ABSTRACT

Title of Dissertation: PROGRESSIVE SOURCE-CHANNEL CODIN®R
MULTIMEDIA TRANSMISSION OVER
NOISY AND LOSSY CHANNELS
WITH AND WITHOUT FEEDBACK

Vinay Chande, Doctor of Philosophy, 2004

Dissertation directed by: Professor Nariman Farvardin
Department of Electrical and Computer Engineering

Rate-scalable or layered lossy source-coding is usefyyrfmgressiveransmission
of multimedia sources, where the receiver can reconstnecdurce incrementally. This
thesis considers “joint source-channel” schemes for symogressive transmission, in
the presence of noise or loss, with and without the use ofdbfeek link.

First we design image communication schemes for memorgleginite state chan-
nels usindimited and explicitly constrainedse of the feedback channel in the form of a
variable incremental redundancy Hybrid ARQ protocol. Gaaeing feedback allows a
direct comparison with schemes without feedback. Optichieedback based systems

are shown to have useful gains.



Second, we develop a controlled Markov chain approach fosttained feedback
Hybrid ARQ protocol design. The proposed methodology adldte protocol to be
chosen from a collection of signal flow graphs, and also alexplicit control over the
tradeoffs in throughput, reliability and complexity.

Next we consider progressive image transmission in thenalesef feedback. We
assign unequal error protection to the bits of a rate-stalsturce-coder using rate
compatible channel codes. We show that, under the framewwlsource and channel
bits can be “scheduled” in a single bitstream in such a watydperational optimality is
retained for different transmission budgets, creatingexsaalable joint source-channel
coder.

Next we undertake the design of a joint source-channel dedbct uses “distor-
tion aware” ACK/NACK feedback generation. For memorylekarmels, and Type-I
HARQ), the design of optimal ACK/NACK generation and decadoy packet combin-
ing is cast and solved as a sequential decision problem. \tégnotbynamic program-
ming based optimal solutions and also propose suboptiovagricomplexity distortion-
aware decoders and feedback generation rules which ootpexonventional BER
based rules such as CRC-check.

Finally we design operational rate-distortion optimal AGIKCK feedback gener-
ation rules for transmitting a tree structured quantizesr@a/memoryless channel. We
show that the optimal feedback generation rules are embetit# is, they allow incre-
mental switching to higher rateliring the transmissiarAlso, we obtain the structure
of the feedback generation rules in terms of a feedbackhbtédunction that simplifies

the implementation.



PROGRESSIVE SOURCE-CHANNEL CODING FOR
MULTIMEDIA TRANSMISSION OVER
NOISY AND LOSSY CHANNELS
WITH AND WITHOUT FEEDBACK

by

Vinay Chande

Dissertation submitted to the Faculty of the Graduate Sobidihe
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2004

Advisory Committee:

Professor Nariman Farvardin, Chairman/Advisor
Professor K. J. Ray-Liu

Professor Rama Chellappa

Professor Min Wu

Professor Ben Kedem



(© Copyright by
Vinay Chande
2004



DEDICATION

To

My parents



ACKNOWLEDGEMENTS

They say in ancient Indian texts that it is ignorance to belithat one is
the (sole) doer of any activity. Ph.D., although sometimasg@ved as an
example of individual accomplishment, might be one of th&t beportuni-

ties to realize that ancient precept over and over. Hendeelttas page and
the next to express my gratitude for getting this opporjutadtdo what has

been a dream of all my life.

First and foremost, | would not have been able to make thisgy over-
come my limitations and carry through to the finish line hadat been
for Dr. Farvardin’s kindness, generosity and patient ermgement. | have
realized repeatedly that whenever | listened to him, goowythhappened.
His feedbacks made papers more readable by an order of mdgnHiis re-
search world-view has shaped mine. On a more personal frisppersonal
leadership, and dynamic combination of sincerity and esittaim has been
more than an inspiration for me. | noticed that after evergtimg with him,
| was filled with renewed vigor and almost palpable increasakiefulness.

It has been an honor and privilege to work under his tutelage.

| thank my committee members, Professors Dr. Liu, Dr. Cippia Dr. Wu
and Dr. Kedem for taking their time and being patient with inalue their

feedback immensely.



| am very happy to acknowledge my fellow researchers at tdeantl the
new CSPL. In particular, Andres Kwasinski with whom | havengoexcit-
ing continuing collaborative work, Mehdi Alasti, Hugh Bikuwith whom |

had long technical discussions, and Hamid Jafarkhani,ra pobject with
whom kick-started my research. | must also acknowledge, vlrari,

Damianos, Kfir, Mike and other fellow graduate students wiznlenCSPL
and ECE an intellectually stimulating as well as fun envinemt. | also
thank Dr. Liu and Dr. Wu for letting me attend their group niegs$ as part
of the new CSPL.

| cannot say enough for the love and support | have gotten fnyrfriends
throughout these years. Sanjay, Sachin and Namrata havedreetly
involved in keeping me moving for a long time. Sumod, AnirbddAmol,
Mukul, Siddarth, Arindam have been a dream of roommates etxehhom
has individually and collectively been there for directfjednd cheering
as well. This has been a long time span, and | acknowledgeinsa
chronological order, Niranjan, Anand, Sandeep, Sreek&sjesh, GD and

Anna for their cherished friendship and sanity-keeping.

In the end, | dedicate this thesis and these years to my garghti Vi-

jay and Sau Vijaya Chande, who together form that eternekhaustible,
source of love, from which | draw strength and power every moinThe
infiniteness of their love, patience, encouragement andassconvinces

one of the existence of the divine. Love you aaibaba.



TABLE OF CONTENTS

List of Tables X
List of Figures Xi
1 Introduction 1
1.1 Multimedia Sources over Noisy Channels . . . . ... ......... 1
1.2 JointSource-ChannelCoding . . . . . .. . ... ... ... ..... 3
1.3 Rate-scalable or Embedded Source Coding and Progrdssinsmission 4
1.4 FeedbackChannel. . . ... ... ... ... .. ... . ........ 5
1.5 Contribution of the Thesis and its Overview . . . . .. .. ..... 7
1.6 The Issue of Delay and Transmission of Real-Time Sources. . . . 11
1.7 OVerview . . . . . . 12
2 Image Communication over Noisy Channels with Feedback 13
2.1 Motivation. . . . . . . 13
2.2 Transmission over Memoryless Channels . . ... ... ... ... 14
2.2.1 TheFeedbackChannel . . ... ... ... ........... 14
2.2.2 Selection of the Source-Coder . . . . . ... ... ... ..., 16
2.3 Variable Incremental Redundancy Hybrid ARQ protocol ..... . .. 18
2.3.1 Gain of using the Feedback Channel . . . . ... ... ..... 20



2.4 The Design Problem and the Solution . . . . ... ... ....... 21

2.5 Results for MemorylessChannel . . . .. .. ... ... ....... 24
2.6 Extensionto Finite State Channels . . . . . .. ... ... ... .. 26
2.6.1 Gain of using the Feedback Channel . . . . .. ... ... ... 28
2.7 Changesinthe Protocol . .. ... ... ... ... ... ..... 29
2.8 The New Problem and the Solution . . . . . .. ... ... ...... 0 3
2.8.1 Throughput Estimation . . . . .. ... . ... ......... 31
2.9 Simulation Results for Gilbert Elliot Channels . . . . . ... .. .. 32
2.10 Conclusion . . . . . .. 35
Constrained Feedback Hybrid ARQ Design 39
3.1 Introduction . . . . . . . ... 39
3.2 ARQ and Hybrid ARQ Protocols . . . . .. ... ... ......... 42
3.3 Controlled Markov ChainforHARQ . . . . .. ... .. ... .... 44
3.4 Performance Computation fora HARQ Protocol . . . . ... ..... 46
3.5 Constrained Feedback HARQ Design . . . . . .. ... ... .... 8 4
3.5.1 Interpretation of the Lagrangian . . . .. .. .. ... .... 52
3.5.2 Feasibility. . . ... ... . 53
3.6 Results with Reed SolomonCodes . . . . ... ... ......... 4 5
3.7 Conclusion . ... ... 56

3.8 Appendix: Transition Probabilities for CHARQ with Re8dlomon Codes 62

Progressive Unequal loss Protection in the absence of Fdwatk 72

4.1 Introduction . . . . . . . .. 72
4.2 The TransmissionScheme . . . .. ... ... ... ... ....... 75
4.3 Optimal Unequal Protection for Memoryless Channel . ...... . . . 77

Vi



4.4
4.5
4.6

4.3.1 Performance Criteria . . . . . . . . . . . . ... .. 78

4.3.2 Solution to Optimization Problems . . . . . . .. ... .. .. 81
4.3.3 Complexity . . . . . . . .. . e 85
Progressive Transmission . . . . . . . . . . .. .. . ... 87
SimulationResults . . . . . . ... ... oo 90
Conclusion . . . . . . . e 93

Progressive Image Transmission over Compound Packet Erage Chan-

nels
5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8

103
Introduction . . . . . . .. 103
Compound Packet Erasure Channels . . . . ... ... ...... 106
TransmissionScheme . . . . . . . . ... ... oL 107
5.3.1 Packet Erasure CorrectingCodes. . . . . .. .. ... ... 09 1
Performance Criterion . . . . . . . . . . . ... .. 011
Progressive Unequal Erasure Protection . . . ... ... ... .. 112
Results. . . . . . . . 115
Progressive Interleaving for Packet Erasure Channels .. . . . .. 116
Conclusion . . . . . .. 119

Source-Channel Decoding with Optimal Use of ACK/NACK Feeback 124

6.1
6.2
6.3
6.4
6.5
6.6

Reverting to First Principles . . . . . . .. ... ... .. ...... 124
General Formulation for a System with ACK/NACK Feedback . . . 126
Performance Measurement . . . . . . . .. .. .. ... .. .. ... 8 12
Classification of the Transmitters . . . . . . ... ... ... .... 130
Decoder Structure . . . . . . . .. 132
DecoderDesign . . . . . . . . . 133

Vil



6.7

Packet Combining for Joint Source-Channel ARQ over Mgtass Chan-

nels . . . . 134
6.8 Transmission Scheme and Notation . . . . ... .......... 135
6.9 DecoderDesignProblem . . . ... ... ... ... .. .. L. 136
6.10 Sequential Decision Problem . . . . . ... .. ... .. ...... 137
6.11 Optimal Sequential Design . . . . . .. .. .. .. ... ...... 138
6.12 Suboptimal Schemes . . .. ... .. ... ... ... ... ... 141

6.12.1 Scheme DIST: Distortion based Feedback Generatim R. . 142

6.12.2 Scheme FINHZN: Finite Horizon Optimal Rules . . . . .. 143
6.12.3 Scheme FINLKHD: Finite Lookahead Rules . . . ... . .. 44 1
6.13 CRC Based and BER based Systems for Comparison . . .. ... 144
6.13.1 Zero Redundancy BER based Techniques . . . . ... ... 47. 1
6.13.2 Results . . . ... ... . . ... 148
6.14 Conclusion . . . . . . ... 156
Pruned Tree Structured Quantization in Noise and Feedback 159
7.1 Pruned Tree Structured Vector Quantizers . . .. ... .. ... . 160
7.2 Extending the Interpretation of ACK/NACK . . . . ... ... ... 162
7.3 Transmission Set-up and Notation . . .. .. ... ......... 163

7.4
7.5
7.6
7.7
7.8
7.9

7.3.1 PTSVQ as Bayesian Sequential Decisions over Nos€leannel165

DecoderDesign . . . . . . . . . 166
Embedded Optimal Policies . . . . ... ... ... .......... 916
The Feedback-Threshold function . . . . .. ... ... ... ... 171
Characterization of Feedback-Threshold Function . ... ... . 172
Progressive Transmission and Receiver Driven Rater@ont. . . . . 175
Conclusions . . . . . . . .. 177

viii



8 Conclusions and Future Work 179

8.1 TheTheme . . . . . . . . . . . e e 179

8.2 Future Research Directions . . . . . . . . . . . . . ... ... ... 182

8.3 InClosing . . . . . . . . 185
Bibliography 186



2.1
2.2

2.3

2.4

2.5

3.1

3.2

6.1

LIST OF TABLES

PSNR (dB) Results for Image LENNA overBSC's. . . . . ... ... 26
PSNR (dB) Performance of optimized policies over G-E chhwité different
parameters: 1) System A - unconstrained feedback 2) SystegoBstrained
feedback, Image: Lenna.. . . . . . . . .. . ... oo 36
Throughput observed vs. estimated, for G-E channel witkdint parameters:

1) System A - unconstrained feedback 2) System B - consttdeedback.. . 37

Average number of feedbacks per source-packet for Gildkot Ehannel with

Performance of various schemes for symbol symmeétfi¢32) channel
withp, =0.1 . . . . . 70
Performance of various schemes for symbol symmeétFi€32) channel

WIth pe = 0.05 .« « o o o e 71

Transition probabilities of the derived discrete chafor different AWGN

SNR'S. . . 149



11

2.1

2.2
2.3

2.4
2.5

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8

LIST OF FIGURES

Thesis Organizationand summary . . . . ... ... ... ...... 12

Typically, for a SPIHT like image coder, only the largagilable prefix
of the bitstream can be used for image reconstruction. . . . . . . . 17
Block Schematic of Designed Scheme for Image Transamissi. . . . 18
Performance Comparison for progressive transmissiomege LENNA
over BSC, with and without a feedback channel. BER 0.01 ahd Q.. 27
Gilbert-Elliotchannel . . . . . .. .. ... ... ... ... .... 28
Average PSNR (dB) Performance comparison for differenéseds for Lenna:

Gilbert-Elliot Channel withPg = 0.1, T =400 bits. . . . . . . . . . . .. 33

State-action diagram for Type-1l HARQ with direct comdiion . . . . 46

State-action diagram for general HARQ with error fresgifgack and no

tiMmeouts . . . . . . . .. 47

Throughput Vs. Feedback Performance of Various Schéines0.1 . 57
Reliability Vs. Feedback Performance of Various Schefe=0.1 . . 57
Reliability Vs. Throughput Performance of Various Soles: P, = 0.1 58
Throughput Vs. Feedback Performance of Various Schemes 0.05 58
Reliability Vs. Feedback Performance of Various Scheme= 0.05 . 59
Reliability Vs. Throughput Performance of Various Soles: P, = 0.05 59

Xi



3.9 Performance of various schemes for channels Rita- 0.01 andP, =

3.11 Error Pattern of weight, and codeword of weight Non-zero coordi-

nates in the error pattern disagree @aces. Zero coordinates disagree

atbplaces. . . . . . .. e 64
4.1 Trellis for maximizing the performance for arbitrafy. . . . . . . . . . .. 85
4.2 Trellis for maximizing the average useful source codingrat. . . . . . . . 86

4.3 Progressive transmission with two policies; shaded artransmitted second 94
4.4 Optimal progressive transmission of five source-packbesntimbers indicate

the sequence in which bits are transmitted. . . . . . . . . .. ... ... 94
4.5 Average PSNR performance of unequal error protection oeenanyless chan-

nels for the image Lenna. Code family A,BER=0.01. . . . . . ... .. 95
4.6 Theloss of PSNR in EEP schemes and optimal UEP scheme magnaizer-

age useful source coding rate compared to the optimal UEEhsemaximiz-

ing PSNR for the image Lenna. Code family A. BER=0.01.. . . . . . . . 96

4.7 Average PSNR performance of unequal error protection oeenanyless chan

nels for the image Lenna. Code family B,BER=0.01. . . . . . . .. .. 97
4.8 Theloss of PSNR in EEP schemes and optimal UEP scheme magnaizer-

age useful source coding rate compared to the optimal UEEhsemaximiz-

ing PSNR for the image Lenna. Code family B, BER=0.01.. . . . . . . . 98
4.9 Average PSNR Performance of unequal error protection fanamgless chan-

nels for the image Lenna. Code family C,BER=0.01. . . . . . . .. .. 99

Xil



4.10 The loss of PSNR in EEP schemes and optimal UEP scheme mingnaiz-
erage useful source coding rate compared to optimal UERsEhsaximizing
PSNR, for the image Lenna. Code family C,BER=0.01.. . . . . . . . .. 100
4.11 Average PSNR performance of EEP and the optimal UEP schertiesfaenna

image for memoryless packet erasure channels: packetbizes erasure rate

4.12 Average PSNR gain of the optimal UEP scheme over equal erg@satection

schemes: memoryless erasure channels: packet size 8drgsaste rate 20%. 102

5.1 Average PSNR performance for image Lenna for Compouasute
Channel: Packet Size8bytes . . . . ... .. ... ... ........ 120
5.2 Average PSNR gain over Equal Erasure Protection Schimesage
Lenna for Compound Erasure Channel: Packet Size 8 bytes ..... 121
5.3 Inverse Code Rate Profile for the policy designed for lagloj PUXP,
for total rates 0.25, 0.5, 0.75 and 1.00 bpp. Compound parkesure
channel, Packet Size8bytes . . . .. ... .. ... ... ... 122
5.4 Progressive Interleaving: Number of unfilled 48-bytekads as a func-

tion of target rate. Sub-packetsize=8bytes . . . . ... ... ...123

6.1 General JSCC system with ACK/NACK feedback:4t step in trans-
MISSION . . . . . e 126
6.2 Activeencoderatstep. ... ... .. ... .. . ... ... ... 131

6.3 System with incremental redundancy transmiss@n using RCPC

COOBS . . . e 131
6.4 Passive Encoderforanystep . .. .. .. .. ... ......... 321
6.5 Code Combining or Packet Combining . . . . ... ... ... ... 132

Xiii



6.6 Code Combining or Packet Combining with State Estinmatia . . . . 133
6.7 Feedback Generation with State Estimation . . . . ... . ... . 141
6.8 Receiver for Baseline CRC basedsystem. . . . . ... ....... 145
6.9 Receiver for CRC based system with Pseudo-MMSE decoding . . 146
6.10 Receiver for CRC based system with Listdecoding . . . . .. .. 147
6.11 Discrete 2-input 3 output channel is obtained as BPS#{ guantizing
AWGNchannel . . . . . .. .. 149
6.12 Performance (Total SNR vs. Trans. Rate) of Various i@eiseof Scalar
IID Gaussian source quantized with 4 bit TSVQ over noisy cehn
(equiv. AWGN SNR=0dB) . . . . . o oo oot e 151
6.13 Performance (Total SNR vs. Trans. Rate) of Various i@eiseof Scalar
IID Gaussian source quantized with 4 bit TSVQ over noisy cehn
(equiv. AWGN SNR=3dB) . . . . . o oo oo e 152
6.14 Performance (Total SNR vs. Trans. Rate) of High Rate GR§zd
Schemes, IID Gaussian source, dim = 1, TSVQ 4 bit/samplelvequ
AWGNSNR=0dB . . . . . . . . .. 154
6.15 Channel Distortion for Various Schemes, 11D Gausstamee, dim =1,
TSVQ 4 bit/sample, equiv. AWGN SNR=0dB .. ... ........ 155
6.16 Performance Comparison with Zero Redundancy BER b=dezimes.
Gaussian Source, TSSQ with 4 bits/sample. AWGN Channel SIN&B=156
6.17 Performance Comparison with Zero Redundancy BER b=dezimes.
Gaussian Source, TSSQ with 4 bits/sample. AWGN Channel SB&B=157

7.1 TSVQandPruned TSVQ . . . .. ... . . .. .. ... ... 161
7.2 Feedback Generation Rule over a Full TSVQ and Equivétemhed

Xiv



Chapter 1

Introduction

1.1 Multimedia Sources over Noisy Channels

The past decade has been one of the most exciting times todraraunications engi-
neer. Last ten years have seen an explosive growth in teleoonations technology
and its deployment. The Internet has already become sopeniésble that we some-
times wonder how people could do without it earlier.

The ultimate dream is that of complete connectivity acrgsgxe and time, where a
person anywhere on the globe, can instantly connect to etkey person or institution,
and has unrestricted, fast, up-to-date and economicasataeollective knowledge and
wisdom that humanity has to offer. In addition, such a pemould like to be mobile
without losing connectivity.

Along with data sources such as text, numbers, softwarergmogyand computer
binaries, multimedia sources such as images, video, spaagic and graphics form
significant part of the services that such a globally coregksbciety would like to make
available to its members. It has been predicted that theatligiultimedia may soon
become the dominant traffic on the Internet.

Digitally encoded multimedia sources, primarily imageslee and audio, behave



differently than data. Firstly, they are “high-bandwid#ddurces, that is, in the raw form,
they demand relatively large digital memory storage. Sdlyprsources such as video
and audio are real-time so they put real-time restrictiansl@lays and jitter. Thirdly,
and most importantly for our discussion, unlike data, thej@ss tolerantthat is, they
allow approximate reproductions. They can be compressed‘iassy” mannerj.e.
they have a “rate-distortion” tradeoff in their digital regentations. Also, this property
introduces robustness as the information conveyed by te@mtisignificantly altered if
the reproduction at the receiver is not exactly what wasstratted.

This thesis deals with the techniquesprbgressivecommunication of such loss-
tolerant multimedia sources over noisy channels. Proiyes®mmunication allows
the receiver to reconstruct the source at increasing fydaditit receives bits or channel
symbols from the transmitter.

Thoughembeddedar rate scalablesource coders, whose output bit streams have a
progressive reconstruction capability, exist, progresgiansmission in the presence of
channel impairments presents new challenges.

In this thesis we consider problems in joint source-chafmaghework and hence
our principal objective is to maximize the end-to-end dyadf the source reproduction
at the receiver in a givetransmission budget¢xpressed in channels uses per source
sample. We consider problems that fall in two broad categor({i) First, we consider
transmission of lossy sources over a noisy chamieln a feedback channel is available
from the receiver to the transmitter. (ii) Second, we coasjgrogressive transmission
of a lossy source over a channel in the absence of a feedbaonkeh

Before we embark on addressing the specific problems, inath@nving sections
we discuss the research in the relevant topics, - hamely $oiarce-channel coding,

embedded or rate scalable source coding, progressivertissien and finally the use



of feedback channel in communication problems.

1.2 Joint Source-Channel Coding

There is a large and still growing body of research in the afelint Source-Channel
coding. Despite Shannon’s “separation theorem” for metessychannels [19], it is
realized that for finite delays and non-asymptotic bloclgtés, it may be better to have
some coupling between the compression schemes and theentool schemes, espe-
cially for loss tolerant sources like images and video. Tgimut the thesis, by “source-
coding” we refer to the map from the source domain to bitsadtudes the quantizer as
well as entropy coding if any. The source-coder output igpaagentation of the source
at a certain encoding rate (or just “rate”) that allows anraginate reconstruction of
the source. The goodness of the approximation is measuredrbg distortion metric
between the original and the reconstructed realization.

This coupling between the source-coding and the chann@hgaslimplemented in
a plethora of ways which can be classified broadly as follofysTightly coupled sys-
tems:Combined source-channel coding is where the source veartedirectly mapped
to channel alphabet, and received channel symbols aredlgitesed for estimating the
source, without any explicit channel codirgd.[23]). Such approach, though optimal
in operational rate distortion performance, is constréingdesign and implementation
complexity. (ii) Source-aware channel encodingUnequal Error Protection (UEP) is
used when either the source, a transform or the compress&ddaim can be partitioned
into portions with different sensitivity to channel noisedampairment. Error control
codes of different strengths are assigned for differentiggas. Design procedure in-

volve partitioning, sensitivity determination and resmuallocation €.9. [29, 46, 63]).



(iii) Source-aware channel decodingSuch approaches use prior information (such as
residual statistical dependence after compression) ofdhgpressed source bitstream
to obtain better estimates of channel coded hetg.(Source-Controlled Channel de-
coding [30, 60]). (iv)Robust Source Encodingviodifying source coders to prevent
error propagation is typically accomplished by fixed lengtfantization, packetization
and resynchronization schemeg. [33], terminations for entropy coders.§. [44]),
source-interleavers(g. [51, 10]). (v) Channel aware source-decodingflaximum A
Posteriori (MAP) and Minimum Mean Squared Error (MMSE) esttion of the source,
error detection and masking schemes, error concealengj69]), bad-frame masking,
decoding for variable length codes.

The latest research in these areas focuses on efficient tieeafailable information
at the decoding, turbo-like structuregy. [25, 60], multiple description source-coding
for networks €.g.[54]), multicasting over noisy channels and delay cons@didelivery

(e.g..[17]), and power and energy efficient source-channel p(irg.[41])

1.3 Rate-scalable or Embedded Source Coding and Pro-
gressive Transmission

The concept of rate-scalable source-coder is analogoe tdecimal or binary expan-
sion of a real number, where the real number is approximaiae mnd more closely
by adding more digits. A rate-scalable source-coder all@psesentation of the source
at two or more different rates, where the representationlatvar rate is a prefix of
that at the higher rate. Technically, all source coders ate-gcalable, as given any
representation, some approximate reconstruction of thecep however bad, can al-

ways be obtained from any prefix of it. We are more concerndldgaodrate-scalable



source coders which perform well at both the rates. Ratelsitidy is also referred to
as SNR-scalability, and rate-scalable source-codingsis @riously called successive
approximation coding, layered coding, successively-eeficoding, fine-grain scalable
coding and embedded coding. In information theory, a ssively refinable source is
one for which a sequence of coding schemes exist which, asyicgdly in blocklength,
achieve minimum distortions at two different rates sinndtausly. Not all sources are
successively refinable in the information theoretic sei24d, [but good rate scalable
coders can still be designed.

Progressive transmission is the transmission of a multiasalirce in layers, where
the bits in “enhancement” layer further improve the quatifythe reconstruction ob-
tained by decoding the bits in the “base” layers. The sizéneflayers could be large
- or it could be fine grained. In the absence of channel noiseimpairments, the
concept of progressive transmission is just semantic#figrdnt from that of a layered
or rate scalable source-coder. In the case where the trasismichannel is noisy we

distinguish between the source coding and the processrsiasion.

1.4 Feedback Channel

Most modern communications systems allow simultaneousviayp communication
between the sender and the receiver on a link. The natureeaftthnnels on forward
and reverse links may be asymmetric, such as in communiciitm a stationary base
station with high powered antenna to a mobile operating wrblattery in a interference-
ridden environment, or in a hybrid network with broadcagtsatellite and a terrestrial
uplink. But if such a channel is available, it can be explbifer efficient communica-

tion.



Again, the use of feedback is proved to have no effect on tfogrnration theoretic
channel capacity of a discrete memoryless channel. Itase®the capacity of a Gaus-
sian channel only slightly [19]. Despite this result abaayraptotic futility of feedback
for increasing the capacity, Shannon indicated that feddlban be used to simplify
the coding and communication. We find that, for schemes ofpewable complexity,
good transmission schemes using feedback indeed outpesitiniemes not using the
feedback channel.

The techniques in literature which use feedback from theivec to the transmitter
can be classified as using the feedback in the form of (i) m&dron feedback [47,
48], (ii) Channel state feedback in the context of time vagychannels (iii) Decision

(ACK/NACK) feedback €.9.[32], hosts of ARQ based methods [67])

Information Feedback: This is the most general form of feedback, where it is assumed
that at each instant the receiver and the transmitter shareame information. This
would be achieved if the receiver transmits all the raw resbidata (or observations
or measurements) of the possibly corrupted received datia toathe transmitter, in-
stantly and accurately. In practice, this would imply thatre is more traffic in the
reverse direction than in the forward directiang. in a BPSK encoded transmission
of bits, information feedback would require that the flogtpoint number generated by
the matched filter for each transmitted bit, be sent backddrdnsmitter in an error free
manner.) Though some clever schemes have been devised nvhighuse of informa-
tion feedback [47, 48], information feedback has limite@lagability in the scenario of

multimedia transmission to say, a mobile.

Channel State Feedback:In case of time varying channels, or even in case of mem-
oryless channels, some side information about the chammaior - such as observed

channel SNR in mobile communication - may be known at theivecat the time of



the transmission.. This information can be made availabtbe transmitter by a feed-
back channel. This information is typically independentlté actual symbols being

transmitted over the channel.

Decision (ACK/NACK) feedback: A complete information feedback is typically im-
practical. The reverse link may have limited data rate, abbpa non-zero transmission
delay, and may be error prone. In such cases receiver cahei$eeidback channel in a
restricted way. A widely used feedback is Decision Feedloa@CK/NACK feedback.
In such feedback, the receiver periodically generates airieedback (ACK/NACK)
about the acceptability of the received noisy symbols. Beaa acceptability, ACK is
sent or otherwise NACK is sent. Based on this feedback, tresinitter decides the
next action, such as retransmission. ACK/NACK feedbactutjin restrictive, has the
advantage that it is simple to generate and that it does aoepgbo many demands on

the reverse link. We shall exclusively look at ACK/NACK fdmstk in this thesis.

1.5 Contribution of the Thesis and its Overview

The thesis for the first time attempts to achieve progressavesmission of lossy sources
in the presence of channel impairments and also addressegifs to use a feedback
channel. The contribution of the thesis can be categorizéuthe following four cate-

gories, which form the four main chapters of the thesis.

(1) System design for progressive image transmission overisy channels with
feedback: Researchers have designed specific systems for transmafsimages over
noisy channels where they control the image coder, intredabustness by carefully
selecting the error protection for components of the imagkecoutput and provide de-

coders which are targeted specifically towards images. fAthe research did not use



the feedback channel. We design a progressive image trasismisystem which uses
the feedback channel. We design the transmission protoatitain the best end to end
performance and then undertake direct comparison betweestate-of-the-art image
transmission systems which do not use feedback. We carrtheuesign for memo-

ryless channels and for certain finite state channels. Werebsn end-to-end gain of
nearly 1 dB in average PSNR of the image for the channels angemselected. This

work is presented in Chapter 2.

(2) Constrained feedback HARQ design for error control: This work concretizes
the methodology used in the previous chapter for packetigdsmission of general
data over noisy channels. The system in Chapter 2 is a hylonddfd Error Correc-
tion/Automatic Repeat Query (HARQ) protocol for transnoss Specifying a HARQ
protocol requires describing its components codes andahsrnission strategyi.€. the
finite state machine describing the sequence in which tiseadbithe component codes
are transmitted. The sequence of transmissions can belsksbly a signal flow graph.
Conventionally Hybrid ARQ schemes are designed and andlyydirst selecting com-
ponent codes and the transmission strategy, and then argathe graph of the protocol
by signal flow graph techniques for different channel patensgl3]. If we know the
channel statistics, something better can be done. Insteeubosing a fixed protocol
- i.e. the component codes and the graph first, we consider a clgg®tofcols -i.e.

a collection of codes and graphs at once. This allows us teidena more general
class of Hybrid ARQ protocols - namely variable-rate inceenal-redundancy hybrid
ARQ protocols - where the number of bits transmitted betwen ACK/NACKS is
allowed to be different. We provide a Controlled Markov Ghbhased design scheme
which, unlike existing design schemes for hybrid ARQ, alawptimization of param-

eters over a collection of graphs, and provides direct cbotrer the tradeoff between



main performance measures of a hybrid ARQ protocol - nantelyughput and re-
liability. In addition, an important performance measwsdhe average usage of the
feedback channel - which, by counting decoding attemptsemation packet, is di-
rectly related to the computational complexity of the poato The controlled Markov
Chain based design methodology, allows constraining thelfack usage too and hence
is dubbed Constrained Feedback HARQ design. The abilitptdrol the tradeoff be-
tween throughput, reliability and feedback channel usali@ys comparison of HARQ
schemes with pure Forward Error Correction techniquesThas work forms Chapter

3.

(3) Progressive joint-source channel coder in the absencd feedback or design
of unequal error protections for progressive transmissionof rate scalable image
coders: Typically, the bits output by a rate-scalable source codeehiffering sen-
sitivities to channel impairements. Hence, in the abseheefeedback channel, there
is a need for unequal error protection of the source codgrublits. Also, the optimal
allocation of unequal error protection turns out to be défe for different transmission
budgets, even for transmission over stationary and memss\it error channels. We
provide an algorithm to obtain the optimal unequal errotgeton profile from a given
family of embedded error protection codes, so as to maximheeuality of the image
at a given transmission budget. In addition, we show a waghedulehe error protec-
tion bits and the source coder bits in such a way that the @btimequal error protection
profiles for different transmission budgets can be obtafmau a single bit stream. In
this sense wextend the notion of a rate-scalable source coder to a ratdable joint
source-channel coderTransmitting the output of the joint source-channel codsults
in optimized progressive transmission of the source. Tlhigkwpresented in Chapter 4

is a dual of Chapter 2, where a feedback channel is availaltarry out progressive



transmission of images. Chapter 4 also presents the résultensmission of images
over stationary and memoryless bit-error channels. Chapgieesents a small extension
of the technique and presents image transmission result®fopound packet erasure

channels.

(4) Optimal use of ACK/NACK feedback for joint source-channel decoding: Chap-
ter 6 considers the transmission scenario with the feedblaaknel again. We go back
to first principles and consider the problem of design of a@®gehannel decoder for
transmission of a general vector quantized source (notssadéy a scalable coder or
an image coder,) over a noisy memoryless channel with anetrssion based pro-
tocol such as ARQ or Type-I hybrid ARQ. Conventionally ACKBK feedback is
generated at the receiver by means of an error detectionanisth such as cyclic re-
dundancy check (CRC). This feedback generation, thougtpatationally efficient, is
suboptimal for distortion-rate tradeoff. We address tlabf@m of designing “distortion
aware” feedback generation rules which obtain the besilgestistortion-rate tradeoffs
in the case when the transmitter does a pure retransmigsibtinea receiver does packet
combining of the received noisy copies of codewords. Firstsivow that the problem
of design of optimal ACK/NACK generation and decoding by fgtccombining can
be cast and solved as a sequential decision problem. Thaamblutions found by
dynamic programming give feedback generation rules whaghedd explicitly on the
distortion metric. The Lagrangian of rate and distortioshiswn to be the Bayesian risk
of the corresponding sequential decision problem. Coresgty the optimal scheme
for feedback generation and decoding is obtained by dyngnoigramming over the
state space of posterior probabilities of the transmit wmidds. Next, based on the
structure of the optimal solution, we propose suboptimialjsource-channel decoders

and “distortion aware” feedback generation rules, whictpetform conventional pure
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channel-decoders and CRC/BER based rules.

(5) Progressive transmission with ACK/NACK feedback and puned TSVQ in the
presence of noise:The last contribution of the thesis is Chapter 7 which exseting
definition of NACK feedback. NACK feedback generally dersateat the receiver finds
the received bits unacceptable or unreliable. A better vidyaking at NACK feedback
in the context of joint source-channel coding is agquest to continue transmission
about the same source symbolWge consider an extended joint source-channel system
with ACK/NACK feedback where a tree structured quantizetramsmitted with one
feedback per stage. The best feedback generation scheentt®ae whose operating
points lie on the lower convex hull of the operational raigaftion region. We show
that the convex hull, similarly to an analogous property frfeéd TSVQs [15], can be
traced by a collection of feedback generation schemes { ath@h areembeddedin
the sense that a higher transmission rate operating painbezer send NACK where
an ACK was sent by a scheme operating at a lower transmissidgeb. We also char-
acterize the operating feedback generation policies byadiback threshold function”

which makes the implementation of the feedback generatberse easier.

1.6 The Issue of Delay and Transmission of Real-Time
Sources

Extensive literature exists that deals with the commuiooaif real-time sources, speech,
audio and video over noisy and lossy channels for eitheawstirgg or real-time inter-

active applications. In this thesis we do not consider tmetbased deadlines and real
time sources directly. Still, the concepts of progressimagmission and the necessity

of constraining the feedback channel usage in the conteXC8/NACK feedback has
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implications on delay performance of a multimedia commation system. These is-
sues have been concurrently addressed by other reseaattietise ideas presented in
this thesis can be effectively combined with techniquesdfdivery of delay sensitive
multimedia over error and loss prone channels and netw&dsie of the works which
are closely related to the ideas presented in the thesigyoti@écto delivery of real time
sources are in Chou et al [16, 17]. An overview of the colatf techniques avail-
able for video transmission can be obtained from the bookddnzo et al for wireless
[31], Sun et al for compressed transmission of video ovexors [62], and the review

articles and special issues in [20, 69, 2, 7, 27].

1.7 Overview

Figure 1.1 describes how the different chapters in the shes related. The chapters
are designed to be self contained and the necessary introdand literature review is

provided at the beginning of each chapter. Concluding rksware presented in Chapter

8.
Progressive Image Transmission over antrotlled M: ?ozghall(nHA%pr;J::\(;o _ Source-Channel Decoding
Noisy Channels with Feedback onstame [e)e ELS I with Optimal use of Feedback Channel
esign

Progressive Unequal Error Protection Dissertation: Pruned Tree Structured Quantization
in the absence of Feedback Channel Pogressive Source-Channel Coding In the presence of Noise and Feedback|

for Multimedia Transmission

over Noisy and Lossy Channels
with and without Feedback

Figure 1.1: Thesis Organization and summary
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Chapter 2

Image Communication over Noisy Channels with

Feedback

2.1 Motivation

In addition to its evident relevance in delivery of multinietb a wireless Internet user,
digital image communication over noisy channels has agfiios in tele-medicine and
modern battlefield. As argued in the introduction, an imaga loss-tolerant source,
that is, typically, it can withstand errors and loss to aaierextent without compro-
mising the visual information conveyed. It is of considéeahterest to design efficient
communication systems for image transmission over noisylassy channels. The
problem has received much attention in the recent past A rumibtechniques have
been suggested, which include suggestions for robustsaonting €.9.[14, 51]) Un-
equal Error Protection of subband coded images and recakswm error protection
of progressively coded images [57, 59, 11, 58, 1, 39]. Theskentiques are primarily
Forward Error Correction (FEC) based, and are designeddaeavay communication
channel.

Most mobile communication systems allow two-way commutidceand hence there
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is a feedback channel available from the receiver to thestratter. We address the
problem of image transmission over noisy channels when aueedback channel is
available from the receiver to the transmitter. In this ¢egpvhich describes the work
at a system design level, we design an image communicatgtarsyusing limited feed-
back and obtain results superior to the state-of-the-agrses not using feedback. We
show how feedback can be effectively used in an image tresssom system employ-
ing an embedded image compression algorithm like that af &ad Pearlman [52] and
a family of embedded channel codes like Rate Compatible tRreet Convolutional
(RCPC) codes [29]. We design the system for memoryless fait ehannel and for 2-
state Gilbert-Eliot channel. In the system design, we thice the new concepts of (1)
variable incremental redundandyybrid ARQ-FEC protocol (2a Controlled Markov
Chain approacho design of such a protocalith constraints on the feedback chan-
nel usage(3) a quick design technique for such a protocol. Detailisdussion of the
protocol design is provided in Chapter 3. In this chapter wscdbe the problem for
memoryless and two state Gilbert-Eliot channels, des¢hibalesign, the optimization

problem and its solution, followed by simulation results.

2.2 Transmission over Memoryless Channels

We first consider the problem of image transmission over a ongiess bit error channel

with feedback.

2.2.1 The Feedback Channel

The challenge is to use the feedback channel in an efficieptseas to maximize the

end-to-end quality of the image, for a given transmissiotget (also called transmis-
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sion rate) expressed in bits (or channel symbols) per pixel.

Information theory dictates that the capacity of a mema@ylat error channel (also
known as binary symmetric channel) does not increase watifack [19]. Notwith-
standing this asymptotic result, in many practical systameful improvements in the
throughput can be obtained by use of Hybrid Automatic ReBRe&uest (ARQ)/Forward
Error Correction (FEC) protocols instead of pure FEC prot®{29, 67].

There are ways of using the feedback channel which are m@teitwated than
just the ACK/NACK feedback, such as a complete informateedback [47, 48], like-
lihood ratio feedback [65], and channel state feedbackercse of time varying chan-
nels. Complete information feedback is most general, botay require a large data
rate on the feedback channel. In fact, if the transmit infation is binary and the re-
ceived symbols are continuous valued then complete infoom#&edback may require
data rate much larger in the reverse direction than in thedat direction. Transmis-
sion of floating point numbers for the likelihood ratio feedk also has that drawback.
Also, possibility of channel errors in the feedback charaleb needs to be addressed
satisfactorily.

Restricting the possible feedbacks to only two values aofitbeeks has a possible
drawback of sub-optimality. On the other hand, ACK/NACK dbacks have the ad-
vantage that they are simple to generate, require low bafdwo transmit over the
feedback channel and, if necessary, can be protected égsshyor correcting codes or
by simple repetition. We use ACK/NACK feedbacks for our eyst Consequently, for
error control, we restrict our attention to the class of eoantrol schemes which use
Forward Error Correction as well as ACK/NACK feedbacks. ISacclass of protocols

is called Hybrid ARQ/FEC protocols or just HARQ protocol§]6
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2.2.2 Selection of the Source-Coder

Consider a protocol for error control based on ACK/NACK fieacks. In such a proto-
col, a ACK is sent from the receiver to the transmitter if theaiver is able to reliably
recover the transmit information bits from the possiblyrapted received channel sym-
bols. Otherwise a NACK is sent and additional transmissfonghe same information
bits are requested.

Note that such a protocol based on ACK/NACK feedbacks isrentitéy sequential.
Also note that the number of channel symbols that need toansmnitted over the for-
ward channel before a set of information bits is acceptedhbyréceiver is a random
variable. Conversely, the number of information bits rexred after the transmission of
a fixed number of channel symbols is also a random variable.

The design objective is to maximize the average quality efréteived image in
a fixed transmission budget -expressed as total channeladgrransmitted over the
forward channel. Clearly, this is accomplished if the gwadif the received image is
maximized for each channel realization. This will happethé& information bits recov-
ered when the transmission budget is exhausted, give thénbage representation for
that rate.

The need for excellent image representation at a variabstgoru of bit rates in the
same stream is fulfilled by fine-grain rate-scalable or erdbddmage coders. The bit-
stream output by an embedded image coder is such that itg prefix, can be used
to reconstruct the image, and the image quality improvels thié length of the prefix,
that is, a longer prefix results in a higher quality recortdtam. In addition, embedded
image coders such as the SPIHT coder [52] are endowed witllertrate distortion
performance at all rates. The JPEG 2000 standard also ioredgs highly efficient rate

scalable image coding [44, 50]. The high flexibility in théestion of operating point
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on the operational rate distortion curve also makes thetaldeifor any transmission
budget. The state-of-the-art image communication sysesgned for noisy chan-
nel without feedback are designed as strong error proteetiplied to such embedded
image coders [57, 59].

Consequently a high-performance fine-grain rate-scalaidge coder is a natural
choice for a source coder to be used with an ACK/NACK baseat eantrol protocol.
We use the SPIHT image coder as the image coder of our choice.

One drawback of the embedded image coders such as SPIHTcaréhat, if some
portion of the bitstream is not available or is irrecoveedibbm errors, then the bits that
come after the missing portion cannot be used effectivellydreasing the quality of the
image, even if they are error free (see Figure 2.1). If sommégyoof the bitstream has

undetected errors in it, then the bits following that partinaydecrease the qualityf

the image.
Damaged
or Lost Bits
e
[ I —
~— - RKJ
Bits Useful for reconstruction Unusable Bits

Figure 2.1: Typically, for a SPIHT like image coder, only fhegest available prefix of

the bitstream can be used for image reconstruction.

Therefore, on one hand, using a Hybrid ARQ protocol to trah#dme output of an
embedded source coder sequentially, will ensure that,ntlagié is constructed to the
highest possible quality from the successfully decodes loit every channel realiza-
tion. On the other hand, the underlying protocol must hagh heliability. That is,
the probability of undetected post-decoding erraes, the probability that an ACK is

transmitted while the information bits are decoded inatyemust be kept very low.
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Therefore, given the choice of the source-coder, the taskmizing the quality of
the received image reduces to the task of maximizing theigirput of the hybrid ARQ

protocol, subject to high reliability.

2.3 Variable Incremental Redundancy Hybrid ARQ pro-
tocol

Keeping with the spirit of joint source-channel codingritiire, we assume that the
channel statistics (in this case, the bit error rate (BER))kamown. Hence for a given

BER, we design a protocol which maximizes the throughpubjesui to system con-

straint, which are, (i) computational constraints, (iipg&ble channel code family.

The block diagram of the transmission scheme is describE@yure 2.2.

Code
Selection Algorithm

Error

Detection Channel Encoder
Code (RCPC Coder) |~ |
(CRC)

Noisy

Packetizatior

» Embedded
| Image Co_mpression
| .‘ ‘{ Algorithm

Channel

s Image Reconstruction Channel Decoder + Error Detector
| - _[ from available packets (List Decoding Algorithm) —

Figure 2.2: Block Schematic of Designed Scheme for Imagasiassion

3oegpasd MOVN/MOV

First, the output of an embedded image compression algotike that of Said and
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Pearlman [52] is organized in fixed length packets; each giaskprotected by error
correcting codes and transmitted over a noisy channel. &ar let us consider the
transmission of a single packetxfbits over the noisy channel. The protocol employed
is as follows.

At the encoder, the packet is encoded by a concatenated elhewute consisting
of an outer error detection code (such as Cyclic RedundamgckC (CRC)) and an
inner error correction code chosen from a family of RCPC sodEhe output of the
channel encoder is transmitted over the channel. Uponuiageihe bits, the channel
decoder attempts to correct the channel errors and redoegracket. The success or
failure of decoding is determined by the error detectionmaetsm (we assume that the
probability of undetected errors is zero). This result ¢(@ss or failure) is conveyed
back to the encoder by sending one bit (ACK/NACK) through fisedback channel
(assumed to be error free).

On success, the encoder stops transmission for the cuaekéfand proceeds with
the transmission of the next packet. On failure, the enca®rording to alecision
policy, switches to a stronger channel code and transmits on theehamly the extra
bits needed for the chosen code. The decoder, on receiving tligoadd bits, makes
another attempt at decoding the packet and verifies the mgtdxy the error detection
mechanism. Because of rate compatibility of the underlyamgily of codes, the de-
coder can make use of the received bits frompadivioustransmissions to decode the
packet. Again, the decoder conveys a success or failureabit to the encoder through
the feedback channel. The procedure is continued untieeihe packet is successfully
decoded, or the strongest channel code that can be choslea éydoder’s decision pol-
icy is used. In the latter event packet decoding failurghe transmission for the packet

is abandoned. We allow the number of these bits transmiddden two feedbacks
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to be different and hence dub the protocol a Variable Increatdkedundancy HARQ
protocol.
The transmission of the image is stopped when the targestririsssion rate is reached.

The source decoder reconstructs a replica of the image fiemeteived packets.

2.3.1 Gain of using the Feedback Channel

Why should a scheme which uses a feedback channel in the vgayiloed above be
expected to do better than a pure Forward Error Correctide emd no feedback?

The gain obtained by using feedback is due to the fact that ike nonzero proba-
bility that a packet protected by a weak channel code is d=todrrectly by the decoder.
This gain is maximized if we use one feedback bit for everpgraitted bit. But note
that, for schemes using decision feedback, the feedbacinehasage is related to the
computational complexity. For HARQ protocols, the generabf each feedback re-
guires a channel-decoding operation, and hence a heavy tesdback implies a large
number of computations at the receiver.

Hence, a scheme which uses feedback in very small steps radtigal as it leads
to a large feedback channel bandwidth, delay and most irapibyt complexity. It turns
out that most of the performance gain over pure FEC schenmdsecabtained by a care-
ful but limited use of feedback in a variable incrementaurdincy HARQ protocol.

In the next section we design the protocol for given chantagissics, by developing
a decision policy that minimizes the average number of baisgmitted on the channel
for each packet under an explicit constraint on the feedbheknel usage. This policy
depends on the channel BER, the performance of each code ifaitily of RCPC
codes, the bandwidth of the available feedback channel laadriaximum tolerable

probability of packet decoding failure.
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2.4 The Design Problem and the Solution

We seek a decision policy for the encoder such that the ageragnber of transmit bits
per packet is minimized subject to (i) an upper bound on thraber of feedback bits
per source packet and (ii) an upper bound on the probabilipoket decoding failure.

We define th&lecision instantor the encoder to be at the end of receiving a feedback
bit. At a decision instant, the state of the encoder is desdrimost generally by the
sequence of channel codes used by it and the sequence oaé&duiks received. Any
general decision policy is described by specifying the nhannel code to be used given
the state of the encoder.

Using this notion of encoder state we translate the desighl@m to a a discrete
optimization problem, which can be mapped to a finite horiktarkov Decision Pro-
cess (MDP) problem [4]. The optimal policy obtained for th®M (also called the
controlled Markov chain) by dynamic programming yields gquence of channel codes
to be used in the protocol described in Section 2.3.

Let C = {c1,¢,...c;} denote a family of RCPC codes such that the code rates
are decreasing,e. r.(¢;) > r.(ca) > ... > r.(cs). Let us also include in the family
a ‘null’ or ‘trivial’ code ¢, which corresponds to transmitting nothing and hence has
r(co) = oo. For a fixed binary symmetric channel, ldt, denote the event that a
packet encoded with codg is decoded successfully by the decoder. Let the probability
of A’Cj (complement of4..,) be denoted by’ (c;). Clearly P.(co) = 1. Then we make

the following assumption.

Assumption: For the family of RCPC cod&$ assume thati., C A., whenever < j.
This assumption implie®.(¢;) > P.(c2) > ... > P.(c;). Further, this assumption
means that the probability of the event that a weaker codeesdls but a stronger code

fails is zero. This is a reasonable assumption which is bonated by simulations.
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Consider the encoder at a decision instant. d;dte the last channel code used. If
the last feedback bit denotes successful decoding, theideaf the encoder is clear;
namely, that of stopping further transmission. So the datigolicy must select a next
channel code only if the last feedback bit has signaled artail

Under the above assumption, for< j < k, the eventA,, is conditionally inde-
pendent of the evert,., given A;j (or A.,). Therefore the encoder decisions need not
depend on the complete sequence of channel codes used.implgiss the notion of
encoder state. We define teacoder stat@s the pair corresponding to the index of the
last channel code used and the value of the last feedbadkedce

Therefore, the decision policy can be completely specified §equence of channel
codes of decreasing code rate&¥o, by a policyr for transmitting a packet we mean an

ordered subset of the collectigh

e (2 ek, 2, ... M), (2.1)

T Ty ) ™

where® = ¢;. The number of non-trivial codes used by the policys n(7) and
maximum number of feedback bits for the polieys given byn(7) — 1. The probability

of packet decoding failure for the polieyis P, (c2™). Note thatu(r) = 1 corresponds

to no feedback We impose a constraint that the packet decoding failur&adibity

be less than a certain threshgld To reflect the constraint on the feedback channel
bandwidth, we require the maximum number of feedback bitgpeket to be less than
or equal toM — 1.

Now consider the transmission of a packet using a paticyfhe event that trans-
mission stopsi(e. ACK is received) after transmitting exact% bits, is given by
<ﬂ§;11A;%> NAx = (Uf;fAcgr)l N Ag, which, by the assumption, id, , N Au.
Again, by the same assumption, the probability of this ei@mt (cF~1) — P.(ck).

Hence, given a policy, the expected number of bits per packet to be transmitted on
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the channel can be written as,

=P (™), (2.2)
n(m )

re(cn

The last term represents the contribution of the event digtatecoding failure, namely

’

A

cﬁ(”) :

The problem of minimizing the average transmission raterigten as,
min R(7) subject toP,(¢"™) < p. andn(r) < M. (2.3)

We describe a simple dynamic programming based solutiohisodiscrete opti-
mization problem below. But it is particularly insightfud use a Controlled Markov
chain framework. We develop the Controlled Markov Chaimfesvork in detail in the
next chapter.

To obtain the solution of problem (2.3), define, for any pplic 1 < m < n(7) and

def N~ T . re "
r(m, j,m) = Z () (P.(cEY) — P.(c*)) + (e P.(c™). (2.4)
k=j4+1 V7 e\

Definer(m, m, m) wf ﬁPe(cwm). Also define, for codes;,;;, ¢y € C with r.(cy) <

Tc(cim't)’ 0 S ] S m — 1;
* . def . .
r (Cimtacf7]7m) = ; min r(7r7],m). (25)
T:Cr=Cinit, Cn'=Cf

Then for0 < j < m— 1, itis easy to see tha{r, j, m) admits the following decompo-

sition.

T's
Tc(d'r—‘rl)
Now, asr(m,j + 1,m) does not depend od,, and ¢! is the ‘initial’ code in

r(m, j,m) = (Pelc}) = Pe(c)) +r(m, 5 + 1,m) (2.6)

r(m, j+1,m), we have, by the optimality principle, the following dynarmprogramming

equation.
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Ts

(Pe(Cinit) — Pe(c)) +1%(c,cr, 5+ 1,m)
(2.7)

TGt 15T = e B ) 7ol
Notice that, in (2.3), the constraim(cﬁ(”)) < p. is satisfied by selecting the weak-
est (highest..(¢)) code with desired error performance, ¢p™ = arg maxecc, p,(¢)<p. 7e(C)-
Let this code be denoted lay. Then by the notation developed, the solution to problem
(2.3) isr*(co, ¢}, 0, M). The optimal policy is obtained by recursively solving €#.7{
and setting thg*" code in the policy to be the one achieving the minimum in (2.7)
Again, as the output of the image compression system is eteldedninimizing the
(average) number of transmit bits per packet is equivatemaximizing the (average)
number of source packets for a target transmission ratetsfpbiel, which, in turn, is
equivalent to maximizing the (average) Peak Signal-tosiidratio (PSNR) for a target

transmission rate.

2.5 Results for Memoryless Channel

In the paper by Sherwood and Zeger, [57], the authors repp@aene of the best re-
sults for transmission of images over memoryless bit ermanaels in the absence of
feedback. We undertook the task of determining the perfoomamprovement over
the scheme in [57] that can be achieved by feedback and teensctescribed in the
previous sections. The average PSNR (dB) results of tratisgithe grey-scale test-
image LENNA over binary symmetric channels for differeng&t transmission rates
for different channel BER’s are reported in Figure 2.3 aredv@lues of PSNR for some
transmission budgets are tabulated in Table 2.1.

The image Lenna, of dimensions 512x512 was compressedivet8adid and Pearl-

24



man coder [52] with arithmetic coding. The family of chanoetlesC, was chosen from
Rate Compatible Punctured Convolutional (RCPC) codesdh [Bhe source-coder out-
put was divided into source-packets of size 32 bytes elach £56). A two-byte CRC
was used as an outer error-detection code. The inner esrogetion code family were
the collection of RCPC codes similar to those used in [57kc8rally, a mother code
for BER of 0.1 was a 64 state rate 1/3 code, while that for BER.O1 was a 16 state
rate 1/4 code taken from [29]. List Viterbi (LV) Decoding (3B[57],) was used with
hamming distance as path-metric and a search depth of 10thnchses. That is, for
error detection with LV decoding, a feedback of NACK is seott the receiver to the
transmitter if the CRC is not satisfied in the top 100 path&efttellis. The system with
a maximum feedback of zero bits corresponds closely to thi&t].

One can observe from Table 2.1 that irrespective of the targesmission rate, a
carefully chosen feedback of just a few bits per source gatkess thard).01 feedback
bits per source bit) can consistently improve the PSNR bythalB over a system
which uses no feedback. Notice that most of the gain is obthby introducing the
feedback of just one bit per source-packet. Additional gaire obtained by allowing
more feedbacks. The gain is nearly 1.2 dB the case of BER Oithlonly 1 feedback
bit per source packet. It was observed that the improvemegneiformance on further
increasing the feedback was negligible.

From Figure 2.3, it can be observed that the gain of a systeimfeedback over one

without feedbackncreaseswith transmission rate. This phenomenon can be explained

by the following. At high source-coding rates, the PSNR{gB)irce-coding-rate curves
for coders like SPIHT are nearly linear. For noisy channigls,higher throughput ob-
tained by introducing feedback, yields a PSNR-transmissibe curve with a steeper

slope than one for system with no feedback. Hence the pesiacengap between the
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two systems widens with transmission rate.

Maximum Feedback in Transmission Rate bits/pixel
bits per source packe
BERO0.1 0.25 0.5 1.0
3 29.53| 32.48 35.53
2 29.45| 32.36 35.41
1 29.32| 32.09 35.21
0 28.56| 31.50 34.36
BER 0.01
1 33.16| 36.26 39.37
0 31.98| 35.07 38.12

Table 2.1: PSNR (dB) Results for Image LENNA over BSC's.

2.6 Extension to Finite State Channels

The gains obtained in the previous section over systemssiag feedback indicate that
it is indeed worthwhile to use a feedback channel if one idavie, even for memory-
less channels.

In this section we extend the results for memoryless chartoahe Gilbert-Elliot
channel. Such finite-state Markov channel models have demmrsto be good approx-
imations for binary transmission over slowly varying fladifag channels [66].

Gilbert-Elliot channel model is a Markov channel model witlo states. The chan-
nel is assumed to be a binary symmetric channel (BSC) in g¢atd 3 he bit-error rates
(BER) in the good state G and the bad state B are denoted ,andcs respectively.
The transitions between the states are Markov and are adstanie unknown at the
receiver or the transmitter. The model is specified by the 8&Reg, the steady state
probability of state3, Pz, and the average sojourn time of statgl .

The Gilbert-Elliot model is depicted in Figure 2.4. We shafeer to the BSC’s with

BER ¢; andeg asBSCq and BSCp respectively.
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PSNR (dB)

o (o) BER 0.01 Feedback = 1 bit/packet
X X BER 0.01 No Feedback
A A BER 0.1 Feedback = 3 bit/packet
> > BER 0.1 Feedback = 2 bit/packet
< < BER 0.1 Feedback = 1 bit/packet
v v BER 0.1 No Feedback
15 I I I
0 0.2 0.4 0.6 0.8 1

Total Transmission Rate in Bits per Pixel

Figure 2.3: Performance Comparison for progressive tregssam of image LENNA

over BSC, with and without a feedback channel. BER 0.01 aihd 0.
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Figure 2.4: Gilbert-Elliot channel

The system schematic for this channel can also be descripé&igore 2.2. The
transmission protocol is slightly modified and is descrilyethe next section.

As earlier, the usage of the feedback channel is an additt@sign parameter for
such a scheme. We demonstrate that in this case, signifiediormance gains over a

system without feedback, can be achieved with moderatefuitbe éeedback channel.

2.6.1 Gain of using the Feedback Channel

As we have seen in previous sections, careful use of feedizdukves throughput gains
for memoryless channels. In addition, for finite state cledgrthe gain obtained by the
proposed schemes which use feedback, can be attributedttoeafiactor. Essentially,

the proposed combination of embedded source-coder and aH@®Btocol accom-

plishes an implicit adaptation of the instantaneous atlonaof source-coding rate and
channel-coding rate according to the channel conditiohs.adaptation of the channel-
coding rate, according to the channel conditions, is actisimgdwithout explicit trans-

mission of the channel state informatiosing decision feedbacks (ACK/NACK) from
the receiver to the transmitter. We shall see that the systitéimfeedback outperforms ,
with larger gains compared with the memoryless case, the-efathe-art pure Forward

Error Correction systems designed for the channel, suchs [
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2.7 Changes in the Protocol

The protocol for finite state channels is a slight modifiaatad the protocol for the
memoryless channel described in Section 2.3. Again(Let {c;,cs,...,c;} U {cp}
denote the available family of rate compatible channel sagd for error correction.
Each code: € C'is a(#zc), b) block code where channel code-rat¢c) includes the
code-rate for the error detection code. Then the HARQ pobdtaployed is described
by specifying apolicy = = (&, c, 2, ..., ™) which is a subset of ordered by
decreasing code-ratesnd wherec? = ¢y. A fixed length source-packet is transmit-
ted using the variable incremental redundancy HARQ prdtiescribed in Section 2.3.
Because the finite state channel can go into a severeistatgossible that the strongest
channel code in the policy may not be able to correct all thrersr We call this event a
policy-failurefor the source-packet. In the event of a policy-faillakihe received bits
for the packet are discarded and the transmission for thecsspacket is started from
the beginningi.e. from the first code in the policy. In other words, for each mcke
system emulates a generalization of Type | HARQ [67] whet@nsmission of a code-
word is done in several steps of incremental redundancyetsrdined by the policy.
This modification is chosen because it yields a tractabteujinput approximation. The
same policy is applied to the transmission of all the soyaekets.

The transmission of the source-packets is stopped whemahgnission budget is
exhausted. The image is reconstructed from the succességkeived source-packets,
which form an error-free representation of the source aes@te. This way the system

dynamically trades source-bits for channel-bits wheneeeessary.
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2.8 The New Problem and the Solution

Now let us consider the design of a transmission policy withha mostM steps.
Among all the allowed policies, (all the subsets®with M or less elements), the
task is to select a policy so that, in a given transmissiorgbtioh bits per pixel, the av-
erage number of source-bits that are delivered reliabliyeatéceiver is maximized. We
look at a normalized version of the above objective fungtirmmely, thehroughput of
the policy over the channel. The throughp(t) of a policy is defined as the average
number of source-bits correctly received per channelraiidmitted. It is independent

of the transmission budget. Hence, the best policy Wwitksteps is the one which solves,
max 7(7) subject ton(r) < M. (2.8)

Note that)M = 1 corresponds to the conventional Type | HARQ, while = 2 and
higher are the schemes based on decoding by code-combf@ifjy (

To limit further the average number of feedbacks sent percespacket, we may
impose the following implicit constraint on the average memof feedbacks per source-
packet for the allowed policies. Lél“ () denote the probability of policy-failure when
a source-packet is transmitted ovet6C while using the policyr. Similarly define

PZ(7). Then, we may require,

max(Py(m), PP (w)) < pe, (2.9)

for some small numbey,.. Any policy 7, satisfying the constraint (2.9) has an average
feedback less than(7)/(1 — p.) per source-packet in each state of the Gilbert-Elliot

channel and hence in the channel itself.
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2.8.1 Throughput Estimation

Let £(R(m)|G) and E(R(w)|B) denote the expected number of channel-bits transmit-
ted for successful transmission of a source packet by pslioyer channel®SC and
BSCp respectively. Now, for the Gilbert-Elliot channel, if thejsurn times of states

G andB are much larger thah' (R (7)|G) and E(R(w)|B) then the throughpuf(r) of

the policyr can be approximated by,

bPg bPg
1)~ BR@IG) T ER@B) (2.10)

Here P; and Py are the steady state probabilities of the two channel states

This can be simply seen as follows. If the sojourn times ofest& and B are
long compared t&(R(r)|G) and E(R(w)|B), the transmission of single packet does
not encounter a channel-state change. So in essence, facteofrPz of time, the
transmission is like that ovés SC'z. The throughput in that caseﬁ. Similarly,
throughput for the portion of time when channel is in St +=~= Averaglng by
the steady state probabilities, we get the expression |(12etp).

The valuesE(R(7)|G) and E(R(w)|B) are estimated by the technique outlined in
2.4 as follows. LetPS%(c) denote the probability that a source-packet encoded with
channel code: € C and transmitted over the channBlSC; could not be decoded

successfully. Then for the poliey, E(R(7)|G) can be approximately written as

(Ch s (PO = PE(E) + — e PE(A™))
B(R(m)|G) ~ e
(1— PS (™))

Here P%(c%) = 1. Other probabilitied>“ (c) are obtained by simulation. Als@® (r) ~

(2.11)

PC(c2™). Similarly E(R(r)|B) and P2 () can be computed. This is an approxima-
tion as it is based on the assumption in Section 2.4.
Very interestingly, if eq. (2.11) is used fdt(R(x)|G), then the estimate of the

throughput, described by eq. (2.10) remains valid underakereassumption. Instead
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of assuming that the channel state does not change duririgatiemission of an entire
source-packet, if we just assume that the channel statenddehange before a packet
decoding failure, we get the same expression for throughihis is so because, as the
protocol discards all the previously received bits afteaeket decoding failure, a packet
decoding failure is a renewal instant.

The optimal policy solving equation (2.8) is obtained by axs$tively searching over

all the policies meeting the desired constraints.

2.9 Simulation Results for Gilbert Elliot Channels

For simulations, image Lenna, was compressed with the $@idPaariman coder [52]
with arithmetic coding. The family of channel codé&s,was chosen from Rate Com-
patible Punctured Convolutional (RCPC) codes in [29]. Therse-coder output was
divided into source-packets of size 32 bytes e&ch ¢56). A two-byte CRC was used
as an outer error-detection code. The inner error-comecde family was the collec-
tion of RCPC codes obtained from a 16 state, rate 1/4 code fabmn [29]. List Viterbi
(LV) Decoding €.9.[57],) was used with hamming distance as path-metric andi@ise
depth of 10. For error detection with LV decoding, a feedbattkIACK is sent from
the receiver to the transmitter if the CRC is not satisfiedhentobp 10 paths of the trellis.
The simulation results are presented for a class of chamwighsthe following
parameters: (1) Bit Error Rates; = 0.1,eg = 0.001, (2) Different steady state
probabilitiesPz € {0.1,0.2}, (3) Different average sojourn times for state B in bits
T € {400,2000,10000}. We compare three systems in this section. System A is a
scheme which uses feedback, when the implicit constrairtherfeedback, given by

equation (2.9), is not applied. The scheme chooses to magitihe throughput estimate
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given by equation (2.8) over all the allowed policies. Sgsiis a scheme which puts a
constraint on the feedback channel usage, irrespectiveeafttannel state, by requiring
that (2.9) be satisfied. System C is a scheme without feediiaek in the paper by
Sherwood and Zeger [59]. For error correction, it uses aymbdode of RCPC-CRC
code and Reed Solomon codes, with interleaving for recdveny burst errors induced
by the channel entering in bad state. The results are obt&iom the throughput cal-

culations reported in [59].
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Figure 2.5: Average PSNR (dB) Performance comparison for differenesws for Lenna:

Gilbert-Elliot Channel withPg = 0.1, Tz = 400 bits.

Figure 2.9 shows the average PSNR performance of SystemsaldBC for a

Gilbert-Elliot Channel with parameterd; = 0.1, 75 = 400bits,eg = 0.1, e = 0.001

for the transmission of the image Lenna, as a function ostrassion budget in bits per
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pixel. Let us first look at the designed system with uncomrstc feedback, System A,
and the system with no feedback, System C. First notice thiahfs channel, even the
simplest case of System A, namely the one with= 1, can perform significantly (up to
2 dB) better than System C which, to our knowledge, repoebdst results reported for
a scheme without feedback. Increasing the number of stefbeipolicy, {.e. making
M > 1,) gives further, though relatively small,(up to 0.3 dB)mmat all transmission
rates. This can be explained as follows. For the given cHaBystem A withM = 1
chooses a high-rate code of code-rate 0.82. This code isisuffio recover the source-
packet reliably when the channel is in the good state=€ 0.001), but almost always
fails when the channel is in the bad statg & 0.1). When the channel is in a bad state,
the policy repeatedly request a retransmission, until teedtate is over. This way, the
policy automatically implements an “outage”, which, ingltase, is favorable for the
throughput. Therefore, despite the high throughput, tlege®of the feedback channel
is high, especially in the bad state.

The feedback channel usage is explicitly controlled inesysB, where constraint
(2.9) is satisfied fop, = 0.01. For M=1, this results in a highly conservative system,
designed for the worst case, such that its performance éochinnel is inferior to that
of System C, which has no feedback. But if a single interntedséep is allowed in
the policy (M=2), then the constrained feedback schemeaesy8, performs close to
System A. The optimal policy for system B, M =2 contains codéh rate 0.82 and
0.264. Hence Systems A and B with a policies designed thisoaayswitch adaptively
between channel code rates so as to suit the channel stagetiidono explicit channel
state information is obtained or transmitted.

Table 2.2 lists the average PSNR performance of the systeamsl&8 for the image

Lenna, for different channel parameters, for transmissides 0.25 and 1.00 bits per
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pixel. Increasing the number of steps fravh = 1 to M = 3, yields PSNR gains of
up to 0.25 dB at all transmission rates over System A with= 1. Table 2.3 gives
the comparison of the observed throughput with the estidndw@ughput given by eq.
(2.10). As expected the analytical approximation of thedlghput becomes closer to
the true throughput as the average sojourn time for the lzdd sicreases. Table 2.4
gives illustrative results for the average number of feedbaneeded per source-packet
for the two schemes, for the channel with = 0.2 and different values of 5. It is
evident that System A, fab/ = 1, requires a large number of retransmissions. On the
other hand, System B fa¥/ = 1 requires a very small number of retransmissions, but
provides a low throughput. Allowing one intermediate stefransmission,e. M = 2,
increases the throughput of both the systems, wiaitkicing the feedback channel
usage for System A radically. It can also be observed thathi® cases\/ > 1, the
additional implicit feedback constraint, eq. (2.9), does$ reduce the feedback by a
large margin.

Table 2.5 gives illustrative results for the Mean Absolutéfddence (MAD) and
Standard Deviation (STD) of the observed PSNR for two daffértransmission rates
for the image Lenna. The variations in PSNR decrease witteasing transmission

rate and increasingy/, though the latter trend is not quite consistent.

2.10 Conclusion

In the presence of a feedback channel, the combination ofndde@ded image coder, a
rate compatible family of channel codes, and transmisssomgua HARQ protocol, pro-
vides a simple and efficient scheme for image transmissibe.s{stem trades source-

bits for channel bits achieving adaptive and dynamic atioocaof source coding rate

35



Pg| Tp | n(n) Syst. A Syst. B
0.25bpp| 1.0bpp| 0.25bpp| 1.0bpp
0.1| 400 1 32.48 | 38.67 | 28.56 | 34.35
2 32.64 | 38.77 | 32.50 | 38.58
3 32.75 | 38.92 | 32.72 | 38.90
2000 1 32.75 | 38.88 | 28.55 | 34.35
2 32.89 | 39.06 | 32.87 | 39.01
3 32.98 | 39.12 | 32.94 | 39.10
10000 1 32.72 | 39.01 | 28.55 | 34.35
2 32.85 | 39.04 | 32.76 | 39.05
3 33.08 | 39.16 | 32.96 | 39.15
0.2 | 400 1 31.61 | 37.86 | 28.55 | 34.35
2 32.04 | 38.18 | 31.64 | 37.79
3 32.24 | 38.38 | 32.19 | 38.27
2000 1 31.90 | 38.40 | 28.55 | 34.35
2 32.45 | 38.76 | 32.39 | 38.54
3 32.56 | 38.85 | 32.49 | 38.74
10000 1 31.94 | 38.40 | 28.55 | 34.34
2 32.41 | 38.76 | 32.53 | 38.68
3 32.58 | 38.85 | 32.64 | 38.80

Table 2.2: PSNR (dB) Performance of optimized policies over G-E chhmith different
parameters: 1) System A - unconstrained feedback 2) SystenoBstrained feedback, Image:
Lenna.

and channel coding rate for a realization of the channel. udgeof feedback can yield
significant improvement in the quality of the received imager a system not using
feedback, especially for time varying channels such as il Elliot channel. The
complexity of the system and the usage of the feedback chémmie proposed sys-
tems can be controlled by constraining the search spacefaigs appropriately. We
obtain nearly 1 dB gain in average received PSNR over statedrt systems not using
feedback in the case of memoryless channels. The gains ar€aB for the Gilbert
Elliot channel. Simulation results indicate that a systeithh wonstrained but carefully
designed feedback can achieve a large fraction of gainsswitlll usage of the feedback
channel and consequently a small number of decoding atseffipé transmission of the

image is progressive by design. Overall, it may be worthevtol exploit the feedback
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Syst. A Syst. B
Est.n n Est.n n
0.740| 0.685| 0.264 | 0.261
0.769| 0.700| 0.766 | 0.673
0.773| 0.721| 0.773 | 0.718
0.740| 0.716| 0.264 | 0.261
0.769| 0.744| 0.766 | 0.737
0.773| 0.754| 0.772| 0.752
0.740| 0.738| 0.264 | 0.261
0.769| 0.744| 0.766 | 0.745
0.773| 0.762| 0.772| 0.760
0.658| 0.559| 0.264 | 0.261
0.716| 0.595| 0.710 | 0.562
0.723| 0.635| 0.722 | 0.632
0.658| 0.622| 0.264 | 0.261
0.716| 0.683| 0.710 | 0.669
0.723| 0.698| 0.722 | 0.695
0.658| 0.644 | 0.264 | 0.260
0.716| 0.701| 0.710 | 0.690
0.723| 0.715| 0.722 | 0.706

0.1| 400

2000

10000

0.2| 400

2000

10000

WNPFPWNRPFPFWNRFRPIONPFPOWONPEFEOWDNPRP

Table 2.3:Throughput observed vs. estimated, for G-E channel witlerdifit parameters: 1)
System A - unconstrained feedback 2) System B - constramedbfick.

channel for image transmission if it is available.
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Tp | n(mw) | Syst. A| Syst. B
400 | 1 1.46 | 1.000
2 1217 | 1.198
3 1.235 | 1.231
2000 1 1.288 | 1.001
2 1.114 | 1.105
3 1.159 | 1.151

Table 2.4: Average number of feedbacks per source-packet for Gilbkidt EEhannel with
Ps=0.2.

T | n(m) 0.25 bpp 1.00bpp

MAD | STD | MAD | STD
0.18 | 0.24| 0.12 | 0.15
0.11 | 0.13| 0.07 | 0.08
0.10 | 0.12| 0.04 | 0.05
0.24 | 0.30| 0.15 | 0.19
0.16 | 0.20| 0.08 | 0.10
0.18 | 0.23| 0.08 | 0.08

400

2000

WNPFE WNPR

Table 2.5:Variation of the PSNR (dB) from the mean value for SystenPA,= 0.1 for Lenna.
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Chapter 3

Constrained Feedback Hybrid ARQ Design

3.1 Introduction

Transmissions over wireless channels experience largaroit rates due to fading and
interference. Hence strong error control needs to be eragloyn situations when
two-way communication is possible, the error control pcote can make use of the
feedback channel for better or more efficient error coroectilt has been established
that the information theoretic capacity of a memorylessholedis not increased in the
presence of a feedback channel [19]. But in practice a coatibim of Forward Error
Correction and Automatic Repeat Query, called Hybrid FERQA(HARQ) can have
better throughput than pure ARQ and pure FEC for comparatikeoility [35, 67].
HARQ protocols are typically implemented by transmissidimaremental redun-
dancy for an embedded (rate-compatible) family of chanoeles at the transmitter
(e.g.Rate Compatible Punctured Convolutional Codes [29], ochured Reed Solomon
Codes [68]) and by code-combining [13] at the decoder. Thoprance of a HARQ
protocol is measured brroughput andreliability. In HARQ, the generation of each
feedback bit requires a decoding operation. Hence the geenamber of feedback bits

for the channel is a measure of the complexity of the protocol
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The techniques to analyze the performance of fixed HARQ padsofor different
channel conditions are well developed in literature [67,38. They make extensive
use of the underlying signal flow graph of the protoaalg( [38, 67]), and compute
the performance measures such as the throughput and takiliglifrom its transfer
function. In this chapter we address the dual problem, ngnileht of designing the
best HARQ protocol from a collection of protocols fgiven channel conditionlhat
is, we consider packetized transmission over a memoryleisy shannel with known
Bit Error Rate or Symbol Error Rate and investigate the desighe best protocol for
that channel from a collection of HARQ protocols with poggitiifferent underlying
signal flow graphs. Recognizing the fact that forcing therthenber of bits between
two ACK/NACK feedback to be equal is too restrictive, we allthem to be variable,
i.e. we consider Variable Incremental Redundancy HARQ protoctilincreases the
complexity of buffer management slightly but results inngain throughput.

The conventional analysis approach focuses on a singlaldigw graph and hence
is inadequate as the search space of the protocols contatee@s with different un-
derlying graphs.

Our methodology allows us to address the problem of HARQgbesihen there is
a constraint on theaverage feedback channel usaddis is relevant, as, although in-
cremental transmission of redundancy in very fine incresibas maximal throughput,
it may not be computationally feasible. Also, in a multitagtscenario, such a design
might result in a feedback implosion.

We show that, for a fixed channel, both the problems - namelyabk of choosing
the optimal HARQ protocol from a given family of channel cedender unconstrained
or constrained feedback, can be mapped to a Markov Decisae®s (MDP) with dis-

crete states, alternatively called a controlled Markovicl{@MC) [4] problem. The
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protocol maximizing the throughput is obtained by solvihg bptimization of the con-
trolled Markov chain through dynamic programming. The ¢ast on the feedback
is achieved by the use of Lagrange Multipliers. The Lagramgihe weighted sum of
transmission costs and feedback costs, also arises atuhen carrying of the perfor-
mance computation with transmission delays and overheads.

The contributions of the chapter are, (i) the variable inmeatal redundancy con-
strained feedback HARQ protocol, with useful performamapriovement over conven-
tional Type | or Type Il HARQ protocols, (ii) the MDP or CMC fm@ework for design
of such a protocol, which allows operationally optimal gaffs between performance
metrics. The methodology improves over the conventiomadaiflow graph approach.
In addition, we illustrate our methodology by designing HaRrotocols with Reed
Solomon Codes. We also develop analytical expressions gmx@mations for esti-
mating the transition probabilities.

The chapter is organized as follows. In the next sectionfi@e8.2, we describe
general ARQ and HARQ protocols. Section 3.3 we describe #s&d problem as a
Controlled Markov Chain. Section 3.4 describes how thraughreliability and av-
erage feedback are calculated. In section 3.5 the undgrtyptimization problem is
set up and the solution is described. In section 3.6, simaulaesults using Punctured
Reed Solomon Codes are presented. 3.8 describes the ealagxpressions for cal-
culation/approximation of the transition probability irPanctured Reed Solomon code

family. Section 3.7 is the concluding section.
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3.2 ARQ and Hybrid ARQ Protocols

ARQ based protocols have been extensively used at the Iy lavel for point to
point communication on a noisy two way link. Retransmissiare also used in end-to-
end error recovery at the transport layer, for communicabieer a lossy packet based
network[64, 5]. In goure ARQprotocol for packetized transmission over a noisy chan-
nel, the transmitter encodes every packet with an errorctdetecode. A packet is
transmitted repeatedly until it is received “correctly” the receiver as decided by the
error detection code and as conveyed to the transmitter l§/REBCK feedback. The
three standard flavors of a pure ARQ protocol are the If&teip and Wait (SW§cheme,
the Go-Back-N (GBN¥cheme, which requires buffers at the transmitter, an&#iec-
tive Repeat (SR3cheme, which requires buffers at the transmitter and tesver. The
GBN and the SR schemes are ways of statistical multiplexingss packets, to keep
the channel busy and achieve higher throughput in the presarpropagation/queuing
delays.

In a HARQ protocol [67, 35], the transmitter encodes evergkpawith an error
correcting code (FEC) which also allows error detectiorhatreceiver. When such a
channel code fails to correct the errors at the receiverethe detection mechanism
is used to detect the failure. The result is conveyed to #estnitter by ACK/NACK
feedback.

The simplest HARQ protocol is a Type-1 hybrid ARQ protocoheve, like a pure
ARQ, copies of a packet encoded by a fixed channel code arentiiad repeatedly
till ACK is received. A generalization of HARQ protocol is @ined when the the
protocol allows transmission of the channel codeword (mfation symbols and parity
check symbols) in increments. Mandelbaum proposed thistgquae ofincremental

transmission of redundanay [43] where he recognized the usefulness of MDS property
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of Reed Solomon Codes for this purpose. Rate Compatibleté@acConvolutional
(RCPC) codes [29] are convolutional codes which allow sncheimental transmission.

The notion dual to such incremental transmission of redooyglat the transmitter,
is packet combiningor code combiningat the receiver [13, 67]. In packet combining
or diversity combining, several noigppies of the same codewande combined at the
receiver to decode (estimate) the transmit packet bettete Combining is a generaliza-
tion of packet combining and is a concept similar to senssiofu A receiver is said to
do code combining when it combines several noisy codewardsaeword fragments,
obtained by encoding the same packet by possiiifgrentchannel codes, in order to
decode the packet.

HARQ protocol for transmission of a single packet, over a rmfess noisy chan-
nel can be described by a finite state machine or a signal flaphgfThe protocol starts
in a states,, and if necessary, goes through statess, ss3,..., sy in a prespecified
order, according to the underlying signal flow graph, beterminating in stater.

Figure 3.1 shows the signal flow graph of a variation of TypelARQ protocol.
Figure 3.2 shows the bare-bones of signal flow graph of a geR&RQ protocol under
the assumption of error free feedback and no timeout.

Under these assumptions, for such a protocol, in eachstlaggransmitter transmits
a prespecified set of bitg s) for the packet. The receiver receives a noisy version of it
and decodes it and sends a ACK/NACK feedback. Figure 3.2shlew's the bare-bones
of the protocol of Figure 3.1 and that of a Type | HARQ protodal the next section,
we see how the figure can be interpreted as the State-Actagraidn of a policy of a

controlled Markov Chain.
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3.3 Controlled Markov Chain for HARQ

We consider a basic transmission scheme which is similaSelective-Repeat HARQ
system with ACK/NACK feedback except that we allow a varsabhumber of bits to
be transmitted between two feedback requests. We assutn¢hlauffer-size at the
transmitter and receiver is infinite, so that the propagatielay does not affect the
throughput.

Consider the transmission of a sindlébit long source-packet overrmemoryless
noisy channel. We are provided with a family of channel cofes= {c,...c,},
some of which are embedded (rate compatible). We assumedicht channel code
is equipped with an error detection mechanism. The sourckep@s encoded with a
channel code and transmitted over the noisy channel. Theddeattempts a decoding
and checks the success of its decoding by the error detengmhanism. On success,
it transmits a ACK on the feedback channel. Else it transenNA\CK. We assume that
the feedback channel is error and loss free and hence, alsA@K NACKs are received
correctly.

The Controlled Markov Chain framework is clear when we mmathat, on receiving
a NACK, the encoder can take one of the followengiions (i) transmitting additional
parity check bits, (ii) transmitting copies of some of thepously transmitted bits for
the packet, (iii) transmitting the packet encoded with &dént channel code, according
to apolicy until an ACK is received. By allowing the decoder to combinmevious
transmissions for the packet, the above scheme can emold¢ecombining, diversity-
combining and Type-I and Type-Il HARQ systems [67]. If thedder has the ability
to combine output from at mostprevious transmissions, then the indices of the dast
channel codes and previo$eedbacks form thetateof the encoder. At each decision

instant,i.e. after receiving a feedback, the encoder and the decodee sharsame
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knowledge of the state.

Let the collection of states & = SU{sy, st }, wheres, andsr denote the starting
state and the terminating state respectively. When in stateS U {s,}, the encoder
takes an action. from possible set of actionS(s), putsg(s,«) bits on the channel
and receives one bit feedback. With probability” (u) it receives an ACK and the
terminates in state;. With probability P{ " (u) = 1 — P57 (u), it receives a NACK
and makes a transition to a unique state, s) € S. Leth(s, u) be the probability that
actionu results in a ACK with anundetected errarUnder this framework, we see that
the transmission of a packet is a controlled Markov chainclvistarts in state,, and

with probability 1 terminates in the absorbing state Let us callg(s, ), h(s,u) and

f(s,u), thetransmission cost, reliability costndfeedback cogstespectively.

INote that this notion of the “state” is limited and is apph@only for tracking of the protocol at
the transmitter and the receiver. Firstly, this notion of #iate indicates that the action taken by the
encoder, which governs the evolution of the protocol, ddpemly on the information provided by the
knowledge of this state. Note that the encoder has accebs tactual information bits but it is allowed
to use them only for transmission and not for controlling pinetocol. Secondly, this notion of the state
is also not used for error correction purposes at the decaslér does not form or contribute to the
sufficient statistics of the information bits encoded in plagket. In principle the sufficient statistics for
error correction purposes are the posterior probabilitfélse information bits given the received channel
symbols. Thirdly, to keep the state space finite and smadly lae shall resort to some approximations.
In that case, even for a memoryless channel, the states ntdyendarkovian, that is, they may not
decorrelate the past and the future evolution of the prétoedectly. But in the chapter we assume that

the states are defined so that they are Markovian.
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3.4 Performance Computation for a HARQ Protocol

Under the CMC framework, an HARQ protocol can be completelyodibed by speci-
fying the action to be taken in each state.We define a protmapolicy 7 to be a map
from S U {so} 10 Usesugso1U(s), defined such that(s) € U(s), Vs. A policy tells the
next set of bits to be transmitted for the packet given theeruistate. Figure 3.1 shows

the state-action diagram for a variation of Type-Il Hybri®@ protocol [68].

Figure 3.1: State-action diagram for Type-Il HARQ with direombination

The throughput, the reliability and the average number edilf@ck bits can be cal-
culated as follows.

Fors € SU {so}, letV™(s), H™(s) and F'"(s) denote, respectively the expected
transmission cost, expected reliability cost and expetdedback cost for a source-
packet when the system starts in statend terminates into statg- while following a
policy 7. Then the throughput of policy is given byn(r) = % The probability of
undetected packet error is given BY (so) and the average number of decoding attempts
is given by F'™ ().

V7™ (s0), H™(s¢) andF™(sy) are computed either from the transfer function obtained

by applying Mason’s Gain Formula [38] to the signal flow grapiby direct computa-
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Figure 3.2: State-action diagram for general HARQ with efree feedback and no

timeouts

tion from the following equations. For alle S U {so}, if u = 7(s),

V™i(s) = g(s,u)+ PST(S’“) (W)V™(7(u, s)) (3.1)
H™(s) = h(s,u)+ P;(s’“)(u)H”(T(u, s)) (3.2)
F™(s) = f(s,u)+ P;(S’“)(U)F”(T(u, s)) (3.3)

These are linear equations with almost decoupled struangean be solved straight-
forwardly.

In the next section we see that the CMC structure can be usebtéan optimal

a7



HARQ policy from a collection of policies.

3.5 Constrained Feedback HARQ Design

An intuitive justification for the superior performance oARQ over pure FEC, even
for memoryless channels, was provided in Chapter 2. Sughesgpplication can toler-
ate an undetected error probabilityl®f 6 per packet. In Pure FEC, only one decoding
attempt is allowed per packet. Hence the error correctiost ime strong enough to cor-
rect the channel induced errors, to the desired reliapitth probability 1 for the first
transmission of the packet. On the other hand, in HARQ padfedich uses incremen-
tal transmission of parity check bits, the first transmissieed not be strong enough to
correct all errors, so long as the uncorrected errorsdatectedwith high reliability.
Hence the number of parity check bits in the first transmissin be less (sometimes
significantly so) than the case for pure FEC. If the first traigsion is able to correct
all errors with, say, probability 0.5, (and detect the unected errors with probability
approaching 1), the extra parity check bits do not need tedmsimitted with probability
0.5, and hence higher throughput is achieved. Incrememiasinission of redundancy,
hence, is designed to “build up” the error correction codldttis strong enough to
correct all errors up to the desired reliability. This argnnclearly indicates that, in
principle, the highest throughput will be achieved if thengmission of redundancy is
done in small increments, such as one channel symbol pantiagsion.

But the argument presented above fails to consider thewollpdrawbacks of re-

dundancy transmission in fine increments.

e Complexity: Note that each incremental transmission requires one AGKH

feedback from the decoder, and each feedback generatioiraseg decoding
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operation. Hence, if a scheme transmits a packet in 5 inaresnthe decoding

complexity is increased 5 times over pure FEC transmission.

e Delay: Each independent incremental transmission may suffer aratptrans-
mission delay and queuing delay. If a scheme transmits agpatk increments,
then, irrespective of the buffering scheme used, the dedéyré an ACK is gen-

erated can be nearly 5 times that of a pure FEC transmission.

e Overhead: Each incremental transmission may go over the channel gxaate
logical entity (such as an IP packet) and hence may need tadwdpd with
separate header and sequence number. This overhead wilighrthe promised

throughput.

Nevertheless, pure FEC is only at one end of the spectrunmaplexity vs. through-
put tradeoff and if it is possible, the available feedbackrotel must be exploited for
better performance. The proposed methodology provides/afhachieving this trade-
off in an operationally optimal fashion. As the usage of festk channel,e. the num-
ber of ACK/NACKSs per packet is directly related to complgxielay and overheads,
we would like to design an HARQ protocol for a given channalhsthat the through-
put is maximized but the use of feedback channel is congdaifhe feedback channel
usage can limited directly by constraining either (i) thexmmaum number of feedbacks
allowed per packet ( similar to Chapter 2) or (ii) the averagenber of feedbacks al-
lowed per packet. For this chapter we consider the lattdimigae. The proposed
methodology also allows a direct control of the reliabilitiythe protocol, provided ap-
propriate probability computations can be done. We takegrdrayian approach where
we express the constraints by minimizing a weighted sumaprecal of throughput,

feedback channel usage and probability of undetected error
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Hence the design of an HARQ protocol involves, finding from $let of all allowed
HARQ policies, a policy which yields maximum throughput matit violating the con-
straints on maximum tolerable probability of undetectedreand on the average num-

ber of feedback bits. That is, solving following design gdeob.
CHARQ Protocol Design Problem:
min V™ (sg) subject toF™(sg) < Fop andH"™ (sg) < Hy (3.4)

Equivalently, the optimal policy must be an unconstrain@amizer of a Lagrangian
cost,

min V7 (so) + A\pu H™ (S0) + A F™ (50) (3.5)

for some Lagrange multipliers,, > 0, Ay, > 0.

Equation (3.5) is a problem of minimization of total expect®st before termina-
tion for a controlled Markov chain. The search for optimaligois accomplished by
dynamic programming [4].

For the given\,,, Ay, the optimal policyr* satisfies the following Bellman equa-

tions of optimality. For each € {sq} U S,

VT (s) + A E™ () + A HT (5)
= Join (g(s,u) + Appf (s, 0) + Apuh(s, u) +

PST(“’S) (w) (V™ (1(u, s)) + )\be”* (T(u,s)) +

Mo H™ (1(u, 8)))). (3.6)

The set of equations (3.6) is solved by the algorithms of e/aleration or policy
iteration [4]. Let numerical superscripts denote the tieraindex. Then the algorithm

is described as follows.
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Value Iteration Algorithm:
1. Setk = 0. Set, arbitrarilyV*(s) = 0, F*(s) = 1 andH*(s) = 1.
2. Foralls € {so} US, setvalues J*(s) = V¥(s) + M\ H*(s) + A F*(5).
3. Foralls € {sp} US, set

JF*1(s) = min ((g(s, w)+ Appf(s,u) + Apuh(s,u)) + P;(“’S)(u)(Jk(T(u, s))))

uelU(s)

4. Setr"*1(s) to the minimizer actiom() in the above minimization.

5. For some small number if maxe(s,3us [J*7(s) — J*(s)| < ¢, stop, and select

7t = rF*1, Else, increment and go to step 3.

Policy Iteration Algorithm:
1. Setk = 0. Initialize 7*(s) = u for some arbitrary; € U(s).

2. Obtainsteady state values for®, J*(s) for s € {so} U S by solving of linear

equations given by,
JE(s) = g(s,7"(s)) + Appf(5,75(8)) + \puh(s, 7(5))
+PIET ) (7 (5)) TH (7 (74 (5), 5)).
3. Set

T (s) = arg m[}?) (9(s,u) + Apf(s,u) + Apuh(s,w) + PT) (w) J*(7(u, 5)))
ucU(s

4. If, forall s € {so} US, 781(s) = 7*(s) then stop and seleat’ = 7**!. Else

incrementt and go to step 2.

The values of individual performance parameters can bersatdy solving equa-

tions 3.1 for the selected protocol.
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3.5.1 Interpretation of the Lagrangian

Note that the optimization problem could have been set er@dtive ways. For exam-
ple, to maximize the throughput subject to a constraint enféledback, we could have
solved,

. k .

But the optimization problem in eq. (3.7) does not yieldlftseelegant solution by
the theory of Controlled Markov Chains unlike the problene (3.5).
The Lagrangian in equation (3.5) also arises naturally wareadyzing the HARQ

protocol in the following situation.

Delay and Overhead Analysis in Stop and Wait based HARQ protool: Consider a
Stop and Wait based HARQ protocol executing a poticy\Suppose at every transmis-
sion step the transmitter must append a header of Igpdtits to the (partial) channel
codeword. This is an overhead that grows with the numberepissteeded for transmis-
sion. The total number of bits put on the channel before vaogian ACK is given by
V7™ (s0)+1nF™(so). Similarly, letT; denote the baud periotde. the time taken to put one
bit over the channel. Let the transmission delay for eaghtstd; and let the decoding
delay - the delay for generating a feedbackibe. LetT; denote the time taken for the
feedback to reach the transmitter. Then, the total delay ftee start of transmission of

a packet to the time when an ACK is received by the receivegnsputed as,

Tiotal = VW(S())TS + (lhTS 4+ Thee + Ty + Tf)Fﬂ(SO). (38)

Similar expression holds for expected total delay when teys are not determin-
istic but are independent random variables with finite meditne total channel usage

V7™ (s0)+1,F™(so) as well as the total delay in eq. (3.8) are of the form of theraagian
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in eq. (3.5). Hence the Lagrangian has a physical meanirgdrsituation.

3.5.2 Feasibility

The second part of the design procedure is the search foahggrMultipliers which
will make the solutions meet the constraints. The probleatedtin eq. (3.4) may not
have a solution at all. Note that, as a pure FEC transmissi@nsipecial case of the
HARQ protocol, all values of, > 1 in the problem (eq. 3.4) can be met by some
policy. The reliability constraint is harder to meet and soralues off{, may not have
any solution in the set of policies.

If such a solution exists, the determination of the two patams\;, and \,, re-
quires solving a linear program. Also, the dynamic rangeushbers for probability of
undetected error is much smaller than that for feedbackhande the sensitivity of the
two Lagrange multipliers is widely different.

A faster method can be devised if one is willing to toleratpragimate meeting of
the reliability constraint. Note that in practice, reliilyi constraint, or probability of
undetected error, is typically specified in logarithmiclecar described by “orders of
magnitude” such a0~ and10-¢. Consider a protocol given by policy. A close

upper bound on the probability of undetected elfdr sy) is given by,

H"(s0) < F™(s0)( max h(s,m(s))).

se{so}us
This upper bound allows us to drop the reliability constramnthe Lagrangian by in-
corporating it directly in the search. If the action &&ts) at each state is modified to
U'(s) = {u:u e U(s),h(s,u) < Hy}, then the solution obtained by setting, = 0
(unconstrained reliability), will satisfyi ™ (so) < F™(sq)Ho, which has the same “order

of magnitude” as{,. Modifying the action set t@/”(s) L {u:ueU(s),h(s,u) <
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%?}, results in a solution guaranteed to meet the reliabilityst@int. Determination
of a single Lagrange multipliek;, can be handled by the relatively quick descent or

bisection techniques.

3.6 Results with Reed Solomon Codes

The design procedure of previous section yields the optjpoéty or protocol for a
given memoryless channel for essentially arbitrary seleaif channel codes and error
detection mechanisms. The essential part of the designowlkdge of the transition
probabilities of the Controlled Markov Chain. These prabidss can be obtained ana-
lytically or by simulation.

We illustrate the technique by using a family of channel soslkich consist of punc-
tured codes obtained from a mother Reed-Solomon Code. (Rapatible ) Punctured
Reed-Solomon codes have been considered good codes ftassiegror control, espe-
cially for hybrid ARQ. This is because of several reasongsthy they have an opti-
mality property that they are Maximum Distance Separabl®8y i.e. they meet the
Singleton bound [6] with equality and each additional syhboreases the minimum
distance of the code by one [68]. Secondly, the Berlekempsgyadecoding algorithm
can be used when there are symbol errors as well as symbalesd67]. This is es-
pecially suitable for a fading channel where a deep fadegtiécted, results in symbol
erasure. Thirdly, the weight distribution of MDS codes isuetely determined. It can
be used to analytically compute or estimate the transitrobgbilities.

We consider a family ofn, k) punctured RS-codes oVé&tF(q) for n, < n <
Nmaz- 1hESe are punctured versions ofrg,.., k) parent-code. We uséounded dis-

tance decodingas the decoding method. With each block length,,.;, < n < 700,

54



there is a decoding diametéy,.(n). A received word;™ is accepted if

dy (7™, ¢) < |dgec(n)/2]for some codeword (3.9)

wheredy is the hamming distance. (Decodiragliusis analogously defined as(n) =

|dgec(n)/2]). We assume aymbol-symmetric channekith symbol error ratey., i.e.

Fora,8 € GF(q), # «

Ply = a|z = a] I —peandPly = f, |z =a] = 4.

The Markov Chain is set up as follows. Exploiting the MDS prdp of RS-codes,
we define the states 48, sz} U {5, nmin < 1 < Nnae b, Where the system is in state
s, if blocklengthn was used in the decoding for generating the last feedbackacAn
tionu = (ny, ng) in a states,,, consists of discarding; symbols and requesting new
symbols. Under these definitions, the probability of resraissionl — P*7 («) and prob-
ability of termination with undetected erré«s, ) can be computed or approximated
from the distance properties of the MDS codes. Please natgtthis notion of state, as
information decorrelating the past and the future, is am@pmation, which is exact in
the first two transmissions but remains a good approximdtiofurther transmissions.
In Section 3.8, we derive the analytical expressions andiolatpproximations for the
computation of transition probabilities.

Figures 3.3 to 3.10 and show the results obtained for a sysywometric channel
overGF'(32). The RS code family used &n, 8) code family oveiG F'(32) obtained by
puncturing &31, 8) RS code.

The schemes indexed with the prefixes and7'2 are the conventional Type | and
Type Il Hybrid ARQ schemes. The schemes indexed’ldy andC'R are respectively
the proposed schemes for different values of the Lagrarmgaalties) s, and),,,. The
constrained feedback schemes indexed’t#y haveA;, > 0 and\,, = 0. (Still, the

decoding radii of the code family are chosen to maintain amim level of reliabil-
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ity of 7, (that ish(s,u) < 107"Vs andu, as in the discussion in Section 3.5.2). The
constrained reliability schemé&sR have),, > 0.

Refer to Figures 3.3 to 3.5, which are 2 dimensional prapestiof performance
triplets (Table 3.1) in the space of Throughput, Reliapidihd Feedback, for a channel
with symbol error probability of 0.1.

It is evident that the proposed approach captures the tiladetween the three
competing requirements, namely high throughput, highrabdity and low computa-
tion, quite well. Constrained Feedback schemes, such &4 @€hieve about 20% gain
in throughput over the closest conventional Type-ll sch€¢ite5), while maintaining
reliability over 7 but allowing nearly 0.5 NACKS on an aveeadf the NACKS are al-
lowed to increase, a scheme such as CR-3 achieves this tpouggain while retaining
reliability better thars, albeit at the expense of increased feedback. .

Figures 3.6 to 3.8 and table 3.2 show similar trend and trdidefar p. = 0.05.
Similar, though, not as prominent tradeoffs are observethamnels with lower symbol
error probabilities. Figures 3.9 and 3.10 are condenseslores of similar results for

channels with symbol error probability of 0.01,0.001 ar@D01.

3.7 Conclusion

We propose a dynamic programming based technique for deskdybrid ARQ system
for error control in wireless channels [9]. It is more flexlthan the conventional signal
flow graph based techniques in the sense that it allows tigiaetrol over through-
put/feedback and throughput/reliability tradeoff. Theuks indicate that, if the system
can support a little extra complexity and more feedback tgnificant improvements

in throughput can be obtained by careful design.
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Throughput vs. Feedback: Pe =0.1: (n,8) RS—codes over GF(32)
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Reliabilty vs. Feedback: Pe =0.1: (n,8) RS-codes over GF(32)
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Throughput vs. Reliability: Pe =0.1: (n,8) RS-codes over GF(32)
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Throughput vs. Feedback: Pe =0.05: (n,8) RS-codes over GF(32)
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Reliabilty vs. Feedback: Pe =0.05: (n,8) RS—codes over GF(32)
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Throughput vs. Reliability: PE =0.05: (n,8) RS—codes over GF(32)
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Throughput vs. Feedback F'e =0.001: (n,8) RS—codes over GF(32)

Throughput vs. Feedback: Pe =0.005: (n,8) RS-codes over GF(32)
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Figure 3.9: Performance

0.0005.
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Throughput vs. Feedback: P,=0.001 (n,8) RS—-codes over GF(32)

Throughput vs. Feedback: P, = 0.0001: (n,8) RS-codes over GF(32)
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3.8 Appendix: Transition Probabilities for CHARQ with
Reed Solomon Codes

In this section we derive the formulas for computation/agpnation of the transition

probabilities of the controlled Markov chain. We need thiéofeing results.

Weight Distribution of Reed Solomon Codes:Reed Solomon codes are Maximum
Distance Separable (MDS), and their weight distributiocampletely determined[6,
45]. For a(n, k) MDS code ovelGF(q), let A;(n, k, g) denote the number of codewords
of weightj. Then4, =1, A; =0forj =1,... d* — 1, whered* = n — k + 1, and for
J=d,
j—d* .
Atk = ()@= 0 v (e (3.10)
=0
A very interesting property of the MDS codes is their symmeitith respect to distribu-
tion of zero symbols in a codeword. The number of codeworagsight; with zeros in
fixedn — j locations, does not depend of the location of zeros - or the*distribution-
pattern”. Therefore, denote by;(n, k, q) = @A]—(n, k, q) the number of codewords
of weight; with a fixed zero-distribution pattern.

This property helps us calculate 2-step and 3 step WeiglttiBusion functions,

useful for the calculation of transition probabilities.

Proposition 1 LetA?le (n1,n9, q, k) denote 2-step Weight Distribution function, that is,

the number of codewords of(a; + n», k) RS code ovef: F'(q), which have weighj;
in first n; coordinates, and, in nextn, coordinates. Leﬂ§1j2j3 (n1,ne, ns, q, k) denote

the number of codewords of a; +n, +ns, k) RS code ovet: F'(¢q), which have weight

j1 in first n; coordinatesg, in nextn, coordinates angs in nextnz coordinates. Then,
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by the symmetry of zero distributions the following holds.

() ()

A?l]é (nlv n2, q, k) = WAjl+j2 (nl + N2, q, k) (311)
(j1+j2)
3 GGG
A ajs (11502, 113, 4, K) - = == A iots (M1 + 12 + 13, ¢, k). (3.12)
(j1+j2+j3 )

Puncturing: An (n, k) block code can be punctured to obtaifna, k) code by dropping

n — nicoordinates of the codewords. It can be easily shown thattpted versions of
MDS codes are also MDS. Consequently, the distance prepertithe punctured codes
are independent of theuncturing tablethat is, the coordinates dropped. The weight

distribution of the punctured code is again given by the esgion above.

Counting error patterns within decoding spheres: [6] Consider ann, k) code over
GF(q). LetT(n,j,w,s) denote number of error patterns of weightat a Hamming
distances from a fixed codeword of weight Then

T(n, j,w,s) = > <bf;i]) (‘2) (j R a) (q—1)"""(g—2)"

0<a<n 0<b<n;a+2b+w=s+j
(3.13)

Figure 3.11 shows how equation (3.13) can be derived.
Let0 < s < |%1]. Let((n,j,w,s) denote the set of error patterns of weight
w, which are at a Hamming distanedrom at least one codeword of weight Then

|¢(n, 4, w, s)|, the size of the set, is given by, (n, k, ¢)T'(n, j, w, s).

Symmetry in error patterns: As the code is symmetric with respect to zero-distribution
patterns, so is the sé{(n, j,w, s). Hence the number of error patterns of weight
which have exactly; non-zero symbols in first; coordinates, is given by

(’Zi)((%:ti)

These equations are valid under the convention (ﬂj;at: 0 whenevern < 0orz <0

Aj(n, k,q)T(n, j,w, s) (3.14)

orz >m.
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Codeword of weighji

Error Pattern of weightv b
e
- . -

Figure 3.11: Error Pattern of weight and codeword of weight Non-zero coordinates

in the error pattern disagree@places. Zero coordinates disagreé ptaces.

Symbol Symmetric Memoryless Channel:Consider transmission of a codeword over
a symbol symmetric channel with symbol error probability The probability thatw

out of n symbols are received in error is given ({y)p;“(l — pe)" Y.

Bounded Distance DecodingFor every codeword length, we associate a decoding
radiusr.(n) < [£52] . A codewordc is decoded if the Hamming distance between
the received word and the codeword is less thgn). If no such codeword is found,
a decoding failure is declared, which will be used to gerreNACK feedback in the

HARQ protocol.

States of the Controlled Markov Chain: As described earlier, we define the states as
{30, $7} U{Sn, Nmin < 1 < nmas b, Where the system is in stagg if blocklengthn was

used in the decoding for generating the last feedback.

Deriving probabilities of the controlled Markov Chain: At any decision instant,

which has resulted in a NACK, the receiver must take an actidme action consists
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of receivingns additional symbols, discarding, past received symbols, while retain-
ing pastn, symbols. We shall calculate the first step transition prdbs as follows.
Without loss of generality, we assume that the all zero cadéwf lengthn, +ny+ns is
transmitted over a memoryless symbol symmetric channélsyinbol error probability
pe. Let g, e, and_g denote the (random) received error patterns of lengths, andn;
respectively. LetV (e) denote the weight of an error patterniet D;, denote the event
thatn, +ny symbols are transmitted over the memoryless channel anchiiemit code-
word is decoded correctly/ (e, +e,) < r.(n; + ns). Here+ for error patterns denotes
concatenation. Lel/;, denote the event that the received codeword is decoded- incor
rectly. LetZ'?(c, r'? denote a decoding sphere of dimensions n, of decoding radius
ri? around a codeword ThenU, is the event g+ e, € U..0Z"(c, rt?). Analogously,

defineD,3; andUs; to be the events,e- e, € Z%3(0,72) and g + €; € U..0Z2%(c, r2).

Approximating Transition Probabilities: Consider a HARQ protocol that starts in
states, and requests a feedback after transmitiing- n, symbols. The feedback will
be an ACK if eventD;, U U;5 happens. Otherwise the feedback will be a NACK and
the system will move to a new state. All actions taken in state. have transition
probabilities conditioned on the eveid,» U U;»)'. A typical actionu in states; can be
represented by integets= n;, n3, which corresponds to requesting new symbols,
discardingn; of the old symbols, and making a decoding attempt by comgitie
retainedn, symbols with the new; symbols. Note that, because of the MDS property
of the RS codes, and the fact that the previous statesyvdBe specific locations of the
discarded:; symbols does not matter for the calculation of state trenmsfirobabilities.
We are interested in the probabiliti®$Dos| (D12, UU12)' | and P[Uss|(D12UU;2)'], which

are the probabilities of correct decoding and undetectext ezspectively, when action

u is taken in statey;. Probability that a NACK is generated on actions P|[(Dy3 U
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Us3)'|(D12 UUs2)"| = 1 — P[Da3|(D12 U Uya)'] + P[Uss| (D12 U Usa)'].

ConsiderP[A|(D,2 U Uyy)'] for some eventl. Note thatD,, andU;, are mutually

exclusive events. Therefore( D, U Uy»)'| = P[D},] — P[Uy2] and we have

[AND),NU,]  P[AND,NUL]  PI[AN D}, — P[AN Ul
P[D}, N Uiy P[D',] — P[Uys)] P[Dy,] — PlUy]

PA[(DpUl)] = &

Now if P[D},] > P[Uy,], i.e. 5[[%1;]} < 1, we can neglecP[Uy,] in the denominator

and obtain an approximation #[A|(D;, U Us,)'] as follows.

P[AN U]

PIA|(D12 U U] ~ PIAID}] — 55

(3.15)

The right hand side is a close lower bound BA|(D;2 U Uy2)’] as the ratio of the

P[A[(D12UU12)'|=P[A| D7)+ P[ANU; 9]

PIDL,]  _ Pl
error to the true value; FIABR00)] = PO,

is small by assump-
tion. The assumption is justified as Reed Solomon Codes arsvet) packed”i.e. the
number of codewords of given dimensions are much smallertthat promised by the
Sphere Packing Bound[6]. The lower-bound in eq. 3.15 carffeetively used as an
approximation toP[A|(D;2 U Uy2)’] no matter how small the probability of the event

Ais. A coarser bound[A|(Dy; U Uyy)'] ~ P[A|D},] can be obtained by neglecting

P[AﬂUlg} < P[U12]
P[D},]  — PIDY)

|P[A|(Dy, UUy,)'| — P[A|D},)| < 2| jj[[gi“ is small in absolute terms. But this bound

in the numerator too. In that case, the absolute value of tog e

does not guarantee that, relative?0A|( D2 U U;3)'] the error will be small.

Probability of Correct Decoding: Consider the computation @f[D,3|D},] where the
eventD,3, as described earlier, denotes the probability of correcbding when the
lastn, symbols from the:; + n, symbols received are combined withnew requested

symbols to form a codeword. TheR[D,3|D,] is exactlygiven by the following ex-
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pression.

P[Da3|D1y]
P[Dysn DY) 220 o PIW(8) = 22, W(e)) + 20 > 1, W(E) + 20 < 7y

20=0

PlDy] Yo PV(&) = 22, W(e)) + 22 > e,

20=0

Where

P[W(gz) = 22, W(gl) + 22 > T612,W(§3) + 22 < 7’@23]

z1+z2+23
o ng ni nsg De ni+no+n
— 1 — p,)mtnetns (316
2 <22) <21> (Z?») <1—pe) 17 (3.16)

{z1,23:0<21<n,
0<z3<nsz,
zl+22>7‘512,
z23+22 Sregg}

and,

PW(&) = 2, W (&) + 22 > 1e,,]

= > (n) <n1)pzl+22<1 —pe)T (3.17)
29 21

{z1:0<21<ny,
Z1+22>Teqy )

Probability of Undetected Error: To computeP[Us3|D1,] consider the following.

PlUy|Djp) = PU0Bial = (572 PlUy, 1 Dy, |W(e) = 2] PIW(e,) = =]) (PID})) ™

22=0

= (X0 PlUxn|W (&) = 2] PID},|W(gy) = 2| P[W (&) = 2]) (P[D},]) ™

Now
- n z ny1—=z
PIDLIW(E) = 2] = PV (@) 20 rel = Y- (7 Xeawone g (1)
21=0

P[Uy3|W (e,) = 25] an be computed as follows. For compactnessnﬂgfiéf ng + ns .
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Consider
P[Ugg N W(gz) = 2’2]
= PHe +8 € Uccz 2027 (¢, Tery) } N{W (&) = 22}]

ng Tegg nz ns) n23 zo+23 n23—2z2—23
z z . pe 1 — DPe
= E : E : 2n23 3) E Aj(nas, q, k)T (ngs, j, 22 + 23, 5) ( ( _ 1)2)2-1-23 ) ‘

z3=0 s=0 Z2+23 j=naz—k+1 (q

Therefore

PlUx|W (&) = 2]

= P[gl +& c UcGCIQ?SS,c;éOZ%(c? 7’@23)|W(§2) = Z2]
Pl{e, + & € Ueecg i€ e} N {W (&) = 2]
P{W (&) = z}]

n3 Teas TZLs n23 . (1 — p,)nsz
= Z Z ( (n;;) ) Z Aj(n237 q, k)T(nZ’n J, %2 + 23, S)pe((q _ 12)922)4—23/’2 8)
z3=0 s=0 \22+23/ j=noz—k+1

The expression uses the fact that the number of error patégra e, of weight z; in
first n, coordinates ands; in nextns; coordinates , which are at a distanckEom some

nonzero codeword if'%%, is given by eq. 3.14 as

GIGENS |
Z Aj(”237€l>k)T(”237],Z2—I-Zg,s).

(Z:—T—ig) j=naz—k+1

To calculate a the second term in the approximation, nai@ly, N Uss]/ P D],
we need thehree-stepveight distribution function of the underlying mother code

We have,
P[U12 N U23] = P[{gl +& c UC730Z12(07 T612)} N {§2 + [S3S UC#OZ23(C> 7’523)}].

The expression foP[U;s N U] is given by,

3 3z
‘ De = 8 (a2
Z A]1]2]3(n17n27n37q7 k)HT(nM]zazzasz) ( ) (1 _pe)2221( =)

—1
21,22, 23€B, i=1 q

J1,J2,J3€ B
51,82,83€Bg
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whereB, = {#1,20, 23 : 0 < z; < n;; 21 + 20 + 23 # 0} denotes the collection of error
pattern distributions in the three sets of coordinates,, ns;. B = {j1,7293 : 0 <

Ji <ng; g1+ jo +js > ny +ne +ng — k + 1} denotes the possible weights of non-zero
codewords in the the coordinates. Finally = {51,82,83 : 0 < 85 < my, 81+ 82 <
Ters, S2 1S3 < Tey, } denotes the set of distances of error patterns from codewanith

will result in the event/;, N Us3. Note that the constraints + so < 7.,,, 52 + S3 < Ty,

ensure that no error pattern is counted more than once.
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| Scheme| Throughput| Reliability | Avg. Feedback (NACKSs)

pe = 0.1
CF-1 0.5690 6.9446 0.6611
CF-2 0.5603 6.9702 0.4722
CF-3 0.5180 7.4478 0.2089
CF-4 0.4928 7.7394 0.0778
CF-5 0.4685 7.1192 0.0248
CR-1 0.5917 7.0956 2.3210
CR-2 0.5807 7.4042 2.0775
CR-3 0.5643 8.0662 1.7867
CR-4 0.5312 8.6273 0.6324
CR-5 0.5078 9.1885 0.4484
T1-1 0.4658 7.7293 0.0734
T1-2 0.4602 7.1245 0.0226
T1-3 0.4319 9.2092 0.0290
T1-4 0.4174 8.6405 0.0087
T1-5 0.3990 8.1228 0.0024
T1-6 0.3797 10.1992 0.0033
T2-1 0.3881 8.3359 0.7179
T2-2 0.4463 7.2248 0.3788
T2-3 0.4037 9.3570 0.4154
T2-4 0.4504 8.4845 0.1841
T2-5 0.4699 7.7601 0.0684
T2-6 0.4622 7.1343 0.0222
T2-7 0.4356 9.2216 0.0282
T2-8 0.4188 8.6443 0.0086
T2-9 0.3995 8.1238 0.0024

Table 3.1: Performance of various schemes for symbol synmé@f'(32) channel with
pe = 0.1
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| Scheme| Throughput| Reliability | Feedback
Do = 0.05
CF-1 0.6649 6.8446 0.6082
CF-2 0.6653 6.8581 1.0302
CF-3 0.6485 6.9565 0.4679
CF-4 0.6071 7.1893 0.1722
CF-5 0.6021 7.3797 0.1411
CF-6 0.5695 7.1622 0.0357

T1-1 0.5320 8.5284 0.1566
T1-2 0.5543 7.7346 0.0310
T1-3 0.5304 7.0479 0.0055
T1-4 0.4965 9.4175 0.0071
T2-1 0.5420 8.5916 0.1354
T2-2 0.5548 7.7479 0.0301
T2-3 0.5304 7.0503 0.0055

Table 3.2: Performance of various schemes for symbol syne@t’'(32) channel with
pe = 0.05
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Chapter 4

Progressive Unequal loss Protection in the absence of

Feedback

4.1 Introduction

The high data rate, loss-tolerant and sometimes delaytisensature of multimedia
sources like images and video signals is in contrast witld#lay-insensitive but loss-
intolerant nature of data. Traditional transmission sabeand protocols developed for
wireless transmission of data may be inefficient or overlysawvative for the transmis-
sion of multimedia sources. As a large and increasing fvaabf the network traffic
comprises multimedia applications, their transmissioarawisy channels and lossy
networks merits special attention. Hence there has beeh nesearch in the last few
years on devising “joint” source and channel coding schdoréeansmission of specific
sources over noisy channels and lossy networks.

Embeddedness (successive refinability) or scalabilityitinabe is a desirable prop-
erty for a source coder as it provides flexibility and the ¢algs to progressively re-
construct the source. An embedded source coder allows tueldeto reconstruct the

source at different bit rates from the prefixes of a singlesbi#éam. Progressive re-
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constructionis possible as each additional bit (or a set of bits) imprdahesquality
of reconstruction. Several highly competitive and low ctewjly algorithms for em-
bedded image coding have been developed in the literatitemples are Embedded
Zerotrees of Wavelets (EZW) [56], the popular Set Partitignin Hierarchical Trees
(SPIHT) coder [52] as well as recent works in [49, 42].

The embeddedness property, which allows the user to traaschreceive the source
progressively in the absence of transmission noise, tlpicaakes the source coder
sensitive to transmission noise. An error in an embeddesittg@am may cause misin-
terpretation of the later bits, leading to error propaga#iod a possible loss in synchro-
nization. The progressive property is lost as the bits ¥alhg the error may not improve
the quality of reconstruction; in fact, they might damage txconstruction. Therefore,
it is important to design good joint source-channel codictgesnes for transmission of
embedded source coders over noisy channels. In additisdésirable to retain the
progressive reconstruction property in image transmisaioen the channel is noisy.

There is a growing body of recent work in transmitting pragieely coded images
over different kinds of noisy channels [57, 59, 12, 1, 39,44,,18]. They are based on
equal or unequal error protection of the output of an emb@ddarce coder and discuss
ways to combat error propagation. These schemes, whilengaise of a progressive
source coder, are designed for a fixed target transmissien Taney do not explicitly
consider the performance of the scheme at intermediateaaf@ovide direct scalability
to a higher transmission rate. Although, in some casesatiparlly optimal progres-
sive transmission is a by-product, either of the design dh@imposed constraints,g.
[57, 12].

In this chapter, we consider the optimal design of a jointsetchannel coder using

an embedded source coder, with an emphasis on progresanggission over memo-
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ryless bit error channels and packet erasure channels witbealback.

First, we provide a formulation of optimal unequal protentfor memoryless chan-
nels under a transmission budget constraint. We providdgaoritom which chooses
an optimal unequal error protection policy from an arbitramily of (block based)
channel codes. Earlier attempts at this problem have usetkinb@ased techniques,
e.g. modeling the distortion-rate performance of the image cageexponentials [1]
or modeling the performance of the channel codes by curvedif89]. Here, the pro-
posed algorithm is exact and does not require model baseduwtation either for the
source coder or for the channel code family chosen. It is imdependent of the ac-
tual performance criterion used (average distortion,ayePeak Signal-to-Noise Ratio
(PSNR) or average useful source coding rate). The framedevkloped can be used
for memoryless channels including memoryless bit erromokés €.9. BPSK trans-
mission over AWGN channels with hard or soft demodulatiarg memoryless packet
erasure channels.

Second, we show how progressive transmission can be adhigite retaining op-
timality at intermediate transmission rates if the undedyfamily of channel codes is
embedded (rate compatible). The Rate Compatible Punctboadolutional (RCPC)
codes [29] satisfy this criterion for bit error channelsnptured Reed-Solomon (RS)
codes satisfy this property for erasure channels [67]. Weal@onsider the case when
both bit errors and packet erasures are present in the dhariret situation is consid-
ered in [18].

Our studies show that the proposed schemes offer a perfeeameasured in av-
erage PSNR vs. bit rate — superior to any scheme using equal @otection. The
amount of improvement depends on the transmission rate sadedy of other param-

eters, including the available choice of the error contoales and the channel statistics.
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Further, the proposed scheme can be used for progressivdirgavhile guaranteeing
optimality at a number of intermediate rates.

The organization of the chapter is as follows. Section 4stdees the basic set up.
Section 4.3 discusses the performance criteria and thengatiion problem for memo-
ryless channels. It describes the solution of the optinorgtroblem and presents the
algorithm for unequal error and erasure protection. Seeid discusses when and how
optimal progressive transmission can be accomplishedul&tran results are presented

in Section 4.5. Finally, Section 4.6 ends with concludingaeks.

4.2 The Transmission Scheme

Consider the transmission of the output of an embedded s@oder over a noisy chan-
nel. A challenge in transmitting such codes is to minimizedlamage caused by error
propagation. A twofold strategy that can be employed isprgyentionof error and
hence error propagation by forward error correction ande2gctionof possible post-
decoding errors and discarding all the bits that may coutigilbo error propagation. In
the case of packet erasure channels, the problem is to aroainectable erasures.

Consider an embedded source coder which simultaneousiglead’; source sam-
ples. Its output, the source encoder bits, is packetizexfixed-lengthsource-packets
of, say,k, bits each. As the source coder is embedded, the representétine source
at rates which are multiples @f,/ /N, can be obtained from a prefix of this stream of
source-packets.

For error protection, we assume that we are provided withige flamily of block
codes, each member of which has error correction and ertectiten capability, like

those in [57]. These codes operate on source-packétstofs and generate blocks of
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bits of different lengths which are subsequently transdittver the channel. Typical
examples of such families are concatenated RCPC-CRC cedg$29, 57]) or punc-
tured RS codes with bounded distance decoding [67]. ThetptettRS code family is
also used as codes for a symbol erasure channel. Theseempidvide a selection of
code rates necessary for unequal error protection.

We use fixed-length source packetization but we allow sepeawkets to receive
a variable number of error protection biisg. to have a variable-length error cor-
rection. A three-fold motivation for doing this is as follew (i) The rate compatible
families of error and erasure correction codes can be imghéed with asinglechan-
nel encoder-decoder pair. Schemes using variable-lewngiites-packet to fixed-length
channel packets lose this advantage. (ii) The variablewordklengths of the rate com-
patible families are usually multiples of a smaller fixedgéh channel block, which can
be used for synchronization. (iii) The influence of the sizéhe actual packet put on the
channel over the logical ‘packet’ used for error control bareduced by interleaving
(e.g.[46]).

The transmission process proceeds as follows. Each spaatest output by the
source coder is encoded with a potentially different chhnode, chosen according to
somecode assignment policyrhese channel coded bits are transmitted over the noisy
channel. The receiver tries to recover the source-pacta@tsthe (noisy) received chan-
nel codewords. The channel decoder either correctly descadeurce-packet or detects
an error and declaressamurce-packet decoding failurén the case of a packet erasure
channel, a source-packet decoding failure is declaredeifstburce-packet cannot be
recovered from the unerased received packets. We assutrikahmobability of unde-
tected errors is zero. This assumption is true for erasumaratls and can be approx-

imated with high reliability for bit error channels. As dissed earlier, for embedded
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source coders it is often reasonable to assume that if aes@aaket is decoded erro-
neously by the receiver, then the subsequent source-gackenot improve the quality
of the source. Hence, at any stage in transmission, theesa@ureconstructed only from
the decoded bit stream up to the first source-packet thaticena detectable error or
irrecoverable erasure. For some embedded source codeesy lie possible to separate
the source bit stream either into critical and non-critpaaits or into several independent
substreams. In this chapter, we restrict our attentioneéatse where no such separa-
tion is available and the first error or erasure leads to garopagation. Alternatively,
the proposed scheme may be applied to only the critical panedit stream or to each
independent substream. We have not investigated that agpieere.

In the next section, the performance of the proposed scher@mputed and opti-

mized for a memoryless channel.

4.3 Optimal Unequal Protection for Memoryless Chan-
nel

Let us denote the family of error correction-detection eteicodes by = {¢y, o, ... cs}.
Let the code-rates of the channel codes be denoted(by,i =1, ..., J. Therefore, a
codeword for a source-packet of lengthbits, protected by codeg, has lengtlk, /r.(c;)
bits. Let the probability of source-packet decoding faldor the given memoryless
channel for the channel codec C be P.(¢;).

If the first i source-packets are available to the decoder, the sourcbecegcon-
structed to a ratek,/N, bits per source sample, wheré, is the number of source
samples. Letr, = ks/N, be the rate in bits per sample per source-packet for the

source.
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The unequal protection for the source-packets is descitilyespecifying acode
allocation policy A code allocation policyr allocates channel codé € C to thei™”
source-packet out of the source coder. A poliag described by the number of source-
packets to be transmitted/(r)) and by a sequence of channel codés 2, . . ., cx ™}
to be used with the sequence of source-packéiér) can also be thought of as the

index of the terminating source-packet for the policy. Themalized transmission rate

(in channel bits per source sample) for the policg given by

€ /rs
R Y (4.1)

4.3.1 Performance Criteria

Several single-parameter criteria can be used to measerpettfiormance of a code-
allocation policy. Consider the transmission of an imageHhg/proposed scheme us-

N(m
Cr

ing a policyr = {cl,c? )}. To compute the performance of the policy, let

us introduce the following notation. For integéts= 1,2,...,N(w) andi = k —
Lk,k+1,...,N(n), let Py,_,(m) denote the conditional probability that exactly the
firsti source packets are decoded correctly given that the:fiest packets are decoded

correctly, while using the policy. ThenP;;,_,(7) can be computed as,

P.(ck) i=k—1,
Pa(m) € S [T, (1= PP i =k k+1,...,N(m)—1,  (42)
L7 (1= Pu(ed) i = N().

Note that} " M™ Pjj_i(m)=1fork=1,2...,N(m).
Let the operational distortion-rate performance of thes@aoder be given by (r)

wherer is the rate in bits per sample. Then, as the source is recatestionly from the
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source-packets received prior to a source-packet decddilnge, theexpected distor-
tion at the receiver using a poliey (at transmission rat& (7)) is given by

N ()

Dy =y Dliry) Pyolx). (4.3)

=0
Similarly, let the PSNR-rate performance of the source céalethe source image

be given byPSN R(r) wherePSN R(r) 10 log,, 2% dB. Then theexpected PSNR

D(r)
for the policyr is given by,
J N(m)
PSNR, 2 N~ PSNR(ir,) Pyo(). (4.4)
=0

Finally, we consider another performance criterion, ngnie¢ average number of
source encoder bits per sample received before a sour&etmhecoding failure (which
is the beginning of a possible error propagation). We cadl thiterion theaverage
useful source coding rateThis criterion is motivated by the fact that the longer the
error-free prefix is, the better would be the reconstruatibtihe source. For a policy,
the average number of source-packets received before eespacket decoding failure

is analogously written as,
N(m)
de

Ve &S iPyo(n). (4.5)

=0
Note that the average useful source coding rate is given Wy

The channel code allocation problems for the joint soutw@ael coding scheme
under the constraint of total transmission r&tbits per source sample, can be expressed

in terms of the following optimization problems.

e Problem A: For minimization of the average distortion the problem is,

min D, subject toR;, < R. (4.6)
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e Problem B: For maximization of the average PSNR, the problem is,

max PSN R, subject toR;, < R. 4.7)

e Problem C: Finally, asr, is a constant, to maximize the average useful source

coding rate, the problem is,

max V. subject toR;, < R. (4.8)

Any of the above optimization criteria can be chosen to $étdpplication. The
drawback of choosing to maximize the average PSNR or to nizeiitihe average dis-
tortion is that the unequal error protection policy so aidai needs to be conveyed to
the receiver somehow. This may require transmission ofibenside information over
the noisy channel.

There are some desirable properties that make the destgniami(4.5) (and hence

Problem C) interesting and particularly useful:

1. The design criterion (4.5) does not involve the sourcéssies or the source-
coder performance. The receiver can also carry out thisnigdition and hence
the unequal protection policy can be available at the recewthout the need for
transmission of any side information. Criterion (4.5) isalseful in situations
where the source coder is not embedded but error propagastiit an issue. For
example, in variable-length coded macroblocks with symctzation symbols, the
error propagation within a macro-block can be preventedaximally delayed by

unequal error protection design based on maximizing therasn (4.5).

2. As we shall see in the end of this section, its solution rsaterably simpler than

the other two criteria.
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3. Finally, the optimal policies for optimization criteriq4.5) allow provably opti-
mal progressive transmission at intermediate rates. Wausksthis in detail in

Section 4.4.

4.3.2 Solution to Optimization Problems

The cost functions (4.3),(4.4) and (4.5) are not additiemde Problems A, B and C are
not conventional rate allocation problems. But, it can benshthat the three problems
can be solved exactly by a framework based on dynamic pragraga The principal
idea of the solution is to write the objective function in eilesence of noise (distortion,
PSNR or number of source-packets) as a sum of incrementatdsywhich are accu-
mulated as each source-packet is successfully decodee bgdbiver. Leb; denote the
incremental reward when th& source-packet is successfully received. Hence, if the

task is to minimize the average distortianjs defined as
5 Y D((i — 1)r,) — D(iry), i =1,2,.... (4.9)
Similarly for average PSNR maximizatio#),is defined as
5; Y PSNR(ir,) — PSNR((i — 1)ry), i =1,2,. ... (4.10)
And, for maximization of the average useful source codirig,fais defined as
61, i=1,2,.... (4.11)

The objective functions in Egs. (4.3), (4.4) and (4.5) atatesl to these incremental
rewards as follows. For a code allocation policy= {c!, 2, ... ™} and for integers

T T

k,1 <k < N(n), define,

N () ‘
Alk,m) 2N (Z 5j> Py (). (4.12)
i=k \j=k
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From the values of; defined in (4.9), (4.10) and (4.11), and using (4.3), (4.4) an

(4.5) it can be verified that

D(0) — Dy, for Problem A,
A(l,m) =4 PSNR,— PSNR(0), forProblem B, (4.13)
Ve, for Problem C.

Hence Problems A, B and C defined in Eqgs. (4.6), (4.7) and {¢@&)ce to the

following problem:

Ts

N(m)

mjrlXA(k‘,ﬂ') subject toRy(k, 7) def ZZ:; ) <R, (4.14)
for k = 1.

Now, from Eq. (4.2) it can be seen that, for= 1,2,..., N(r) andi = k,k +

1,..., N(), the following holds.
Py_1(m) = (1 — P(ch)) Py (m). (4.15)
From Egs. (4.12) and (4.15) notice thatk, 7) satisfies the following recursion.

1—Pecfy(7r) ON(), fork = N(n),
Amy = 4 0 P s ()

(1= P.(cE))(6r + Ak +1,7)), fork=1,2,...,N(m)— 1.
(4.16)
Also, clearly, Ry (k, ™) = ;75 + Rr(k + 1,7). Notice that, for a policyr, A(k, )
andRr(k, ) do notdepend ont, ¢2, ..., c*~1. Hence the solution to the maximization
problem in Eq. (4.14) needs to be specified only over a suleseguof channel codes,
namely,ck, ck+1 ..

Equation (4.16) leads to the following dynamic programmiegult for solving

(4.14).
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N*(k,R
Cx

Proposition 2 Let {c¥, ck+1 ck+2 '} be the solution for the maximization

problem in (4.14). That is, it is the subsequence of chanoeés achieving the max-
imum in (4.14) for starting source-packet indexand rate constraint?. Letr,,;, =

min.cc T% , then the following results hold.

1. For notational convenience, lét*(k, R) denote the optimal value of the objec-
tive function in (4.14) (the total reward). The\*(k, R) satisfies the dynamic

programming equation,

0, if R < Tmin,
A*(k, R) =

maxXeec(l — P.(c))(0x + A*(k+ 1, R —

e )), otherwise
(4.17)

2. The channel codé, is the channel code achieving the maximum in (4.17).

3. The subsequendge:*! cr+2 .. civ*(k’R)} solves (4.14) for starting source-packet

*

indexk + 1 and rate constrainfz — %

4. Finally, the terminating source-packet index is found by

Ts

re(cy)

Ts

N*(k,R) = N*'(k+1,R— )

)if A*(k+1,R—

= k otherwise.

The proof is straightforward and is omitted here. It is basedhe recursion in Eq.
(4.16) and on the observation that for any policyA (£ + 1, ) and Ry (k + 1, 7) do not
depend on thé' channel code?.

Algorithm for arbitrary ¢;

For arbitrary incremental rewards the statement of Proposition 2 can be written as an

algorithm as follows.
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Algorithm 1 (optimal unequal error protection) A*(k,r) is computed as a recursive

function call.
A (k,r) = 0ifr <rpm
* _ s
= I?Ez%x(l — Po(c)(0p + A" (k+ 1,7 rc(c)))' (4.18)

The channel code achieving the maximum in (4.18) is usecdhfmding thek*” source-

packet.

Notice that the channel code obtained by the algorithm fekthsource-packet depends
on all they; as well as the target transmission rate.

The computation ofA*(1, R) depends on the computation 4f (2, r) for a finite
number of values of, all of which are strictly smaller tha®®. The computation of
A*(k,r)inturn, depends on the computation®®f(k + 1, ') for even smaller values of
r’. The recursion terminates by returning a valué wfhenk is sufficiently large so that
the target transmission rate falls beloyy,,. It may appear that the number of calls to the
recursion grows exponentially. But computation can redumestoring the computed
valuesA*(k, r) in the memory. Figure 4.1 illustrates how the valueg\ofk, ) can be

computed using a time varying trellis.

Algorithm for average useful source coding rate

It is easy to see that, # = constant/i, then the optimization of (4.14) does not depend

on the starting source-packet indexHence, for such a case, we have
A*(k,R)=A"(1,R) VRfork=1,2,.... (4.19)

Further, in such a case, the channel code obtained by thethaigdor thek' source-
packet depends only on the target transmission rate. Hémrcte design criterion in

(4.5),i.e. solution of (4.8), Algorithm 1 can be rewritten as follows.
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A*(1,R)

@]
A*(k,r)
@]
* . Ts
o A*(k+ 1,7 —TC(Cl))
2
2 O ©
g
45 ) O
g
o] * . Ts _ re
c O ) oA (k+277 re(e1) 7‘c(32))
e @] @]
0) @] @]
e @] @] @] @]
51 Ok Okt1
1 e k k+1 k+2 ... Source Packet Index

Figure 4.1:Trellis for maximizing the performance for arbitrafy.

Algorithm 2 (maximization of average useful source coding ate) If the incremental

rewards are constant,e. 9; = 1 Vi, thenA*(1,r) is computed as a recursive function

call.
A*(1,r) = 0ifr < rpm
= max(1— P(0))(1+A"(Lr - %{C))). (4.20)

Figure 4.2 illustrates the trellis used for the computatbr\*(1, ) for the maxi-

mization of average useful source coding rate.

4.3.3 Complexity

Algorithm 1 for arbitrary sequence of nonnegative incretabrewards); has a com-
plexity (number of calls to the recursive function in whiclaximization in (4.18) needs

to be performed) proportional t8. This can be seen as follows. Lebe the smallest

grain of rate-increment per sample in the code famiy,p = NLSGCD({ ks ce CY).

re(c)?
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A*(1,R)
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A*(]_,R—Tmzn)
(&)
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3 % rs
: A*(1, R = Pin — 7755)
(=]
R
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g
= 0

O

O

Figure 4.2:Trellis for maximizing the average useful source coding.rat

Then all achievable transmission rates, those in the collectioi(R) =) {Rr(m) :
Rr(m) < R} must be multiples op. |G(R)| grows linearly withR. Now from Algo-
rithm 1, the computation oA*(1, r) for all values ofr € G(R), requires computation
of A*(2,r) for all values ofr € G(R — 7.:,), Which, in turn, requires the computation
of A*(3,r) for all values ofr € G(R — 2r,,;,) and so on. Hence the total number
of function calls needed to computs*(1,r) for all » € G(R) is upper bounded by
|G(R)| + |G(R = rmin)| + |G(R — 2rmin)| + . .. + |G(R— (| R/Tmin| — 1)Tmin)|. This

is an arithmetic progression, upper boundedddy?, for somea. For Algorithm 2,
the number of function calls needed to computél, R) vary linearly withR. |G(R)|

computations ofA*(1, r) are sufficient to computd*(1, R).
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4.4 Progressive Transmission

Good embedded source coders, like SPIHT [52], by designyeryegood performance
at all rates. It is desirable to perform joint source-chamoeling for these coders in
such a way that in addition to having the best end-to-endpmdnce for a given target
transmission rate, the coder also achieves good perfomratnotermediate rates.

We shall say that two policies andr, with transmission rateB, andR,, Ry > Ry,
allow progressive transmission, if the output at r&tecan be obtained by appending
(R — Ry) bits per source sample to the bit stream at fate Or, conversely, if the bit
stream for target rat&; can be obtained as a prefix in the bit stream for targetiRate

We suggest the use of rate compatible channel codes to agbiegressive trans-
mission. Rate compatible codes are a family of channel codesich the codewords
of a low rate code can be obtained by adding some extra patstyoithe codeword of a
high rate code. Popular examples of such codes are rate tiblegaunctured convolu-
tional RCPC codes [29]. These codes combined with an outer @etection code like
CRC encoding fixed-length source-packets provide good eaiwection and detection
capabilities and have been used in the literature [57, 1R, S@nilarly RS codes and
their punctured versions are used for erasure channels.

In this section we shall assume that the channel code fainigyrate compatible.
Consider two policiesr; = {c} ,c2 ,... AN andry = {ct,. 2., en™) de-
signed by some scheme for target ratksand Ry, R, > R;. Then, we have the follow-

ing simple proposition.

Proposition 3 If the channel code family is rate compatible, progressra@smission

at rates R, and R;, for R, > Ry, is possible using the two policies andr, if and
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only if, N(mg) > N(m) and

Ts
< <1 < .
) = (c’ ] for1 <i < N(m). (4.21)

Proof: The proof is rather simple. If condition (4.21) is satisfipdpgressive trans-
mission is accomplished by first transmitting the bit stre@mmmesponding to policy;
followed by the extra parity check bits needed to obtain theek rate codes for policy
T, I.€. @ - (CZ blts per source sample for packet = 1,2, .. .. Clearly, this can-
not be done if (4.21) is not satisfied. Figure 4.3 illustrakessequence of transmission
for two policies. O

If we require the transmission to loptimally progressive, then the policie$(1, R)
obtained by solving (4.6), (4.7) or (4.8) for different vatuof R must allow progressive
transmission. Therefore, we must verify that those pdidatisfy the conditions in

Proposition 3.

Now let us consider the optimization criterion of (4.5). Let
TR = e N

be the optimal policy solving (4.8) for ratB. Then by the result in Proposition 2,
the subsequencée?, . .., V™ (7)) solves the corresponding version of (4.14) for the
starting index 2 and rate constraifit— . Now, if §;’s are constant, then as we have
discussed earlier, the optimization (4.14) does not departbe starting indek. Hence
a policy which assigns?® to thefirst source-packet;? to the second source-packet and
similarly assigng™ (™" (1. %) to the N (7*(1, R)) — 1°* source-packet is the optimal policy
m™(1,R — ) for starting index 1 and rate constraiit— .
A S|mple interchange argument can be used to show that, barany rewards se-
quences); and for all transmission rateB, if = is an optimal policy thenp.(¢!) <
P.(d)for1 <i < j < N(rm). Consequently, we must have the property that,.(c: ) >
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ro/re(cl) for 1 < i < j < N(m) for an optimal policyr i.e. the optimal policies are

code rate increasingTherefore, we have,

Ts Ts Ts , .
. =— fori=1,2,...,N(#*(1,R)) — 1.

T (LR)) TC(CW*(l,R— e )>

rc(cjr*(l’R)) re(c

(4.22)
This implies that the conditions in Proposition 3 are sa&tsfiHence we get the follow-

ing result.

Proposition 4 For a channel code family consisting of rate compatible sotitr* (1, R)
be the optimal policy solving (4.8) for target rafe. Thenz*(1, R) and =*(1, R —

"78)) allow optimal progressive transmission at ralBand R — —~=—

re(Cra (1, Ry re(Crn(1,r))

Proof: Proof is already outlined before the statement of Proposii

This proposition can now be applied to the optimal policyaeiR — m
to obtain another lower intermediate transmission raterg/tiee optimal policy can be
executed. In the same manner, a sequence of intermediasenission rates can be ob-
tained, at which provably optimal progressive transmisg@ossible. The sequence of
bits transmitted follows the scheme discussed in FigureHr8t, bits corresponding to
the policy for a low target rate are transmitted. Then theasgpérity check bits and new
source-packets needed to achieve a higher target rat@asetitted. Figure 4.4 sketches
the inverse code rate profile of an optimal policy consisbhfjve source-packets. In
this figure, the labelg, 2, 3, 4, 5 indicate the order in which bits corresponding to the
source-packets are transmitted.

The resulting bit stream has some interesting propertiess d stream in which
the bits for a single channel codeword are not necessarityigumous. This deferred

transmission of redundancy creates the possibility thatiace-packet decoding failure

at one target rate can be overcome and the source-packetredaf the target rate
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is increased and more bits for that packet are received. ainsénse, the bit stream is
always progressive.

It can be shown by counterexamples that, even for the ariiesf average useful
source coding rate, optimal progressive transmission noay@ possible aarbitrary
rate pairsk; andR,. For other performance criteria, at this point, not muchleasaid
about optimal progressive transmission without makingiaggions on the arbitrary

incremental rewards,.

4.5 Simulation Results

The schemes presented in the chapter assume that the ddsigmevided with the
source coder and a family of channel codes. The design eqanly the knowledge of
source-packet decoding failure probabilities for the gifamily of channel codes over
the given channel. The design is independent of the actwaldieg techniques used,
e.g. for memoryless bit error channels, it is possible to use tiopgsed scheme both
with hard or soft demodulation at the receiver.

Simulations were conducted on th& x 512 gray-scale Lenna image compressed
with the SPIHT algorithm with arithmetic coding. The soulestream was divided
into source-packets of length 32 bytes.

For binary symmetric channels, the channel code familie®whosen to be con-
catenated codes of RCPC codes as inner codes and a 2-byteo€CB@dr error detec-
tion code. We present results for three different channéédamilies. These families
are are RCPC codes derived from different mother codes aedl wigh different de-
coders.

Code family A is a collection of RCPC codes derived from a ttes rate 1/3 con-
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volutional mother code taken from [29]. When used along w#hviterbi decoding
with a search depth of 100 paths, these codes form a highrpefwe channel code
family similar to that in [57].

Code family B is a relatively weaker RCPC code family derifredn a 16-state, rate
1/4 mother code taken from [29]. Itis used with list-vitedleicoding with a search depth
of 10. When the codes of code family B are used without lisbdewy (search depth =
1), we get the family C of channel codes. The paramefeisf the code families were
obtained by simulation. The results of using the proposgdrahm for unequal error
protection of the image Lenna for a binary symmetric chawitl bit error rate of 0.01
are presented in Figures 4.5 through 4.10.

Figures 4.5, 4.7 and 4.9 show the average PSNR performartbe stheme opti-
mizing the PSNR for channel BER 0.01 for the code families A8l C, respectively.
The figures also show the performance of Equal Error Prate¢iEEP) schemes using
the channel codes from the same family. The code rates iregentls do not include
the (fixed) code rate of the outer CRC code.

For clarity, Figures 4.6, 4.8 and 4.10 depict the differeéndbe average PSNR of the
optimized scheme and that of different EEP schemes, aghmgatal transmission rate.
Figures 4.6, 4.8 and 4.10 also include the difference in PBNRe scheme maximizing
the expected PSNR and the scheme maximizing the averagé sgefce coding rate.

The first conclusion that can be drawn from Figures 4.6, 4840 is that the
loss of EEP schemes over the optimized schemes is posithat. iF, as expected, the
optimized schemes always perform as good as or better thyaeqaral error protection
scheme from the same family, for all transmission rates.

The second key observation is that the improvement of thenapscheme over any

fixed EEP scheme depends on the transmission rate. For examplgure 4.8, the loss
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of the EEP scheme with code ratté7 varies from 0.4 dB to less than 0.2 dB to as high as
0.6 dB depending on the transmission rate. A low code rated€B®me which performs
well (close to optimal) at high transmission rates is ovetgxtive at low transmission
rates. A higher code rate EEP scheme may be efficient at lowsrrssion rate but as
the transmission rate is increased, the average PSNR manateats the probability
of source-packet decoding failure somewhere in the imageases with the target
transmission rate. Note that it is not possible to “switchtviieen two EEP schemes at
the crossover points during a progressive transmissioa v policies may not satisfy
the conditions in Proposition 3. The performance loss ofsitfieme maximizing the
average useful source coding rate also appears to depeheé tnramsmission rate. But
the loss is smaller than that for any EEP scheme and hencegclisne maximizing
the average source coding rate will also perform better tranEEP scheme at all
transmission rates.

Third, the unequal error protection scheme is more effecten the available
channel-code family is weak. If the code family is stroeg. the high performance
codes in [57], then for a significant portion of the range ahgmission rates of interest,
the performance of a single channel code is fairly close éoogptimal. In such cases
the benefits of unequal error protection are marginal. F®@s¥istem designed with code
family A and for channel BER 0.01 the expected PSNR valueghi®image Lenna at
0.25, 0.5and 1.0 bits per pixel are 32.30, 35.28, and 38.2@si@=ctively. These figures
are approximately 0.3 dB higher than the corresponding P&N®&ts in [57]. When the
channel code family is weak, any EEP scheme performs closés¢ optimal only for
a short range of transmission rates. At other rates, it®paence may be substantially
suboptimal compared to the UEP scheme.

The same technique can be applied to memoryless packetrerasannels. For
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simulations, we considered transmission over a memorylasket erasure channel of
packet size 8 bytes. We use a (255, 32) RS code G\&f2®) as the mother code of
the family of erasure correcting codes. Eight consecutibgte symbols ofG F(2%)
are arranged in one packet to yield a mother Packet Erasurediag (PEC) code of
parameters (31,4). The family consists(af4) PEC codes, fod < n < 31, obtained
as punctured versions of the mother code.(And) PEC code is capable of correcting
up ton — 4 packet erasures. This code family, though less efficiemt Bfa codewords
for byte erasures, is chosen primarily to keep the numbeodés in the family small.
Figures 4.11 and 4.12 plot analogous results for this paslesiure channel with a
packet loss rate of 20%. Again, no single EEP policy perfochasest to the optimal at
all transmission rates. Depending on the target rate, ggirte 0.5 dB can be obtained

over any EEP scheme chosen from the family.

4.6 Conclusion

In this chapter we consider joint source-channel codingnafiges compressed with em-
bedded source coders for transmission over memorylesg claésnels. The emphasis
is on retaining the progressive nature of the transmissidriramework for optimal
transmission over memoryless error and packet erasurenelsais developed. An al-
gorithm is developed for assigning optimal unequal erroem@sure protection for a
given memoryless bit error or packet erasure channel. \Wesllsw how progressive
transmission can be achieved with rate compatible famifeshannel codes. The op-
timization criterion of maximizing the average useful smicoding rate is shown to
have the possibility of optimal progressive transmissiba aumber of intermediate

transmission rates.
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Chapter 5

Progressive Image Transmission over Compound Packet

Erasure Channels

5.1 Introduction

Embedded image coders like SPIHT [52] allow the user to rsitoot the image at
different qualities from the prefixes of a single bit streé&Bnch image coders are useful
in progressive reconstruction of the image, where the tyuallithe reconstructed image
improves as more bits are added and decoded. Progressirestertion capability is
desirable in many applications,g. fast browsing of image databases and multicasting
to different users with varying channel usages. It is ofriegéto retain the progressive
reconstruction property when such an image coder is usedaftemission over a noisy
or lossy channel such as a congested packet network or agsrihk in deep fade.

In this chapter, we undertake the design of a systemragressivemage transmis-
sion over a lossy packet network with unknown packet-lossatteristics in the absence
of any network layer loss recovery mechanism and feedbaakre# €.9.transmission
using User Datagram Protocol (UDP) or raw transmission okets over ATM in un-

reliable mode). We select a high performance embedded icwigr like SPIHT as the
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source coder. The objective is to design recovery from gdadolss or erasures at the
application level by the use of erasure correction codegwhaintaining high average

performance at each transmission budget. There are tla@esishat we hope to tackle.

e Design of unequal erasure protection: While using an embedded source coder
like SPIHT, an irrecoverable loss of a source packet at tgenbeng of the stream
is potentially more damaging than a loss near the end. Tlis Isecause a loss
or corruption of the bits at the beginning of the bitstream render all the sub-
sequent bits of the source-coder useless. Hence thereasaadiiy of importance

of the source-bits and a potential need for unequal erasateqtion.

e Combat against an unknown channel:We consider transmission over a lossy
network whose packet loss rate varies from session to seséie model such a
network with unknown packet loss rate as a compound chanagé¢rmf memory-
less packet erasure channels. The determination of thealptiadeoff between

source coding and erasure protection is of interest in thiatson.

e Better Progressive Transmission: To quantify the notion of progressivity of a
joint source-channel coder, we must consider its perfooma a given interme-
diate transmission budget compared to the performanceafibgource-channel
coder optimized for that budget. Similar to the correspogdiroperty in the
source-coders like SPIHT, we would like the joint sourcesutel coder to have a
performance that is close to optimal at all the intermediaesmission budgets.
This requires not only the allocation of protection but alse scheduling of the

source and the protection bits in the transmit bitstream.

There is a large body of work in the literature which addresséust transmission

of images over noisy or lossy channels. In the context ofrbitrechannels, some of the
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techniques involve effective use of strong equal errorgaioon ([57, 59]), unequal error
protection ([63, 39, 1], [11] and Chapter 4), the use of femith([12, 40]), and better
decoding schemes. For packet erasure channels, the taebrtigve been to construct
robust packetized source coders for graceful degradagjamst packet loss [51], use of
forward error correction [46] and multiple description oagl(e.g.[53, 61]). The work
in [18] provides a technique for progressive image transimisover a channel which
has both bit errors and packet erasures. A new techniqu@fobating packet erasures
using erasure correction codes has been developed receMl§]. They use unequal
erasure protection using fixed block length Reed Solomon @@8es with variable
number of source symbols in each codeword. They also usdeteaver to decorrelate
the symbol erasures within a RS codeword. The general charouel in [46] can also
be used for a compound channel discussed in this work.

Most of these coders are designed to maximize the perforenarec given transmis-
sion budget. While some of them indeed use a high performamtedded source coder
like SPIHT, they do not explicitly consider the performamatétermediate transmission
budgets.

In this work we propose an algorithm which attempts to adsdtas three issues
discussed earlier simultaneously. The proposed algorithes a variable block length,
fixed source-length family of erasure correction codesinbthby puncturing a low
code rate mother RS code for the unequal erasure protectiiois a greedy non-
iterative suboptimal algorithm that obtains an allocatdrunequal erasure protection
for a higher transmission budget from an allocation desigoe a lower transmission
budget. It does this in such a way that the channel symbe&sstroutput by the coder
for the lower budget is a prefix of that for the higher budgetesults in a bitstream with

deferred transmission of redundancy - that is, the chaiynabsls in a codeword are not

105



necessarily contiguous in the bitstream. Also, this alltvespossibility that an erasure
that is irrecoverable in the beginning becomes correctabléhe transmission rate is
increased. By design, it yields a progressive stream whashahgood performance at a
number of intermediate transmission budgets.

An interleaving structure similar to [46] is constructedbirder to match the length
of “packet” used for erasure protection to the actual patedth used in the network.
The algorithm together with the interleaver yield the trariitstream for the network.

Simulation results show that for compound channels suchnaqual erasure pro-
tection scheme outperforms equal erasure protection sshatall transmission rates.

The structure of the chapter is as follows. Section 5.2 detime compound channel.
In Section 5.3 the transmission scheme is described. IrndBebt4 the performance
measure is computed and the optimization problem is set eqtidd 5.5 describes the
algorithm. Simulation results are presented in Section Séction 5.7 discusses the
structure of an interleaver that can be used with the outpthe algorithm to yield
transmission schemes which use a larger packet size. Bég8ois the concluding

section.

5.2 Compound Packet Erasure Channels

We assume that the bitstream generated by the applicaticansmitted in fixed length
packets over the network. In the presence of network coimgestome of these pack-
ets may be lost. If we assume that the fixed length packetgeaatithe receiver (the
decoder in the application) in the same order and that treditot of the lost packets is
known, then, the application sees the end-to-end equivelemnel as a packet erasure

channel. The packet erasures seen by the application maglepandent or correlated,
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and the net packet loss rate may vary from session to sesspanding on the network
congestion. The situations of unknown packet loss ratemiatished packet loss rate or
slow variability of the packet loss rate can be approxinyatebdeled as a compound
packet erasure channel.

A compound packet erasure channel is a channel whose pacisetre rate is an
unknown random variable with a known probability distrilout It is described by a set
of statess € S, with associated probability mass functigf In each state € S the
channel is memorylesgith an associated packet erasure rdte. The state is chosen at
the beginning of the transmission session according togtnitibes /* and it is assumed
that conditioned on the state, during the entire transisseéssion, the packet erasures

are independent and identically distributed.

5.3 Transmission Scheme

It is necessary to employ an embedded source-coder to &cpregressive transmis-
sion. Often the output of an efficient embedded source cokerSPIHT is a very
sensitive bitstream in which bits coming later in the b&amn can only be used if all
the previous bits are available. Any loss of source bitsygarthe stream can render all
the subsequent source bits useless for image reconstructie main design challenge
while using an embedded source-coder over a packet erdsameel is to avoid or else
delay any irrecoverable loss of the source bits in the sobitseream. We accomplish
this by the use of erasure correcting codes. The scheme asfficdlows.

Consider an embedded source coder which simultaneoustyglead’s source sam-
ples. Its output, the source-encoder-bits, is packetiatxfixed-lengthsource-packets

of [, bits each. As the source coder is embedded, the represendathe source at rates
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which are multiples of,/N,, can be obtained from a prefix of the stream of source-
packets output by the source coder.

Let [ denote the length in bits of the packets used over the chaweehssume that
[ dividesl,. Let ky = [/l denote the number of packets that fit into a source-packet.
For erasure protection, we use a family(of k) packet erasure correcting (PEC) codes
obtained by puncturing a mother Reed Solomon code (Seeoc8ex.1) for different
blocklengths:. A codeword of arin, ky) PEC codeword i& packets long. Because the
RS codes are Maximum Distance Separable (MDS [67]), thepagnce of the code
family does not depend on the puncturing tables used to gentire family. This family
of punctured codes provides a selection of different cedes; necessary for unequal
erasure protection.

The transmission proceeds as follows. Each source-packptibby the source
coder is encoded with a potentially different channel cati@sen from the family of
codes according to some code-assignment policy. The jounrte-channel coder gen-
erates a single stream of packets and transmits over the hesaork. Some of these
packets are lost or dropped by the network. The receives taeecover the source-
packets by forming the corresponding (partially erasedjewemrds of the PEC code.
The receiver declaressource-packet decoding failurethe source-packet cannot be
recovered from the unerased received packets. It is oftespreble to assume that,
when using an embedded source coder like SPIHT, if a sowrckep cannot be de-
coded successfully at the receiver, then the subsequertdespackets cannot improve
the quality of the source. Hence, at any stage in the traissonig.e. at any transmis-
sion budget), the source is reconstruatetly from the decoded bitstream up to the first
source-packet that contains irrecoverable erasure

We use fixed-length source-packetization but we allow sspaxkets to receive a
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variable number of parity check packats, to have a variable-length erasure protection.
The unit of erasure correction remains a fixed length padkeitg). If this “logical”
packet sizd is different from the “true” transmission packeti-e( the length of the
packet which is dropped by the network, or the packet whoasuees are modeled
as a compound channel ), the effect of this difference can inémzed by using a

progressive interleaver, which is described in Section 5.7

5.3.1 Packet Erasure Correcting Codes

Consider a compound packet erasure channel which eraskstpat lengthl = bm
bits for some integers andm. Consider RS codes ovéfF'(2™). Each symbol in the
RS code ism bits long. Then anb, kob) RS code, when transmitted uninterleaved,
can correctnb — kob symbol erasures, and hence- k, packet erasures. Therefore a
(nb, kob) RS code is dn, ko) PEC code. A PEC code of the same performance can also
be obtained frond copies of &n, k) RS code ovet F'(2™).

We assume that the channel code family consighofkyb) RS codes for a fixed,
and different “blocklengthsh. Hence the source-packet sizelsisfléf komb bits ( = kg
packets). The maximum value ofis L%”j. Note that the family, considered as a PEC
code family, is rate compatible. Let us denote the bank afieeprotection codes by
C ={c,¢9,...c5}. If cis an(n, ky)-PEC code in the family then let(c) = n denote
the block length in number of packets for

Now consider a compound packet erasure channel with packstire probability
e(s) in states. Then the probability of source-packet decoding failure ddn, k)

PEC-code: is computed as,
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In fact forky, > 1, the(n, ko) PEC code is less efficient than an interleaveld £b)
punctured RS code. But this somewhat artificial constraaid®EC code is chosen just
to make the point that the proposed algorithm does not depetide size of the Galois
Field symbol or the relative size of the true channel packdtthe logical channel packet

used for code allocation.

5.4 Performance Criterion

If the first: source-packets are available, the source can be recaesttoa ratel, /N
bits per source sample, wheig; is the number of source samples. Iz:gflif ls/Ng be
the rate in bits per sample per source-packet for the source.

The unequal protection for the source-packets is deschpegecifying aode allo-
cation policy A code allocation policy allocates channel codg € C to thei'" source-
packet out of the source coder. A polieys described by the number of source-packets
transmitted {V(7)) and by specifying a sequence of channel codésc?, . .., Y™}
for the sequence of source-packets. The normalized trasgmirate (in channel bits
per source sample) for the poliayis given byMTT(j)l, whereMr(7) is the total number

of packets used by policy. It is computed as,

Mr(m) < (). (5.1)

Several non-equivalent single-parameter criteria cansied to measure the perfor-
mance of a code allocation policg.@.expected squared error distortion, expected Peak
Signal to Noise Ratio (PSNR), or expected useful sourceagaate [11]). Without loss
of generality we select the expected value of PSNR (measuds)) as the performance
criterion.

Consider the transmission of the image over the compoundnehaising a code
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allocation policyr. To compute the performance of a poliepver a compound channel,

define, for each statec S of the channel, real numbef8(r, s) “/'1 and
Bi(m,s) = T~ Pi(e) fori=1,2,... N(n).
j=1

B¢(m, s) represents the probability that the firsburce-packets are successfully decoded
by the receiver given that the compound channel is in stated policyr is executed.

Let the operational PSNR-rate performance of the sourcerdodthe source image
is given by PSN R(r) wherer is the rate in bits per sample. Then as the the source is
reconstructed only from the source-packets received priarsource-packet decoding

failure, theexpected PSNRr the policyr is given by,

PSNR, 2 N f*(PSNR(0)P:(cl)
seS
N(m)—1

+ Y PSNR(ir,) P ()8 (m, )
=1
+ PSNR(N(n)ry)pN™ (x, s)). (5.2)
The code allocation problem for the joint source-channdirmgp scheme under the
constraint of total transmission budget 8fbits per source sample, can be written as

follows.

max PSN R, subject toMr,, < M, (5.3)

HereM = | RN,/l] is the equivalent constraint on the number of packets.

Under the transmission scheme, equation (5.2) can be dedver the following
more convenient form. The principal idea is to write the obje function in the ab-
sence of loss, as a sum of incremental rewards, which areradated as each source-

packet is successfully decoded by the receiver. d.etenote the incremental reward
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when theit" source-packet is successfully received. For average PSaiization,
5; Y PSNR(ir,) — PSNR((i — V)ry), i = 1,2, ... (5.4)

N(’r)} and forintegerg, 1 < k <

T 7'('7' < Cr

Now, for a code allocation policy = {c, c

N(7), and for all channel statesc S define,

N(r)- N ()
A (k) Z <Z5> | SRR ACHACAD RS | (U AC (Z5>

(5.5)
Then the problem (5.3) reduces to solving the problem giyen b
J N(m) ‘
max Y f* (A%(k, 7)) subject toMr(k,7) € 3" n(cl) < M, (5.6)
seS i=k

fork =1.

5.5 Progressive Unequal Erasure Protection

Let the best policy designed by the algorithm for problend)%or packet-constraint/
be denoted by*(M). Notice that just specifying the polieyfor transmission does not
completely describe the bitstream generated by the joinicgschannel coder. It is also
necessary to describe the order in which the packets camdgpy to the codewords in
the policy are transmitted. Though, for a compound charinelperformance of a policy
at its transmission budget is not affected by the order optukets, the performance of
the system at intermediate budgets is definitely contrdiiethe order of the packets.
Consider two code allocation policies and s with My (m) < Mp(m). The
necessary and sufficient condition for two policiesandn, to allow progressive trans-
mission is that for each source-packdhe PEC codeword far; be a punctured version

of that form,, i.e. n(c%,) < n(c%,) [11]. Now, in order to obtain the performancemfat
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the budgetV/(m), first all the packets necessary for executing poticyare transmit-

ted. Next, by transmitting only the extra parity check paskeeded to execute policy
7o, the performance of, can be obtained at the budget-(m,) in the same stream.
This way progressive scheduling of the packets is accohmgdlis In Chapter 4 Figure
4.3 shows progressive transmission using two policieendr,. Note that the generated
bitstream is such that, all the bits corresponding to a PE{gword are not contiguous.

The proposed algorithm generates the best policy for paakedtraint)/ from the
best generated policies’(j) for j < M, in such a way that the resulting policies are
embedded by design. Consider an intermediate stage in itnagemission. After
transmitting the packets corresponding to any paticthe next transmission can consist
of (i) transmitting additional parity-check packets fousce-packets transmitted earlier
or, (i) transmitting packets for the newN(r) + 1)** source-packet. Hence we can
restrict our search of the best policy for packet-constr&into a union of (i) all policies
which can be obtained by adding one packet to patity)/ — 1) and, (ii) all policies of
packet-constraint/ obtained by adding ongource-packeto one of the policies™*(5)
for j < M.

Consider the change in average total reward as a policy isgethby replacing a
single channel code. It can be computed as follows. i.be a code allocation pol-
icy. Letg(m, ) denote the increase in the total reward, when an additicarétypcheck
packet corresponding to thi#¢ source-packet is transmitted. L«€tdenote the new pol-
icy so obtained. Let be the channel code with parametéy&c’ ) + 1, ko). Theng(r, )
is given by,

g(mi) 2N ) - A, )

seS

= D BTN ) (P = PO + A%+ 1m). (B.7)

seS
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HereAs(k,7) “ 0if k > N(r).
Similarly, let7” be a policy obtained by adding an additioealirce-packetncoded
with some channel code € C. Let the change in objective function be denoted by

h(m,c). Thenh(m, c) is computed as ,

de s s " s s T s
h(r,c) < S = A (L) =Y NP (m,8) (1= PI()dnim4-
seS seS
(5.8)
From these two results, the following greedy and suboptbmgprogressive unequal
erasure protection (PUXP) can be derived for computation*¢i/,) for some final

packet constraint/.

Algorithm 3 (Progressive Unequal Erasure Protection (PUXP)
1. Initialization: For some: € C, Setr*(n(co)) = {co} and M = n(cy) + 1.
2. Given designed policy* (M — 1), compute

G(M) = Z_:LN%%_D)Q(W (M —1),4) (5.9)

3. Given designed policies'(j) for n(cy) < j < M, compute

H(M) < maxh(x*(M = 5(c)), ¢) (5.10)

4. If G(M) > H(M) andi is the source-packet index achieving the maximum in
(5.9) then the policy* (M) is obtained by adding the extra parity check packet to

the codel. ;).

5. IfG(M) < H(M) andc is the code achieving the maximum in (5.10) then the
policyr*(M) is obtained by adding the extra code word for the next sopaeket

to policyn* (M — n(c)).
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6. If M = M, stop, else increment/.

The initialization step can be any arbitrary policy. The dgmwlicies can be “grown”

from any initial policy. The policy at each transmissiorerat obtained by adding extra
parity packets to a lower rate policy. Hence the performat@y target transmission
rate can be obtained by progressive transmission througuesce of policies at lower
transmission rates. The algorithm therefore, generaeesdlde allocation as well as

specifies the scheduling of the packets in the packet stream.

5.6 Results

As an illustration, Figures 5.1-5.3 refer to the simulatiesults for a compound packet
erasure channel with a packet length of 8 bytes. The charmreel7tstate model with
packet loss rate vect@.0,0.01,0.05, 0.1, 0.2, 0.3, 0.4]. The probability vector for these
states is chosen as

[0.05,0.05,0.15,0.15,0.25,0.20,0.15]. Though the mean packet loss rate is near 0.2,
with probability 0.40 the packet loss rate is lower thar2 and with probability0.35 it

is higher.

Simulations were conducted on this channel for transmissi612 x 512 grayscale
Lenna compressed with the SPIHT coder with arithmetic apdifthe channel code
family is (n,4) PEC codes for 8-byte packets, derived fro?h5,32) RS code over
GF(2®). We assume that the packets arrive in sequence. Thoughdbersee number
information was not encoded and is not reflected in the radéegasgsume that the location
of the lost packets is known. (A fixed size sequence numbédesthae Transmission
rate axis by a fixed factor.)

Figure 5.1 compares the mean PSNR in dB for the given chaonghé& PUXP
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scheme obtained by Algorithm 3 with that of Equal Erasurgdtoon (EEP) schemes
derived from the same family of channel codes. Figure 5.2ides the gain of PUXP
scheme over EEP schemes for the same compound channele thattithe EEP schemes
have a performance loss which varies with the transmissitasr The gain of PUXP is
consistently above 0.4 dB for all EEP schemes and can be ohepending on the trans-
mission rate considered. Also, no single EEP scheme isstlts¢he PUXP scheme at
all transmission rates.

Figure 5.3 plots the inverse code-rate profile (the blocktlen of the (n,4) PEC
code used for a 4-packet long source-packet), for diffeneamsmission rates of.0,
0.75, 0.5 and0.25 bpp. Clearly, the profiles look very different from EEP sclesm

Also, they satisfy the conditions of progressive transiisby design.

5.7 Progressive Interleaving for Packet Erasure Chan-
nels

The previous sections assume that the “true” packetstfiose whose loss is indepen-
dent and identically distributed in each state of the complochannel,) are of same
length as the logical packets used as units in erasure tiomamdes. Quite often this
may not be truege.g. when RS codes over F'(2%), with 8-bit long symbols are to
be used with ATM packets of length 48 bytes. It is necessanjeiose a scheme to
pack the logical packets into the true packets without psire benefits of progressive
transmission. This can be accomplished by the use of iatezts.

Interleavers are used to convert a channel with memory ifoeanel with no ap-
parent memory. In the context of image communication, arleaver was used in [59]

in conjunction with a product code consisting of RCPC-CR@exand RS codes for
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transmission of images over fading channels. There thel@ateer was employed to

break correlated burst of symbol erasures. The ingeneakepzation and erasure-

correction scheme in [46] can be interpreted as an inteztetavbreak a packet erasure
channel with large packet size into another packet eratizenzl with a smaller packet
size suitable for use with the chosen RS codes.

In this section we consider how the progressive schememesigr one packet size
- which is typically determined by the code family - can bedusger networks with
larger “true” packet size.

Consider a memoryless packet erasure channel with “truekgissize ofL bits.
Also consider an, ky) packet erasure correcting code derived from a RS code for a
packet size of bits, as discussed in section 5.3.1. For clarity, let us ttel packet
erasure channel dnrpacket erasure channednd the packets of length L &spackets
A codeword of the PEC code consistsropacketsof length! bits. Let us assume that
L/lis an integer. Then the memoryless L-packet erasure chauritiel -packet erasure
ratee is in effect, a packet erasure channel with correlated eeasand the mean packet
erasure rate.

One can make the following key observations. (i) Over alkeaerasure channels of
mean erasure ratg the(n, k) PEC code has the least probability of failure if the packet
erasures are independent. (i) Suppose the packets amdfit-packets and transmitted
over a memoryless L-packet erasure channel. Then the emsutwo packets are
independent if and only if they belong to different L-packdiii) Hence, the PEC code
will perform the best over this channel, if each packet ofcibsleword belongs to a
different L-packet. (iv) It does not matter how far apart thpackets are so long as they
are different.

Even in a compound L-packet erasure channel, the distanaede two L-packets
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does not affect the performance of the PEC code if all its pischre in different L-
packets. Therefore, given the output of a progressive imgsson scheme designed
for memoryless or compound packet erasure channels, aesioyldelay progressive

interleaver can be designed using the following strategy.

e From the sequence of packets output by the progressive schaart filling a
L-packet while observing that no two packets from the sam€& P&deword (or
equivalently, those corresponding to same source-paaketput in the same L-

packet.

e Maintain a list of partially filled L-packets and the indicescodewords whose
packets occupy them. Put a packet into the earliest eligigacket. If none of
the unfilled L-packets are eligible, put it in a new L-packelpdate the list of

partially filled L-packets.

The filled L-packets are transmitted over the network setjalgn The number of un-
filled packets to be maintained is indicative of the “dis&hbetween transmission
over memoryless sub-packet channel and interleaved méssery-packet channel. As
outlined in Figure 4.3 the sequence of packets output by tbgrpssive transmission
schemes is such that, the packets belonging to same codaveonbt necessarily con-
tiguous. Hence they are already partially interleaveds Tieips in reducing the number
of unfilled L-packets during progressive interleaving.

As an illustration, progressive transmission scheme wsigded for compound era-
sure channel with packet size 8 bytese.( the system depicted in Figures 5.1,5.3).
The output was transmitted over a compound erasure charitieLvpacket-size 48
bytes, using the interleaver suggested above. Figure Bwvssthe number of unfilled

L-packets to be maintained for transmitting image Lennaurhs out that, though the
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PEC-codewords are sometimes as long as 16 paclkets,Kigure 5.3), typically the
number of unfilled L-packets remains below five. Hence theriaaved compound L-
packet erasure channel closely approximates the compasieperasure channel for

which the joint source-channel coder was designed.

5.8 Conclusion

We design a progressive unequal erasure protection scHfemmsmpound packet era-
sures channels where the packet loss is memoryless busthegle is unknown random
variable with known statistics. The algorithm PUXP attesnjat achieve good perfor-
mance simultaneously for a number of transmission ratefmds so by performing both
code allocation and scheduling of the packet stream. Itasvalithat such a scheme

works well for all transmission rates compared to any EEREh
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Chapter 6

Source-Channel Decoding with Optimal Use of

ACK/NACK Feedback

6.1 Reverting to First Principles

Decision Feedback (ACK/NACK) has been used extensivelyoimraunication situa-
tions where there is a feedback channel available from tbeiwer to the transmitter.
Link layer protocols based on Automatic repeat query (ARG eombination of ARQ
and Forward Error Correction (FEC), also called Hybrid AR@e used for data com-
munication in a wireless environment. Feedback and retmessson is also used at the
transport layer for end-to-end error recoveryg. in the TCP/IP protocol. Convention-
ally these protocols are designed for reliable transmissfodata. The ACK/NACK
generation is accomplished by an error-detection mechesigh as cyclic redundancy
check (CRC) or bounded distance decoding. Protocols dedifpr data transmission
attempt to trade the probability of undetected bit errorfhle average code-rate or
throughput.

A more meaningful performance measure for digital transiars of multimedia

sources such as images, video and audio, is a distortiomcrsatth as squared error. In
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this chapter we investigate howdsstortion metric can be incorporated into the design
of a transmission system for a loss tolerant source, whieb aa ARQ or Hybrid ARQ
protocol over a noisy channel allowing and ACK/NACK feedkac

In the earlier chapters we focused on the use of the feeddaaknel primarily
for design of smart error control techniques useful for pesgive transmission of the
source. In this chapter we revettdirst principles in its formulation and design method-
ology. This first principles approach involves viewing sourceating asjuantization
followed byindex assignmerand decoding as reproduction of the source from the re-
ceived, possibly corrupted, information. This approach been at the focus of joint
source-channel coding research since its beginning. Allpievious work, which in-
cludes smart source encodirggd. [23]), smart index-assignmerg.@. [34]) and smart
decoding €.g.[30]), concerns transmission of loss tolerant sourceseratbsence of a
feedback channel.

This chapter is part theoretical and part experimentalstiigation of the effective
use of ACK/NACK feedback, primarily on the receiver side whhbe objective is to
obtain the best trade-off between the transmission ratétendistortion at the receiver.

In Sections 6.2, through 6.6, we formulate the problem ofgiesf joint source
channel coding in the presence of ACK/NACK feedback in itsegality, from the first
principles. In sections 6.7 through 6.12 we solve the decddsign problem for a
pure ARQ system over a memoryless channel with packet congpat the receiver. In
chapter 7 we show an interesting property of the decodectstielin a slightly more

general scenario.
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6.2 General Formulation for a System with ACK/NACK

Feedback

A general point-to-point discrete time communication sgsfor transmission of a loss

tolerant source using ACK/NACK feedback can be describethbyblock diagram in

Figure 6.1.
Feedbdck Channel Feedback= NACK Feeﬂback =ACK
: ‘ Yes;: Reconstruction
X "X, Z1}) Yo (YT ZRY)

Source| —mm-fictive Encoder || Noisy Channel

T + ZTn ZRn
Transmitter Channel Receiver Charinel
. Measurement Measurement
Zro 3 3 Y1, ZR1
Zr1 : Y2, ZR2
Zrp—1 3 3 Yn—1,ZRn—|
Lo Transmitter. ................. 3 L Receiver.......... 3

Figure 6.1: General JSCC system with ACK/NACK feedback‘astep in transmission

The source is a random vector of fixed dimension and knowisstattaking values
in finite dimensional real valued space denoted¥hy- R*. The encoding and trans-
mission of this vector from the transmitter to the receiaes place in several steps.
In each step some channel symbols are transmitted fromahsnitter to the receiver
over the noisy channel. A general discrete time noisy chaiakes channels symbols
from input alphabef and generates received symbols from output alph@bet

Afeedbackt’ € {ACK, NACK} is transmitted from the receiver to the transmitter
over the feedback channel at the end of every step. The tiasismfor then + 1% step

may take place only if the feedback afi€f step was a NACK.
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The random variableg;,, and Zy,,, taking values in alphabeZ, represent the
“transmitter channel measurement” and the “receiver celanreasurement” respec-
tively, which may be available at the two ends as additiomfairmation about the chan-
nel. This information can be assumed to be uncorrelatedtivéfsourceX. Note that,
for analysis, the receiver channel measurenigytcan be omitted without loss of gen-
erality as it can be included with the received noisy symhbglsis a combined received
information.

The transmitter can be described mathematically bemeoding ruleS which is
a sequence of integets > 0, n = 1,2,..., and a sequence of encoder mdj¥s :

X xZ"—Tln n =1,2,....Onreceiving NACK at — 1" step, the transmitter sends

l, symbols given by computing”™(X, Zry, Zrs, ..., Zr,) Over the noisy channel at
the n'" step. This vector of channel symbols (also calbdbannel codeword, transmit
codeword om'" step codeword is corrupted by the channel and is received as random
vectorY,, taking values iny'». We will say thaty,, is received codewordt then!" step.

For simplicity, with no loss of generality, we shall assurhett; =, = ... = [, =

... = L, i.e. exactly L symbols are transmitted over the noisy channel between two
feedbacksL is thepacket lengtlor thecodeword length

The receiver is described by thlieedback generation ruleand thereproduction
rule . The feedback generation ruie is a sequence ofeedback generations maps
o" Yy — {0,1},n = 1,2,.... Atthen'" step, let the realizations of the received
codewords b, s, . . ., y, for y; € Y*. Then an ACK is transmitted over the feedback
channel if¢™(y1, ya, . . ., yn) = 1. ANACK is transmitted ifp" (y1, yo, . . ., yn) = 0. For
mathematical convenience we also define the constant tanicy® which is either 0
orl.

We assume here and the rest of the thesis that the feedbad®d®dNACK is instan-
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taneous and error fréee.

The reproduction rule c is a sequence akproduction maps” : Y — C Cc X
forn =1,2,.... Cisthereproduction codebook-or mathematical convenience, define
constant functiom® € C. If an ACK is generated at the” step,i.e. if ¢"(y1,y2, ... yn) =
1, then the source is reconstructedca&yy, v, - - ., y,)- It is not necessary faf to be
discrete.

We will be using the shorthand notatiaff and Y} for denoting the sequences
Y1, Y2, - - -, Yn and random vectors;, Vs, ..., Y, respectively. SimilarlyZ ;| denotes
the sequenc€r,, Zrs, ..., L1,

The noisy channel is assumed to be independent of the soaoterv The chan-
nel can be described by (i) the joint distributions of traitten channel measurement
Fy (Zry),n = 1,2,... (i) transition probabilities, which are conditional pratil-
ity density functions of vector$X¥‘ZT¥£(yﬂg?,ﬁ),n =1,2,...fory, € Yt and

i, € It, satisfying appropriate consistency conditions on maigiistributions.

6.3 Performance Measurement

The simplest performance measures for loss tolerant sgsdeethe distortion and the

transmission rate. The transmission rate is the averagenehasage per source sam-

1Though this assumption is limiting, it is made to simplifyranvestigation of design of feedback
based JSCC systems and evaluation of their relative maréis gystems not using feedback, without
getting sidetracked. Some effect of delay can be mitigayettié use of buffers at the transmitter and the
receiver along with “selective-repeat” strategy. As ACKBK feedback requires very low data rate on
the feedback channel, it can be protected by strong erroection and can be reasonably assumed to be

error-free.
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ple2 Distortion measures the separation between the originaiceovectorX and
its reproduction at the receiveéf. We shall assume squared error distortion measure
throughoutj.e. d(X, X) = || X — X|%

As discussed earlier, the receiver channel measuremedtnoede explicitly men-
tioned and will be omitted in the rest of the discussion. N the source is re-
produced at the" step only if current step generated ACK and previaus 1 steps
resulted in NACK -i.e. ¢'(y%) = Ofori = 1,2,...n — 1 and¢"(y}) = 1. Define

def

the functiony™ (y7) = TI1 (1 — ¢ (u})) 9" (y})- It is straightforward to show that the

average distortion for a given transmitter, receiver araholel can be computed as,

D(¢,c) =E . (6.1)

> d(X, Y)Y ()
n=0

For clarity let us write down the expectation calculatiorpleitly.

D6, = [ fx(e) (i (. d<x,c"<y’f>>¢”<y’f>fy;X,s<y?|x>dy’f)) &z
- (6.2)

where

n def
fZY‘Xﬁ(yl |:L’) =

fgn ng (gT?)fo‘ZT;lT (ymgT?v Sl(gTiv flf), 52(§T%7 .CE'), te Sn(gT?v x))dgT?(63)

define the “effective” transition probabilities as seen vy teceiver.

2Transmission rate is expressed in channel symbols peressarople. Transmission rate should not
to be confused with the channel baud rate in symbols per seomhich is a property of the modulation-
demodulation system, or the channel coding rate or chahmnalighput, which is dimensionless. For a
fixed (time invariant) quantizer channel coding rate or tigioput is inversely proportional to the trans-

mission rate.
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Similarly, the expected transmission rate, which is prapoal to expected value of

stopping time, is given by

> nLy"(Yp)| . (6.4)

n=0

R(S,¢) = E

6.4 Classification of the Transmitters

The transmitter, or more specifically, each encoder fapan be conceived as a com-
position of two maps, namely quantizer Q" : X — N and anindex-assignment
b* : NV — Z*. The quantizer divides the source spacénto a finite number of parti-
tions and the index-assignment map assigns a unique vdabaonnel symbols to each
partition. The index assignment may include explicit or licipredundancy for the
purpose of error control coding. The transmitter can besdiasl into three categories

based on how the quantizer and the index assignment mapehaegch step.

1. Active Encoder (Embedded source coding/multiple descripbn based source
coding + Hybrid ARQ) : We say that the encoder at the transmitter isaantive
encoder” (Figure 6.2), if both the quantizer and the index assignraeattime
varying,i.e. are allowed to vary at each step in transmission. A quantizanging
with n can be thought of as an embedded source coding becausetitierpaf X’
aftern!” step is a refinement of the partition obtained up to step. It can also be
conceived as Multiple Descriptions as the individual qumansQ", n = 1,2, 3....
are different descriptions of the source transmitted deint times. Clearly,
this kind of encoding allows thgource distortion to diminish to arbitrarily small

value

2. Incremental Redundancy Transmission or general Hybrid ARQ When the

guantizer map is fixed.e. time-invariant) and only the index assignment map
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Figure 6.2: Active encoder at”" step

varies with each step, the encoder implements incremesdahidancy transmis-
sion or Type Il hybrid ARQ (Figure 6.3). A protocol analogoto this was con-
sidered in Chapter 2. The advantage of this configuratidmaisthe source coding
can be separated from the transmission protocol. On the lémel, the drawback
over the more general encoder is thatdistortion at the receiver is limited by the
guantizer induced distortioand it cannot be driven to zero no matter how well

the channel behaves or how efficient the error control scheme

S™(X
X*+Q 1 b7 >()

Figure 6.3: System with incremental redundancy transomssig. using RCPC codes

3. Passive Encoder/Pure Retransmission Encoder/ Type | Hybdi ARQ: The
simplest system using ACK/NACK feedback is one in which tharse coding
and the index assignment are time invariant. On receiving@Hy the transmitter
retransmits a copy of the same codeword. In such a case waaape encoder
(or the transmitter) i§passive”. This is attractive because it is simple. But it does
not make use of the feedback channel in the best possible wthg &ansmitter

side3

3We use the term “passive encoder” because the term Type | HARQ puts restrictions on the

receiver side.
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Figure 6.4: Passive Encoder for any step

6.5 Decoder Structure

The receiver or the decoder can be classified analogousiglmsdegrees of freedom,
complexity and memory usage. Note that the decoder cordiske feedback gener-
ation rule and the reproduction rule. The simplest form afodier, theType | Hybrid
ARQdecoder, uses only the current observation for generatiagdback.e. the feed-
back generation mag® does not depend aff *. Type | Hybrid ARQ decoder has low
computational and memory requirements but it does not mageotithe full potential
of ACK/NACK feedback.

The more general decoder,s&t step, can use all the received codewords up to the
stepn in generating ACK/NACK feedback. Its general structurehiev in Figure 6.5.
If the encoder is active, such a decoder is said to be doaag-combinin@nd If the
encoder is passive, the decoder is said to be dpamfet-combiningWe will be using
the term code-combining decoder to denote both decoders.

Yn

— ACK/NACK
o ——
——

Figure 6.5: Code Combining or Packet Combining

Clearly, a code-combining decoder is more complex and hgedand variable

memory requirements. The memory requirements can be rddfitbe decoder, instead
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of storing all the received codewords, can store only a éstastimated from the past
received codewords. The decoder structure with this deositipn is depicted in Figure
6.6. Note that the “state” need not be a sufficient statifitimay be used only to impose

additional structure on the feedback generation maps.

+

State n ACK/NACK
Estimation | ¢ ——

Figure 6.6: Code Combining or Packet Combining with Stattzgion

6.6 Decoder Design

Having described these concepts about the transmitteream@iver sides, we embark
on a topic that forms the Sections 6.7 and Chapter 7, namelgi¢kign of the decoder.
We focus on the decoder (the feedback generation rules anekpinoduction rules) in
the rest of the thesis. It can be argued that the design ofeébed#r must precede the
design of the encoder. We shall see that, systems which uBgNXCK feedback are
primarily receiver driven. Even in scenarios involving agigie transmitter, by letting
the feedback generation maps change, the receiver cansexarot of control over the
end-to-end performance of the system.

Nevertheless, design of the transmitter side remains aedesting and important
issue that we do not address in this thesis.

Notice that the decoder performance (eqgs. (6.1) and (6.4)ragions of(¢, c))
and depends on the encoding rule only through the effectwesition probabilities (eq.
6.3 ) We shall assume in the rest of the chapter that the eiécicansition probabilities

given by eq. (6.3) are known at the receiver.
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In Sections 6.7 through 6.13 we restrict our attention todésign of an optimal
decoder fora passive encodeanda memoryless noisy chanpelhen the number of
steps is allowed to be unbounded. The optimality critergotine tradeoff between end-
to-end distortion and transmission rate. We obtain thenmgdtdesign and also propose
some suboptimal but competitive, computationally simpkcoder designs.

In the next chapter, Chapter 7 we focus on decoder design thieencoder is active
but predesigned, under the constraint that the maximum ruoflsteps is bounded. We
draw parallels between source-channel coding with ACK/KA€edback and Pruned
Tree Structured Vector Quantization. We also analyze tlvedkr structure and show
that the optimal feedback generation rules are embeddedpe@al sense. This prop-

erty of embeddedness has applications in progressivatiasion.

6.7 Packet Combining for Joint Source-Channel ARQ
over Memoryless Channels

In Sections 6.7 through 6.13 we restrict our attention tosspa transmitter scenario,
where, on receiving a NACKhe transmitter can only do a retransmission of the code-
word earlier transmittedi(e. the scenario of Figure 6.4). On the other hand, we look
at an active-receiver system in which the receiver retdingha (noisy) copies of the
received codeword and can use them for generation of thefeeaback or reproduc-
tion of the source. This is analogousgacket combiningr diversity combiningn the
context of data transmission [67]. Clearly, as the encoslgrassive, any transmitter
channel measurement is not used, and we shall assume irséens that th&rans-
mitter channel measurement is absent

We show that the task of designing a source-channel feedipamgration rule for
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packet combining based ARQ can be mapped to a classicalrdé)ukecision problem
[24]. Consequently we obtain a dynamic programming basédiso for the optimal
feedback generation rule and reproduction rule so as tameia Lagrangian sum of
rate and distortion. We shall see that the distortion m@iags an important role, not
only in the source reproduction, but also in the feedbacleggion. As the optimal
solution is computationally complex, we also suggest seamalternatives for feedback
generation. Results indicate that they also outperforners@s not incorporating the

distortion metric.

6.8 Transmission Scheme and Notation

The transmission protocol we consider is most generallgriesd as Type | Hybrid
ARQ with packet combiningd.g. [67]) at the receiver. As earlier, consider the trans-
mission of ak dimensional random source-vect&rtaking values in¥ ¢ R*, over a
memoryless noisy channel with discrete input alphahqtossibly continuous valued
output alphabey and known transition probabilities. The source-vectouiargized by

a fixed, pre-designekl dimensional vector quantizer (VQ) withl cells.

Each VQ cell is assigned ah dimensional channel-codeword (dpacket”) by a
fixed, pre-designed channel coding scheme. As the encodesisne to be passive,
let S : X — Z%, denote the (fixed) map for the codeword assignment. Notethieat
map includes quantization, index-assignment and chamadkhg, if any. Therefore, for
a realizationz of random vectorX, S(z) denotes the codeword to be transmitted over
the channel S(z) takesM possible values denoted I8y, i = 1,2,..., M, in Z%. The
transmission proceeds as follows. Codew6i(dX) is transmitted and a feedback of

ACK/NACK is requested. On receiving NACK,@py ofS(X) is retransmitted. This is
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continued until an ACK is received. At the endsdf retransmission, the receiver uses
all the available noisy copieg of S(X) to generate the ACK/NACK feedback. As the
channel is assumed to be memorylésdor i = 1,2, ..., are statistically independent
given the codeword (X).

As the encoding rule is fixed, we shall drop the symBdfom the expressions of
distortion D(S, ¢, c) and rateR(S, ¢ ) in equations (6.1) and (6.4) for the subsequent

sections.

6.9 Decoder Design Problem

For the general system described in Section 6.2, the qeantlze assigned channel
codewords as well as the decoder structure determine thageveate and distortion.
For a fixed quantizer and channel codeword assignment, thergedesign problem is
the minimization of a Lagrangian sum of the expected digtorD (¢, c) and average
rate R(¢) with respect to¢ andc. Mathematically, for a non-negative Lagrangian

penalty), the problem can be written as,

mwin £ 3 (d(X, (V) + Anl) 9" (1)) (6.5)
¢ n=1

Let 72 be the probability that the source vector lies in thecell,i.e. 7% = Pr(S(X) =
Si),i=1,2,..., M. Letz®(y}) = {m9(y}),i=1,2,..., M}.We restrict our attention
to the squared error distortion meastre, d(X,c) = [|X —c[]? = (X — ¢)T(X —¢).

Also let s; denote the centroid of thé&" VQ cell, i.e. s; = E[X|S(X) = S;]. Then,
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under general conditions, we can writd¢, c) as,

M
D(g,c) = S wE[|X — sif]? S(X) = 5] +
=1

Dy

M (e’
SoalE |y s — EDIPYn )| S(X) = S; (6.6)
i=1 n=1

De(@c)
whereD;,, the distortion due to the vector quantizer, is a term inddpat of¢ andc.

Therefore the design problem reduces to the following.

win S (., ) whereJ (6, ¢7°.3)  D.(g,¢) + AR(9). (6.7)

For reasons soon to become clear, we have explicitly shoevdé¢pendence of the

objective function on the prior probability vectef.

6.10 Sequential Decision Problem

An examination of the expression for the objective functif(@, c, \) reveals that,
J(¢,c,m°, \) is the Bayesian risk in a classical sequential decisionlprotj24]. The
corresponding terminology is as follows. The collection cells indices,{i =
1,2,..., M} is theparameter spacer? is thea priori probability of parametei used

for computation of the Bayesian risk’/s are the observation random variables which
are conditionally independent and identically distrilojtgiven the parameters. The set
of reproduction vector€ C X is theaction space The feedback generation rude
represents thetopping rule A NACK feedback corresponds to a request for another
observation. The reproduction vector mé&p: Y"V — C is theterminal decision rule

Theloss functionor penalty for taking an actione C when the parameter isis given
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by the squared errdfs; — c||*>. The increase in rate at a given stapy, is thecost of the
incremental observation

Given this translation, the optimal joint source-chanretatler is the solution to
the sequential decision problem given by eq. (6.7). Thetmwprovides a feedback
generation rule which explicitly considers the tradeoffween distortion and rate, and
makes use of the available source statistics.

Notice that there is flexibility in choosing the reproductiectorsj.e. the elements
of reproduction codebook. If they are chosen as the the centroids of the source-
encoder maps.e. if C = {s;,i =1,2,..., M}, then the problem is B-ary sequential
detection problem with Bayes penalti€s; = ||s; — s;||>. This problem has been
studied in the context of signal detectiand. [3]). The non-sequential analog in the
context of joint source-channel coding has also been siu@ig. [22]). (i) A finite
but densely populated codebook can also be used for regrodu¢23] consider such
table-lookup codebooks for reproduction vectors in the-segquential case. It can be
seen that any Maximum A posteriori estimate of the sourcHi@iin the convex closure
of the centroidss; of the source-encoder cells . Therefore, most generakdys#t of
reproduction vectors, the action space, should be the sEtneyex combinations of the
centroidss;. For our simulations we used the collection of all convex borations
of source-encoder centroids as the reproduction codebodk This set includes the

Minimum Mean Squared Error (MMSE) estimate of the sourceeder centroids.

6.11 Optimal Sequential Design

Let 7'(y}) denote the posterior probability of codewa$dgiven the observations;.
That is, " (y7) & Pr(S(X) = S;ly?) fori = 1,2,..., M. Leta"(y7) & {zn(y?),i =
1,2,...,M}. Let f(y,|S;) denote transition probabilities for the codewords comghute
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from the transition probabilities for the channel. Thend@iven observation vectaf’,

the following relationship exists betweefi(y?), 77~ (y} ') andy,,

. ﬂﬂ—l n—1 nSz
T (y) = MZ n(il )7 (9:15)

Zj:l Ty (H?_l)f(ynysj)
Let this function, which is independent of time indexbe denoted by (x, y). Then

™ (yt) = H(x" Y (W5 ™), yn).

Let I' denote the simplex of all probability distributions oveartsmit codewords

. (6.8)

S;, e. T = {ay,a9,,...apy + 1 > a; > O,Zﬁlai = 1}. All posterior prob-

ability distributionsz™ belong toI'. Define functionp : I' — [0,00) as p(x) =

min.co vail |5 — c||*m;.

We get the following main result from the theory of sequdrdéecisions.

Proposition 5 For every\ > 0, there exists a unigue cost-to-go functigfy, \) : I' —

‘R which satisfies the following dynamic programming equatorall = € I'.
V(x,A) = min (AL + E[V(H(x,Y), Nzl p(x)) . (6.9)

Let A(m,\) @ E[V(H(z,Y), Nz = M, mE[V(H(x,Y),\)|S]. Then we

have the following result.

Proposition 6 Consider the feedback generation ry and the reproduction rule*,

given as,

o 0" (yt) = li.e.send ACK ifp(7](y})) < AL + A(z"(y}), A). Else¢™ (y}) =0
i.e.send NACK.

o Wheneven™ (y}) = 1 the reproduction rule is;* (y}) = argmineec >0, [|si—

cl*m (u1)-

Theng™* andc* are optimal, that is, they solve problem (6.7).
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Note that the optimal reproduction rule and optimal fee#lzgeneration rule, for each
A, are time invariant functions of.
The outline of proofs for Propositions 5 and 6 is presentederfollowing sequence

of facts.

1. For any feedback generation rybethe optimal reproduction rule depends:gn

through the posterior probabilitied (7). The optimal reproduction rule is given

by c"(y}) = argmingec >0, [|si — ¢l *a7 (y})

2. Foranyr €T, letVy(r, \) & p(x) and
Vir(m, \) & inf  J(¢p,c,m N forT=1,2,.... (6.10)
o7 ul)=1vyT
Vr(m, A) is the minimum Bayesian risk over all feedback generatidesrwhich
are forced to send ACK at stédfy when the prior probability is somee I". Then,

the following decomposition holds for a memoryless channel

VT(E >\)

= min ()\L + E[VT—1<H(E7 Y)? )‘)‘1]7 p(ﬂ))

= min(AL+> m [ fyis.@)Vea(H(z ), \dy, p(x).  (6.11)

i=1 YE

3. Vr(m,A) > Veoi(m,\) > Vpgo(m, A) > ... ThereforeVy(z, A), asT — oo
converges pointwise to a function that can be shown to' e \) satisfying eq.

6.9.

The structure of the optimal decoder obtained in Propasiias shown in Figure

6.7.
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Figure 6.7: Feedback Generation with State Estimation

6.12 Suboptimal Schemes

The general solution obtained in Proposition 6 is exceddicgmplex. The complexity

can be localized in two distinct blocks in Figure 6.7.

Complexity of state estimation The optimal decoder.e. the optimal feedback gener-
ation rule as well as the optimal reproduction rule are caegbérom the state which is
the posterior probability distribution over transmit caaeds. The state space is thé
dimensional probability simplex, wherd is the number of possible input vectors. For
even moderately long size of the vectors, and moderate s@ading rate M/ can be
prohibitively large. As state-estimation has to be dondlateps during the transmis-

sion, it is a big contributor to implementation complexity.

Complexity of Design and Implementation of optimal feedbak generation rule
The feedback generation ruf€ compares the conditional expected channel distortion
given current observations given pyr*(y})) with the cost of sending a NACK, that is
AL + A(m"(y}), A). This requires the knowledge of the functiorigr, \) and A(x, \)

for all posterior probability distributions € I'. It turns out that the determination of
these functions is highly nontrivial. The general solutiofroposition 6 has only been

characterized in a very few cases such as binary sequeppathesis testing [24] and
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only approximate methods have been developed for the cddeany detectionj.e. the
case ofC = {s;,i = 1,2,..., M} and 1-0 penaltyd.g.[3]). M-SPRT uses expressions
similar to Wald’s approximations to approximdtér, A\) and A(w, \)[3, 24].

It is still beneficial to consider suboptimal schemes whichsider distortion metric

explicitly. We propose and consider the following subopatischemes.
1. Distortion based feedback generation rule
2. Finite horizon optimal rules

3. Finite lookahead rules

6.12.1 Scheme DIST: Distortion based Feedback Generationuke

Notice that¢™ in Proposition 6 compares the conditional expected chadisebrtion
given current observations, given byr!'(y})), to AL + A(z"(y}), ), which varies
with . The functionA(z, \) is a monotonically increasing function of for every

priorm € T
Proposition 7 For Ay > Xy, A(m, A1) > A(m, Ay), for all 7.

Proof Outline: Let Vr(m, A\) be defined as in eq. (6.10) for T = 0,1,2,.... Define
Ar(z, ) Y E[Ve_ (H(z,Y), N)|z] for T=1,2,....Vy(x, \) is independent of and
henceA;(z, \) is monotonically increasing with. AssumeA(x, \) is monotonically
increasing function of\. Then asVy(x, A) is @ minimum of two monotonically in-
creasing functions, it is monotonically increasing. Capusntly, A7, (z, A), which

is an expectation over monotonically increasing functisnsmonotonically increasing.
Again, it can be shown that(x, \) converges tol(r, \;) and hencel(r, \;) is mono-

tonically increasing.
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Consider the behavior @ andc* for different values of the Lagrangian rate penalty
A. Itis easy to see that the reproduction rateeemains unchanged. On the other hand,
increasing\ results in greater rate penalty and hence a smaller rate.

This implies that the decision to send NACK will be taken mimfeequently as\
increases. Hence the behaviorAyfr, \) is similar to distortion, as larger rate penalky
leads to larger distortion.

We propose the use of distortion itself to determine the lfaekl generation rule.
To get the first suboptimal feedback generation jeve replace the functioh +
A(m, \), which varies withr, with a functiond(\) which is independent of. Hence
the proposed feedback generation rq?ll'es as follows: Setz@“(g?) = 1li.e.send ACK if
p(r™(y2)) < 6, else seth™(y) = 0 i.e. send NACK. The reproduction rule is same as
the optimali.e. ¢ (y) = ¢*"(y}) = arg mineee S, ||si — ¢l >72(42). Varyingd from
small to large values captures the rate-distortion tratildbwbughput-reliability tradeoff
in ARQ with packet combining. Note that, like the optimales) scheme A also results
in time invariant feedback generation rules. Lafgesult in high throughput and small
0 result in low distortion. It turns out that for sequentiatetgion of 1-bit equiprobably
quantized symmetrical sourced(r, \) is indeed independent af and hence for this

special case, the proposed scheme coincides with the dystrtodion.

6.12.2 Scheme FINHZN: Finite Horizon Optimal Rules

An T-horizon optimalfeedback generation rule is obtained by minimizif@p, c, \)
over only those feedback generations rules for whigh(y?) = 1 for all I for some
fixed integer?’. That is, such a feedback generation rule is the solutiomefopti-
mization problem in eq. (6.10). These are straightforwarddsign as the feedback

generation maps are computed explicitly instead of beingged by an implicit for-
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mula. These result in time varying feedback generatiorsyidet have the advantage of

bounded delay and bounded memory requirements.

6.12.3 Scheme FINLKHD: Finite Lookahead Rules

A class of time-invariant suboptimal rules, call€estep lookahead rules obtained by
executing at each step, tfiehorizon optimal feedback rule designed for néxsteps.
For large enoughl’, such a rule can be expected to approximate the optimal &&db
generation rule.

Schemes DIST, FINHZN and FINLKHD together, will be refertedasdistortion-

aware feedback generation rules simplydistortion-awareschemes.

6.13 CRC Based and BER based Systems for Compatr-
ison

In this entire section, which presents the illustrativedetion results for comparison
with conventional schemesye shall assume that the channel input is binaych as
the one obtained by Binary PSK modulation. Therefore we lvalfeferring to channel
input symbols adits. Consequently, we shall assume that the codewords belong to
{0, 1}%.

The features of the distortion-aware schemes proposee iprévious section (Sec-

tion 6.12) are the following.
1. Distortion metric plays a significant part in the feedbgekeration.

2. Channel statistics and source statistics are used, twoteédroduction rule as well

as feedback generation.
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3. Independent of the source statistics, the sensitivitthefbits to channel errors,
measured from their contribution to distortion, may stél different for different
bits. The distortion-aware schemes, therefore ascribssiply unequal impor-

tance to the transmit symbols.
4. There is a direct way of controlling the tradeoff betweanldy and rate.

These four features of the distortion-aware schemes, tloeifa of the analysis of
the optimal solutions of the Lagrangian formulation aredtse features which distin-
guish the proposed approaches from the conventional tapd®ocol designs. Conven-
tional approach to generating ACK/NACK feedback has beeoutyh the use of error
detection at the receiver. A NACK is generated if there ateatable but uncorrectable
errors in the received sequence of channel symbols. Thetaetes accomplished by

adding redundancy and using error detection codes such @s CR

Scheme CRC-Baseline: Baseline CRC Based systerfigure 6.8 describes the de-
coder for a baseline packet combining system based on CREmEmM features of the
baseline system are (i) Maximum Likelihood (ML) estimatafriransmit bits, (ii) check

of integrity of the bits by error-detection and (iii) reproztion of the source by inverse

guantization.

ACK/NACK
g CRC check [
Check bits - Demodulation =
Information —| Error Correctiorf 3 .
bits IFvEEE Reproduction
Y1,Y2,Y3,..., Yn ML Estimate of Quantization 3

transmit bits

Figure 6.8: Receiver for Baseline CRC based system

145



Scheme CRC-MMSE: CRC Based system with Pseudo-MMSE decodjn The distortion-
aware schemes expect to improve upon the baseline CRC bgstedhsby use of (1)
different feedback generation rule, (2) reproduction by SBestimation of the source
as opposed to inverse quantization. For assessment of djaén® these two separate
factors, we can conceive another CRC based system whiclOiedor feedback gen-
eration but uses MMSE estimation of the source for repradactn order to keep the
reproduction rule identical to the proposed schemes, we osgsonly the information
bits, i.e. the bits in the received symbols, excluding the CRC bits MMSE estima-
tion. As CRC bits are ignored for reproduction, we dub thistesn as CRC Based

system with Pseudo-MMSE decoding. It is shown in Figure 6.9.

ML Estimate of bits
s

Check bits Demodulation CRC check AC[;/NACK
Ibnformation —| Error Correctigm
its

Reproduction

MAP Estimate of sourcd
from information bits

Figure 6.9: Receiver for CRC based system with Pseudo-MM&iBading

Scheme CRC-List: CRC Based system with List Decoding:Some control over
throughput-reliability tradeoff can be obtained in a CRGdxh system with the help
of list-decoding. The CRC based system with List Decodinghiswn in Figure 6.10.
In list decoding, instead of generating a single ML estinudtiéne transmit bits, a finite
list of most likely candidate estimates is generated. If ainyne candidates satisfies the
CRC, an ACK is generated and that candidate is used for raptioth by inverse quan-
tization. If no candidate satisfies the CRC, a NACK is gemataClearly, by varying

the size of list, throughput can be traded for reliability.
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List of top candidates
51,82,...5

— - ACK/NACK
Check bits Demodulation CRC check on —
Information — Error Correctiorr——3 ; each candidate Candidate
bits —I Selection

Y1,Y2,Ys, ..., Yo Inverse Reproduction
»

Quantization

Figure 6.10: Receiver for CRC based system with List deapdin

Also, we can also conceive@RC Based system with List and Pseudo-MMSE
decoding (Scheme CRC-List-MMSE)Wwhere list decoding is used for feedback gener-

ation but MMSE decoding from the information bits alone isdi$or reproduction.

6.13.1 Zero Redundancy BER based Techniques

In addition to comparison against the CRC based systemshwhpresent the conven-
tional error-detection based techniques, we would alsotlile performance gain/loss
of the distortion-aware schemes, which attempt to minindizéortion and use source
statistics, ovepptimizedtechniques designed to minimize Bit Error Rate (BER) for a
given throughput.

For such a comparison, we can conceive Zero Redundancy BERdBaedback
generation rules, which are obtained as suboptimal solsitfanalogous to Schemes
FINHZN and FINLKHD) to a modification of the sequential decis problem (6.7)
where the action spacks the collection of source-encoder indices or codewéods } -,
and the loss function ibit-wise Hamming distandeetween the true parameter (trans-
mitted source-encoder index) and the action. Thus in thes,dhe objective is to mini-

mize, for different values of Lagrange Multipliar

E Y (Ham(S(X),c"(YT)) + AnL)y"(YT) |, (6.12)
n=1
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whereHam : {0,1}* x {0,1}* — N, is the Hamming Distance between two binary

vectors.

6.13.2 Results

To highlight the differences between the distortion-awaotniques and the described
conventional CRC-based schemes and Zero redundancy BEER balsemes, we con-
sider transmission of synthetic random sources quantigéeb structured vector quan-
tizers over a memoryless noisy channel. We present hereirthdagion results for

memoryless unit variance Gaussian source.

The channel

The channel was chosen to be a binary input, ternary outpatate memoryless chan-
nel obtained by quantizing the output of BPSK transmissiar an AWGN channel into
three regions(—oo, —ty], (—to, o), and|ty, 00). For each signal-to-noise ratio (SNR)
of the AWGN channel, the thresholglwas numerically obtained so as to maximize the
information theoretic capacity of the resulting discretamnel. This channel is useful
for simulation as it captures the features of both hard degaahd soft decoding. Also,
for the design described, which requires numerical contjmutaf expectations, it helps
that the set of all possible channel outputs be finite.

The schematic of quantization of the AWGN channel and theesponding discrete

channel is depicted in Figure 6.11.

Comparing CRC based Schemes

Figures 6.12 through 6.15 present results for comparisahsbbrtion-aware schemes

with CRC based schemes. Transmission of a unit variances@ausource quantized
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Figure 6.11: Discrete 2-input 3 output channel is obtainedRBSK over quantizing

AWGN channel

SNR dB -1 0 1 2 3 4 5
p 0.7716 | 0.819 0.864 | 0.9049 | 0.9387 | 0.9644 | 0.9819
q 0.1905 | 0.1530 | 0.1164 | 0.0828 | 0.05414 | 0.03181| 0.01636
r 0.03782| 0.02768| 0.01908| 0.01220| 0.007121| 0.0037 | 0.001675

Table 6.1: Transition probabilities of the derived diserehannel for different AWGN

SNR’s.

by a 16-level Tree Structured scalar quantizer [26] overigynthannel was considered.
The 16 levels were mapped info= 4 bits using natural binary indexing. These 4 bit
long codewords were transmitted across the chosen disoeteryless noisy channels

using schemes DIST, FINHZN with T=3 and T=4, 1-step FINLKHi3,well as CRC

Based Schemes.

Figure 6.12 and 6.13 show the results for the channel witivatgnt AWGN chan-
nel with SNR 0 dB and 3dB respectively. End-to-end total SNEhe mean squared

error per sample expressed in dBs. The points on the curvé &&obtained by simu-
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lation as the thresholdlis varied from large values to small values. Similarly thepo
for 1-step FINLKHD were obtained by simulation as Lagrangstiplier A\ was varied
from large values to small values. For simulations we us2d@,000 samples of unit
variance Gaussian source. For each sample, the channetedsearly 20 times.

The points for FINHZN T=3 and T=4, were obtained by numericalculation.
They are operational rate-distortion performance cunigaioned by pruning a depth-
T Pruned TSVQ [15] witt8” = 81 children per node. The relationship between Pruned
TSVQ and the design problem is explained in Chapter 7.

Three simple CRC based transmitters, ones with 1 bit, 2 lit3nit CRC’s applied
to each 4 bit packet, are used for comparison. The decoderSRE-List and CRC-
List-MMSE for different list sizes. Scheme CRC-List witlstiisize 1, is the baseline
CRC based system. CRC-List-MMSE with list size of 1, is theGERMSE scheme.
Results were obtained for list sizeso2, 4, . .., 2" for a transmitter which uses-bit
CRC. The number’s next to points for CRC-List represent iteslze used.

The plots also show results for Fixed Horizon schemes whiehrafact schemes
with repetition coding and no feedback such a scheme codeword is repeated a fixed
number of times. The decoder performs a MMSE estimationetturce from the re-
ceived copies. The performance at the highest transmissieachieved by a T-horizon
FINHZN scheme is equal to that of a fixed horizon scheme trétiagnT copies.

The feature immediately noticeable about the plots is tgh Aexibility offered by
the distortion-aware schemes. The Lagrangian approatdsyaeontinuum of operating
points for each of the distortion-aware schemes. The CREdsshemes on the other
hand, provide limited flexibility, operating at discrete sépoints.

Secondly, though the distortion-aware schemes are subalptthey consistently

outperform the CRC based schemes for a wide range of trasismisates. For the
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Comparison of Schemes: Gaussian Source: AWGN Eb/No =0 dB
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Figure 6.12: Performance (Total SNR vs. Trans. Rate) obvsrSchemes of Scalar 11D
Gaussian source quantized with 4 bit TSVQ over noisy chafageliv. AWGN SNR =
0dB)

more noisy channel, namely the one corresponding to AWGBI-@lte gains of DIST
and 1-step FINLKHD are nearly 2 dB at almost all transmissites. The gains of
distortion aware schemed for the 3 dB channel are lower, stikyputperform all CRC
based schemes except one. CRC-List with coderate 4/7, valditt 3 bit CRC to every
4 bits, with list size 2 outperforms the distortion-awarbesnes. Note that distortion-
aware schemes in the plots have no redundancy added.

Another interesting observation is that for high redunga@G&C - such as CRC-
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Comparison of Schemes: Gaussian Source: Source Rate 4 BS: Dim =1: AWGN Eb/No =3 dB
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Figure 6.13: Performance (Total SNR vs. Trans. Rate) obvsrSchemes of Scalar 11D
Gaussian source quantized with 4 bit TSVQ over noisy chafaueliv. AWGN SNR =
3dB)

List with coderate 4/7, CRC-List outperforms CRC-List-MESThis observation can
be explained from the fact that the extra diversity providgdedundant bits more than
compensates for the suboptimality of ML decoding over MM®Eatling. This is not
the case for high coderateq. low redundancy ) CRC schemes (Figure 6.14). High
coderate CRC Based schemes used are of rates 4/5, 8/10 a8¢\ibich are 1 bit CRC
added to 4 bits, 2 bit CRC added to 8 bits, and 3 bit CRC adde@ twt& respectively.
For these coderates, CRC-List-MMSE generally performeléftan CRC-List.
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Fourth noticeable feature is that the schemes DIST and atddFINLKHD per-
form nearly identically.

The source coder used in Figures 6.12 through 6.15, is a 4Iwith average
distortion D, ~ 0.0097 which is nearly 20 dB. The source distortion becomes domi-
nating factor for higher transmission rates. Figure 6.1igbnly the channel induced
distortionD,., expressed in dB, for these schemes for the 0dB channel. a&mehdis-
tortion can be driven arbitrarily close to zero, the channdliced SNR for schemes
DIST and 1-step FINLKHD does not saturate, unlike the cumdsgure 6.12.

The curves for DIST and 1-step FINLKHD are nearly linear, ipnpg that the dis-
tortion drops exponentially with transmission rate. Alg®y are at a sharper slope than
Fixed Horizon schemes. This shows that the gain in SNR of ST 1-step FINLKHD
over schemes not using feedback increases with transmisssie.

FINHZN schemes are efficient at low transmission rates, beir tperformance

curves saturate as the rate approaches the correspondiddnbxizon schemes.

Zero Redundancy BER based Schemes

As discussed earlier, we would also like to isolate the doution of distortion metric
in the feedback generation rule as opposed to Hamming Ristaretric. Towards this
end, we consider comparison with zero-redundancy BER badezines.

Figures 6.16 and 6.17 present the curves for average ratetasSNR as) is varied
from small to large, for various schemes for channels obthfinom AWGN channels
with SNR 0 dB and 3 dB, respectively. In all the curves, inahgdthe zero redun-
dancy BER based scheméBe reproduction rule is chosen to be the MMSE estimate
of the source.The rate distortion performance of the distortion awareestds DIST,

FINHZN with T=3 and 1-step FINLKHD is compared against zeedundancy packet-
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Comparison of Schemes: Gaussian Source: AWGN Eb/No =0 dB
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Figure 6.14: Performance (Total SNR vs. Trans. Rate) of Higite CRC based
Schemes, IID Gaussian source, dim = 1, TSVQ 4 bit/sampldyedqWGN SNR =
0dB

combining feedback generation rules 1) BER based FINHZN Wit3, 2) BER based
1-step FINLKHD.

Although, the BER based zero redundancy schemes, behavthékconventional
CRC, that s, they treat all the source-encoder bits equbly make use of source statis-
tics for ACK/NACK generationThe only difference between the BER based schemes
and distortion-aware schemes is the distortion metric.

From the figures, it is evident that the channel-distortiate/ performance of the
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Comparison of Schemes: Scalar Gaussian Source: AWGN Eb/No =0 dB
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Figure 6.15: Channel Distortion for Various Schemes, lIDu§&aan source, dim =1,

TSVQ 4 bit/sample, equiv. AWGN SNR = 0dB

distortion-aware schemes is almost always superior to BB Based schemes. But
the most interesting feature is that, at high transmissitest the BER based zero re-
dundancy schemes, seem to catch up with the corresponditggtain aware schemes.
The distortion aware schemes, show high gains in the highughputi.e. low trans-
mission rate region. The highest performance improvensabout 2 dB in both the
cases. Another advantage of the curves for the distorticareschemes is their high
positive slope at low rate region, compared to the zero+rddncy BER based schemes.

This has implications in progressive transmission, whespal improvement in source
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guality as a function of bit rate is desirable.

Comparison with BER based Schemes: Gaussian Source: Dim =1 , 4 Bits/Sample, AWGN 0dB
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Figure 6.16: Performance Comparison with Zero Redundariel Based schemes.

Gaussian Source, TSSQ with 4 bits/sample. AWGN Channel SIN&B=

6.14 Conclusion

In this chapter we have addressed the problem of joint soche@anel coding with
ACK/NACK feedback from first principles. We have identifidebtdifferent components
and classified the transmitter and the receiver side acuptdi the degree of freedom
allowed in the use of the ACK/NACK feedback. As every systeitihaut feedback is
a special case of the one with feedback, and a tandem systpatialscase of a joint
source -channel coding system, the design of a communicayistem from first prin-

ciples can be construed as rather naive. Neverthelesg, éhersignificant insights to
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Comparison with BER based Schemes: Gaussian Source: Dim =1 , 4 Bits/Sample, AWGN 3dB
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Figure 6.17: Performance Comparison with Zero Redundariel Based schemes.

Gaussian Source, TSSQ with 4 bits/sample. AWGN Channel SBI&B=

be gained from this approach. As a special and simplified, cage have considered
decoder design for a passive encoder system in which thenigter transmits copies
of the same codeword over the noisy channel. We have obtajtgdal design by dy-
namic programming techniques, which yielded the optimptoduction rule and the
optimal feedback generation rule. We have proposed someedecomplexity subop-
timal feedback generation rules, which take into consiitemghe source statistics and
the distortion metric and hence are called distortion-aw&istortion-aware schemes,
in addition to outperforming conventional CRC based and B&Bed schemes, also of-
fer a lot of flexibility in choosing the operating transmmsirate and allow easy switch-

ing from lower transmission rate to higher transmissioa.rahe three fronts on which
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distortion-aware schemes are superior to conventionarsek are 1) use of source-
statisticsl.e. exploiting residual redundancy in the source-encodersg)af distortion
measure - which is more meaningful for transmission of todsrant sources, 3) flexible
selection of operating points.

The next chapter extends the ideas in this chapter to areasdrce-encoder and
explores the structure of the optimal solution in more delizalso establishes the close
link between the ARQ design problem and Pruned TSVQ, and stmaow progressive

transmission can be accomplished for such a system whaeneg) optimality.
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Chapter 7

Pruned Tree Structured Quantization in Noise and

Feedback

In this chapter, we take our program of designing optimaitisource-channel coding
for channels with feedback one step further. We devise @til@coding schemes where
a progressively transmitted embedded source cosleffers channel noise and at each
step in progressive transmission there is a feedback fremeiteiver to the transmitter.
In this framework, the transmitter is active, that is, onereing a NACK it does not
retransmit the codeword transmitted earlier but insteagisimits new information. We
restrict our attention to the finite horizon case, where thegmission is not allowed to
continue beyond a fixed number of steps, gayAgain we focus on the receiver side
and investigate the structure of the optimal decoder ardbfsek generation mechanism
here. The tools we use will be as earlier, based on Lagramgiarulation and sequential
analysis.

In the absence of channel coding the progressive codingisaly performed using
a tree structured quantizer. The tree structured quansiz&pable of coding in several
stages, each stage provides a refinement of the previouwes stagme form of variable

length coding is available, then an effective way of obtagra collection of quantizers
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from a single tree structured quantizer is by the method ohipg [15]. The result-
ing collection of quantizers is called pruned tree strusdurector quantizers (PTSVQ).
There is an elegant theory associated with pruning. Prumedstructured quantizers
first appeared in the context of decision trees where Breietah [8] presented an al-
gorithm for pruning. It was later generalized to other catdgsuch as tree structured
guantization, regression trees, quantization of noisycesuand variable order Markov
modeling [15, 26].

In this chapter we show the close link between PTSVQ and itneggsson using an
embedded source-coder over a channel with ACK/NACK feeklb&onsequently we
generalize the concept to carry out joint source-chann8\RJ, or PTSVQ in the pres-
ence of noise and feedback. In addition to establishing kbgedink, we show the
existence of a “feedback-threshold” function which resahk simple structure behind

the optimal feedback generation rules for all Lagrangiamajiees.

7.1 Pruned Tree Structured Vector Quantizers

An T'-stage TSVQ is a collection @f vector quantizers, one associated with each stage,
such that, every VQ cell af” stage is obtained by partitioning some cell, (its “parent”)
ati — 1" stage, fori = 1,2, ..., T. The quantizer a*" stage consists of one cell. The
parent-child relationship between cells gives a full bathtree of VQ cells. Without
loss of generality, we shall assume that the tree is binarygach cell is either a leaf or
has exactly two children.

Let the collection of cells in a TSVQ denoted &, be denoted bﬁo. A pruned
TSVQ, 7/, is obtained from a full TSVQ by selecting a subgetc Z) of the cells,

with the property that a cell € Z if and only if its parent celparent(t) € Z. We say
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thatZ < Z,. The relation= is naturally extended as a partial order for comparing two
pruned TSVQs - or just pruned trees. For two pruned tieend”7’, 7/ < Z if 7'cZ.
A cellina PTSVQ is called &afif it has no children, else, it is called amterior node

Figure 7.1 illustrate a pruned tree obtained from a full.tree

< Root < Root

Branch

/\

T

Leaves Leaves
Full TSVQ Pruned TSVQ

Figure 7.1: TSVQ and Pruned TSVQ

The encoding and decoding of a PTSVQ is analogous to that off §$VQ. A
source vector is quantized in stages, till a leaf cell thataims the vector, is found. The
path from the root node to the leaf is used for encoding théoveand a representative
vector, the “centroid” of the leaf cell is used for reprodant

For a given source with known statistics, a rate and an aeedégjortion can be
associated with every PTSVQ. The rate is measured as eijhitie(expected length
of the path from the root to the leaf or (ii) the expected gmyrof such a path. We
shall assume the former definition of the rate. Let the distotrate pair for a PSTVQ
Z = Z, be denoted byD(Z),R(Z)). Then the collection of optimal rate distortion
pairs, namely those on the lower convex hull of the{§€(7),R(7)) : Z =< Zy} has

the following interesting property [15].

Theorem 1 PTSVQ property: The collection of points on the lower convex hull of

the set{(D(Z),R(%7)) : Z < Z,} can be obtained by repeatedly pruning a single tree.
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In other words there is a sequence of PTSVQSZ, < Zy_1 = ... 2 Zy X Z1 = Zy,

which traces the convex hull.

This elegant result also leads to the generalized algodilnerto Breiman- Friedman-
Olshen and Sloane (BFOS) for obtaining the points on theeohull [15, 26].

In the following sections we consider progressive transiaisof a TSVQ encoded
source in the presence of channel noise and ACK/NACK andirolatdPTSVQ like
property for the optimal decoding schemes. In that sensdptlowing sections present

a generalization of PTSVQ.

7.2 Extending the Interpretation of ACK/NACK

In Chapter 6 we considered how to carry out joint source-obhdecoding when the
transmitter does retransmission of the codeword. Theeesalection of feedback gener-
ation map could be used to control the throughput-relighilr rate-distortion tradeoff.
Here we consider a slightly general case in which on recéiatACK the transmitter
proceeds with the transmission of new information.

Clearly, this contains as a special case, the case of ratission of the same code-
word. In this chapter we obtain the optimal decoding schdordhis case. This chapter
widens the interpretation of ACK/NACK feedback. Convenatly ACK/NACK feed-
back was used for indicating if the transmit codewords wasded with acceptable
reliability or not. The conventional interpretation turast to be narrow in the light
of the possibility of the transmitter transmitting new infaation on receiving a NACK
feedback. When we develop the decoding scheme, we shaliagbé NACK feedback
serves a dual purpose. (i)First, it is used for indicatirgf the previous transmission

was corrupted beyond recovery by the channel noise. (iipi&#&dt is used for control-
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ling the rate distortion performance of the joint sourcesutel coder! A NACK may be
sent when the previous transmission was noiseless, butiasable for rate-distortion
tradeoff that further information about the same souraeterebe sent. In other words
NACK is used as a permission to continue transmission of m@lanformation about
the same source vector.

This new interpretation essentially says that NACK feeéthzan be used for rate
control. We shall see that the decoder structure in fact ha®eperty like that of the
PTSVQ, namely the optimal decoding schemes at differeatdstortion tradeoffs are
embedded.

This is still not the most general transmission scheme dealole as the transmitter
is still not active. It transmits a fixed sequence of codewdad a given source vector

and stops when an ACK is received.

7.3 Transmission Set-up and Notation

As earlier, consider the transmission df dimensional random source-vectdrtaking
values inX C R, over a noisy channel with discrete input alphabetand possibly
continuous valued output alphalygt X is quantized by a TSVQ with depth which
generates a channel codewdid X) € Z° for each stage = 1,2,...,T. We assume
that the TSVQ and the codeword allocation is predesignedized! If codewordS(X)

is transmitted, a noisy version of the codewdfd € Y’ is received. We need not
assume that the channel is memoryless. We shall just assiahthe statistics of the
source,i.e. the distribution ofX and that of the channel,e. the joint distributions
of Y1,Y5, ..., Yr are known for each value of . For simplicity, we shall assume that

conditional probability densities of the kinfly;, |vi,, ¥is, - - - ¥i,, ) can be computed
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for all values ofy;, € Y andz € X.

The transmission proceeds as follows. First the codev#hfd) is transmitted
and a feedback of ACK/NACK is requested. On receiving NACHKich is taken as
a “permission to continue transmissior;(X) is transmitted. This way, codewords
S1(X), S9(X),...,S.(X),... are transmitted one by one until either an ACK is re-
ceived orSr(X) has been transmitted.

Similar to Chapter 6 théeedback generation rulep at the receiver, is specified
by a sequence ofeedback generations maps® : " — {0,1},n = 1,2,.... At
the nt" step, let the received realizations of the noisy copieg.be,, . ...y, for y; €
VL. Then an ACK is transmitted " (y1, 2, ...,y,) = 1. A NACK is transmitted
if o"(y1,99,...,y,) = 0. Thereproduction rule c at the receiver is specified by a
sequence of reproduction mags: )Y — C c X. C is thereproduction codebook
If an ACK is generated at the’" step,i.e. if ¢"(y1,¥2,...y,) = 1,, then the source is
reconstructed as'(y1, vo, - - ., ¥n). Itis NOt Nnecessary faf to be discrete. Again, lef}
andY’! be the shorthand for denoting the sequengess., .. ., vy, and random vectors
Y1,Ys, ..., Y, respectively.

Let " (y}) = [1=) (1 — ¢'(4i)) o™ (u}). Theny™(y?) = 1 for all those sequences
y" which generate a ACK only at thé" step and not earlier. In this chapter we consider
only a finite stage TSVQ hence we require thatY ) = 1 always. In other words this
impliesE |7 ¢ (Y?)| = 1.

The average rate per source vector, that is the expectederwohthannels symbols

put on the channel before stoppings(before an ACK is received) is given by,

T
> nLy™(YY)

n=1

Let d(-,-) denote the squared error distortion measure. Then for givandc, the

R(¢)=E . (7.1)
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expected distortion is computed as,

T

D(¢,c) = E | _d(X,c"(YD)¥"(¥T)] - (7.2)

n=1

Note that, although specifying the collection of maggsn = 1,2,...,7 is not
the same as specifying the collectigfi,n = 1,2,...,T, the performance measures
D(¢,c) andR(¢) depend only on)™, n =1,2,...,T.

For a non-negative multipliex > 0, define,
J(@.¢.0) € D(¢,c) + AR(9) (7.3)
Then the problem of decoder design can be expressed as,

T
win./ (¢,c,\) = win 1 D (d(X, (X)) + L) ¢ (YD) |, (7.4)
,C ¢ n=1

This problem, like the special case in Chapter 6, is a Bagestguential decision
problem. We shall refer to the Lagrangian sum of distortind #ansmission rate as

“Bayesian risk” or simply “risk”.

7.3.1 PTSVQ as Bayesian Sequential Decisions over Noissl€han-

nel

It is straightforward to see that there is close relatiopdigtween PTSVQ and trans-
mission of a TSVQ over a hoiseless channel with ACK/NACK tesek. In fact, over a
discrete output noiseless channel, there is a one to on®redhip between all possible
pruned trees of a tree, and all possible feedback genenaties (specified in terms of
Y™'s, as opposed tg’s). Any pruning of a full tree can be represented in termsonfie

feedback generation ruk$ and vice versa. Over a noiseless channel, a sequence of
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received codewordg}, (which is the same as the sequence of transmit codewosds,) i
equivalent to a path from the root node to a node at depth¢"(y}) = 0, a NACK is
transmitted, then the node corresponding’tas an interior nodew)"(y}) = 1 theny!
corresponds to a leaf in the pruned tree.

Figure 7.2 illustrates a binary TSVQ transmitted over a eleiss binary channel,

with the values of some feedback generation thiklend the equivalent PTSVQ.

1111 111111111111

Feedback Generation rule for full TSVQ Equivalent Pruned TSVQ

Figure 7.2: Feedback Generation Rule over a Full TSVQ andvakpnt Pruned TSVQ

7.4 Decoder Design

The optimal decoder design is obtained by the solution tedugiential design problem
given by equation (4.14). The two main results consist ofgiesf the optimal repro-
duction rulec and the optimal feedback generation rigleThese results can be obtained
by a dynamic programming argument [24, 28].

First we state the optimal reproduction rule.

Theorem 2 Optimal Reproduction Rule: Let ¢**(Y!) be a Bayes estimate of the

source based on a fixed number of received codewBtdsThen for every feedback
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generation ruleg and A\, J(¢,c, \) is minimized with respect to, by the functions,

™Yy forn=0,1,2,...,T. Here,

' = argmin F[d(X,c)], and

ceC

¢™(yt) = argmin B[d(X, c)[YT = yi]. (7.5)

The proof is straightforward and can be found in [24, 28].

It can be seen that the optimal reproduction rule turns ouietandependent of
the feedback generation rufeand \. This implies that one can always use the same
reproduction rule for all methods of generating feedbadkfan all penalties\ on the
rate. We shall assume in the subsequent portion of the atthpte* is the reproduction
rule.

To obtain the feedback ruke* which minimizes/(¢, c*, \) for a fixed A, define

n def *1, n n
pn(YY) = E[d(X,c™(YT))[Yy] and

U (Y50 = pa(¥3) + AnL (7.6)

We have assumed that at each step, the possible number efamidetransmitted
is finite and also that the total number of steps in transimiss finite. Under these
conditions it is straightforward to show that(Y}) and consequently (¢, c*, \) is
bounded for each.

U.(Y},\) is the conditional risk of stoppind,e. sending ACK, at thex'" step,
having received’}.

Let us define a feedback generation rgleas follows. Supposé& — 1 noisy code-
wordsY?~! have already been received. Then if an ACK is to be sent atpiiat,
then the conditional risk i8/7_, (Y1 ~'). While, if a NACK is sent then another noisy
copy will have to be received, and in that case the conditigsiais E[Ur (Y)Y 1.

Thus atT — 1° step, for a point! ' € Y*T—1 the risk is minimized if we define
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o7 ui 1) as,

der ) Vit Uroa(ul 0 < EUR(YT, M)luf ')

o Tyl h (7.7)

0 otherwise.

Clearly, atT” — 1°* step, the minimum posterior risk given received codewgrds

is given by,
Groa(ul ™ N) Y min[Ur 1 (yF", \), E[UA(YT, )y Y] (7.8)

This cost is obtained by using the feedback generationgiap' (y ).
Similarly, inductively define “minimum?” posterior risk,, (y}) as follows.

de
Grwl, N Y Url

n— de . n— n n—
Gn—l(yl 17 >\) :f mln[Un—l(yl 17 /\)7 E[GH(XI ) >\)|y1 IH for n= 27 37 cee >T7

Go & min[Us, E[Gi (Y1, N)]] (7.9)

Hence we can define the feedback generation mé&pg? ), inductively.

¥ de
7wl < 1and

. Lif Up_1(y? 5N < E[Gn (Y7, Nyt
qS*"_l(y?_l) def () ) (G (YT, M)y ] (7.10)
0 otherwise, fom =1,2,...T.

The collections of maps*(y}) forn = 0,1,...T, defined above are an optimal
feedback generation rule. Note ti@l, and hence)* vary with \. We have the fol-
lowing result [24, 28].

Theorem 3 Optimal Feedback Generation RuleThe collection of mapg* = {¢*",n =

0,1,...7T} is the optimal feedback generation rule for a giveni.e. , for any other

feedback generation rulg, following holds.

J(p*,c*, ) < J(¢p,c", N\) (7.11)
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We have obtained the optimal feedback generation rules ptich@ reproduction
rules for the joint source-channel coding problem with ANKCK feedback using
standard techniques from sequential analysis. We now dnavafurther investigation
and show that, the optimal feedback generation rules andhapteproduction rules

have a property analogous to PTSVQ.

7.5 Embedded Optimal Policies

We would like to examine the property in Theorem 1 in termshef interpretation of
PTSVQ as sequential decisions with ACK/NACK feedback

Consider the noiseless channel case and refer to the redatpbetween a PTSVQ
and feedback generation rule described in Section 7.3.L¢lLa&nd ¢, be the corre-
sponding feedback generation rules for two pruned tfgesnd 7, respectively. It can
be verified easily thaty; < Z, ifand only if 7 > ¢ forn =0,1,2,...,T.

Therefore the PTSVQ property (Theorem 1) can be restatesinmstof the feedback
generation rules. The main result of this section is the ggdization of Theorem 1 to

noisy channels.

Theorem 4 Let \; > X\, > 0. Let¢] and ¢; denote the optimal feedback generation
rules for the problem (4.14), given by eq. (7.10) correspogitb \; and )\, respectively.
Thengi™ (y}) > 5™ (y7) for all yp € Y= forn = 0,1,...T. In other wordsp;" (y}) =

0 = ¢5"(uf) = 0andgs"(uf) =1 = ¢7"(uy) = 1.

In order to prove Theorem 4, we need to show a small resultnBefapsV,, (v}, A) el

Gn(yt,\) — LAnforn =0,1,2,...,T. It can be easily verified by induction that, the
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equation (7.10) can be reformulated as,

¢*T(y7) = land
Lif o1 (y7™") < AL+ E[W, (Y5, N |uf Y
oyl = ' (7.12)
0 otherwise, fom =1,2,...T.

Also,
Wryi, A) = pruf)
Wn—l(y?_1> >\) = min[pn—l(y?_la /\)7 /\L + E[WH(X?> >\)|y?_1“ fOI’ n= 27 37 e >T7

Wo = minlpo, AL + E[W3 (Y1, )] (7.13)

We need the following lemma.

Lemma 1 The functiondV,,(y}, \) for given received codewordg}, is a continuous

and monotonically increasing function 8fforn =0,1,...,T.

Proof: By induction. Clearly,Wr(y}, \) is independent of and hence is a mono-
tonically increasing and continuous functionofor all 7. Assume thaiV,, (y]", \)
is a monotonically increasing continuous function)gfform = n+ 1,...7. Let

A1 > Xy > 0. Then, we have, for monotonicity,

Wyt M) = minfp,(u}), ML + E[Wop (YT M) 4]
> min[p,(y}), Ao L + E[W, 1 (Y7, Ao)|u?]]
= Wyl \). (7.14)

AnalogouslyWV, (y7, A1) is the minimum of a two continuous functions.

Proof of Theorem 4: From equation (7.12) and Lemma 1,Xf > X\, > 0, then
po(yt) < XL + EWun (Y70, M)uf] < ML+ E[W, (Y1, A)|yp]. This

means thavy"(y}') = 1 = ¢7"(y}) = 1. Hence proved.
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Theorem 4 shows that optimal feedback generation rulesifierehnt A are embed-
ded. This property is very useful for progressive transimrssConsider the transmis-
sion of a single source vector using the transmission sclibsceissed here. Suppose
the transmission starts with the decoder using an optineallfeck generation rule for
certain\. Theorem 4 implies that, at any step in transmission, thearccan switch to
an optimal feedback generation rule for a lower.e. a higher ratewithout losing op-
timality. It never happens that, for a set of received codewordsgetablack generation
rule designed for a higher rate sends an ACK and one desigméddwer rate sends a
NACK.

The collection of optimal feedback generation rules canhagacterized further as

follows.

7.6 The Feedback-Threshold function

For the remaining part of the chapter, g%, ( and¢y") denote the optimal feedback
generation rule (and respectively, optimal feedback geimer maps) for the Lagrangian
rate penalty\. For any sequence of received codewogtlse V", consider the set
B(y}) = {\: o (y}) = 1}. From eq. (7.12), this set is the same{as: p,(y}) <
AL+ E[W, 1 (Y3 X)) [4]}. As the function\L + E[W,,, (Y7 \)|y7] is continuous
as a function of\, and B(y?}) is the inverse image dp,(y}), co) under that function,

B(y?}) is a closed set. From Theorem#(y?) is of the form,[\y, oo), for some number

Ao > 0, which depends op?. Define a functiom**(y7) : Yt — [0, 00) as,

A () < inf{x € B(u))}. (7.15)

Then clearly, the random variable”(Y}), has the property that{*(Y'?) = 1 if

and only if A**(Y']) < A for all A > 0. Hence we have the following interesting result.
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Theorem 5 The optimal feedback generation rulg$ satisfy,
VYY) =uA—A"1T)) (ae) forn=0,1,...7, and\ > 0, (7.16)
whereu is the unit step function,e. u(A) = 1if A > 0 and0 otherwise.

Proof: The proof is just outlined above. Note that eq. (7.16) is tmly for the optimal
feedback generation rules obtained from eq. (7.10) ( oréq2y).

We shall refer to the functiond*"(y}) as theFeedback-Threshold functions or
maps.

The result is interesting because it “reduces” the task sigiéng a different feed-
back generation rule for everyto constructing a single collection of mapg™ from

which all optimal feedback generation rules can be obtained

7.7 Characterization of Feedback-Threshold Function

To characterize\*"(Y'}") further , consider the following definitions. Define, for any
feedback generation map with ¢”(Y?) = 1, the functionD7(¢,YT) < ,7(v'7T).

And define recursively,

ADM, YY) Y pr(¥y) — E[D" (g, YTTYIYY] forn=0,1,...T —1, (7.17)

DY, YT ) - (1 - ¢ (YI)AD (@, YT) forn =0,1,...T — 1(7.18)
Analogously define

R'(¢.Y]) ¥ TL (7.19)

AR ¢,YT) B[R, Y)Y —nLforn=01,...T—1,  (7.20)

RYo. YY) Y nL 4 (1—¢"(YT)ARY(p, Y forn=0,1,...7 —1. (7.21)
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Notice thatD"(¢,Y") and R"(¢,Y"}) depend only o' (Y"),i = n,n+ 1,...,T.
Also AD™(¢,Y") andAR"(¢,Y") do not depend on the value ¢f(Y'}) but only on
FY),i=n+1,...,T.

It is straightforward to verify thaD" (¢, Y7) equalsD(¢,c*) for n = 0, where
D(¢,c) is defined in eq. (7.2) and* is defined in eq. (7.5). Similarlyz"(¢,Y?")
equalsR(¢) in eq. (7.1). Als)AAR™(¢,Y}) > L > 0 for anyn.

Equations (7.18) and (7.21) isolate the dependend#®'¢é, Y') andR" (¢, Y}) on
the functiong”(Y}). Also, by definition,(1 — ¢™(Y})) > 0. Therefore the following

lemma about separation of minimizations holds.
Lemma 2 For any Lagrange Multiplietx > 0, and forn = 0,1,...7 — 1,

min D™(¢p,y}) + AR™(¢p,y}) =

p*(yr) +Anl + min ((1 —¢"(u1)) ( _o,omin o {—AD"(¢,yy) +AAR"(¢,1££”)}>>
o (Up) oY1),

Consequently, to minimizB" (¢, y}') + AR"(¢,y}), we must sep”(y}) = 0 if and

Only if mlnqbl(gll),z:n—l—l T (_ADN(¢7 yrll) + )\ARN(¢7 y?)) <0.

-----

With these results, we are equipped to show the main resthi$ection.

Theorem 6

AD™ (¢, yt)

A" (y}) = sup — =

' ¢ (Y})i=nn+1,..,T AR"(¢7H1)

Proof: First, note from the recursive definition (eq. (7.17) an@QJ) that if functions

(7.22)

¢(yl),i =n+1,...,T minimize D"*! (¢, yi™) + AR (¢, y7) for all 7, then
they minimize—AD"™ (¢, y7) + AMAR" (¢, y}). Second, define

Sn/ ny def ADn(¢’yn)
A'(uy) = - sup W
&1 (Y}) i=n,n+1,..,T LYY

We shall show that*"(y7) = A\"(y?), i.e. if A > A"(y?) then settings:"(y7) = 1 and

if A < A"(y?) theng:™(y?) = 0, is optimal.
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Case 1:For any\ > X"(y’f) and any¢, we have ,

—AD™(¢,yt) + AAR" (¢, uT)

( WJF)\) AR"(¢,y7)

>0 asAR"(¢,yy) > 0.
Therefore, by Lemma 257" (y}) = 1.

Case 2:Similarly, if A < an(y’f) then, by definition of supremum, there is a feedback
generation rule’ such that) < % < A"(y7). consequently-AD"(¢', y7) +
MAR™ (¢, y) < 0. By Lemma 2 we mulst sety" (y}) = 0.

Case 3:If A\ = \"(y"), for any ¢, —AD" (¢, y"") + MAR"(¢, ") > 0. Therefore,
we can safely sepi™(y7) = 1 without any penalty. Therefore, we can 8¢t (y}) =

u(X — A(y?)). Hence Theorem 6 holds.

Case 3 leads us to more explicit characterization of feddbdaeshold functions

A (YY),

Lemma 3 Consider the design of optimal feedback generation rule\fgy?), i.e. the

solution of minimization problem

Comin LCADM @ up) + AW)AR (,u) (7.23)
G (YL)i=n+1,..,T

Then¢>m is a solution to the above minimization if and only if

y’!L
—AD™ (@} ey U8) + ANUDAR (D5, gy 1) = 0.

Proof: Establishing sufficiency is straightforward as, for anydiegck generation rule,

and hence fos}, ..., by definition ofA”(y7) we must have,

)
AD™M@5ymyp U7) <
Aypy <1 < )\(y@
AR”(¢>\7L yn )
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We show the necessity as follows. By definition of the minimum

—AD™(.uf) + N () AR (¢, u7) for all &

IN

= 0 —ADN(, ) l) + A WDAR, )

ADn n N
AR(6.4)(~ S 5 5 ()

IN

As AR"(¢,y}) is bounded above by L and by definition of supremum the second
term in right hand side can be made arbitrarily small, we rhase the left hand side
equal to zero. Therefore Lemma 3 is established.

Finally, we establish the uniqueness/of'(Y'7).

Theorem 7 For some non-negativg, if

min  {=AD"(¢,u}") + MAR" (¢, )} = 0 (7.25)
¢ (Yi)i=n+1,..,T

then\ = X"(y{‘). Therefore equation (7.25) is necessary and sufficientitiondor

computation of\"(y7) and hence that af*"(y?").

Proof: We have already seen in Lemma 3 tﬁﬁ(g’f) satisfies equation (7.25). Itis
straightforward to check that, far,b > 0 andc¢,d > 0, if A\; and )\, are such that
—a+Mb=0< —c+ AN dand—c+ \od = 0 < —a + A\, then); = \,. Therefore no

other\ can satisfy equation (7.25). Hence proved.

7.8 Progressive Transmission and Receiver Driven Rate
Control

The embeddedness of the optimal policies and the existengé(d}”) is a very use-

ful property that can come in handy in a variety of applicatszenarios. Note that,
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by extending the definition of NACK to mean a permission totgare transmission,
ACK/NACK can be actively used for receiver driven rate cohtAs the optimal policies
are embedded, the progressive transmission, say that ofage|, can be accomplished
without losing optimality at the terminal and at intermediransmission budgets. The
guality of the received image can be successively improsexte bits are received. The
optimal feedback generation rules reveals a very simpletsire in the form of Theo-
rem 5. If the feedback-threshold functiari(Y;") is known or if it can be approximated,
then the ACK/NACK generation for a range of operating poaas be accomplished at
once. Secondly, the receiver can switch from operating awaaverage -transmission
rate to a higher average transmission rate, in the middlérahamission, without losing
optimality of the rate-distortion tradeoff. The rate cahtiechnique can be potentially

useful in the following situations.

Delay-limited Reconstruction: In interactive applications such as video conferencing,
a quick reconstruction at low transmission budget for thedgoound, and slow but de-
tailed and error free reconstruction of the background migghused, provided such
a separation is available. Controlling the ACK/NACK of thepeopriate packets may

allow a trade off between reconstruction speed and quality.

Bandwidth/Data Rate-limited Reconstruction: While receiving statistically multi-
plexed streams of variable rate at a receiver, the trangmisstes of one or more of the

streams can be controlled using appropriate ACK/NACK feetéb

Computation-Limited and Buffer-Size limited Reconstruction: Similarly, for a multi-

tasking environment such as a server at a base station, thei€ie and memory allo-
cated to an incoming stream over a noisy channel can be \@aridased on the current
processing capability, some amount of control can be es@alddy appropriate operating

point selection in the feedback generation rules.
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Tolerance-Limited Reconstruction: In digital encoding of video, the intra-coded frames
generate a lot more data than predictive or “inter” codech&s. The predictive frames
can be thought of as incremental information. In a low norsgrenment, fewer intra-
coded frames can be transmitted while in a noisy environrtreait need to be more
frequent. The switching between the two for best rate-disto performance can be

accomplished by the use of ACK/NACK feedback.

7.9 Conclusions

In this chapter we addressed a slightly more general probféaransmission of loss tol-
erant sources over noisy channels in the presence of ACKKNf&€dback. We extend
the interpretation of NACK to mean “a permission to continitensmission”, which
permits the transmitter to transmit additional redundancyeven completely new in-
formation on receiving NACK. We continued the first prin@plapproach from the last
chapter to establish optimal feedback generation rulesogptichal reproduction rule,
for an embedded encoder which transmits new informatioutatie source at each
transmission. We showed the close link between the trassmnisf such a source with
ACK/NACK feedback and the PTSVQ. We also showed that the RY $xoperty holds
for continuous valued output. Hence we obtain that the cgitimedback generation
policies are embedded. Then we investigated the structulhe @mbedded policies fur-
ther and showed that the optimal policies for all Lagrangétipliers A have a simple
form in terms of)\ and a feedback-threshold function of the received codesvovde
also investigated the structure of the feedback-thrediuoiction further and obtained a
necessary and sufficient condition for computing its valueagh sequence of received

codewords.
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We have not provided an explicit algorithm for computatidthe feedback-threshold
function. But such an algorithm can be conceived. When treefations (received
codewords) take discrete values, the pruning algorithmI&\RQ [15] is useful. It can
be shown that the value of the feedback-threshold functiam rrode, is equal to the
slope of a subtree at that node, just before it gets pruned.cdittinuous valued ob-
servations, an iterative successive approximation dlyorbased on eq. (7.25) may be

found. We have not addressed the algorithm design in thigshe
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Chapter 8

Conclusions and Future Work

8.1 The Theme

In the thesis we consider transmission schemes of lossatdlsources, mainly images
and synthetic sources over noisy and lossy channels. Wegeagolution and design
schemes for a collection of problems which are closely eelatnd at the same time
require different methodology/approaches.

The common threads in the thesis are:

¢ Joint Source-Channel Rate Scalability and Optimized Progessive Transmis-
sion: The existence of rate-distortion curves, that is, the jil#giof constructing
approximate reconstructions makes the problem of comipreasd transmission
of loss tolerant multimedia sources different from that diata. Rate Scalable
source coders offer the flexibility of selecting the raterira single bitstream. In
absence of noise or loss they allow progressive transmissithe source where
the source is constructed with increasing quality at theivec as the receiver
gets more and more bits. The emphasis of the thesis, in pitithat of Chap-

ters 2, 4, 5, 6, and 7 was on extending this property in thegpiasof noise and

179



loss. Chapters 2, 6, and 7 accomplish this with the help oédldack channel. In
Chapters 4, 5 we provide an approach to carry our progressimemission in
the absence of feedback. We achieve operational optinlitiye joint source-
channel coder by unequal error protection of a rate scatahlece coder. On the
other hand, progressive character is obtained gtecompatiblechannel code
family, and byschedulingof source and parity bits for operational optimality at
a number of rates. The scheduling generates a single strehits,ovhose pre-
fixes carry optimally allocated source and channel bitstierdorresponding bit
budget. In this way the proposed systems achieve a “Jointc8dthannel Rate

Scalability ‘ in the absence of feedback'.

The optimality of rate allocations in feedback based sclsam@iscussed in Chap-
ter 2. The combination of HARQ protocol and rate-scalabl&s® coder auto-
matically carries out optimal allocation of source-bitsl@mannel bits during the
transmission. This allocation is also “automatically” ptiee, when the channel

is a time-varying (finite-state) channel.

Chapters 6, and 7 establish a optimized rate-scalabilifyrogressivity of a to-
tally different kind. There the receiver can control the @@g point on the rate
distortion curve by selecting the feedback appropriatlg.establish that the op-
erating points can be switched from lower rate to higher iratbe middle of the
transmission of a single source-vector. In this way, opanatly optimal feedback

generation policies are shown to be rate-scalable.

Feedback, No Feedback and Limited Feedback: The thesis, essentially for
the first time, (with the exception of independent work of][3akes use of
feedback channel from a joint-source-channel coding getsg. The use of a

simple ACK/NACK feedback can significantly improve the merhance of a joint
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source-channel coding system. This was demonstrated hgnaeisillustrative
image transmission systems which achieve up to 1.2 dB ingonewnt in PSNR for
the chosen binary symmetric channels and up to 2 dB impronemd&SNR for
the chosen Gilbert-Elliot channels, compared to state@athhigh performance

joint source-channel coding systems which use pure FEC.

We restrict our attention to systems which use the feedbhekrel sparingly,
and in Chapters 2 and 3 provide explicit algorithms to cdritre use of feedback
which yields optimal tradeoff between the parameters @fregt, namely through-
put vs.. complexity. That allows us to compare the benefisoigifeedback with

that of not using feedback as mentioned above.

In Chapters 6, and 7 we again undertake the investigatiommf $ource-channel
schemes which use feedback. In Chapters 2 and 3 feedbaclknly nnsed for er-
ror control. The automatic adaptive source-channel réddeation is a bonus. In
Chapters 6, and 7 we take the first principles approach andalfedback gener-
ation schemes and decoders which explicitly use the distometric. We charac-
terize the optimal schemes and also provide a number of sintaldbut efficient
solutions. Simulation results show that this can yielddaggins over BER-based

feedback generation schemes which treat the source-ciadeqgoally.

The main message of this investigation is that feedback efuyjsand can be
exploited in a controlled fashion to yield significant gaimgoint source-channel
coding systems.

Sequential Nature of the Solutions:

Though the optimization problems encountered in Chaptensd23 are different

from those in Chapters 4, 5, and Chapters 6, and 7, the sodudie related in
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some sense. The problems in Chapters 2 and 3 are solved bsolRzmhiMarkov
Chain (Markov Decision Processes) approach. The solufiproblems in Chap-
ters 4 can be thought of as controlled Markov Chains in themd®sof state obser-
vations. Solution to the problems, in Chapters 6, and 7 wbehgthe decoder is
involved, are also shown to be problems in sequential dectiieory which im-
plies design in the absence of observation. This way theaa isnderlying unity

in the techniques presented.

8.2 Future Research Directions

A number of interesting questions can be asked based on the presented in the

thesis, which merit further investigation.

e Image Transmission: Tradeoff of Rate-Scalability and Robstness with flex-
ible selection of image coders, under small feedback\e argued in Chapter
2 that a combination of a completely embedded source codkrnaroptimized
hybrid ARQ protocol is the best combination for maximizingdeto end image
quality. When ACK/NACK feedbacks are used for every packtes, quality is
maximized for all transmission budgets. On the other ham@hapter 4 we de-
signed schemes for progressive transmission of a fixed etelesburce-coder
in the absence of feedback, under the assumption that tyettmmllongest cor-
rectly decoded prefix of the source bitstream is useful foomstruction. This
assumption is true for efficient rate scalable source colilersSPIHT. But the
source coders can be modified to increase robustness bygipisome of the
efficiency in rate scalabilitg.g. the idea presented in [51]. This is done by gen-

erating several independent bitstreams instead of a sintggeam. In general,
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more independent streams result in a loss in the distoraperformance and
less efficient rate scalability. If the use of feedback clehim severely limited,
(say 2 or 3 uses of the feedback channel for entire transoniggshe situation is
somewhere in between the cases of Chapters 2 and 4. It isstiteg to investigate
how the selection of source-coders, unequal error protecéind feedback chan-
nel be combined to obtain best end-to-end performance fowed transmission
budget and rate scalable transmission schemes which anewrtffat intermediate

transmission budget.

HARQ protocols on Time Varying Channels: Tradeoff of Delay, Throughput
and Feedback usage, under interleavingin the absence of feedback channel,
the way to combat time-variability of the channels is to ugerieavers and burst
error correction codes. When the feedback channel is é@jlappropriately de-
signed HARQ protocols work well. If the feedback usage issely constrained

a combination of the two approaches is needed. What conmaingives the best
tradeoff of performance parameters, such as delay, thpuigind feedback us-
age, is of interest. Also, exact analysis/design techsidoreconstrained HARQ

protocols over time varying channels need to be investihate

On-the-Fly HARQ Protocol Design and Adaptive Negotiation ér Time Vary-

ing Channels : It can be argued that fast changes in the channel are best han-
dled by interleavers/burst error correction, moderatéwly varying channels

are handled by HARQ protocol design as discussed in Chapaed23. If the
channel variation is drastic but slow a change in the prdtosed might be ben-
eficial. An interesting question is how to carry out quick tpeml design and
smooth negotiation of the protocol between the transméatel the receiver, so

that, channel changes can be tracked by protocols whicH figh throughput
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for the current channel conditions.

Packet Length selection:The algorithms developed in the thesis, and a number
of works presented by other researcher in literature, asdiwed, known, pre-
specified packet (block, frame, word) lengths for sourcaiciel coding or trans-
mission. We have seen that, sometimes the complexity angettiermance of a
number of schemes crucially depends on the packet lengtisenh A systematic
way of selection of packet lengths suitable for any paréicalpplication/ trans-

mission scheme , in itself merits investigation.

Combined Source-channel Encoder design in the presence adddback: As
described in the classification of schemes with feedback@h@pters 2 and 3 are
active-encoder active-decoder systems which are actilyefoinerror-protection
purposes. On the other hand, the systems described in Chdptnd 7 are
passive-encoder, active-decoder systems, which are”‘joud source-channel
systems, as the decoders cannot be decomposed into thek&eps-correction
followed by source-reconstruction. As we mentioned in G&@a, it is of consid-
erable interest to design active-encoder joint sourcesodlacoding systems, in
which the source-channel encoder (quantizer + index asegt) is aware or the

channel statistics as well as of the fact that a feedbackeiasmavailable.

Ultimate Goal: Delay-Complexity-Memory constrained comnunication: An
ultimate goal is to design a communication system, in whicbliection of dis-
tributed sensors, encode correlated sources, in a scalabtm-scalable fashion,
using single or multiple descriptions, communicate to didason on a network
with lossy links, using forward error correction, intenesg, hybrid or pure ARQ

or more general feedback based protocols, single or meittipltes, single or mul-
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tiple transmit or received antennas, to yield the best wiyction of the source or
best extracted useful information, in a given finite timethva given limited com-

plexity and memory.

8.3 In Closing

It is exciting to be living in these revolutionary times.

1As in many textbooks, this problem has been left as an exetaithe reader.
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