

construct the source. An embedded source coder allows the decoder to reconstruct the

source at different bit rates from the prefixes of a single bitstream. Progressive re-
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constructionis possible as each additional bit (or a set of bits) improvesthe quality

of reconstruction. Several highly competitive and low complexity algorithms for em-

bedded image coding have been developed in the literature. Examples are Embedded

Zerotrees of Wavelets (EZW) [56], the popular Set Partitioning In Hierarchical Trees

(SPIHT) coder [52] as well as recent works in [49, 42].

The embeddedness property, which allows the user to transmit and receive the source

progressively in the absence of transmission noise, typically makes the source coder

sensitive to transmission noise. An error in an embedded bitstream may cause misin-

terpretation of the later bits, leading to error propagation and a possible loss in synchro-

nization. The progressive property is lost as the bits following the error may not improve

the quality of reconstruction; in fact, they might damage the reconstruction. Therefore,

it is important to design good joint source-channel coding schemes for transmission of

embedded source coders over noisy channels. In addition, itis desirable to retain the

progressive reconstruction property in image transmission when the channel is noisy.

There is a growing body of recent work in transmitting progressively coded images

over different kinds of noisy channels [57, 59, 12, 1, 39, 11,46, 18]. They are based on

equal or unequal error protection of the output of an embedded source coder and discuss

ways to combat error propagation. These schemes, while making use of a progressive

source coder, are designed for a fixed target transmission rate. They do not explicitly

consider the performance of the scheme at intermediate rates or provide direct scalability

to a higher transmission rate. Although, in some cases, operationally optimal progres-

sive transmission is a by-product, either of the design or ofthe imposed constraints,e.g.

[57, 12].

In this chapter, we consider the optimal design of a joint source-channel coder using

an embedded source coder, with an emphasis on progressive transmission over memo-
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ryless bit error channels and packet erasure channels with no feedback.

First, we provide a formulation of optimal unequal protection for memoryless chan-

nels under a transmission budget constraint. We provide an algorithm which chooses

an optimal unequal error protection policy from an arbitrary family of (block based)

channel codes. Earlier attempts at this problem have used model based techniques,

e.g. modeling the distortion-rate performance of the image coder by exponentials [1]

or modeling the performance of the channel codes by curve fitting [39]. Here, the pro-

posed algorithm is exact and does not require model based computation either for the

source coder or for the channel code family chosen. It is alsoindependent of the ac-

tual performance criterion used (average distortion, average Peak Signal-to-Noise Ratio

(PSNR) or average useful source coding rate). The frameworkdeveloped can be used

for memoryless channels including memoryless bit error channels (e.g. BPSK trans-

mission over AWGN channels with hard or soft demodulation) and memoryless packet

erasure channels.

Second, we show how progressive transmission can be achieved while retaining op-

timality at intermediate transmission rates if the underlying family of channel codes is

embedded (rate compatible). The Rate Compatible PuncturedConvolutional (RCPC)

codes [29] satisfy this criterion for bit error channels; punctured Reed-Solomon (RS)

codes satisfy this property for erasure channels [67]. We donot consider the case when

both bit errors and packet erasures are present in the channel. That situation is consid-

ered in [18].

Our studies show that the proposed schemes offer a performance – measured in av-

erage PSNR vs. bit rate – superior to any scheme using equal error protection. The

amount of improvement depends on the transmission rate and avariety of other param-

eters, including the available choice of the error control codes and the channel statistics.
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Further, the proposed scheme can be used for progressive encoding while guaranteeing

optimality at a number of intermediate rates.

The organization of the chapter is as follows. Section 4.2 describes the basic set up.

Section 4.3 discusses the performance criteria and the optimization problem for memo-

ryless channels. It describes the solution of the optimization problem and presents the

algorithm for unequal error and erasure protection. Section 4.4 discusses when and how

optimal progressive transmission can be accomplished. Simulation results are presented

in Section 4.5. Finally, Section 4.6 ends with concluding remarks.

4.2 The Transmission Scheme

Consider the transmission of the output of an embedded source coder over a noisy chan-

nel. A challenge in transmitting such codes is to minimize the damage caused by error

propagation. A twofold strategy that can be employed is: 1)preventionof error and

hence error propagation by forward error correction and 2)detectionof possible post-

decoding errors and discarding all the bits that may contribute to error propagation. In

the case of packet erasure channels, the problem is to avoid uncorrectable erasures.

Consider an embedded source coder which simultaneously encodesNs source sam-

ples. Its output, the source encoder bits, is packetized into fixed-lengthsource-packets

of, say,ks bits each. As the source coder is embedded, the representation of the source

at rates which are multiples ofks/Ns can be obtained from a prefix of this stream of

source-packets.

For error protection, we assume that we are provided with a finite family of block

codes, each member of which has error correction and error detection capability, like

those in [57]. These codes operate on source-packets ofks bits and generate blocks of
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bits of different lengths which are subsequently transmitted over the channel. Typical

examples of such families are concatenated RCPC-CRC codes (e.g. [29, 57]) or punc-

tured RS codes with bounded distance decoding [67]. The punctured RS code family is

also used as codes for a symbol erasure channel. These families provide a selection of

code rates necessary for unequal error protection.

We use fixed-length source packetization but we allow source-packets to receive

a variable number of error protection bits,i.e. to have a variable-length error cor-

rection. A three-fold motivation for doing this is as follows. (i) The rate compatible

families of error and erasure correction codes can be implemented with asinglechan-

nel encoder-decoder pair. Schemes using variable-length source-packet to fixed-length

channel packets lose this advantage. (ii) The variable codeword lengths of the rate com-

patible families are usually multiples of a smaller fixed-length channel block, which can

be used for synchronization. (iii) The influence of the size of the actual packet put on the

channel over the logical ‘packet’ used for error control canbe reduced by interleaving

(e.g.[46]).

The transmission process proceeds as follows. Each source-packet output by the

source coder is encoded with a potentially different channel code, chosen according to

somecode assignment policy. These channel coded bits are transmitted over the noisy

channel. The receiver tries to recover the source-packets from the (noisy) received chan-

nel codewords. The channel decoder either correctly decodes a source-packet or detects

an error and declares asource-packet decoding failure. In the case of a packet erasure

channel, a source-packet decoding failure is declared if the source-packet cannot be

recovered from the unerased received packets. We assume that the probability of unde-

tected errors is zero. This assumption is true for erasure channels and can be approx-

imated with high reliability for bit error channels. As discussed earlier, for embedded
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source coders it is often reasonable to assume that if a source-packet is decoded erro-

neously by the receiver, then the subsequent source-packets cannot improve the quality

of the source. Hence, at any stage in transmission, the source is reconstructed only from

the decoded bit stream up to the first source-packet that contains a detectable error or

irrecoverable erasure. For some embedded source coders, itmay be possible to separate

the source bit stream either into critical and non-criticalparts or into several independent

substreams. In this chapter, we restrict our attention to the case where no such separa-

tion is available and the first error or erasure leads to errorpropagation. Alternatively,

the proposed scheme may be applied to only the critical part of the bit stream or to each

independent substream. We have not investigated that approach here.

In the next section, the performance of the proposed scheme is computed and opti-

mized for a memoryless channel.

4.3 Optimal Unequal Protection for Memoryless Chan-

nel

Let us denote the family of error correction-detection channel codes byC = {c1, c2, . . . cJ}.

Let the code-rates of the channel codes be denoted byrc(ci), i = 1, . . . , J . Therefore, a

codeword for a source-packet of lengthks bits, protected by codeci, has lengthks/rc(ci)

bits. Let the probability of source-packet decoding failure for the given memoryless

channel for the channel codeci ∈ C bePe(ci).

If the first i source-packets are available to the decoder, the source canbe recon-

structed to a rateiks/Ns bits per source sample, whereNs is the number of source

samples. Letrs
def
= ks/Ns be the rate in bits per sample per source-packet for the

source.
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The unequal protection for the source-packets is describedby specifying acode

allocation policy. A code allocation policyπ allocates channel codeciπ ∈ C to theith

source-packet out of the source coder. A policyπ is described by the number of source-

packets to be transmitted (N(π)) and by a sequence of channel codes{c1π, c
2
π, . . . , c

N(π)
π }

to be used with the sequence of source-packets.N(π) can also be thought of as the

index of the terminating source-packet for the policy. The normalized transmission rate

(in channel bits per source sample) for the policyπ is given by

RT π

def
=

N(π)∑

i=1

rs

rc(ciπ)
. (4.1)

4.3.1 Performance Criteria

Several single-parameter criteria can be used to measure the performance of a code-

allocation policy. Consider the transmission of an image bythe proposed scheme us-

ing a policyπ = {c1π, c
2
π, . . . , c

N(π)
π }. To compute the performance of the policy, let

us introduce the following notation. For integersk = 1, 2, . . . , N(π) and i = k −

1, k, k + 1, . . . , N(π), let Pi|k−1(π) denote the conditional probability that exactly the

first i source packets are decoded correctly given that the firstk−1 packets are decoded

correctly, while using the policyπ. ThenPi|k−1(π) can be computed as,

Pi|k−1(π)
def
=






Pe(c
k
π) i = k − 1,

∏i
j=k(1 − Pe(c

j
π))Pe(c

i+1
π ) i = k, k + 1, . . . , N(π) − 1,

∏N(π)
j=k (1 − Pe(c

j
π)) i = N(π).

(4.2)

Note that
∑N(π)

i=k−1 Pi|k−1(π) = 1 for k = 1, 2 . . . , N(π).

Let the operational distortion-rate performance of the source coder be given byD(r)

wherer is the rate in bits per sample. Then, as the source is reconstructed only from the
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source-packets received prior to a source-packet decodingfailure, theexpected distor-

tion at the receiver using a policyπ (at transmission rateRT (π)) is given by

D̄π
def
=

N(π)∑

i=0

D(irs)Pi|0(π). (4.3)

Similarly, let the PSNR-rate performance of the source coder for the source image

be given byPSNR(r) wherePSNR(r)
def
= 10 log10

2552

D(r)
dB. Then theexpected PSNR

for the policyπ is given by,

PSNRπ
def
=

N(π)∑

i=0

PSNR(irs)Pi|0(π). (4.4)

Finally, we consider another performance criterion, namely the average number of

source encoder bits per sample received before a source-packet decoding failure (which

is the beginning of a possible error propagation). We call this criterion theaverage

useful source coding rate. This criterion is motivated by the fact that the longer the

error-free prefix is, the better would be the reconstructionof the source. For a policyπ,

the average number of source-packets received before a source-packet decoding failure

is analogously written as,

Vπ
def
=

N(π)∑

i=0

iPi|0(π). (4.5)

Note that the average useful source coding rate is given byrsVπ.

The channel code allocation problems for the joint source-channel coding scheme

under the constraint of total transmission rateR bits per source sample, can be expressed

in terms of the following optimization problems.

• Problem A: For minimization of the average distortion the problem is,

min
π
D̄π subject toRT π ≤ R. (4.6)
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• Problem B: For maximization of the average PSNR, the problem is,

max
π

PSNRπ subject toRT π ≤ R. (4.7)

• Problem C: Finally, asrs is a constant, to maximize the average useful source

coding rate, the problem is,

max
π

Vπ subject toRT π ≤ R. (4.8)

Any of the above optimization criteria can be chosen to suit the application. The

drawback of choosing to maximize the average PSNR or to minimize the average dis-

tortion is that the unequal error protection policy so obtained needs to be conveyed to

the receiver somehow. This may require transmission of sensitive side information over

the noisy channel.

There are some desirable properties that make the design criterion (4.5) (and hence

Problem C) interesting and particularly useful:

1. The design criterion (4.5) does not involve the source statistics or the source-

coder performance. The receiver can also carry out this optimization and hence

the unequal protection policy can be available at the receiver without the need for

transmission of any side information. Criterion (4.5) is also useful in situations

where the source coder is not embedded but error propagationis still an issue. For

example, in variable-length coded macroblocks with synchronization symbols, the

error propagation within a macro-block can be prevented or maximally delayed by

unequal error protection design based on maximizing the criterion (4.5).

2. As we shall see in the end of this section, its solution is considerably simpler than

the other two criteria.

80



3. Finally, the optimal policies for optimization criterion (4.5) allow provably opti-

mal progressive transmission at intermediate rates. We discuss this in detail in

Section 4.4.

4.3.2 Solution to Optimization Problems

The cost functions (4.3),(4.4) and (4.5) are not additive, hence Problems A, B and C are

not conventional rate allocation problems. But, it can be shown that the three problems

can be solved exactly by a framework based on dynamic programming. The principal

idea of the solution is to write the objective function in theabsence of noise (distortion,

PSNR or number of source-packets) as a sum of incremental rewards, which are accu-

mulated as each source-packet is successfully decoded by the receiver. Letδi denote the

incremental reward when theith source-packet is successfully received. Hence, if the

task is to minimize the average distortion,δi is defined as

δi
def
= D((i− 1)rs) −D(irs), i = 1, 2, . . . . (4.9)

Similarly for average PSNR maximization,δi is defined as

δi
def
= PSNR(irs) − PSNR((i− 1)rs), i = 1, 2, . . . . (4.10)

And, for maximization of the average useful source coding rate,δi is defined as

δi
def
= 1, i = 1, 2, . . . . (4.11)

The objective functions in Eqs. (4.3), (4.4) and (4.5) are related to these incremental

rewards as follows. For a code allocation policyπ = {c1π, c
2
π, . . . c

N(π)
π } and for integers

k, 1 ≤ k ≤ N(π), define,

∆(k, π)
def
=

N(π)∑

i=k

(
i∑

j=k

δj

)
Pi|k−1(π). (4.12)
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From the values ofδi defined in (4.9), (4.10) and (4.11), and using (4.3), (4.4) and

(4.5) it can be verified that

∆(1, π) =






D(0) − D̄π, for Problem A,

PSNRπ − PSNR(0), for Problem B,

V̄π, for Problem C.

(4.13)

Hence Problems A, B and C defined in Eqs. (4.6), (4.7) and (4.8)reduce to the

following problem:

max
π

∆(k, π) subject toRT (k, π)
def
=

N(π)∑

i=k

rs

rc(ciπ)
≤ R, (4.14)

for k = 1.

Now, from Eq. (4.2) it can be seen that, fork = 1, 2, . . . , N(π) and i = k, k +

1, . . . , N(π), the following holds.

Pi|k−1(π) = (1 − Pe(c
k
π))Pi|k(π). (4.15)

From Eqs. (4.12) and (4.15) notice that∆(k, π) satisfies the following recursion.

∆(k, π) =






(1 − Pe(c
N(π)
π ))δN(π), for k = N(π),

(1 − Pe(c
k
π))(δk + ∆(k + 1, π)), for k = 1, 2, . . . , N(π) − 1.

(4.16)

Also, clearly,RT (k, π) = rs

rc(ck
π)

+ RT (k + 1, π). Notice that, for a policyπ, ∆(k, π)

andRT (k, π) do not depend onc1π, c
2
π, . . . , c

k−1
π . Hence the solution to the maximization

problem in Eq. (4.14) needs to be specified only over a subsequence of channel codes,

namely,ckπ, c
k+1
π , . . ..

Equation (4.16) leads to the following dynamic programmingresult for solving

(4.14).
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Proposition 2 Let {ck∗, c
k+1
∗ , ck+2

∗ , . . . , c
N∗(k,R)
∗ } be the solution for the maximization

problem in (4.14). That is, it is the subsequence of channel codes achieving the max-

imum in (4.14) for starting source-packet indexk and rate constraintR. Let rmin
def
=

minc∈C
rs

rc(c)
, then the following results hold.

1. For notational convenience, let∆∗(k,R) denote the optimal value of the objec-

tive function in (4.14) (the total reward). Then,∆∗(k,R) satisfies the dynamic

programming equation,

∆∗(k,R) =






0, if R < rmin,

maxc∈C(1 − Pe(c))(δk + ∆∗(k + 1, R− rs

rc(c)
)), otherwise

(4.17)

2. The channel codeck∗, is the channel code achieving the maximum in (4.17).

3. The subsequence{ck+1
∗ , ck+2

∗ , . . . , c
N∗(k,R)
∗ } solves (4.14) for starting source-packet

indexk + 1 and rate constraintR− rs

rc(ck
∗
)
.

4. Finally, the terminating source-packet index is found by,

N∗(k,R) = N∗(k + 1, R−
rs

rc(ck∗)
) if ∆∗(k + 1, R−

rs

rc(ck∗)
) > 0

= k otherwise.

The proof is straightforward and is omitted here. It is basedon the recursion in Eq.

(4.16) and on the observation that for any policyπ, ∆(k+1, π) andRT (k+1, π) do not

depend on thekth channel codeckπ.

Algorithm for arbitrary δi

For arbitrary incremental rewardsδi, the statement of Proposition 2 can be written as an

algorithm as follows.
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Algorithm 1 (optimal unequal error protection) ∆∗(k, r) is computed as a recursive

function call.

∆∗(k, r) := 0 if r < rmin

:= max
c∈C

(1 − Pe(c))(δk + ∆∗(k + 1, r −
rs

rc(c)
)). (4.18)

The channel code achieving the maximum in (4.18) is used for encoding thekth source-

packet.

Notice that the channel code obtained by the algorithm for thekth source-packet depends

on all theδi as well as the target transmission rate.

The computation of∆∗(1, R) depends on the computation of∆∗(2, r) for a finite

number of values ofr, all of which are strictly smaller thanR. The computation of

∆∗(k, r) in turn, depends on the computation of∆∗(k+1, r′) for even smaller values of

r′. The recursion terminates by returning a value of0 whenk is sufficiently large so that

the target transmission rate falls belowrmin. It may appear that the number of calls to the

recursion grows exponentially. But computation can reduced by storing the computed

values∆∗(k, r) in the memory. Figure 4.1 illustrates how the values of∆∗(k, r) can be

computed using a time varying trellis.

Algorithm for average useful source coding rate

It is easy to see that, ifδi = constant∀i, then the optimization of (4.14) does not depend

on the starting source-packet indexk. Hence, for such a case, we have

∆∗(k,R) = ∆∗(1, R) ∀R for k = 1, 2, . . . . (4.19)

Further, in such a case, the channel code obtained by the algorithm for thekth source-

packet depends only on the target transmission rate. Hence,for the design criterion in

(4.5), i.e. solution of (4.8), Algorithm 1 can be rewritten as follows.
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Figure 4.1:Trellis for maximizing the performance for arbitraryδi.

Algorithm 2 (maximization of average useful source coding rate) If the incremental

rewards are constant,i.e. δi = 1 ∀i, then∆∗(1, r) is computed as a recursive function

call.

∆∗(1, r) := 0 if r < rmin

:= max
c∈C

(1 − Pe(c))(1 + ∆∗(1, r −
rs

rc(c)
)). (4.20)

Figure 4.2 illustrates the trellis used for the computationof ∆∗(1, r) for the maxi-

mization of average useful source coding rate.

4.3.3 Complexity

Algorithm 1 for arbitrary sequence of nonnegative incremental rewardsδi has a com-

plexity (number of calls to the recursive function in which maximization in (4.18) needs

to be performed) proportional toR2. This can be seen as follows. Letρ be the smallest

grain of rate-increment per sample in the code family,i.e. ρ = 1
Ns
GCD({ ks

rc(c)
, c ∈ C}).
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Then all achievable transmission rates,i.e. those in the collectionG(R)
def
= {RT (π) :

RT (π) ≤ R} must be multiples ofρ. |G(R)| grows linearly withR. Now from Algo-

rithm 1, the computation of∆∗(1, r) for all values ofr ∈ G(R), requires computation

of ∆∗(2, r) for all values ofr ∈ G(R − rmin), which, in turn, requires the computation

of ∆∗(3, r) for all values ofr ∈ G(R − 2rmin) and so on. Hence the total number

of function calls needed to compute∆∗(1, r) for all r ∈ G(R) is upper bounded by

|G(R)|+ |G(R− rmin)|+ |G(R− 2rmin)|+ . . .+ |G(R− (⌊R/rmin⌋− 1)rmin)|. This

is an arithmetic progression, upper bounded byαR2, for someα. For Algorithm 2,

the number of function calls needed to computeπ∗(1, R) vary linearly withR. |G(R)|

computations of∆∗(1, r) are sufficient to compute∆∗(1, R).
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4.4 Progressive Transmission

Good embedded source coders, like SPIHT [52], by design havevery good performance

at all rates. It is desirable to perform joint source-channel coding for these coders in

such a way that in addition to having the best end-to-end performance for a given target

transmission rate, the coder also achieves good performance at intermediate rates.

We shall say that two policiesπ1 andπ2 with transmission ratesR1 andR2,R2 > R1,

allow progressive transmission, if the output at rateR2 can be obtained by appending

(R2 − R1) bits per source sample to the bit stream at rateR1. Or, conversely, if the bit

stream for target rateR1 can be obtained as a prefix in the bit stream for target rateR2.

We suggest the use of rate compatible channel codes to achieve progressive trans-

mission. Rate compatible codes are a family of channel codesin which the codewords

of a low rate code can be obtained by adding some extra parity bits to the codeword of a

high rate code. Popular examples of such codes are rate compatible punctured convolu-

tional RCPC codes [29]. These codes combined with an outer error detection code like

CRC encoding fixed-length source-packets provide good error correction and detection

capabilities and have been used in the literature [57, 12, 39]. Similarly RS codes and

their punctured versions are used for erasure channels.

In this section we shall assume that the channel code familyC is rate compatible.

Consider two policiesπ1 = {c1π1
, c2π1

, . . . , c
N(π1)
π1 } andπ2 = {c1π2

, c2π2
, . . . , c

N(π2)
π2 } de-

signed by some scheme for target ratesR1 andR2, R2 > R1. Then, we have the follow-

ing simple proposition.

Proposition 3 If the channel code family is rate compatible, progressive transmission

at ratesR2 andR1, for R2 > R1, is possible using the two policiesπ2 andπ1, if and
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only if,N(π2) ≥ N(π1) and

rs

rc(ciπ1
)
≤

rs

rc(ciπ2
)

for 1 ≤ i ≤ N(π1). (4.21)

Proof: The proof is rather simple. If condition (4.21) is satisfied,progressive trans-

mission is accomplished by first transmitting the bit streamcorresponding to policyπ1

followed by the extra parity check bits needed to obtain the lower rate codes for policy

π2, i.e. rs

rc(ci
π2

)
− rs

rc(ci
π1

)
bits per source sample for packeti, i = 1, 2, . . .. Clearly, this can-

not be done if (4.21) is not satisfied. Figure 4.3 illustratesthe sequence of transmission

for two policies. 2

If we require the transmission to beoptimally progressive, then the policiesπ∗(1, R)

obtained by solving (4.6), (4.7) or (4.8) for different values ofR must allow progressive

transmission. Therefore, we must verify that those policies satisfy the conditions in

Proposition 3.

Now let us consider the optimization criterion of (4.5). Let

π∗(1, R) = {c1, c2, . . . , cN(π∗(1,R))}

be the optimal policy solving (4.8) for rateR. Then by the result in Proposition 2,

the subsequence,{c2, . . . , cN(π∗(1,R))} solves the corresponding version of (4.14) for the

starting index 2 and rate constraintR− rs

rc(c1)
. Now, if δi’s are constant, then as we have

discussed earlier, the optimization (4.14) does not dependon the starting indexk. Hence

a policy which assignsc2 to thefirst source-packet,c3 to the second source-packet and

similarly assignscN(π∗(1,R)) to theN(π∗(1, R))−1st source-packet is the optimal policy

π∗(1, R− rs

rc(c1)
) for starting index 1 and rate constraintR − rs

rc(c1)
.

A simple interchange argument can be used to show that, for arbitrary rewards se-

quencesδi and for all transmission ratesR, if π is an optimal policy then,Pe(c
i
π) ≤

Pe(c
j
π) for 1 ≤ i ≤ j ≤ N(π). Consequently, we must have the property thatrs/rc(c

i
π) ≥
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rs/rc(c
j
π) for 1 ≤ i ≤ j ≤ N(π) for an optimal policyπ i.e. the optimal policies are

code rate increasing. Therefore, we have,

rs

rc(ciπ∗(1,R))
≥

rs

rc(c
i+1
π∗(1,R))

=
rs

rc(ciπ∗(1,R− rs
rc(c1)

))
for i = 1, 2, . . . , N(π∗(1, R)) − 1.

(4.22)

This implies that the conditions in Proposition 3 are satisfied. Hence we get the follow-

ing result.

Proposition 4 For a channel code family consisting of rate compatible codes, letπ∗(1, R)

be the optimal policy solving (4.8) for target rateR. Thenπ∗(1, R) and π∗(1, R −

rs

rc(c1π∗(1,R)
)
) allow optimal progressive transmission at ratesR andR− rs

rc(c1π∗(1,R)
)
.

Proof: Proof is already outlined before the statement of Proposition 4.

This proposition can now be applied to the optimal policy at rateR − rs

rc(c1π∗(1,R)
)
,

to obtain another lower intermediate transmission rate where the optimal policy can be

executed. In the same manner, a sequence of intermediate transmission rates can be ob-

tained, at which provably optimal progressive transmission is possible. The sequence of

bits transmitted follows the scheme discussed in Figure 4.3. First, bits corresponding to

the policy for a low target rate are transmitted. Then the extra parity check bits and new

source-packets needed to achieve a higher target rate are transmitted. Figure 4.4 sketches

the inverse code rate profile of an optimal policy consistingof five source-packets. In

this figure, the labels1, 2, 3, 4, 5 indicate the order in which bits corresponding to the

source-packets are transmitted.

The resulting bit stream has some interesting properties. It is a stream in which

the bits for a single channel codeword are not necessarily contiguous. This deferred

transmission of redundancy creates the possibility that a source-packet decoding failure

at one target rate can be overcome and the source-packet recovered if the target rate
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is increased and more bits for that packet are received. In that sense, the bit stream is

always progressive.

It can be shown by counterexamples that, even for the criterion of average useful

source coding rate, optimal progressive transmission may not be possible atarbitrary

rate pairsR1 andR2. For other performance criteria, at this point, not much canbe said

about optimal progressive transmission without making assumptions on the arbitrary

incremental rewardsδi.

4.5 Simulation Results

The schemes presented in the chapter assume that the designer is provided with the

source coder and a family of channel codes. The design requires only the knowledge of

source-packet decoding failure probabilities for the given family of channel codes over

the given channel. The design is independent of the actual decoding techniques used,

e.g. for memoryless bit error channels, it is possible to use the proposed scheme both

with hard or soft demodulation at the receiver.

Simulations were conducted on the512 × 512 gray-scale Lenna image compressed

with the SPIHT algorithm with arithmetic coding. The sourcebit stream was divided

into source-packets of length 32 bytes.

For binary symmetric channels, the channel code families were chosen to be con-

catenated codes of RCPC codes as inner codes and a 2-byte CRC for outer error detec-

tion code. We present results for three different channel code families. These families

are are RCPC codes derived from different mother codes and used with different de-

coders.

Code family A is a collection of RCPC codes derived from a 64-state, rate 1/3 con-
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volutional mother code taken from [29]. When used along withlist-viterbi decoding

with a search depth of 100 paths, these codes form a high performance channel code

family similar to that in [57].

Code family B is a relatively weaker RCPC code family derivedfrom a 16-state, rate

1/4 mother code taken from [29]. It is used with list-viterbidecoding with a search depth

of 10. When the codes of code family B are used without list decoding (search depth =

1), we get the family C of channel codes. The parametersPe of the code families were

obtained by simulation. The results of using the proposed algorithm for unequal error

protection of the image Lenna for a binary symmetric channelwith bit error rate of 0.01

are presented in Figures 4.5 through 4.10.

Figures 4.5, 4.7 and 4.9 show the average PSNR performance ofthe scheme opti-

mizing the PSNR for channel BER 0.01 for the code families A, Band C, respectively.

The figures also show the performance of Equal Error Protection (EEP) schemes using

the channel codes from the same family. The code rates in the legends do not include

the (fixed) code rate of the outer CRC code.

For clarity, Figures 4.6, 4.8 and 4.10 depict the differencein the average PSNR of the

optimized scheme and that of different EEP schemes, againstthe total transmission rate.

Figures 4.6, 4.8 and 4.10 also include the difference in PSNRof the scheme maximizing

the expected PSNR and the scheme maximizing the average useful source coding rate.

The first conclusion that can be drawn from Figures 4.6, 4.8 and 4.10 is that the

loss of EEP schemes over the optimized schemes is positive. That is, as expected, the

optimized schemes always perform as good as or better than any equal error protection

scheme from the same family, for all transmission rates.

The second key observation is that the improvement of the optimal scheme over any

fixed EEP scheme depends on the transmission rate. For example, in Figure 4.8, the loss
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of the EEP scheme with code rate4/7 varies from 0.4 dB to less than 0.2 dB to as high as

0.6 dB depending on the transmission rate. A low code rate EEPscheme which performs

well (close to optimal) at high transmission rates is overprotective at low transmission

rates. A higher code rate EEP scheme may be efficient at low transmission rate but as

the transmission rate is increased, the average PSNR may saturate as the probability

of source-packet decoding failure somewhere in the image increases with the target

transmission rate. Note that it is not possible to “switch” between two EEP schemes at

the crossover points during a progressive transmission. The two policies may not satisfy

the conditions in Proposition 3. The performance loss of thescheme maximizing the

average useful source coding rate also appears to depend on the transmission rate. But

the loss is smaller than that for any EEP scheme and hence, thescheme maximizing

the average source coding rate will also perform better thanany EEP scheme at all

transmission rates.

Third, the unequal error protection scheme is more effective when the available

channel-code family is weak. If the code family is strong,e.g. the high performance

codes in [57], then for a significant portion of the range of transmission rates of interest,

the performance of a single channel code is fairly close to the optimal. In such cases

the benefits of unequal error protection are marginal. For the system designed with code

family A and for channel BER 0.01 the expected PSNR values forthe image Lenna at

0.25, 0.5 and 1.0 bits per pixel are 32.30, 35.28, and 38.28 dBrespectively. These figures

are approximately 0.3 dB higher than the corresponding PSNRresults in [57]. When the

channel code family is weak, any EEP scheme performs closestto the optimal only for

a short range of transmission rates. At other rates, its performance may be substantially

suboptimal compared to the UEP scheme.

The same technique can be applied to memoryless packet erasure channels. For
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simulations, we considered transmission over a memorylesspacket erasure channel of

packet size 8 bytes. We use a (255, 32) RS code overGF (28) as the mother code of

the family of erasure correcting codes. Eight consecutive 1-byte symbols ofGF (28)

are arranged in one packet to yield a mother Packet Erasure Correcting (PEC) code of

parameters (31,4). The family consists of(n, 4) PEC codes, for4 ≤ n ≤ 31, obtained

as punctured versions of the mother code. An(n, 4) PEC code is capable of correcting

up ton − 4 packet erasures. This code family, though less efficient than RS codewords

for byte erasures, is chosen primarily to keep the number of codes in the family small.

Figures 4.11 and 4.12 plot analogous results for this packeterasure channel with a

packet loss rate of 20%. Again, no single EEP policy performsclosest to the optimal at

all transmission rates. Depending on the target rate, gainsup to 0.5 dB can be obtained

over any EEP scheme chosen from the family.

4.6 Conclusion

In this chapter we consider joint source-channel coding of images compressed with em-

bedded source coders for transmission over memoryless noisy channels. The emphasis

is on retaining the progressive nature of the transmission.A framework for optimal

transmission over memoryless error and packet erasure channels is developed. An al-

gorithm is developed for assigning optimal unequal error orerasure protection for a

given memoryless bit error or packet erasure channel. We also show how progressive

transmission can be achieved with rate compatible familiesof channel codes. The op-

timization criterion of maximizing the average useful source coding rate is shown to

have the possibility of optimal progressive transmission at a number of intermediate

transmission rates.
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Lenna. Code family A. BER =0.01.
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Figure 4.7:Average PSNR performance of unequal error protection over memoryless channels

for the image Lenna. Code family B, BER = 0.01.
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Figure 4.8:The loss of PSNR in EEP schemes and optimal UEP scheme maximizing average

useful source coding rate compared to the optimal UEP schememaximizing PSNR for the image

Lenna. Code family B, BER =0.01.
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Figure 4.9:Average PSNR Performance of unequal error protection for memoryless channels

for the image Lenna. Code family C, BER = 0.01.
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Figure 4.10:The loss of PSNR in EEP schemes and optimal UEP scheme maximizing average

useful source coding rate compared to optimal UEP scheme maximizing PSNR, for the image

Lenna. Code family C, BER =0.01.
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Figure 4.11:Average PSNR performance of EEP and the optimal UEP scheme for the Lenna

image for memoryless packet erasure channels: packet size 8bytes, erasure rate 20%.
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Figure 4.12:Average PSNR gain of the optimal UEP scheme over equal erasure protection

schemes: memoryless erasure channels: packet size 8 bytes,erasure rate 20%.
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Chapter 5

Progressive Image Transmission over Compound Packet

Erasure Channels

5.1 Introduction

Embedded image coders like SPIHT [52] allow the user to reconstruct the image at

different qualities from the prefixes of a single bit stream.Such image coders are useful

in progressive reconstruction of the image, where the quality of the reconstructed image

improves as more bits are added and decoded. Progressive reconstruction capability is

desirable in many applications,e.g. fast browsing of image databases and multicasting

to different users with varying channel usages. It is of interest to retain the progressive

reconstruction property when such an image coder is used fortransmission over a noisy

or lossy channel such as a congested packet network or a wireless link in deep fade.

In this chapter, we undertake the design of a system forprogressiveimage transmis-

sion over a lossy packet network with unknown packet-loss characteristics in the absence

of any network layer loss recovery mechanism and feedback channel (e.g. transmission

using User Datagram Protocol (UDP) or raw transmission of packets over ATM in un-

reliable mode). We select a high performance embedded imagecoder like SPIHT as the
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source coder. The objective is to design recovery from packet loss or erasures at the

application level by the use of erasure correction codes while maintaining high average

performance at each transmission budget. There are three issues that we hope to tackle.

• Design of unequal erasure protection: While using an embedded source coder

like SPIHT, an irrecoverable loss of a source packet at the beginning of the stream

is potentially more damaging than a loss near the end. This isso because a loss

or corruption of the bits at the beginning of the bitstream can render all the sub-

sequent bits of the source-coder useless. Hence there is a hierarchy of importance

of the source-bits and a potential need for unequal erasure protection.

• Combat against an unknown channel:We consider transmission over a lossy

network whose packet loss rate varies from session to session. We model such a

network with unknown packet loss rate as a compound channel made of memory-

less packet erasure channels. The determination of the optimal tradeoff between

source coding and erasure protection is of interest in this situation.

• Better Progressive Transmission: To quantify the notion of progressivity of a

joint source-channel coder, we must consider its performance at a given interme-

diate transmission budget compared to the performance of a joint source-channel

coder optimized for that budget. Similar to the corresponding property in the

source-coders like SPIHT, we would like the joint source-channel coder to have a

performance that is close to optimal at all the intermediatetransmission budgets.

This requires not only the allocation of protection but alsothe scheduling of the

source and the protection bits in the transmit bitstream.

There is a large body of work in the literature which addresses robust transmission

of images over noisy or lossy channels. In the context of bit error channels, some of the
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techniques involve effective use of strong equal error protection ([57, 59]), unequal error

protection ([63, 39, 1], [11] and Chapter 4), the use of feedback ([12, 40]), and better

decoding schemes. For packet erasure channels, the techniques have been to construct

robust packetized source coders for graceful degradation against packet loss [51], use of

forward error correction [46] and multiple description coding (e.g. [53, 61]). The work

in [18] provides a technique for progressive image transmission over a channel which

has both bit errors and packet erasures. A new technique for combating packet erasures

using erasure correction codes has been developed recentlyin [46]. They use unequal

erasure protection using fixed block length Reed Solomon (RS) codes with variable

number of source symbols in each codeword. They also use an interleaver to decorrelate

the symbol erasures within a RS codeword. The general channel model in [46] can also

be used for a compound channel discussed in this work.

Most of these coders are designed to maximize the performance at a given transmis-

sion budget. While some of them indeed use a high performanceembedded source coder

like SPIHT, they do not explicitly consider the performanceat intermediate transmission

budgets.

In this work we propose an algorithm which attempts to address the three issues

discussed earlier simultaneously. The proposed algorithmuses a variable block length,

fixed source-length family of erasure correction codes obtained by puncturing a low

code rate mother RS code for the unequal erasure protection.It is a greedy non-

iterative suboptimal algorithm that obtains an allocationof unequal erasure protection

for a higher transmission budget from an allocation designed for a lower transmission

budget. It does this in such a way that the channel symbol-stream output by the coder

for the lower budget is a prefix of that for the higher budget. It results in a bitstream with

deferred transmission of redundancy - that is, the channel symbols in a codeword are not
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necessarily contiguous in the bitstream. Also, this allowsthe possibility that an erasure

that is irrecoverable in the beginning becomes correctableas the transmission rate is

increased. By design, it yields a progressive stream which has a good performance at a

number of intermediate transmission budgets.

An interleaving structure similar to [46] is constructed inorder to match the length

of “packet” used for erasure protection to the actual packetlength used in the network.

The algorithm together with the interleaver yield the transmit bitstream for the network.

Simulation results show that for compound channels such an unequal erasure pro-

tection scheme outperforms equal erasure protection schemes at all transmission rates.

The structure of the chapter is as follows. Section 5.2 defines the compound channel.

In Section 5.3 the transmission scheme is described. In Section 5.4 the performance

measure is computed and the optimization problem is set up. Section 5.5 describes the

algorithm. Simulation results are presented in Section 5.6. Section 5.7 discusses the

structure of an interleaver that can be used with the output of the algorithm to yield

transmission schemes which use a larger packet size. Section 5.8 is the concluding

section.

5.2 Compound Packet Erasure Channels

We assume that the bitstream generated by the application istransmitted in fixed length

packets over the network. In the presence of network congestion, some of these pack-

ets may be lost. If we assume that the fixed length packets arrive at the receiver (the

decoder in the application) in the same order and that the location of the lost packets is

known, then, the application sees the end-to-end equivalent channel as a packet erasure

channel. The packet erasures seen by the application may be independent or correlated,
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and the net packet loss rate may vary from session to session depending on the network

congestion. The situations of unknown packet loss rate, mismatched packet loss rate or

slow variability of the packet loss rate can be approximately modeled as a compound

packet erasure channel.

A compound packet erasure channel is a channel whose packet erasure rate is an

unknown random variable with a known probability distribution. It is described by a set

of statess ∈ S, with associated probability mass functionf s. In each states ∈ S the

channel is memorylesswith an associated packet erasure ratee(s). The state is chosen at

the beginning of the transmission session according to probabilitiesf s and it is assumed

that conditioned on the state, during the entire transmission session, the packet erasures

are independent and identically distributed.

5.3 Transmission Scheme

It is necessary to employ an embedded source-coder to achieve progressive transmis-

sion. Often the output of an efficient embedded source coder like SPIHT is a very

sensitive bitstream in which bits coming later in the bitstream can only be used if all

the previous bits are available. Any loss of source bits early in the stream can render all

the subsequent source bits useless for image reconstruction. The main design challenge

while using an embedded source-coder over a packet erasure channel is to avoid or else

delay any irrecoverable loss of the source bits in the sourcebitstream. We accomplish

this by the use of erasure correcting codes. The scheme worksas follows.

Consider an embedded source coder which simultaneously encodesNS source sam-

ples. Its output, the source-encoder-bits, is packetized into fixed-lengthsource-packets

of ls bits each. As the source coder is embedded, the representation of the source at rates
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which are multiples ofls/Ns, can be obtained from a prefix of the stream of source-

packets output by the source coder.

Let l denote the length in bits of the packets used over the channel. We assume that

l dividesls. Let k0 = ls/l denote the number of packets that fit into a source-packet.

For erasure protection, we use a family of(n, k0) packet erasure correcting (PEC) codes

obtained by puncturing a mother Reed Solomon code (See Section 5.3.1) for different

blocklengthsn. A codeword of an(n, k0) PEC codeword isn packets long. Because the

RS codes are Maximum Distance Separable (MDS [67]), the performance of the code

family does not depend on the puncturing tables used to generate the family. This family

of punctured codes provides a selection of different code-rates, necessary for unequal

erasure protection.

The transmission proceeds as follows. Each source-packet output by the source

coder is encoded with a potentially different channel code,chosen from the family of

codes according to some code-assignment policy. The joint source-channel coder gen-

erates a single stream of packets and transmits over the lossy network. Some of these

packets are lost or dropped by the network. The receiver tries to recover the source-

packets by forming the corresponding (partially erased) codewords of the PEC code.

The receiver declares asource-packet decoding failureif the source-packet cannot be

recovered from the unerased received packets. It is often reasonable to assume that,

when using an embedded source coder like SPIHT, if a source-packet cannot be de-

coded successfully at the receiver, then the subsequent source-packets cannot improve

the quality of the source. Hence, at any stage in the transmission (i.e. at any transmis-

sion budget), the source is reconstructedonly from the decoded bitstream up to the first

source-packet that contains irrecoverable erasure.

We use fixed-length source-packetization but we allow source-packets to receive a
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variable number of parity check packets,i.e. to have a variable-length erasure protection.

The unit of erasure correction remains a fixed length packet (l bits). If this “logical”

packet sizel is different from the “true” transmission packet - (i.e. the length of the

packet which is dropped by the network, or the packet whose erasures are modeled

as a compound channel ), the effect of this difference can be minimized by using a

progressive interleaver, which is described in Section 5.7.

5.3.1 Packet Erasure Correcting Codes

Consider a compound packet erasure channel which erases packets of lengthl = bm

bits for some integersb andm. Consider RS codes overGF (2m). Each symbol in the

RS code ism bits long. Then a(nb, k0b) RS code, when transmitted uninterleaved,

can correctnb − k0b symbol erasures, and hencen − k0 packet erasures. Therefore a

(nb, k0b) RS code is a(n, k0) PEC code. A PEC code of the same performance can also

be obtained fromb copies of a(n, k0) RS code overGF (2m).

We assume that the channel code family consist of(nb, k0b) RS codes for a fixedk0

and different “blocklengths”n. Hence the source-packet size isls
def
= k0mb bits ( = k0

packets). The maximum value ofn is ⌊2m

b
⌋. Note that the family, considered as a PEC

code family, is rate compatible. Let us denote the bank of erasure protection codes by

C = {c1, c2, . . . cJ}. If c is an(n, k0)-PEC code in the family then letη(c) = n denote

the block length in number of packets forc.

Now consider a compound packet erasure channel with packet erasure probability

e(s) in states. Then the probability of source-packet decoding failure for a (n, k0)

PEC-codec is computed as,

P s
e (c) =

n∑

i=n−k0+1

(
n

i

)
e(s)i(1 − e(s))n−i ∀s ∈ S.
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In fact fork0 > 1, the(n, k0) PEC code is less efficient than an interleaved(nb, k0b)

punctured RS code. But this somewhat artificial construction of PEC code is chosen just

to make the point that the proposed algorithm does not dependon the size of the Galois

Field symbol or the relative size of the true channel packet and the logical channel packet

used for code allocation.

5.4 Performance Criterion

If the first i source-packets are available, the source can be reconstructed to a rateils/NS

bits per source sample, whereNS is the number of source samples. Letrs
def
= ls/NS be

the rate in bits per sample per source-packet for the source.

The unequal protection for the source-packets is describedby specifying acode allo-

cation policy. A code allocation policyπ allocates channel codeciπ ∈ C to theith source-

packet out of the source coder. A policyπ is described by the number of source-packets

transmitted (N(π)) and by specifying a sequence of channel codes{c1π, c
2
π, . . . , c

N(π)
π }

for the sequence of source-packets. The normalized transmission rate (in channel bits

per source sample) for the policyπ is given byMT (π)l
Ns

, whereMT (π) is the total number

of packets used by policyπ. It is computed as,

MT (π)
def
=

N(π)∑

i=1

η(ciπ). (5.1)

Several non-equivalent single-parameter criteria can be used to measure the perfor-

mance of a code allocation policy (e.g.expected squared error distortion, expected Peak

Signal to Noise Ratio (PSNR), or expected useful source-coding rate [11]). Without loss

of generality we select the expected value of PSNR (measuredin dB) as the performance

criterion.

Consider the transmission of the image over the compound channel using a code
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allocation policyπ. To compute the performance of a policyπ over a compound channel,

define, for each states ∈ S of the channel, real numbersβ0(π, s)
def
= 1 and

βi(π, s)
def
=

i∏

j=1

(1 − P s
e (cjπ)) for i = 1, 2, . . .N(π).

βi(π, s) represents the probability that the firsti source-packets are successfully decoded

by the receiver given that the compound channel is in states and policyπ is executed.

Let the operational PSNR-rate performance of the source coder for the source image

is given byPSNR(r) wherer is the rate in bits per sample. Then as the the source is

reconstructed only from the source-packets received priorto a source-packet decoding

failure, theexpected PSNRfor the policyπ is given by,

PSNRπ
def
=

∑

s∈S

f s
(
PSNR(0)P s

e (c1π)

+

N(π)−1∑

i=1

PSNR(irs)P
s
e (ci+1

π )βi(π, s)

+ PSNR(N(π)rs)β
N(π)(π, s)

)
. (5.2)

The code allocation problem for the joint source-channel coding scheme under the

constraint of total transmission budget ofR bits per source sample, can be written as

follows.

max
π

PSNRπ subject toMT π ≤M, (5.3)

HereM = ⌊RNs/l⌋ is the equivalent constraint on the number of packets.

Under the transmission scheme, equation (5.2) can be converted to the following

more convenient form. The principal idea is to write the objective function in the ab-

sence of loss, as a sum of incremental rewards, which are accumulated as each source-

packet is successfully decoded by the receiver. Letδi denote the incremental reward

111



when theith source-packet is successfully received. For average PSNR maximization,

δi
def
= PSNR(irs) − PSNR((i− 1)rs), i = 1, 2, . . . . (5.4)

Now, for a code allocation policyπ = {c1π, c
2
π, . . . c

N(π)
π } and for integersk, 1 ≤ k ≤

N(π), and for all channel statess ∈ S define,

∆s(k, π)
def
=

N(π)−1∑

i=k

(
i∑

j=k

δj

)
i∏

j=k

(1− P s
e (cjπ))P s

e (ci+1
π ) +

N(π)∏

j=k

(1− P s
e (cjπ))




N(π)∑

j=k

δj



 .

(5.5)

Then the problem (5.3) reduces to solving the problem given by

max
π

∑

s∈S

f s (∆s(k, π)) subject toMT (k, π)
def
=

N(π)∑

i=k

η(ciπ) ≤M, (5.6)

for k = 1.

5.5 Progressive Unequal Erasure Protection

Let the best policy designed by the algorithm for problem (5.6) for packet-constraintM

be denoted byπ∗(M). Notice that just specifying the policyπ for transmission does not

completely describe the bitstream generated by the joint source-channel coder. It is also

necessary to describe the order in which the packets corresponding to the codewords in

the policy are transmitted. Though, for a compound channel,the performance of a policy

at its transmission budget is not affected by the order of thepackets, the performance of

the system at intermediate budgets is definitely controlledby the order of the packets.

Consider two code allocation policiesπ1 andπ2 with MT (π1) < MT (π2). The

necessary and sufficient condition for two policiesπ1 andπ2 to allow progressive trans-

mission is that for each source-packeti, the PEC codeword forπ1 be a punctured version

of that forπ2, i.e. η(ciπ1
) ≤ η(ciπ2

) [11]. Now, in order to obtain the performance ofπ1 at

112



the budgetMT (π1), first all the packets necessary for executing policyπ1 are transmit-

ted. Next, by transmitting only the extra parity check packets needed to execute policy

π2, the performance ofπ2 can be obtained at the budgetMT (π2) in the same stream.

This way progressive scheduling of the packets is accomplished. In Chapter 4 Figure

4.3 shows progressive transmission using two policiesπ1 andπ2. Note that the generated

bitstream is such that, all the bits corresponding to a PEC codeword are not contiguous.

The proposed algorithm generates the best policy for packet-constraintM from the

best generated policiesπ∗(j) for j < M , in such a way that the resulting policies are

embedded by design. Consider an intermediate stage in imagetransmission. After

transmitting the packets corresponding to any policyπ, the next transmission can consist

of (i) transmitting additional parity-check packets for source-packets transmitted earlier

or, (ii) transmitting packets for the new (N(π) + 1)st source-packet. Hence we can

restrict our search of the best policy for packet-constraintM , to a union of (i) all policies

which can be obtained by adding one packet to policyπ∗(M −1) and, (ii) all policies of

packet-constraintM obtained by adding onesource-packetto one of the policiesπ∗(j)

for j < M .

Consider the change in average total reward as a policy is changed by replacing a

single channel code. It can be computed as follows. Letπ be a code allocation pol-

icy. Let g(π, i) denote the increase in the total reward, when an additional parity check

packet corresponding to theith source-packet is transmitted. Letπ′ denote the new pol-

icy so obtained. Letc be the channel code with parameters(η(ciπ) + 1, k0). Theng(π, i)

is given by,

g(π, i)
def
=

∑

s∈S

f s (∆s(1, π′) − ∆s(1, π))

=
∑

s∈S

f sβi−1(π, s)(P s
e (ciπ) − P s

e (c))(δi + ∆s(i+ 1, π)). (5.7)
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Here∆s(k, π)
def
= 0 if k > N(π).

Similarly, letπ′′ be a policy obtained by adding an additionalsource-packetencoded

with some channel codec ∈ C. Let the change in objective function be denoted by

h(π, c). Thenh(π, c) is computed as ,

h(π, c)
def
=
∑

s∈S

f s (∆s(1, π′′) − ∆s(1, π)) =
∑

s∈S

f sβN(π)(π, s)(1 − P s
e (c))δN(π)+1.

(5.8)

From these two results, the following greedy and suboptimalbut progressive unequal

erasure protection (PUXP) can be derived for computation ofπ∗(M0) for some final

packet constraintM0.

Algorithm 3 (Progressive Unequal Erasure Protection (PUXP))

1. Initialization: For somec0 ∈ C, Setπ∗(η(c0)) = {c0} andM = η(c0) + 1.

2. Given designed policyπ∗(M − 1), compute

G(M)
def
= max

i=1,N(π∗(M−1))
g(π∗(M − 1), i) (5.9)

3. Given designed policiesπ∗(j) for η(c0) ≤ j < M , compute

H(M)
def
= max

c∈C
h(π∗(M − η(c)), c) (5.10)

4. If G(M) > H(M) and i is the source-packet index achieving the maximum in

(5.9) then the policyπ∗(M) is obtained by adding the extra parity check packet to

the codeciπ∗(M−1).

5. If G(M) < H(M) and c is the code achieving the maximum in (5.10) then the

policyπ∗(M) is obtained by adding the extra code word for the next source-packet

to policyπ∗(M − η(c)).
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6. IfM = M0 stop, else incrementM .

The initialization step can be any arbitrary policy. The good policies can be “grown”

from any initial policy. The policy at each transmission rate is obtained by adding extra

parity packets to a lower rate policy. Hence the performanceat any target transmission

rate can be obtained by progressive transmission through a sequence of policies at lower

transmission rates. The algorithm therefore, generates the code allocation as well as

specifies the scheduling of the packets in the packet stream.

5.6 Results

As an illustration, Figures 5.1-5.3 refer to the simulationresults for a compound packet

erasure channel with a packet length of 8 bytes. The channel is a 7-state model with

packet loss rate vector[0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4]. The probability vector for these

states is chosen as

[0.05, 0.05, 0.15, 0.15, 0.25, 0.20, 0.15]. Though the mean packet loss rate is near 0.2,

with probability0.40 the packet loss rate is lower than0.2 and with probability0.35 it

is higher.

Simulations were conducted on this channel for transmission of 512×512 grayscale

Lenna compressed with the SPIHT coder with arithmetic coding. The channel code

family is (n, 4) PEC codes for 8-byte packets, derived from(255, 32) RS code over

GF (28). We assume that the packets arrive in sequence. Though the sequence number

information was not encoded and is not reflected in the rate, we assume that the location

of the lost packets is known. (A fixed size sequence number scales the Transmission

rate axis by a fixed factor.)

Figure 5.1 compares the mean PSNR in dB for the given channel for the PUXP
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scheme obtained by Algorithm 3 with that of Equal Erasure Protection (EEP) schemes

derived from the same family of channel codes. Figure 5.2 provides the gain of PUXP

scheme over EEP schemes for the same compound channel. Notice that the EEP schemes

have a performance loss which varies with the transmission rates. The gain of PUXP is

consistently above 0.4 dB for all EEP schemes and can be more,depending on the trans-

mission rate considered. Also, no single EEP scheme is closest to the PUXP scheme at

all transmission rates.

Figure 5.3 plots the inverse code-rate profile (the block length n of the (n, 4) PEC

code used for a 4-packet long source-packet), for differenttransmission rates of1.0,

0.75, 0.5 and 0.25 bpp. Clearly, the profiles look very different from EEP schemes.

Also, they satisfy the conditions of progressive transmission by design.

5.7 Progressive Interleaving for Packet Erasure Chan-

nels

The previous sections assume that the “true” packets (i.e. those whose loss is indepen-

dent and identically distributed in each state of the compound channel,) are of same

length as the logical packets used as units in erasure correction codes. Quite often this

may not be true,e.g. when RS codes overGF (28), with 8-bit long symbols are to

be used with ATM packets of length 48 bytes. It is necessary todevise a scheme to

pack the logical packets into the true packets without losing the benefits of progressive

transmission. This can be accomplished by the use of interleavers.

Interleavers are used to convert a channel with memory into achannel with no ap-

parent memory. In the context of image communication, an interleaver was used in [59]

in conjunction with a product code consisting of RCPC-CRC codes and RS codes for
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transmission of images over fading channels. There the interleaver was employed to

break correlated burst of symbol erasures. The ingeneous packetization and erasure-

correction scheme in [46] can be interpreted as an interleaver to break a packet erasure

channel with large packet size into another packet erasure channel with a smaller packet

size suitable for use with the chosen RS codes.

In this section we consider how the progressive scheme designed for one packet size

- which is typically determined by the code family - can be used over networks with

larger “true” packet size.

Consider a memoryless packet erasure channel with “true” packet size ofL bits.

Also consider a(n, k0) packet erasure correcting code derived from a RS code for a

packet size ofl bits, as discussed in section 5.3.1. For clarity, let us callthe packet

erasure channel anL-packet erasure channeland the packets of length L asL-packets.

A codeword of the PEC code consists ofn packetsof lengthl bits. Let us assume that

L/l is an integer. Then the memoryless L-packet erasure channelwith L-packet erasure

ratee is in effect, a packet erasure channel with correlated erasures and the mean packet

erasure ratee.

One can make the following key observations. (i) Over all packet erasure channels of

mean erasure ratee, the(n, k) PEC code has the least probability of failure if the packet

erasures are independent. (ii) Suppose the packets are fit into L-packets and transmitted

over a memoryless L-packet erasure channel. Then the erasures in two packets are

independent if and only if they belong to different L-packets. (iii) Hence, the PEC code

will perform the best over this channel, if each packet of itscodeword belongs to a

different L-packet. (iv) It does not matter how far apart theL-packets are so long as they

are different.

Even in a compound L-packet erasure channel, the distance between two L-packets
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does not affect the performance of the PEC code if all its packets are in different L-

packets. Therefore, given the output of a progressive transmission scheme designed

for memoryless or compound packet erasure channels, a simple low-delay progressive

interleaver can be designed using the following strategy.

• From the sequence of packets output by the progressive scheme, start filling a

L-packet while observing that no two packets from the same PEC codeword (or

equivalently, those corresponding to same source-packet)are put in the same L-

packet.

• Maintain a list of partially filled L-packets and the indicesof codewords whose

packets occupy them. Put a packet into the earliest eligibleL-packet. If none of

the unfilled L-packets are eligible, put it in a new L-packet.Update the list of

partially filled L-packets.

The filled L-packets are transmitted over the network sequentially. The number of un-

filled packets to be maintained is indicative of the “distance” between transmission

over memoryless sub-packet channel and interleaved memoryless L-packet channel. As

outlined in Figure 4.3 the sequence of packets output by the progressive transmission

schemes is such that, the packets belonging to same codewordare not necessarily con-

tiguous. Hence they are already partially interleaved. This helps in reducing the number

of unfilled L-packets during progressive interleaving.

As an illustration, progressive transmission scheme was designed for compound era-

sure channel with packet size 8 bytes, (i.e. the system depicted in Figures 5.1,5.3).

The output was transmitted over a compound erasure channel with L-packet-size 48

bytes, using the interleaver suggested above. Figure 5.4 shows the number of unfilled

L-packets to be maintained for transmitting image Lenna. Itturns out that, though the
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PEC-codewords are sometimes as long as 16 packets, (e.g. Figure 5.3), typically the

number of unfilled L-packets remains below five. Hence the interleaved compound L-

packet erasure channel closely approximates the compound packet erasure channel for

which the joint source-channel coder was designed.

5.8 Conclusion

We design a progressive unequal erasure protection schemesfor compound packet era-

sures channels where the packet loss is memoryless but the loss rate is unknown random

variable with known statistics. The algorithm PUXP attempts to achieve good perfor-

mance simultaneously for a number of transmission rates. Itdoes so by performing both

code allocation and scheduling of the packet stream. It is shown that such a scheme

works well for all transmission rates compared to any EEP scheme.
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Chapter 6

Source-Channel Decoding with Optimal Use of

ACK/NACK Feedback

6.1 Reverting to First Principles

Decision Feedback (ACK/NACK) has been used extensively in communication situa-

tions where there is a feedback channel available from the receiver to the transmitter.

Link layer protocols based on Automatic repeat query (ARQ) and combination of ARQ

and Forward Error Correction (FEC), also called Hybrid ARQ,are used for data com-

munication in a wireless environment. Feedback and retransmission is also used at the

transport layer for end-to-end error recovery,e.g. in the TCP/IP protocol. Convention-

ally these protocols are designed for reliable transmission of data. The ACK/NACK

generation is accomplished by an error-detection mechanism such as cyclic redundancy

check (CRC) or bounded distance decoding. Protocols designed for data transmission

attempt to trade the probability of undetected bit errors with the average code-rate or

throughput.

A more meaningful performance measure for digital transmission of multimedia

sources such as images, video and audio, is a distortion metric such as squared error. In
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this chapter we investigate how adistortion metric can be incorporated into the design

of a transmission system for a loss tolerant source, which uses an ARQ or Hybrid ARQ

protocol over a noisy channel allowing and ACK/NACK feedback.

In the earlier chapters we focused on the use of the feedback channel primarily

for design of smart error control techniques useful for progressive transmission of the

source. In this chapter we revertsto first principles in its formulation and design method-

ology. This first principles approach involves viewing source-encoding asquantization

followed by index assignmentand decoding as reproduction of the source from the re-

ceived, possibly corrupted, information. This approach has been at the focus of joint

source-channel coding research since its beginning. All the previous work, which in-

cludes smart source encoding (e.g. [23]), smart index-assignment (e.g. [34]) and smart

decoding (e.g. [30]), concerns transmission of loss tolerant sources in the absence of a

feedback channel.

This chapter is part theoretical and part experimental investigation of the effective

use of ACK/NACK feedback, primarily on the receiver side when the objective is to

obtain the best trade-off between the transmission rate andthe distortion at the receiver.

In Sections 6.2, through 6.6, we formulate the problem of design of joint source

channel coding in the presence of ACK/NACK feedback in its generality, from the first

principles. In sections 6.7 through 6.12 we solve the decoder design problem for a

pure ARQ system over a memoryless channel with packet combining at the receiver. In

chapter 7 we show an interesting property of the decoder structure in a slightly more

general scenario.
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6.2 General Formulation for a System with ACK/NACK

Feedback

A general point-to-point discrete time communication system for transmission of a loss

tolerant source using ACK/NACK feedback can be described bythe block diagram in

Figure 6.1.

yn−1, ZRn−1

y2, ZR2

y1, ZR1

X

ZRn

Feedback= NACK Feedback = ACKNo Yes

Transmitter Channel
Measurement

ZT n−1

ZT 1

ZT 0

Transmitter Receiver

Source Active Encoder Noisy Channel

ZT n

Feedback Channel

Yn

Yes: Reconstruction
cn(Y n

1 , ZR
n
1 )

φn(Y n
1 , Zn

R1
) = 1?

Receiver Channel
Measurement

Sn(X, ZT
n
1 )

Figure 6.1: General JSCC system with ACK/NACK feedback atnth step in transmission

The source is a random vector of fixed dimension and known statistics taking values

in finite dimensional real valued space denoted byX ⊂ Rk. The encoding and trans-

mission of this vector from the transmitter to the receiver takes place in several steps.

In each step some channel symbols are transmitted from the transmitter to the receiver

over the noisy channel. A general discrete time noisy channel takes channels symbols

from input alphabetI and generates received symbols from output alphabetY .

A feedbackF ∈ {ACK,NACK} is transmitted from the receiver to the transmitter

over the feedback channel at the end of every step. The transmission for then+1th step

may take place only if the feedback afternth step was a NACK.
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The random variablesZT n andZRn, taking values in alphabetZ, represent the

“transmitter channel measurement” and the “receiver channel measurement” respec-

tively, which may be available at the two ends as additional information about the chan-

nel. This information can be assumed to be uncorrelated withthe sourceX. Note that,

for analysis, the receiver channel measurementZRn can be omitted without loss of gen-

erality as it can be included with the received noisy symbolsYn as a combined received

information.

The transmitter can be described mathematically by anencoding ruleS which is

a sequence of integersln ≥ 0, n = 1, 2, . . ., and a sequence of encoder mapsSn :

X ×Zn → I ln , n = 1, 2, . . .. On receiving NACK atn−1th step, the transmitter sends

ln symbols given by computingSn(X,ZT 1, ZT 2, . . . , ZT n) over the noisy channel at

thenth step. This vector of channel symbols (also calledchannel codeword, transmit

codeword ornth step codeword) is corrupted by the channel and is received as random

vectorYn taking values inY ln . We will say thatYn is received codewordat thenth step.

For simplicity, with no loss of generality, we shall assume that l1 = l2 = . . . = ln =

. . . = L, i.e. exactlyL symbols are transmitted over the noisy channel between two

feedbacks.L is thepacket lengthor thecodeword length.

The receiver is described by thefeedback generation ruleand thereproduction

rule . The feedback generation ruleφ, is a sequence offeedback generations maps

φn : YnL → {0, 1}, n = 1, 2, . . .. At thenth step, let the realizations of the received

codewords bey1, y2, . . . , yn for yi ∈ YL. Then an ACK is transmitted over the feedback

channel ifφn(y1, y2, . . . , yn) = 1. A NACK is transmitted ifφn(y1, y2, . . . , yn) = 0. For

mathematical convenience we also define the constant “function” φ0 which is either 0

or 1.

We assume here and the rest of the thesis that the feedbacks ACK/NACK is instan-
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taneous and error free.1

The reproduction rule c is a sequence ofreproduction mapscn : YnL → C ⊂ X

for n = 1, 2, . . .. C is thereproduction codebook. For mathematical convenience, define

constant functionc0 ∈ C. If an ACK is generated at thenth step,i.e. if φn(y1, y2, . . . yn) =

1, then the source is reconstructed ascn(y1, y2, . . . , yn). It is not necessary forC to be

discrete.

We will be using the shorthand notationyn
1 and Y n

1 for denoting the sequences

y1, y2, . . . , yn and random vectorsY1, Y2, . . . , Yn, respectively. Similarly,ZT
n
1 denotes

the sequenceZT 1, ZT 2, . . . , ZT n.

The noisy channel is assumed to be independent of the source vector. The chan-

nel can be described by (i) the joint distributions of transmitter channel measurement

F n
ZT

(ZT
n
1 ), n = 1, 2, . . . (ii) transition probabilities, which are conditional probabil-

ity density functions of vectorsfY n

1 |ZT

n

1 ,In

1
(yn

1 |z
n
1 , i

n
1 ), n = 1, 2, . . . for yn ∈ YL and

in ∈ IL, satisfying appropriate consistency conditions on marginal distributions.

6.3 Performance Measurement

The simplest performance measures for loss tolerant systems are the distortion and the

transmission rate. The transmission rate is the average channel usage per source sam-

1Though this assumption is limiting, it is made to simplify our investigation of design of feedback

based JSCC systems and evaluation of their relative merits over systems not using feedback, without

getting sidetracked. Some effect of delay can be mitigated by the use of buffers at the transmitter and the

receiver along with “selective-repeat” strategy. As ACK/NACK feedback requires very low data rate on

the feedback channel, it can be protected by strong error correction and can be reasonably assumed to be

error-free.
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ple.2 Distortion measures the separation between the original source vectorX and

its reproduction at the receiver̂X. We shall assume squared error distortion measure

throughout,i.e. d(X, X̂) = ‖X − X̂‖2.

As discussed earlier, the receiver channel measurement need not be explicitly men-

tioned and will be omitted in the rest of the discussion. Notethat the source is re-

produced at thenth step only if current step generated ACK and previousn − 1 steps

resulted in NACK -i.e. φi(yi
1) = 0 for i = 1, 2, . . . n − 1 andφn(yn

1 ) = 1. Define

the functionψn(yn
1 )

def
=
∏n−1

i=0 (1 − φi(yi
1))φ

n(yn
1 ). It is straightforward to show that the

average distortion for a given transmitter, receiver and channel can be computed as,

D(φ, c) = E

[
∞∑

n=0

d(X, cn(Y n
1 ))ψn(Y n

1 )

]

. (6.1)

For clarity let us write down the expectation calculations explicitly.

D(S,φ, c) =

∫

X

fX(x)

(
∞∑

n=0

(∫

YnL

d(x, cn(yn
1 ))ψn(yn

1 )fY n

1 |X,S
(yn

1 |x)dy
n
1

))

dx

(6.2)

where

fY n

1 |X,S
(yn

1 |x)
def
=

∫
Zn f

n
ZT

(zT
n
1 )fY n

1 |ZT

n

1 ,In

1
(yn

1 |zT
n
1 , S1(zT

1
1, x), S2(zT

2
1, x), . . . Sn(zT

n
1 , x))dzT

n
1 .(6.3)

define the “effective” transition probabilities as seen by the receiver.

2Transmission rate is expressed in channel symbols per source sample. Transmission rate should not

to be confused with the channel baud rate in symbols per second - which is a property of the modulation-

demodulation system, or the channel coding rate or channel throughput, which is dimensionless. For a

fixed (time invariant) quantizer channel coding rate or throughput is inversely proportional to the trans-

mission rate.
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Similarly, the expected transmission rate, which is proportional to expected value of

stopping time, is given by

R(S,φ) = E

[
∞∑

n=0

nLψn(Y n
1 )

]
. (6.4)

6.4 Classification of the Transmitters

The transmitter, or more specifically, each encoder mapSn can be conceived as a com-

position of two maps, namely aquantizer Qn : X → N and anindex-assignment

bn : N → IL. The quantizer divides the source spaceX into a finite number of parti-

tions and the index-assignment map assigns a unique vector of channel symbols to each

partition. The index assignment may include explicit or implicit redundancy for the

purpose of error control coding. The transmitter can be classified into three categories

based on how the quantizer and the index assignment map change at each step.

1. Active Encoder (Embedded source coding/multiple description based source

coding + Hybrid ARQ) : We say that the encoder at the transmitter is an“active

encoder” (Figure 6.2), if both the quantizer and the index assignmentare time

varying,i.e. are allowed to vary at each step in transmission. A quantizerchanging

with n can be thought of as an embedded source coding because the partition of X

afternth step is a refinement of the partition obtained up to stepn−1. It can also be

conceived as Multiple Descriptions as the individual quantizersQn, n = 1, 2, 3....

are different descriptions of the source transmitted at different times. Clearly,

this kind of encoding allows thesource distortion to diminish to arbitrarily small

value.

2. Incremental Redundancy Transmission or general Hybrid ARQ: When the

quantizer map is fixed (i.e. time-invariant) and only the index assignment map
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X Qn bn
Sn(X)

Figure 6.2: Active encoder atnth step

varies with each step, the encoder implements incremental redundancy transmis-

sion or Type III hybrid ARQ (Figure 6.3). A protocol analogous to this was con-

sidered in Chapter 2. The advantage of this configuration is that the source coding

can be separated from the transmission protocol. On the other hand, the drawback

over the more general encoder is that thedistortion at the receiver is limited by the

quantizer induced distortionand it cannot be driven to zero no matter how well

the channel behaves or how efficient the error control schemeis.

QX bn
Sn(X)

Figure 6.3: System with incremental redundancy transmissione.g.using RCPC codes

3. Passive Encoder/Pure Retransmission Encoder/ Type I Hybrid ARQ: The

simplest system using ACK/NACK feedback is one in which the source coding

and the index assignment are time invariant. On receiving a NACK, the transmitter

retransmits a copy of the same codeword. In such a case we say that the encoder

(or the transmitter) is“passive”. This is attractive because it is simple. But it does

not make use of the feedback channel in the best possible way at the transmitter

side.3

3We use the term “passive encoder” because the term Type I HARQalso puts restrictions on the

receiver side.
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X Q b
S(X)

Figure 6.4: Passive Encoder for any step

6.5 Decoder Structure

The receiver or the decoder can be classified analogously based on degrees of freedom,

complexity and memory usage. Note that the decoder consistsof the feedback gener-

ation rule and the reproduction rule. The simplest form of decoder, theType I Hybrid

ARQdecoder, uses only the current observation for generating afeedbacki.e. the feed-

back generation mapφn does not depend ofyn−1
1 . Type I Hybrid ARQ decoder has low

computational and memory requirements but it does not make use of the full potential

of ACK/NACK feedback.

The more general decoder, atnth step, can use all the received codewords up to the

stepn in generating ACK/NACK feedback. Its general structure is show in Figure 6.5.

If the encoder is active, such a decoder is said to be doingcode-combiningand If the

encoder is passive, the decoder is said to be doingpacket-combining. We will be using

the term code-combining decoder to denote both decoders.

Y1, Y2, . . . , Yn−1

Yn
ACK/NACK

φn

Figure 6.5: Code Combining or Packet Combining

Clearly, a code-combining decoder is more complex and has larger and variable

memory requirements. The memory requirements can be reduced if the decoder, instead
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of storing all the received codewords, can store only a “state” estimated from the past

received codewords. The decoder structure with this decomposition is depicted in Figure

6.6. Note that the “state” need not be a sufficient statistic.It may be used only to impose

additional structure on the feedback generation maps.

Yn

πn−1

State
Estimation

πn

φn
ACK/NACK

Figure 6.6: Code Combining or Packet Combining with State Estimation

6.6 Decoder Design

Having described these concepts about the transmitter and receiver sides, we embark

on a topic that forms the Sections 6.7 and Chapter 7, namely the design of the decoder.

We focus on the decoder (the feedback generation rules and the reproduction rules) in

the rest of the thesis. It can be argued that the design of the decoder must precede the

design of the encoder. We shall see that, systems which use ACK/NACK feedback are

primarily receiver driven. Even in scenarios involving a passive transmitter, by letting

the feedback generation maps change, the receiver can exercise a lot of control over the

end-to-end performance of the system.

Nevertheless, design of the transmitter side remains and interesting and important

issue that we do not address in this thesis.

Notice that the decoder performance (eqs. (6.1) and (6.4) asfunctions of(φ, c))

and depends on the encoding rule only through the effective transition probabilities (eq.

6.3 ) We shall assume in the rest of the chapter that the effective transition probabilities

given by eq. (6.3) are known at the receiver.
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In Sections 6.7 through 6.13 we restrict our attention to thedesign of an optimal

decoder fora passive encoderanda memoryless noisy channel, when the number of

steps is allowed to be unbounded. The optimality criterion is the tradeoff between end-

to-end distortion and transmission rate. We obtain the optimal design and also propose

some suboptimal but competitive, computationally simplerdecoder designs.

In the next chapter, Chapter 7 we focus on decoder design whenthe encoder is active

but predesigned, under the constraint that the maximum number of steps is bounded. We

draw parallels between source-channel coding with ACK/NACK feedback and Pruned

Tree Structured Vector Quantization. We also analyze the decoder structure and show

that the optimal feedback generation rules are embedded in aspecial sense. This prop-

erty of embeddedness has applications in progressive transmission.

6.7 Packet Combining for Joint Source-Channel ARQ

over Memoryless Channels

In Sections 6.7 through 6.13 we restrict our attention to a passive transmitter scenario,

where, on receiving a NACK,the transmitter can only do a retransmission of the code-

word earlier transmitted (i.e. the scenario of Figure 6.4). On the other hand, we look

at an active-receiver system in which the receiver retains all the (noisy) copies of the

received codeword and can use them for generation of the nextfeedback or reproduc-

tion of the source. This is analogous topacket combiningor diversity combiningin the

context of data transmission [67]. Clearly, as the encoder is passive, any transmitter

channel measurement is not used, and we shall assume in thesesections that thetrans-

mitter channel measurement is absent.

We show that the task of designing a source-channel feedbackgeneration rule for
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packet combining based ARQ can be mapped to a classical sequential decision problem

[24]. Consequently we obtain a dynamic programming based solution for the optimal

feedback generation rule and reproduction rule so as to minimize a Lagrangian sum of

rate and distortion. We shall see that the distortion metricplays an important role, not

only in the source reproduction, but also in the feedback generation. As the optimal

solution is computationally complex, we also suggest simpler alternatives for feedback

generation. Results indicate that they also outperform schemes not incorporating the

distortion metric.

6.8 Transmission Scheme and Notation

The transmission protocol we consider is most generally described as Type I Hybrid

ARQ with packet combining (e.g. [67]) at the receiver. As earlier, consider the trans-

mission of ak dimensional random source-vectorX taking values inX ⊂ Rk, over a

memoryless noisy channel with discrete input alphabetI, possibly continuous valued

output alphabetY and known transition probabilities. The source-vector is quantized by

a fixed, pre-designedk dimensional vector quantizer (VQ) withM cells.

Each VQ cell is assigned anL dimensional channel-codeword (or“packet” ) by a

fixed, pre-designed channel coding scheme. As the encoder isassume to be passive,

let S : X → IL, denote the (fixed) map for the codeword assignment. Note thatthe

map includes quantization, index-assignment and channel coding, if any. Therefore, for

a realizationx of random vectorX, S(x) denotes the codeword to be transmitted over

the channel.S(x) takesM possible values denoted bySi, i = 1, 2, . . . ,M, in IL. The

transmission proceeds as follows. CodewordS(X) is transmitted and a feedback of

ACK/NACK is requested. On receiving NACK, acopy ofS(X) is retransmitted. This is

135



continued until an ACK is received. At the end ofnth retransmission, the receiver uses

all the available noisy copiesYi of S(X) to generate the ACK/NACK feedback. As the

channel is assumed to be memoryless,Yi for i = 1, 2, . . ., are statistically independent

given the codewordS(X).

As the encoding rule is fixed, we shall drop the symbolS from the expressions of

distortionD(S,φ, c) and rateR(S,φ ) in equations (6.1) and (6.4) for the subsequent

sections.

6.9 Decoder Design Problem

For the general system described in Section 6.2, the quantizer, the assigned channel

codewords as well as the decoder structure determine the average rate and distortion.

For a fixed quantizer and channel codeword assignment, the general design problem is

the minimization of a Lagrangian sum of the expected distortion D(φ, c) and average

rateR(φ) with respect toφ and c. Mathematically, for a non-negative Lagrangian

penaltyλ, the problem can be written as,

min
φ,c

E

[
∞∑

n=1

(d(X, cn(Y n
1 )) + λnL)ψn(Y n

1 )

]

. (6.5)

Let π0
i be the probability that the source vector lies in theith cell, i.e. π0

i = Pr(S(X) =

Si), i = 1, 2, . . . ,M . Letπ0(yn
1 )

def
= {π0

i (y
n
1 ), i = 1, 2, . . . ,M}.We restrict our attention

to the squared error distortion measure,i.e. d(X, c) = ‖X − c‖2 = (X − c)T (X − c).

Also let si denote the centroid of theith VQ cell, i.e. si = E[X|S(X) = Si]. Then,

136



under general conditions, we can writeD(φ, c) as,

D(φ, c) =
M∑

i=1

π0
iE
[
‖X − si‖

2
∣∣S(X) = Si

]

︸ ︷︷ ︸
Ds

+

M∑

i=1

π0
iE

[
∞∑

n=1

‖si − cn(Y n
1 )‖2ψn(Y n

1 )

∣∣∣∣∣S(X) = Si

]

︸ ︷︷ ︸
Dc(φ,c)

(6.6)

whereDs, the distortion due to the vector quantizer, is a term independent ofφ andc.

Therefore the design problem reduces to the following.

min
φ,c

J(φ, c, π0, λ) whereJ(φ, c, π0, λ)
def
= Dc(φ, c) + λR(φ). (6.7)

For reasons soon to become clear, we have explicitly shown the dependence of the

objective function on the prior probability vectorπ0.

6.10 Sequential Decision Problem

An examination of the expression for the objective functionJ(φ, c, λ) reveals that,

J(φ, c, π0, λ) is the Bayesian risk in a classical sequential decision problem [24]. The

corresponding terminology is as follows. The collection ofVQ cells indices,{i =

1, 2, . . . ,M} is theparameter space. π0
i is thea priori probability of parameteri used

for computation of the Bayesian risk.Y ′
i s are the observation random variables which

are conditionally independent and identically distributed, given the parameters. The set

of reproduction vectorsC ⊂ X is theaction space. The feedback generation ruleφ

represents thestopping rule. A NACK feedback corresponds to a request for another

observation. The reproduction vector mapcn : YnN → C is theterminal decision rule.

Theloss function, or penalty for taking an actionc ∈ C when the parameter isi, is given
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by the squared error‖si − c‖2. The increase in rate at a given step,λN , is thecost of the

incremental observation.

Given this translation, the optimal joint source-channel decoder is the solution to

the sequential decision problem given by eq. (6.7). The solution provides a feedback

generation rule which explicitly considers the tradeoff between distortion and rate, and

makes use of the available source statistics.

Notice that there is flexibility in choosing the reproduction vectors,i.e. the elements

of reproduction codebookC. If they are chosen as the the centroids of the source-

encoder maps,i.e. if C = {si, i = 1, 2, . . . ,M}, then the problem is aM-ary sequential

detection problem with Bayes penaltiesCi,j = ‖si − sj‖2. This problem has been

studied in the context of signal detection (e.g. [3]). The non-sequential analog in the

context of joint source-channel coding has also been studied (e.g. [22]). (ii) A finite

but densely populated codebook can also be used for reproduction. [23] consider such

table-lookup codebooks for reproduction vectors in the non-sequential case. It can be

seen that any Maximum A posteriori estimate of the source will lie in the convex closure

of the centroidssi of the source-encoder cells . Therefore, most generally, the set of

reproduction vectors, the action space, should be the set ofconvex combinations of the

centroidssi. For our simulations we used the collection of all convex combinations

of source-encoder centroidssi as the reproduction codebookC. This set includes the

Minimum Mean Squared Error (MMSE) estimate of the source-encoder centroids.

6.11 Optimal Sequential Design

Let πn
i (yn

1 ) denote the posterior probability of codewordSi given the observationsyn
1 .

That is,πn
i (yn

1 )
def
= Pr(S(X) = Si|yn

1 ) for i = 1, 2, . . . ,M. Let πn(yn
1 )

def
= {πn

i (yn
1 ), i =

1, 2, . . . ,M}. Let f(yn|Si) denote transition probabilities for the codewords computed

138



from the transition probabilities for the channel. Then fora given observation vectoryn
1 ,

the following relationship exists betweenπn(yn
1 ), πn−1(yn−1

1 ) andyn,

πn
i (yn

1 ) =
πn−1

i (yn−1
1 )f(yn|Si)∑M

j=1 π
n−1
j (yn−1

1 )f(yn|Sj)
. (6.8)

Let this function, which is independent of time indexn, be denoted byH(π, y). Then

πn(yn
1 ) = H(πn−1(yn−1

1 ), yn).

Let Γ denote the simplex of all probability distributions over transmit codewords

Si, i.e. Γ
def
= {a1, a2, , . . . aM : 1 ≥ ai ≥ 0,

∑M

i=1 ai = 1}. All posterior prob-

ability distributionsπn belong toΓ. Define functionρ : Γ → [0,∞) as ρ(π)
def
=

minc∈C

∑M
i=1 ‖si − c‖2πi.

We get the following main result from the theory of sequential decisions.

Proposition 5 For everyλ ≥ 0, there exists a unique cost-to-go functionV (·, λ) : Γ →

R which satisfies the following dynamic programming equationfor all π ∈ Γ.

V (π, λ) = min (λL+ E[V (H(π, Y ), λ)|π], ρ(π)) . (6.9)

Let A(π, λ)
def
= E[V (H(π, Y ), λ)|π] =

∑M

i=1 πiE[V (H(π, Y ), λ)|Si]. Then we

have the following result.

Proposition 6 Consider the feedback generation ruleφ∗ and the reproduction rulec∗,

given as,

• φ∗n(yn
1 ) = 1 i.e. send ACK ifρ(πn

i (yn
1)) ≤ λL+ A(πn(yn

1 ), λ). Elseφ∗n(yn
1 ) = 0

i.e. send NACK.

• Wheneverφ∗n(yn
1 ) = 1 the reproduction rule is,c∗n(yn

1 ) = argminc∈C

∑M

i=1 ‖si−

c‖2πn
i (yn

1 ).

Thenφ∗ andc
∗ are optimal, that is, they solve problem (6.7).
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Note that the optimal reproduction rule and optimal feedback generation rule, for each

λ, are time invariant functions ofπ.

The outline of proofs for Propositions 5 and 6 is presented inthe following sequence

of facts.

1. For any feedback generation ruleφ, the optimal reproduction rule depends onyn
1

through the posterior probabilitiesπn(yn
1 ). The optimal reproduction rule is given

by c∗n(yn
1 ) = argminc∈C

∑M

i=1 ‖si − c‖2πn
i (yn

1 )

2. For anyπ ∈ Γ, letV0(π, λ)
def
= ρ(π) and

VT (π, λ)
def
= inf

φ,φT (yT
1 )=1∀yT

1

J(φ, c∗, π, λ) for T = 1, 2, . . . . (6.10)

VT (π, λ) is the minimum Bayesian risk over all feedback generation rules which

are forced to send ACK at stepT , when the prior probability is someπ ∈ Γ. Then,

the following decomposition holds for a memoryless channel.

VT (π, λ)

= min (λL+ E[VT−1(H(π, Y ), λ)|π], ρ(π))

= min(λL+
M∑

i=1

πi

∫

YL

fY |Si
(y)VT−1(H(π, y), λ)dy, ρ(π)). (6.11)

3. VT (π, λ) ≥ VT+1(π, λ) ≥ VT+2(π, λ) ≥ . . .. ThereforeVT (π, λ), asT → ∞

converges pointwise to a function that can be shown to beV (π, λ) satisfying eq.

6.9.

The structure of the optimal decoder obtained in Proposition 6 is shown in Figure

6.7.
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πn−1(Y n−1
1 )

Yn

πn(Y n
1 )

λ

Computation
Cost-to-go

Estimation
State

Computation

Cost-to-Stop

c∗n(Y n
1 )

ρ(πn(Y n
1 ))

ACK/NACK
φn

λN + A(πn(Y n
1 ), λ)

Figure 6.7: Feedback Generation with State Estimation

6.12 Suboptimal Schemes

The general solution obtained in Proposition 6 is exceedingly complex. The complexity

can be localized in two distinct blocks in Figure 6.7.

Complexity of state estimation The optimal decoder,i.e. the optimal feedback gener-

ation rule as well as the optimal reproduction rule are computed from the state which is

the posterior probability distribution over transmit codewords. The state space is theM

dimensional probability simplex, whereM is the number of possible input vectors. For

even moderately long size of the vectors, and moderate source coding rate,M can be

prohibitively large. As state-estimation has to be done at all steps during the transmis-

sion, it is a big contributor to implementation complexity.

Complexity of Design and Implementation of optimal feedback generation rule

The feedback generation ruleφ∗ compares the conditional expected channel distortion

given current observations given byρ(πn
i (yn

1 )) with the cost of sending a NACK, that is

λL + A(πn(yn
1 ), λ). This requires the knowledge of the functionsV (π, λ) andA(π, λ)

for all posterior probability distributionsπ ∈ Γ. It turns out that the determination of

these functions is highly nontrivial. The general solutionin Proposition 6 has only been

characterized in a very few cases such as binary sequential hypothesis testing [24] and
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only approximate methods have been developed for the case ofM-ary detection,i.e. the

case ofC = {si, i = 1, 2, . . . ,M} and 1-0 penalty (e.g. [3]). M-SPRT uses expressions

similar to Wald’s approximations to approximateV (π, λ) andA(π, λ)[3, 24].

It is still beneficial to consider suboptimal schemes which consider distortion metric

explicitly. We propose and consider the following suboptimal schemes.

1. Distortion based feedback generation rule

2. Finite horizon optimal rules

3. Finite lookahead rules

6.12.1 Scheme DIST: Distortion based Feedback Generation Rule

Notice thatφ∗ in Proposition 6 compares the conditional expected channeldistortion

given current observations, given byρ(πn
i (yn

1 )), to λL + A(πn(yn
1 ), λ), which varies

with π. The functionA(π, λ) is a monotonically increasing function ofλ, for every

prior π ∈ Γ.

Proposition 7 For λ1 ≥ λ2, A(π, λ1) ≥ A(π, λ2), for all π.

Proof Outline: Let VT (π, λ) be defined as in eq. (6.10) for T = 0,1,2,. . . . Define

AT (π, λ)
def
= E[VT−1(H(π, Y ), λ)|π] for T = 1,2,. . . .V0(π, λ) is independent ofλ and

henceA1(π, λ) is monotonically increasing withλ. AssumeAT (π, λ) is monotonically

increasing function ofλ. Then asVT (π, λ) is a minimum of two monotonically in-

creasing functions, it is monotonically increasing. Consequently,AT+1(π, λ), which

is an expectation over monotonically increasing functionsis monotonically increasing.

Again, it can be shown thatAT (π, λ) converges toA(π, λ1) and henceA(π, λ1) is mono-

tonically increasing.
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Consider the behavior ofφ∗ andc∗ for different values of the Lagrangian rate penalty

λ. It is easy to see that the reproduction rulec
∗ remains unchanged. On the other hand,

increasingλ results in greater rate penalty and hence a smaller rate.

This implies that the decision to send NACK will be taken moreinfrequently asλ

increases. Hence the behavior ofA(π, λ) is similar to distortion, as larger rate penaltyλ

leads to larger distortion.

We propose the use of distortion itself to determine the feedback generation rule.

To get the first suboptimal feedback generation ruleφ̂, we replace the functionλL +

A(π, λ), which varies withπ, with a functionδ(λ) which is independent ofπ. Hence

the proposed feedback generation ruleφ̂ is as follows: Set̂φn(yn
1 ) = 1 i.e. send ACK if

ρ(πn
i (yn

1 )) ≤ δ, else set̂φn(yn
1 ) = 0 i.e. send NACK. The reproduction rule is same as

the optimali.e. ĉn(yn
1 ) = c∗n(yn

1 ) = argminc∈C

∑M
i=1 ‖si − c‖2πn

i (yn
1 ). Varyingδ from

small to large values captures the rate-distortion tradeoff/ throughput-reliability tradeoff

in ARQ with packet combining. Note that, like the optimal rules, scheme A also results

in time invariant feedback generation rules. Largeδ result in high throughput and small

δ result in low distortion. It turns out that for sequential detection of 1-bit equiprobably

quantized symmetrical sources,A(π, λ) is indeed independent ofπ and hence for this

special case, the proposed scheme coincides with the optimal solution.

6.12.2 Scheme FINHZN: Finite Horizon Optimal Rules

An T -horizon optimalfeedback generation rule is obtained by minimizingJ(φ, c, λ)

over only those feedback generations rules for which,φT (yT
1 ) = 1 for all yT

1 for some

fixed integerT . That is, such a feedback generation rule is the solution of the opti-

mization problem in eq. (6.10). These are straightforward to design as the feedback

generation maps are computed explicitly instead of being governed by an implicit for-
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mula. These result in time varying feedback generation rules, but have the advantage of

bounded delay and bounded memory requirements.

6.12.3 Scheme FINLKHD: Finite Lookahead Rules

A class of time-invariant suboptimal rules, calledT -step lookahead rulesis obtained by

executing at each step, theT -horizon optimal feedback rule designed for nextT steps.

For large enoughT , such a rule can be expected to approximate the optimal feedback

generation rule.

Schemes DIST, FINHZN and FINLKHD together, will be referredto asdistortion-

aware feedback generation rulesor simplydistortion-awareschemes.

6.13 CRC Based and BER based Systems for Compar-

ison

In this entire section, which presents the illustrative simulation results for comparison

with conventional schemes,we shall assume that the channel input is binary, such as

the one obtained by Binary PSK modulation. Therefore we willbe referring to channel

input symbols asbits. Consequently, we shall assume that the codewords belong to

{0, 1}L.

The features of the distortion-aware schemes proposed in the previous section (Sec-

tion 6.12) are the following.

1. Distortion metric plays a significant part in the feedbackgeneration.

2. Channel statistics and source statistics are used, both for reproduction rule as well

as feedback generation.
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3. Independent of the source statistics, the sensitivity ofthe bits to channel errors,

measured from their contribution to distortion, may still be different for different

bits. The distortion-aware schemes, therefore ascribe, possibly unequal impor-

tance to the transmit symbols.

4. There is a direct way of controlling the tradeoff between quality and rate.

These four features of the distortion-aware schemes, the fallouts of the analysis of

the optimal solutions of the Lagrangian formulation are also the features which distin-

guish the proposed approaches from the conventional tandemprotocol designs. Conven-

tional approach to generating ACK/NACK feedback has been through the use of error

detection at the receiver. A NACK is generated if there are detectable but uncorrectable

errors in the received sequence of channel symbols. The detection is accomplished by

adding redundancy and using error detection codes such as CRC.

Scheme CRC-Baseline: Baseline CRC Based system:Figure 6.8 describes the de-

coder for a baseline packet combining system based on CRC. The main features of the

baseline system are (i) Maximum Likelihood (ML) estimationof transmit bits, (ii) check

of integrity of the bits by error-detection and (iii) reproduction of the source by inverse

quantization.

ACK/NACK

Check bits

Information
bits

Y1, Y2, Y3, . . . , Yn

Demodulation

Inverse
Quantization

Reproduction

CRC checkŜ

Error Correction

ML Estimate of
transmit bits

Figure 6.8: Receiver for Baseline CRC based system
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Scheme CRC-MMSE: CRC Based system with Pseudo-MMSE decoding: The distortion-

aware schemes expect to improve upon the baseline CRC based system by use of (1)

different feedback generation rule, (2) reproduction by MMSE estimation of the source

as opposed to inverse quantization. For assessment of gainsdue to these two separate

factors, we can conceive another CRC based system which usesCRC for feedback gen-

eration but uses MMSE estimation of the source for reproduction. In order to keep the

reproduction rule identical to the proposed schemes, we must use only the information

bits, i.e. the bits in the received symbols, excluding the CRC bits, forMMSE estima-

tion. As CRC bits are ignored for reproduction, we dub this system as CRC Based

system with Pseudo-MMSE decoding. It is shown in Figure 6.9.

Check bits

Information
bits

Y1, Y2, Y3, . . . , Yn

from information bits
MAP Estimate of source

Ŝ

ML Estimate of bits

Demodulation
Error Correction

Reproduction

CRC check ACK/NACK

Figure 6.9: Receiver for CRC based system with Pseudo-MMSE decoding

Scheme CRC-List: CRC Based system with List Decoding:Some control over

throughput-reliability tradeoff can be obtained in a CRC based system with the help

of list-decoding. The CRC based system with List Decoding isshown in Figure 6.10.

In list decoding, instead of generating a single ML estimateof the transmit bits, a finite

list of most likely candidate estimates is generated. If anyof the candidates satisfies the

CRC, an ACK is generated and that candidate is used for reproduction by inverse quan-

tization. If no candidate satisfies the CRC, a NACK is generated. Clearly, by varying

the size of list, throughput can be traded for reliability.
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bits

ACK/NACK
Check bits

Information

Y1, Y2, Y3, . . . , Yn

Error Correction
Demodulation

List of top candidates
Ŝ1, Ŝ2, . . . Ŝl

each candidate
CRC check on

Inverse
Quantization

Reproduction

Selection
Candidate

Figure 6.10: Receiver for CRC based system with List decoding

Also, we can also conceive aCRC Based system with List and Pseudo-MMSE

decoding (Scheme CRC-List-MMSE)where list decoding is used for feedback gener-

ation but MMSE decoding from the information bits alone is used for reproduction.

6.13.1 Zero Redundancy BER based Techniques

In addition to comparison against the CRC based systems, which represent the conven-

tional error-detection based techniques, we would also like the performance gain/loss

of the distortion-aware schemes, which attempt to minimizedistortion and use source

statistics, overoptimizedtechniques designed to minimize Bit Error Rate (BER) for a

given throughput.

For such a comparison, we can conceive Zero Redundancy BER Based feedback

generation rules, which are obtained as suboptimal solutions (analogous to Schemes

FINHZN and FINLKHD) to a modification of the sequential decision problem (6.7)

where the action spaceC is the collection of source-encoder indices or codewords{0, 1}L,

and the loss function isbit-wise Hamming distancebetween the true parameter (trans-

mitted source-encoder index) and the action. Thus in this case, the objective is to mini-

mize, for different values of Lagrange Multiplierλ,

E

[
∞∑

n=1

(Ham(S(X), cn(Y n
1 )) + λnL)ψn(Y n

1 )

]

, (6.12)
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whereHam : {0, 1}L × {0, 1}L → N+ is the Hamming Distance between two binary

vectors.

6.13.2 Results

To highlight the differences between the distortion-awaretechniques and the described

conventional CRC-based schemes and Zero redundancy BER based schemes, we con-

sider transmission of synthetic random sources quantized by tree structured vector quan-

tizers over a memoryless noisy channel. We present here the simulation results for

memoryless unit variance Gaussian source.

The channel

The channel was chosen to be a binary input, ternary output discrete memoryless chan-

nel obtained by quantizing the output of BPSK transmission over an AWGN channel into

three regions,(−∞,−t0], (−t0, t0), and [t0,∞). For each signal-to-noise ratio (SNR)

of the AWGN channel, the thresholdt0 was numerically obtained so as to maximize the

information theoretic capacity of the resulting discrete channel. This channel is useful

for simulation as it captures the features of both hard decoding and soft decoding. Also,

for the design described, which requires numerical computation of expectations, it helps

that the set of all possible channel outputs be finite.

The schematic of quantization of the AWGN channel and the corresponding discrete

channel is depicted in Figure 6.11.

Comparing CRC based Schemes

Figures 6.12 through 6.15 present results for comparison ofdistortion-aware schemes

with CRC based schemes. Transmission of a unit variance Gaussian source quantized
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Figure 6.11: Discrete 2-input 3 output channel is obtained as BPSK over quantizing

AWGN channel

SNR dB -1 0 1 2 3 4 5

p 0.7716 0.819 0.864 0.9049 0.9387 0.9644 0.9819

q 0.1905 0.1530 0.1164 0.0828 0.05414 0.03181 0.01636

r 0.03782 0.02768 0.01908 0.01220 0.007121 0.0037 0.001675

Table 6.1: Transition probabilities of the derived discrete channel for different AWGN

SNR’s.

by a 16-level Tree Structured scalar quantizer [26] over a noisy channel was considered.

The 16 levels were mapped intoL = 4 bits using natural binary indexing. These 4 bit

long codewords were transmitted across the chosen discretememoryless noisy channels

using schemes DIST, FINHZN with T=3 and T=4, 1-step FINLKHD,as well as CRC

Based Schemes.

Figure 6.12 and 6.13 show the results for the channel with equivalent AWGN chan-

nel with SNR 0 dB and 3dB respectively. End-to-end total SNR is the mean squared

error per sample expressed in dBs. The points on the curve DIST are obtained by simu-
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lation as the thresholdδ is varied from large values to small values. Similarly the points

for 1-step FINLKHD were obtained by simulation as Lagrange multiplier λ was varied

from large values to small values. For simulations we used 1,200,000 samples of unit

variance Gaussian source. For each sample, the channel was used nearly 20 times.

The points for FINHZN T=3 and T=4, were obtained by numericalcalculation.

They are operational rate-distortion performance curves obtained by pruning a depth-

T Pruned TSVQ [15] with3L = 81 children per node. The relationship between Pruned

TSVQ and the design problem is explained in Chapter 7.

Three simple CRC based transmitters, ones with 1 bit, 2 bit and 3 bit CRC’s applied

to each 4 bit packet, are used for comparison. The decoders are CRC-List and CRC-

List-MMSE for different list sizes. Scheme CRC-List with list size 1, is the baseline

CRC based system. CRC-List-MMSE with list size of 1, is the CRC-MMSE scheme.

Results were obtained for list sizes of1, 2, 4, . . . , 2n for a transmitter which usesn-bit

CRC. The number’s next to points for CRC-List represent the list size used.

The plots also show results for Fixed Horizon schemes which are in fact schemes

with repetition coding and no feedback. In such a scheme codeword is repeated a fixed

number of times. The decoder performs a MMSE estimation of the source from the re-

ceived copies. The performance at the highest transmissionrate, achieved by a T-horizon

FINHZN scheme is equal to that of a fixed horizon scheme transmitting T copies.

The feature immediately noticeable about the plots is the high flexibility offered by

the distortion-aware schemes. The Lagrangian approach yields a continuum of operating

points for each of the distortion-aware schemes. The CRC based schemes on the other

hand, provide limited flexibility, operating at discrete set of points.

Secondly, though the distortion-aware schemes are suboptimal, they consistently

outperform the CRC based schemes for a wide range of transmission rates. For the
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Figure 6.12: Performance (Total SNR vs. Trans. Rate) of Various Schemes of Scalar IID

Gaussian source quantized with 4 bit TSVQ over noisy channel(equiv. AWGN SNR =

0dB)

more noisy channel, namely the one corresponding to AWGN-0dB, the gains of DIST

and 1-step FINLKHD are nearly 2 dB at almost all transmissionrates. The gains of

distortion aware schemed for the 3 dB channel are lower, theystill outperform all CRC

based schemes except one. CRC-List with coderate 4/7, whichadds 3 bit CRC to every

4 bits, with list size 2 outperforms the distortion-aware schemes. Note that distortion-

aware schemes in the plots have no redundancy added.

Another interesting observation is that for high redundancy CRC - such as CRC-
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Figure 6.13: Performance (Total SNR vs. Trans. Rate) of Various Schemes of Scalar IID

Gaussian source quantized with 4 bit TSVQ over noisy channel(equiv. AWGN SNR =

3dB)

List with coderate 4/7, CRC-List outperforms CRC-List-MMSE. This observation can

be explained from the fact that the extra diversity providedby redundant bits more than

compensates for the suboptimality of ML decoding over MMSE decoding. This is not

the case for high coderate (i.e. low redundancy ) CRC schemes (Figure 6.14). High

coderate CRC Based schemes used are of rates 4/5, 8/10 and 16/19, which are 1 bit CRC

added to 4 bits, 2 bit CRC added to 8 bits, and 3 bit CRC added to 16 bits respectively.

For these coderates, CRC-List-MMSE generally perform better than CRC-List.
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Fourth noticeable feature is that the schemes DIST and and 1-step FINLKHD per-

form nearly identically.

The source coder used in Figures 6.12 through 6.15, is a 4 bit TSVQ with average

distortionDs ∼ 0.0097 which is nearly 20 dB. The source distortion becomes domi-

nating factor for higher transmission rates. Figure 6.15 plots only the channel induced

distortionDc, expressed in dB, for these schemes for the 0dB channel. As channel dis-

tortion can be driven arbitrarily close to zero, the channel-induced SNR for schemes

DIST and 1-step FINLKHD does not saturate, unlike the curvesin Figure 6.12.

The curves for DIST and 1-step FINLKHD are nearly linear, implying that the dis-

tortion drops exponentially with transmission rate. Also,they are at a sharper slope than

Fixed Horizon schemes. This shows that the gain in SNR of DISTand 1-step FINLKHD

over schemes not using feedback increases with transmission rate.

FINHZN schemes are efficient at low transmission rates, but their performance

curves saturate as the rate approaches the corresponding fixed horizon schemes.

Zero Redundancy BER based Schemes

As discussed earlier, we would also like to isolate the contribution of distortion metric

in the feedback generation rule as opposed to Hamming Distance metric. Towards this

end, we consider comparison with zero-redundancy BER basedschemes.

Figures 6.16 and 6.17 present the curves for average rate vs.total SNR asλ is varied

from small to large, for various schemes for channels obtained from AWGN channels

with SNR 0 dB and 3 dB, respectively. In all the curves, including the zero redun-

dancy BER based schemes,the reproduction rule is chosen to be the MMSE estimate

of the source.The rate distortion performance of the distortion aware schemes DIST,

FINHZN with T=3 and 1-step FINLKHD is compared against zero redundancy packet-
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Figure 6.14: Performance (Total SNR vs. Trans. Rate) of HighRate CRC based

Schemes, IID Gaussian source, dim = 1, TSVQ 4 bit/sample, equiv. AWGN SNR =

0dB

combining feedback generation rules 1) BER based FINHZN with T=3, 2) BER based

1-step FINLKHD.

Although, the BER based zero redundancy schemes, behave like the conventional

CRC, that is, they treat all the source-encoder bits equally, they make use of source statis-

tics for ACK/NACK generation.The only difference between the BER based schemes

and distortion-aware schemes is the distortion metric.

From the figures, it is evident that the channel-distortion/rate performance of the
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Figure 6.15: Channel Distortion for Various Schemes, IID Gaussian source, dim = 1,

TSVQ 4 bit/sample, equiv. AWGN SNR = 0dB

distortion-aware schemes is almost always superior to the BER based schemes. But

the most interesting feature is that, at high transmission rates, the BER based zero re-

dundancy schemes, seem to catch up with the corresponding distortion aware schemes.

The distortion aware schemes, show high gains in the high-throughputi.e. low trans-

mission rate region. The highest performance improvement is about 2 dB in both the

cases. Another advantage of the curves for the distortion-aware schemes is their high

positive slope at low rate region, compared to the zero-redundancy BER based schemes.

This has implications in progressive transmission, where arapid improvement in source
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quality as a function of bit rate is desirable.
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Figure 6.16: Performance Comparison with Zero Redundancy BER based schemes.

Gaussian Source, TSSQ with 4 bits/sample. AWGN Channel SNR =0 dB.

6.14 Conclusion

In this chapter we have addressed the problem of joint sourcechannel coding with

ACK/NACK feedback from first principles. We have identified the different components

and classified the transmitter and the receiver side according to the degree of freedom

allowed in the use of the ACK/NACK feedback. As every system without feedback is

a special case of the one with feedback, and a tandem system a special case of a joint

source -channel coding system, the design of a communication system from first prin-

ciples can be construed as rather naive. Nevertheless, there are significant insights to
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Figure 6.17: Performance Comparison with Zero Redundancy BER based schemes.

Gaussian Source, TSSQ with 4 bits/sample. AWGN Channel SNR =3 dB.

be gained from this approach. As a special and simplified case,. we have considered

decoder design for a passive encoder system in which the transmitter transmits copies

of the same codeword over the noisy channel. We have obtainedoptimal design by dy-

namic programming techniques, which yielded the optimal reproduction rule and the

optimal feedback generation rule. We have proposed some reduced-complexity subop-

timal feedback generation rules, which take into consideration the source statistics and

the distortion metric and hence are called distortion-aware. Distortion-aware schemes,

in addition to outperforming conventional CRC based and BERbased schemes, also of-

fer a lot of flexibility in choosing the operating transmission rate and allow easy switch-

ing from lower transmission rate to higher transmission rate. The three fronts on which
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distortion-aware schemes are superior to conventional schemes are 1) use of source-

statisticsi.e. exploiting residual redundancy in the source-encoder, 2) use of distortion

measure - which is more meaningful for transmission of loss-tolerant sources, 3) flexible

selection of operating points.

The next chapter extends the ideas in this chapter to an active source-encoder and

explores the structure of the optimal solution in more detail. It also establishes the close

link between the ARQ design problem and Pruned TSVQ, and shows how progressive

transmission can be accomplished for such a system while retaining optimality.
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Chapter 7

Pruned Tree Structured Quantization in Noise and

Feedback

In this chapter, we take our program of designing optimal joint-source-channel coding

for channels with feedback one step further. We devise optimal decoding schemes where

a progressively transmitted embedded source codersuffers channel noise and at each

step in progressive transmission there is a feedback from the receiver to the transmitter.

In this framework, the transmitter is active, that is, on receiving a NACK it does not

retransmit the codeword transmitted earlier but instead transmits new information. We

restrict our attention to the finite horizon case, where the transmission is not allowed to

continue beyond a fixed number of steps, say,T . Again we focus on the receiver side

and investigate the structure of the optimal decoder and feedback generation mechanism

here. The tools we use will be as earlier, based on Lagrangianformulation and sequential

analysis.

In the absence of channel coding the progressive coding is typically performed using

a tree structured quantizer. The tree structured quantizeris capable of coding in several

stages, each stage provides a refinement of the previous stage. If some form of variable

length coding is available, then an effective way of obtaining a collection of quantizers
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from a single tree structured quantizer is by the method of pruning [15]. The result-

ing collection of quantizers is called pruned tree structured vector quantizers (PTSVQ).

There is an elegant theory associated with pruning. Pruned tree structured quantizers

first appeared in the context of decision trees where Breimanet al [8] presented an al-

gorithm for pruning. It was later generalized to other contexts, such as tree structured

quantization, regression trees, quantization of noisy sources and variable order Markov

modeling [15, 26].

In this chapter we show the close link between PTSVQ and transmission using an

embedded source-coder over a channel with ACK/NACK feedback. Consequently we

generalize the concept to carry out joint source-channel PTSVQ, or PTSVQ in the pres-

ence of noise and feedback. In addition to establishing the close link, we show the

existence of a “feedback-threshold” function which reveals the simple structure behind

the optimal feedback generation rules for all Lagrangian penalties.

7.1 Pruned Tree Structured Vector Quantizers

An T -stage TSVQ is a collection ofT vector quantizers, one associated with each stage,

such that, every VQ cell ofith stage is obtained by partitioning some cell, (its “parent”)

at i− 1th stage, fori = 1, 2, . . . , T . The quantizer at0th stage consists of one cell. The

parent-child relationship between cells gives a full balanced tree of VQ cells. Without

loss of generality, we shall assume that the tree is binary,i.e. each cell is either a leaf or

has exactly two children.

Let the collection of cells in a TSVQ denoted byZ0, be denoted bŷZ0. A pruned

TSVQ, Z ′, is obtained from a full TSVQ by selecting a subsetẐ ⊂ Ẑ0 of the cells,

with the property that a cellt ∈ Ẑ if and only if its parent cellparent(t) ∈ Ẑ. We say
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thatZ � Z0. The relation� is naturally extended as a partial order for comparing two

pruned TSVQs - or just pruned trees. For two pruned treesZ andZ ′, Z ′ � Z if Ẑ ′ ⊂ Ẑ.

A cell in a PTSVQ is called aleaf if it has no children, else, it is called aninterior node.

Figure 7.1 illustrate a pruned tree obtained from a full tree.

Leaves
Pruned TSVQ

Branch

Root

Leaves
Full TSVQ

Root

Figure 7.1: TSVQ and Pruned TSVQ

The encoding and decoding of a PTSVQ is analogous to that of a full TSVQ. A

source vector is quantized in stages, till a leaf cell that contains the vector, is found. The

path from the root node to the leaf is used for encoding the vector, and a representative

vector, the “centroid” of the leaf cell is used for reproduction.

For a given source with known statistics, a rate and an average distortion can be

associated with every PTSVQ. The rate is measured as either (i) the expected length

of the path from the root to the leaf or (ii) the expected entropy of such a path. We

shall assume the former definition of the rate. Let the distortion-rate pair for a PSTVQ

Z � Z0 be denoted by(D(Z),R(Z)). Then the collection of optimal rate distortion

pairs, namely those on the lower convex hull of the set{(D(Z),R(Z)) : Z � Z0} has

the following interesting property [15].

Theorem 1 PTSVQ property: The collection of points on the lower convex hull of

the set{(D(Z),R(Z)) : Z � Z0} can be obtained by repeatedly pruning a single tree.
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In other words there is a sequence of PTSVQs,. . . Zk � Zk−1 � . . . � Z2 � Z1 � Z0,

which traces the convex hull.

This elegant result also leads to the generalized algorithmdue to Breiman- Friedman-

Olshen and Sloane (BFOS) for obtaining the points on the convex hull [15, 26].

In the following sections we consider progressive transmission of a TSVQ encoded

source in the presence of channel noise and ACK/NACK and obtain a PTSVQ like

property for the optimal decoding schemes. In that sense, the following sections present

a generalization of PTSVQ.

7.2 Extending the Interpretation of ACK/NACK

In Chapter 6 we considered how to carry out joint source-channel decoding when the

transmitter does retransmission of the codeword. There, the selection of feedback gener-

ation map could be used to control the throughput-reliability or rate-distortion tradeoff.

Here we consider a slightly general case in which on receipt of a NACK the transmitter

proceeds with the transmission of new information.

Clearly, this contains as a special case, the case of retransmission of the same code-

word. In this chapter we obtain the optimal decoding schemesfor this case. This chapter

widens the interpretation of ACK/NACK feedback. Conventionally ACK/NACK feed-

back was used for indicating if the transmit codewords was decoded with acceptable

reliability or not. The conventional interpretation turnsout to be narrow in the light

of the possibility of the transmitter transmitting new information on receiving a NACK

feedback. When we develop the decoding scheme, we shall see that the NACK feedback

serves a dual purpose. (i)First, it is used for indicating that the previous transmission

was corrupted beyond recovery by the channel noise. (ii) Second, it is used for control-
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ling the rate distortion performance of the joint source-channel coder! A NACK may be

sent when the previous transmission was noiseless, but it isfavorable for rate-distortion

tradeoff that further information about the same source-vector be sent. In other words

NACK is used as a permission to continue transmission of new or old information about

the same source vector.

This new interpretation essentially says that NACK feedback can be used for rate

control. We shall see that the decoder structure in fact has aproperty like that of the

PTSVQ, namely the optimal decoding schemes at different rate distortion tradeoffs are

embedded.

This is still not the most general transmission scheme conceivable as the transmitter

is still not active. It transmits a fixed sequence of codewords for a given source vector

and stops when an ACK is received.

7.3 Transmission Set-up and Notation

As earlier, consider the transmission of ak dimensional random source-vectorX taking

values inX ⊂ Rk, over a noisy channel with discrete input alphabetI and possibly

continuous valued output alphabetY . X is quantized by a TSVQ with depthT which

generates a channel codewordSn(X) ∈ IL for each stagen = 1, 2, . . . , T . We assume

that the TSVQ and the codeword allocation is predesigned andfixed. If codewordSk(X)

is transmitted, a noisy version of the codewordYn ∈ YL is received. We need not

assume that the channel is memoryless. We shall just assume that the statistics of the

source,i.e. the distribution ofX and that of the channel,i.e. the joint distributions

of Y1, Y2, . . . , YT are known for each value ofX. For simplicity, we shall assume that

conditional probability densities of the kindf(yi1|yi2, yi3, . . . yik , x) can be computed
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for all values ofyik ∈ Y andx ∈ X .

The transmission proceeds as follows. First the codewordS1(X) is transmitted

and a feedback of ACK/NACK is requested. On receiving NACK, which is taken as

a “permission to continue transmission”,S2(X) is transmitted. This way, codewords

S1(X), S2(X), . . . , Sn(X), . . . are transmitted one by one until either an ACK is re-

ceived orST (X) has been transmitted.

Similar to Chapter 6 thefeedback generation ruleφ at the receiver, is specified

by a sequence offeedback generations mapsφn : YnL → {0, 1}, n = 1, 2, . . .. At

thenth step, let the received realizations of the noisy copies bey1, y2, . . . , yn for yi ∈

YL. Then an ACK is transmitted ifφn(y1, y2, . . . , yn) = 1. A NACK is transmitted

if φn(y1, y2, . . . , yn) = 0. The reproduction rule c at the receiver is specified by a

sequence of reproduction mapscn : YnL → C ⊂ X . C is thereproduction codebook.

If an ACK is generated at thenth step,i.e. if φn(y1, y2, . . . yn) = 1,, then the source is

reconstructed ascn(y1, y2, . . . , yn). It is not necessary forC to be discrete. Again, letyn
1

andY n
1 be the shorthand for denoting the sequencesy1, y2, . . . , yn and random vectors

Y1, Y2, . . . , Yn, respectively.

Let ψn(yn
1 ) =

∏n−1
i=1 (1 − φi(yi

1))φ
n(yn

1 ). Thenψn(yn
1 ) = 1 for all those sequences

yn
1 which generate a ACK only at thenth step and not earlier. In this chapter we consider

only a finite stage TSVQ hence we require thatφT (Y T
1 ) = 1 always. In other words this

impliesE
[∑T

n=1 ψ
n(Y n

1 )
]

= 1.

The average rate per source vector, that is the expected number of channels symbols

put on the channel before stopping (i.e. before an ACK is received) is given by,

R(φ) = E

[
T∑

n=1

nLψn(Y n
1 )

]
. (7.1)

Let d(·, ·) denote the squared error distortion measure. Then for givenφ andc, the
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expected distortion is computed as,

D(φ, c) = E

[
T∑

n=1

d(X, cn(Y n
1 ))ψn(Y n

1 )

]
. (7.2)

Note that, although specifying the collection of mapsφn, n = 1, 2, . . . , T is not

the same as specifying the collectionψn, n = 1, 2, . . . , T , the performance measures

D(φ, c) andR(φ) depend only onψn, n = 1, 2, . . . , T .

For a non-negative multiplierλ ≥ 0, define,

J(φ, c, λ)
def
= D(φ, c) + λR(φ) (7.3)

Then the problem of decoder design can be expressed as,

min
φ,c

J(φ, c, λ) = min
φ,c

E

[
T∑

n=1

(d(X, cn(Y n
1 )) + λnL)ψn(Y n

1 )

]

, (7.4)

This problem, like the special case in Chapter 6, is a Bayesian sequential decision

problem. We shall refer to the Lagrangian sum of distortion and transmission rate as

“Bayesian risk” or simply “risk”.

7.3.1 PTSVQ as Bayesian Sequential Decisions over Noiseless Chan-

nel

It is straightforward to see that there is close relationship between PTSVQ and trans-

mission of a TSVQ over a noiseless channel with ACK/NACK feedback. In fact, over a

discrete output noiseless channel, there is a one to one relationship between all possible

pruned trees of a tree, and all possible feedback generationrules (specified in terms of

ψn’s, as opposed toφ’s). Any pruning of a full tree can be represented in terms of some

feedback generation ruleφ and vice versa. Over a noiseless channel, a sequence of
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received codewords,yn
1 , (which is the same as the sequence of transmit codewords,) is

equivalent to a path from the root node to a node at depthn. If φn(yn
1 ) = 0, a NACK is

transmitted, then the node corresponding toyn
1 is an interior node.ψn(yn

1 ) = 1 thenyn
1

corresponds to a leaf in the pruned tree.

Figure 7.2 illustrates a binary TSVQ transmitted over a noiseless binary channel,

with the values of some feedback generation ruleφ and the equivalent PTSVQ.

11111 1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 0

0 0 0

0

Feedback Generation rule for full TSVQ Equivalent Pruned TSVQ

1

1

00

1

0

Does not 
affect 
performance

Figure 7.2: Feedback Generation Rule over a Full TSVQ and Equivalent Pruned TSVQ

7.4 Decoder Design

The optimal decoder design is obtained by the solution to thesequential design problem

given by equation (4.14). The two main results consist of design of the optimal repro-

duction rulec and the optimal feedback generation ruleφ. These results can be obtained

by a dynamic programming argument [24, 28].

First we state the optimal reproduction rule.

Theorem 2 Optimal Reproduction Rule: Let c∗n(Y n
1 ) be a Bayes estimate of the

source based on a fixed number of received codewordsY n
1 . Then for every feedback
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generation ruleφ and λ, J(φ, c, λ) is minimized with respect toc, by the functions,

c∗n(Y n
1 ) for n = 0, 1, 2, . . . , T . Here,

c∗0 = argmin
c∈C

E [d(X, c)] , and

c∗n(yn
1 ) = argmin

c∈C
E [d(X, c)|Y n

1 = yn
1 ] . (7.5)

The proof is straightforward and can be found in [24, 28].

It can be seen that the optimal reproduction rule turns out tobe independent of

the feedback generation ruleφ andλ. This implies that one can always use the same

reproduction rule for all methods of generating feedback and for all penaltiesλ on the

rate. We shall assume in the subsequent portion of the chapter thatc∗ is the reproduction

rule.

To obtain the feedback ruleφ∗ which minimizesJ(φ, c∗, λ) for a fixedλ, define

ρn(Y n
1 )

def
= E [d(X, c∗n(Y n

1 ))|Y n
1 ] and

Un(Y n
1 , λ)

def
= ρn(Y n

1 ) + λnL (7.6)

We have assumed that at each step, the possible number of codewords transmitted

is finite and also that the total number of steps in transmission is finite. Under these

conditions it is straightforward to show thatρn(Y n
1 ) and consequentlyJ(φ, c∗, λ) is

bounded for eachλ.

Un(Y n
1 , λ) is the conditional risk of stopping,i.e. sending ACK, at thenth step,

having receivedY n
1 .

Let us define a feedback generation ruleφ∗ as follows. SupposeT − 1 noisy code-

wordsY T−1
1 have already been received. Then if an ACK is to be sent at thatpoint,

then the conditional risk isUT−1(Y
T−1
1 ). While, if a NACK is sent then another noisy

copy will have to be received, and in that case the conditional risk isE[UT (Y T
1 )|Y T−1

1 ].

Thus atT − 1st step, for a pointyT−1
1 ∈ YL(T−1) the risk is minimized if we define
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φ∗T−1(yT−1
1 ) as,

φ∗T−1(yT−1
1 )

def
=






1 if UT−1(y
T−1
1 , λ) ≤ E[UT (Y T

1 , λ)|yT−1
1 ]

0 otherwise.
(7.7)

Clearly, atT − 1st step, the minimum posterior risk given received codewordsyT−1
1

is given by,

GT−1(y
T−1
1 , λ)

def
= min[UT−1(y

T−1
1 , λ), E[UT (Y T

1 , λ)|yT−1
1 ]] (7.8)

This cost is obtained by using the feedback generation mapφ∗T−1(yT−1
1 ).

Similarly, inductively define “minimum” posterior riskGn(yn
1 ) as follows.

GT (yT
1 , λ)

def
= UT (yT

1 , λ)

Gn−1(y
n−1
1 , λ)

def
= min[Un−1(y

n−1
1 , λ), E[Gn(Y n

1 , λ)|yn−1
1 ]] for n = 2, 3, . . . , T,

G0
def
= min[U0, E[G1(Y

1
1, λ)]] (7.9)

Hence we can define the feedback generation mapsφ∗n(yn
1 ), inductively.

φ∗T (yT
1 )

def
= 1 and

φ∗n−1(yn−1
1 )

def
=






1 if Un−1(y
n−1
1 , λ) ≤ E[Gn(Y n

1 , λ)|yn−1
1 ]

0 otherwise, forn = 1, 2, . . . T.
(7.10)

The collections of mapsφ∗n(yn
1 ) for n = 0, 1, . . . T , defined above are an optimal

feedback generation rule. Note thatGn, and henceφ∗n vary with λ. We have the fol-

lowing result [24, 28].

Theorem 3 Optimal Feedback Generation Rule:The collection of mapsφ∗ def
= {φ∗n, n =

0, 1, . . . T} is the optimal feedback generation rule for a givenλ, i.e. , for any other

feedback generation ruleφ, following holds.

J(φ∗, c∗, λ) ≤ J(φ, c∗, λ) (7.11)
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We have obtained the optimal feedback generation rules and optimal reproduction

rules for the joint source-channel coding problem with ACK/NACK feedback using

standard techniques from sequential analysis. We now embark on further investigation

and show that, the optimal feedback generation rules and optimal reproduction rules

have a property analogous to PTSVQ.

7.5 Embedded Optimal Policies

We would like to examine the property in Theorem 1 in terms of the interpretation of

PTSVQ as sequential decisions with ACK/NACK feedback

Consider the noiseless channel case and refer to the relationship between a PTSVQ

and feedback generation rule described in Section 7.3.1. Let φ1 andφ2 be the corre-

sponding feedback generation rules for two pruned treesZ1 andZ2 respectively. It can

be verified easily that,Z1 � Z2 if and only if φn
1 ≥ φn

2 for n = 0, 1, 2, . . . , T .

Therefore the PTSVQ property (Theorem 1) can be restated in terms of the feedback

generation rules. The main result of this section is the generalization of Theorem 1 to

noisy channels.

Theorem 4 Let λ1 ≥ λ2 ≥ 0. Let φ∗
1 andφ∗

2 denote the optimal feedback generation

rules for the problem (4.14), given by eq. (7.10) corresponding toλ1 andλ2 respectively.

Thenφ∗n
1 (yn

1 ) ≥ φ∗n
2 (yn

1 ) for all yn
1 ∈ YnL for n = 0, 1, . . . T . In other wordsφ∗n

1 (yn
1 ) =

0 =⇒ φ∗n
2 (yn

1 ) = 0 andφ∗n
2 (yn

1 ) = 1 =⇒ φ∗n
1 (yn

1 ) = 1.

In order to prove Theorem 4, we need to show a small result. Define mapsWn(yn
1 , λ)

def
=

Gn(yn
1 , λ) − Lλn for n = 0, 1, 2, . . . , T . It can be easily verified by induction that, the
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equation (7.10) can be reformulated as,

φ∗T (yT
1 ) = 1 and

φ∗n−1(yn
1 ) =






1 if ρn−1(y
n−1
1 ) ≤ λL+ E[Wn(Y n

1 , λ)|yn−1
1 ]

0 otherwise, forn = 1, 2, . . . T.
(7.12)

Also,

WT (yT
1 , λ) = ρT (yT

1 )

Wn−1(y
n−1
1 , λ) = min[ρn−1(y

n−1
1 , λ), λL+ E[Wn(Y n

1 , λ)|yn−1
1 ]] for n = 2, 3, . . . , T,

W0 = min[ρ0, λL+E[W1(Y
1
1, λ)]] (7.13)

We need the following lemma.

Lemma 1 The functionsWn(yn
1 , λ) for given received codewords,yn

1 , is a continuous

and monotonically increasing function ofλ, for n = 0, 1, . . . , T .

Proof: By induction. Clearly,WT (yT
1 , λ) is independent ofλ and hence is a mono-

tonically increasing and continuous function ofλ for all yn
1 . Assume thatWm(ym

1 , λ)

is a monotonically increasing continuous function ofλ, for m = n + 1, . . . T . Let

λ1 ≥ λ2 ≥ 0. Then, we have, for monotonicity,

Wn(yn
1 , λ1) = min[ρn(yn

1 ), λ1L+ E[Wn+1(Y
n+1
1 , λ1)|y

n
1 ]]

≥ min[ρn(yn
1 ), λ2L+ E[Wn+1(Y

n+1
1 , λ2)|y

n
1 ]]

= Wn(yn
1 , λ2). (7.14)

Analogously,Wn(yn
1 , λ1) is the minimum of a two continuous functions.

Proof of Theorem 4: From equation (7.12) and Lemma 1, ifλ1 ≥ λ2 ≥ 0, then

ρn(yn
1 ) ≤ λ2L + E[Wn+1(Y

n+1
1 n, λ2)|yn

1 ] ≤ λ1L + E[Wn+1(Y
n+1
1 n, λ1)|yn

1 ]. This

means thatφ∗n
2 (yn

1 ) = 1 =⇒ φ∗n
1 (yn

1 ) = 1. Hence proved.
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Theorem 4 shows that optimal feedback generation rules for differentλ are embed-

ded. This property is very useful for progressive transmission. Consider the transmis-

sion of a single source vector using the transmission schemediscussed here. Suppose

the transmission starts with the decoder using an optimal feedback generation rule for

certainλ. Theorem 4 implies that, at any step in transmission, the decoder can switch to

an optimal feedback generation rule for a lowerλ, i.e. a higher rate,without losing op-

timality. It never happens that, for a set of received codewords, the feedback generation

rule designed for a higher rate sends an ACK and one designed for lower rate sends a

NACK.

The collection of optimal feedback generation rules can be characterized further as

follows.

7.6 The Feedback-Threshold function

For the remaining part of the chapter, letφ∗
λ, ( andφ∗n

λ ) denote the optimal feedback

generation rule (and respectively, optimal feedback generation maps) for the Lagrangian

rate penaltyλ. For any sequence of received codewordsyn
1 ∈ YnL,, consider the set

B(yn
1 )

def
= {λ : φ∗n

λ (yn
1 ) = 1}. From eq. (7.12), this set is the same as{λ : ρn(yn

1 ) ≤

λL+E[Wn+1(Y
n+1
1 , λ)|yn

1 ]}. As the functionλL+E[Wn+1(Y
n+1
1 , λ)|yn

1 ] is continuous

as a function ofλ, andB(yn
1 ) is the inverse image of[ρn(yn

1 ),∞) under that function,

B(yn
1 ) is a closed set. From Theorem 4,B(yn

1 ) is of the form,[λ0,∞), for some number

λ0 ≥ 0, which depends onyn
1 . Define a functionΛ∗n(yn

1 ) : YnL → [0,∞) as,

Λ∗n(yn
1 )

def
= inf{λ ∈ B(yn

1 )}. (7.15)

Then clearly, the random variableΛ∗n(Y n
1 ), has the property thatφ∗n

λ (Y n
1 ) = 1 if

and only ifΛ∗n(Y n
1 ) ≤ λ for all λ ≥ 0. Hence we have the following interesting result.

171



Theorem 5 The optimal feedback generation rulesφ∗
λ satisfy,

φ∗n
λ (Y n

1 ) = u(λ− Λ∗n(Y n
1 )) (a.e.) forn = 0, 1, . . . T, andλ ≥ 0, (7.16)

whereu is the unit step function,i.e. u(λ) = 1 if λ ≥ 0 and0 otherwise.

Proof: The proof is just outlined above. Note that eq. (7.16) is trueonly for the optimal

feedback generation rules obtained from eq. (7.10) ( or eq. (7.12)).

We shall refer to the functionsΛ∗n(yn
1 ) as theFeedback-Threshold functions or

maps.

The result is interesting because it “reduces” the task of designing a different feed-

back generation rule for everyλ to constructing a single collection of mapsΛ∗n from

which all optimal feedback generation rules can be obtained.

7.7 Characterization of Feedback-Threshold Function

To characterizeΛ∗n(Y n
1 ) further , consider the following definitions. Define, for any

feedback generation mapφ with φT (Y T
1 ) = 1, the functionDT (φ, Y T

1 )
def
= ρT (Y T

1 ).

And define recursively,

∆Dn(φ, Y n
1 )

def
= ρn(Y n

1 ) − E
[
Dn+1(φ, Y n+1

1 )|Y n
1

]
for n = 0, 1, . . . T − 1, (7.17)

Dn(φ, Y n
1 )

def
= ρn(Y n

1 ) − (1 − φn(Y n
1 ))∆Dn(φ, Y n

1 ) for n = 0, 1, . . . T − 1.(7.18)

Analogously define

RT (φ, Y T
1 )

def
= TL (7.19)

∆Rn(φ, Y n
1 )

def
= E

[
Rn+1(φ, Y n+1

1 )|Y n
1

]
− nL for n = 0, 1, . . . T − 1, (7.20)

Rn(φ, Y n
1 )

def
= nL+ (1 − φn(Y n

1 ))∆Rn(φ, Y n
1 ) for n = 0, 1, . . . T − 1. (7.21)
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Notice thatDn(φ, Y n
1 ) andRn(φ, Y n

1 ) depend only onφi(Y i
1), i = n, n + 1, . . . , T .

Also ∆Dn(φ, Y n
1 ) and∆Rn(φ, Y n

1 ) do not depend on the value ofφn(Y n
1 ) but only on

φi(Y i
1), i = n+ 1, . . . , T .

It is straightforward to verify thatDn(φ, Y n
1 ) equalsD(φ, c∗) for n = 0, where

D(φ, c) is defined in eq. (7.2) andc∗ is defined in eq. (7.5). SimilarlyRn(φ, Y n
1 )

equalsR(φ) in eq. (7.1). Also∆Rn(φ, Y n
1 ) ≥ L > 0 for anyn.

Equations (7.18) and (7.21) isolate the dependence ofDn(φ, Y n
1 ) andRn(φ, Y n

1 ) on

the functionφn(Y n
1 ). Also, by definition,(1 − φn(Y n

1)) ≥ 0. Therefore the following

lemma about separation of minimizations holds.

Lemma 2 For any Lagrange Multiplierλ ≥ 0, and forn = 0, 1, . . . T − 1,

min
φi(yi

1),i=n,n+1,...,T
Dn(φ, yn

1 ) + λRn(φ, yn
1 ) =

ρn(yn
1 ) + λnL+ min

φn(yn
1 )

(
(1 − φn(yn

1 ))

(
min

φi(yi
1),i=n+1,...,T

{−∆Dn(φ, yn
1 ) + λ∆Rn(φ, yn

1 )}

))

Consequently, to minimizeDn(φ, yn
1 ) + λRn(φ, yn

1 ), we must setφn(yn
1 ) = 0 if and

only if minφi(yi
1),i=n+1,...,T (−∆Dn(φ, yn

1 ) + λ∆Rn(φ, yn
1 )) < 0.

With these results, we are equipped to show the main result ofthis section.

Theorem 6

Λ∗n(yn
1 ) = sup

φi(yi
1),i=n,n+1,...,T

∆Dn(φ, yn
1 )

∆Rn(φ, yn
1 )

(7.22)

Proof: First, note from the recursive definition (eq. (7.17) and (7.20)) that if functions

φi(yi
1), i = n + 1, . . . , T minimizeDn+1(φ, yn+1

1 ) + λRn+1(φ, yn+1
1 ) for all yn+1

1 , then

they minimize−∆Dn(φ, yn
1 ) + λ∆Rn(φ, yn

1). Second, define

λ̂n(yn
1 )

def
= sup

φi(yi
1),i=n,n+1,...,T

∆Dn(φ, yn
1 )

∆Rn(φ, yn
1 )

We shall show thatΛ∗n(yn
1 ) = λ̂n(yn

1 ), i.e. if λ ≥ λ̂n(yn
1 ) then settingφ∗n

λ (yn
1 ) = 1 and

if λ < λ̂n(yn
1 ) thenφ∗n

λ (yn
1 ) = 0, is optimal.
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Case 1:For anyλ > λ̂n(yn
1 ) and anyφ, we have ,

−∆Dn(φ, yn
1 ) + λ∆Rn(φ, yn

1 )

=

(
−

∆Dn(φ, yn
1)

∆Rn(φ, yn
1 )

+ λ

)
∆Rn(φ, yn

1 )

> 0 as∆Rn(φ, yn
1 ) > 0.

Therefore, by Lemma 2,φ∗n
λ (yn

1 ) = 1.

Case 2:Similarly, if λ < λ̂n(yn
1 ) then, by definition of supremum, there is a feedback

generation ruleφ′ such that,λ < ∆Dn(φ
′

,yn
1 )

∆Rn(φ
′

,yn
1 )

≤ λ̂n(yn
1 ). consequently,−∆Dn(φ′, yn

1 )+

λ∆Rn(φ′, yn
1 ) < 0. By Lemma 2 we must setφ∗n

λ (yn
1) = 0.

Case 3: If λ = λ̂n(yn
1 ), for anyφ, −∆Dn(φ, yn

1 ) + λ∆Rn(φ, yn
1 ) ≥ 0. Therefore,

we can safely setφ∗n
λ (yn

1 ) = 1 without any penalty. Therefore, we can setφ∗n
λ (yn

1 ) =

u(λ− λ̂(yn
1 )). Hence Theorem 6 holds.

Case 3 leads us to more explicit characterization of feedback-threshold functions

Λ∗n(Y n
1 ).

Lemma 3 Consider the design of optimal feedback generation rule forλ̂n(yn
1 ), i.e. the

solution of minimization problem

min
φi(yi

1),i=n+1,...,T

{
−∆Dn(φ, yn

1 ) + λ̂(yn
1 )∆Rn(φ, yn

1 )
}
. (7.23)

Thenφ∗
λ̂n(yn

1 )
is a solution to the above minimization if and only if

−∆Dn(φ∗
λ̂n(yn

1 )
, yn

1 ) + λ̂(yn
1 )∆Rn(φ∗

λ̂n(yn
1 )
, yn

1 ) = 0.

Proof: Establishing sufficiency is straightforward as, for any feedback generation rule,

and hence forφ∗
λ̂n(yn

1 )
, by definition ofλ̂n(yn

1 ) we must have,

∆Dn(φ∗
λ̂(yn

1 )
, yn

1 )

∆Rn(φ∗
λ̂n(yn

1 )
, yn

1 )
≤ λ̂(yn

1 )

=⇒ −∆Dn(φ∗
λ̂(yn

1 )
, yn

1 ) + λ̂(yn
1 )∆R(φ∗

λ̂(yn
1 )
, yn

1 ) ≥ 0. (7.24)
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We show the necessity as follows. By definition of the minimum,

−∆Dn(φ∗
λ̂n(yn

1 )
, yn

1 ) + λ̂(yn
1 )∆R(φ∗

λ̂n(yn
1 )
, yn

1 )

≤ −∆Dn(φ, yn
1 ) + λ̂n(yn

1 )∆Rn(φ, yn
1 ) for all φ

=⇒ 0 ≤ −∆Dn(φ∗
λ̂n(yn

1 )
, yn

1 ) + λ̂n(yn
1 )∆R(φ∗

λ̂n(yn
1 )
, yn

1 )

≤ ∆Rn(φ, yn
1 )(−

∆Dn(φ, yn
1 )

∆Rn(φ, yn
1 )

+ λ̂n(yn
1 ))

As ∆Rn(φ, yn
1 ) is bounded above byTL and by definition of supremum the second

term in right hand side can be made arbitrarily small, we musthave the left hand side

equal to zero. Therefore Lemma 3 is established.

Finally, we establish the uniqueness ofΛ∗n(Y n
1 ).

Theorem 7 For some non-negativeλ, if

min
φi(yi

1),i=n+1,...,T
{−∆Dn(φ, yn

1 ) + λ∆Rn(φ, yn
1 )} = 0 (7.25)

thenλ = λ̂n(yn
1 ). Therefore equation (7.25) is necessary and sufficient condition for

computation of̂λn(yn
1 ) and hence that ofΛ∗n(yn

1 ).

Proof: We have already seen in Lemma 3 thatλ̂n(yn
1 ) satisfies equation (7.25). It is

straightforward to check that, fora, b ≥ 0 and c, d > 0, if λ1 andλ2 are such that

−a+ λ1b = 0 ≤ −c+ λ1d and−c+ λ2d = 0 ≤ −a+ λ2b, thenλ1 = λ2. Therefore no

otherλ can satisfy equation (7.25). Hence proved.

7.8 Progressive Transmission and Receiver Driven Rate

Control

The embeddedness of the optimal policies and the existence of Λ∗(Y n
1 ) is a very use-

ful property that can come in handy in a variety of application scenarios. Note that,
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by extending the definition of NACK to mean a permission to continue transmission,

ACK/NACK can be actively used for receiver driven rate control. As the optimal policies

are embedded, the progressive transmission, say that of an image, can be accomplished

without losing optimality at the terminal and at intermediate transmission budgets. The

quality of the received image can be successively improved as new bits are received. The

optimal feedback generation rules reveals a very simple structure in the form of Theo-

rem 5. If the feedback-threshold functionΛ∗(Y n
1 ) is known or if it can be approximated,

then the ACK/NACK generation for a range of operating pointscan be accomplished at

once. Secondly, the receiver can switch from operating at a low average -transmission

rate to a higher average transmission rate, in the middle of atransmission, without losing

optimality of the rate-distortion tradeoff. The rate control technique can be potentially

useful in the following situations.

Delay-limited Reconstruction: In interactive applications such as video conferencing,

a quick reconstruction at low transmission budget for the foreground, and slow but de-

tailed and error free reconstruction of the background might be used, provided such

a separation is available. Controlling the ACK/NACK of the appropriate packets may

allow a trade off between reconstruction speed and quality.

Bandwidth/Data Rate-limited Reconstruction: While receiving statistically multi-

plexed streams of variable rate at a receiver, the transmission rates of one or more of the

streams can be controlled using appropriate ACK/NACK feedback.

Computation-Limited and Buffer-Size limited Reconstruction: Similarly, for a multi-

tasking environment such as a server at a base station, the CPU usage and memory allo-

cated to an incoming stream over a noisy channel can be variable. Based on the current

processing capability, some amount of control can be exercised by appropriate operating

point selection in the feedback generation rules.
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Tolerance-Limited Reconstruction: In digital encoding of video, the intra-coded frames

generate a lot more data than predictive or “inter” coded frames. The predictive frames

can be thought of as incremental information. In a low noise environment, fewer intra-

coded frames can be transmitted while in a noisy environmentthey need to be more

frequent. The switching between the two for best rate-distortion performance can be

accomplished by the use of ACK/NACK feedback.

7.9 Conclusions

In this chapter we addressed a slightly more general problemof transmission of loss tol-

erant sources over noisy channels in the presence of ACK/NACK feedback. We extend

the interpretation of NACK to mean “a permission to continuetransmission”, which

permits the transmitter to transmit additional redundancy, or even completely new in-

formation on receiving NACK. We continued the first principles approach from the last

chapter to establish optimal feedback generation rules andoptimal reproduction rule,

for an embedded encoder which transmits new information about the source at each

transmission. We showed the close link between the transmission of such a source with

ACK/NACK feedback and the PTSVQ. We also showed that the PTSVQ property holds

for continuous valued output. Hence we obtain that the optimal feedback generation

policies are embedded. Then we investigated the structure of the embedded policies fur-

ther and showed that the optimal policies for all Lagrange multipliers λ have a simple

form in terms ofλ and a feedback-threshold function of the received codewords. We

also investigated the structure of the feedback-thresholdfunction further and obtained a

necessary and sufficient condition for computing its value at each sequence of received

codewords.
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We have not provided an explicit algorithm for computation of the feedback-threshold

function. But such an algorithm can be conceived. When the observations (received

codewords) take discrete values, the pruning algorithm of PTSVQ [15] is useful. It can

be shown that the value of the feedback-threshold function at a node, is equal to the

slope of a subtree at that node, just before it gets pruned. For continuous valued ob-

servations, an iterative successive approximation algorithm based on eq. (7.25) may be

found. We have not addressed the algorithm design in this thesis.
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Chapter 8

Conclusions and Future Work

8.1 The Theme

In the thesis we consider transmission schemes of loss-tolerant sources, mainly images

and synthetic sources over noisy and lossy channels. We propose solution and design

schemes for a collection of problems which are closely related and at the same time

require different methodology/approaches.

The common threads in the thesis are:

• Joint Source-Channel Rate Scalability and Optimized Progressive Transmis-

sion: The existence of rate-distortion curves, that is, the possibility of constructing

approximate reconstructions makes the problem of compression and transmission

of loss tolerant multimedia sources different from that fordata. Rate Scalable

source coders offer the flexibility of selecting the rate from a single bitstream. In

absence of noise or loss they allow progressive transmission of the source where

the source is constructed with increasing quality at the receiver as the receiver

gets more and more bits. The emphasis of the thesis, in particular that of Chap-

ters 2, 4, 5, 6, and 7 was on extending this property in the presence of noise and
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loss. Chapters 2, 6, and 7 accomplish this with the help of a feedback channel. In

Chapters 4, 5 we provide an approach to carry our progressivetransmission in

the absence of feedback. We achieve operational optimalityof the joint source-

channel coder by unequal error protection of a rate scalablesource coder. On the

other hand, progressive character is obtained by arate compatiblechannel code

family, and byschedulingof source and parity bits for operational optimality at

a number of rates. The scheduling generates a single stream of bits, whose pre-

fixes carry optimally allocated source and channel bits for the corresponding bit

budget. In this way the proposed systems achieve a “Joint Source-Channel Rate

Scalability ‘ in the absence of feedback‘.

The optimality of rate allocations in feedback based schemes is discussed in Chap-

ter 2. The combination of HARQ protocol and rate-scalable source coder auto-

matically carries out optimal allocation of source-bits and channel bits during the

transmission. This allocation is also “automatically” adaptive, when the channel

is a time-varying (finite-state) channel.

Chapters 6, and 7 establish a optimized rate-scalability orprogressivity of a to-

tally different kind. There the receiver can control the operating point on the rate

distortion curve by selecting the feedback appropriately.We establish that the op-

erating points can be switched from lower rate to higher ratein the middle of the

transmission of a single source-vector. In this way, operationally optimal feedback

generation policies are shown to be rate-scalable.

• Feedback, No Feedback and Limited Feedback: The thesis, essentially for

the first time, (with the exception of independent work of [37] ) makes use of

feedback channel from a joint-source-channel coding perspective. The use of a

simple ACK/NACK feedback can significantly improve the performance of a joint
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source-channel coding system. This was demonstrated by designed illustrative

image transmission systems which achieve up to 1.2 dB improvement in PSNR for

the chosen binary symmetric channels and up to 2 dB improvement in PSNR for

the chosen Gilbert-Elliot channels, compared to state of the art high performance

joint source-channel coding systems which use pure FEC.

We restrict our attention to systems which use the feedback channel sparingly,

and in Chapters 2 and 3 provide explicit algorithms to control the use of feedback

which yields optimal tradeoff between the parameters of interest, namely through-

put vs.. complexity. That allows us to compare the benefit of using feedback with

that of not using feedback as mentioned above.

In Chapters 6, and 7 we again undertake the investigation of joint source-channel

schemes which use feedback. In Chapters 2 and 3 feedback is mainly used for er-

ror control. The automatic adaptive source-channel rate allocation is a bonus. In

Chapters 6, and 7 we take the first principles approach and devise feedback gener-

ation schemes and decoders which explicitly use the distortion metric. We charac-

terize the optimal schemes and also provide a number of suboptimal but efficient

solutions. Simulation results show that this can yield large gains over BER-based

feedback generation schemes which treat the source-coder bits equally.

The main message of this investigation is that feedback is useful, and can be

exploited in a controlled fashion to yield significant gainsin joint source-channel

coding systems.

• Sequential Nature of the Solutions:

Though the optimization problems encountered in Chapters 2and 3 are different

from those in Chapters 4 , 5, and Chapters 6, and 7, the solutions are related in
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some sense. The problems in Chapters 2 and 3 are solved by Controlled Markov

Chain (Markov Decision Processes) approach. The solution of problems in Chap-

ters 4 can be thought of as controlled Markov Chains in the absence of state obser-

vations. Solution to the problems, in Chapters 6, and 7 whereonly the decoder is

involved, are also shown to be problems in sequential decision theory which im-

plies design in the absence of observation. This way there isan underlying unity

in the techniques presented.

8.2 Future Research Directions

A number of interesting questions can be asked based on the work presented in the

thesis, which merit further investigation.

• Image Transmission: Tradeoff of Rate-Scalability and Robustness with flex-

ible selection of image coders, under small feedback:We argued in Chapter

2 that a combination of a completely embedded source coder and an optimized

hybrid ARQ protocol is the best combination for maximizing end to end image

quality. When ACK/NACK feedbacks are used for every packet,the quality is

maximized for all transmission budgets. On the other hand, in Chapter 4 we de-

signed schemes for progressive transmission of a fixed embedded source-coder

in the absence of feedback, under the assumption that the only the longest cor-

rectly decoded prefix of the source bitstream is useful for reconstruction. This

assumption is true for efficient rate scalable source coderslike SPIHT. But the

source coders can be modified to increase robustness by giving up some of the

efficiency in rate scalabilitye.g. the idea presented in [51]. This is done by gen-

erating several independent bitstreams instead of a singlebitstream. In general,
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more independent streams result in a loss in the distortion-rate performance and

less efficient rate scalability. If the use of feedback channel is severely limited,

(say 2 or 3 uses of the feedback channel for entire transmission), the situation is

somewhere in between the cases of Chapters 2 and 4. It is interesting to investigate

how the selection of source-coders, unequal error protection, and feedback chan-

nel be combined to obtain best end-to-end performance for a fixed transmission

budget and rate scalable transmission schemes which are efficient at intermediate

transmission budget.

• HARQ protocols on Time Varying Channels: Tradeoff of Delay,Throughput

and Feedback usage, under interleaving:In the absence of feedback channel,

the way to combat time-variability of the channels is to use interleavers and burst

error correction codes. When the feedback channel is available, appropriately de-

signed HARQ protocols work well. If the feedback usage is severely constrained

a combination of the two approaches is needed. What combination gives the best

tradeoff of performance parameters, such as delay, throughput and feedback us-

age, is of interest. Also, exact analysis/design techniques for constrained HARQ

protocols over time varying channels need to be investigated.

• On-the-Fly HARQ Protocol Design and Adaptive Negotiation for Time Vary-

ing Channels : It can be argued that fast changes in the channel are best han-

dled by interleavers/burst error correction, moderately slowly varying channels

are handled by HARQ protocol design as discussed in Chapter 2and 3. If the

channel variation is drastic but slow a change in the protocol used might be ben-

eficial. An interesting question is how to carry out quick protocol design and

smooth negotiation of the protocol between the transmitterand the receiver, so

that, channel changes can be tracked by protocols which yield high throughput
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for the current channel conditions.

• Packet Length selection:The algorithms developed in the thesis, and a number

of works presented by other researcher in literature, assume fixed, known, pre-

specified packet (block, frame, word) lengths for source/channel coding or trans-

mission. We have seen that, sometimes the complexity and theperformance of a

number of schemes crucially depends on the packet lengths chosen. A systematic

way of selection of packet lengths suitable for any particular application/ trans-

mission scheme , in itself merits investigation.

• Combined Source-channel Encoder design in the presence of feedback: As

described in the classification of schemes with feedback in 6, Chapters 2 and 3 are

active-encoder active-decoder systems which are active only for error-protection

purposes. On the other hand, the systems described in Chapters 6 and 7 are

passive-encoder, active-decoder systems, which are “true” joint source-channel

systems, as the decoders cannot be decomposed into the stepsof error-correction

followed by source-reconstruction. As we mentioned in Chapter 6, it is of consid-

erable interest to design active-encoder joint source-channel coding systems, in

which the source-channel encoder (quantizer + index assignment) is aware or the

channel statistics as well as of the fact that a feedback channel is available.

• Ultimate Goal: Delay-Complexity-Memory constrained communication: An

ultimate goal is to design a communication system, in which acollection of dis-

tributed sensors, encode correlated sources, in a scalableor non-scalable fashion,

using single or multiple descriptions, communicate to a destination on a network

with lossy links, using forward error correction, interleaving, hybrid or pure ARQ

or more general feedback based protocols, single or multiple routes, single or mul-
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tiple transmit or received antennas, to yield the best reproduction of the source or

best extracted useful information, in a given finite time, with a given limited com-

plexity and memory.1

8.3 In Closing

It is exciting to be living in these revolutionary times.

1As in many textbooks, this problem has been left as an exercise to the reader.
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