123 research outputs found

    3D Multi-Objective Deployment of an Industrial Wireless Sensor Network for Maritime Applications Utilizing a Distributed Parallel Algorithm

    Get PDF
    Effective monitoring marine environment has become a vital problem in the marine applications. Traditionally, marine application mostly utilizes oceanographic research vessel methods to monitor the environment and human parameters. But these methods are usually expensive and time-consuming, also limited resolution in time and space. Due to easy deployment and cost-effective, WSNs have recently been considered as a promising alternative for next generation IMGs. This paper focuses on solving the issue of 3D WSN deployment in a 3D engine room space of a very large crude-oil carrier (VLCC), in which many power devices are also considered. To address this 3D WSN deployment problem for maritime applications, a 3D uncertain coverage model is proposed with a new 3D sensing model and an uncertain fusion operator, is presented. The deployment problem is converted into a multi-objective problems (MOP) in which three objectives are simultaneously considered: Coverage, Lifetime and Reliability. Our aim is to achieve extensive Coverage, long Lifetime and high Reliability. We also propose a distributed parallel cooperative co-evolutionary multi-objective large-scale evolutionary algorithm (DPCCMOLSEA) for maritime applications. In the simulation experiments, the effectiveness of this algorithm is verified in comparing with five state-of-the-art algorithms. The numerical outputs demonstrate that the proposed method performs the best with respect to both optimization performance and computation time

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Joint optimization for wireless sensor networks in critical infrastructures

    Get PDF
    Energy optimization represents one of the main goals in wireless sensor network design where a typical sensor node has usually operated by making use of the battery with limited-capacity. In this thesis, the following main problems are addressed: first, the joint optimization of the energy consumption and the delay for conventional wireless sensor networks is presented. Second, the joint optimization of the information quality and energy consumption of the wireless sensor networks based structural health monitoring is outlined. Finally, the multi-objectives optimization of the former problem under several constraints is shown. In the first main problem, the following points are presented: we introduce a joint multi-objective optimization formulation for both energy and delay for most sensor nodes in various applications. Then, we present the Karush-Kuhn-Tucker analysis to demonstrate the optimal solution for each formulation. We introduce a method of determining the knee on the Pareto front curve, which meets the network designer interest for focusing on more practical solutions. The sensor node placement optimization has a significant role in wireless sensor networks, especially in structural health monitoring. In the second main problem of this work, the existing work optimizes the node placement and routing separately (by performing routing after carrying out the node placement). However, this approach does not guarantee the optimality of the overall solution. A joint optimization of sensor placement, routing, and flow assignment is introduced and is solved using mixed-integer programming modelling. In the third main problem of this study, we revisit the placement problem in wireless sensor networks of structural health monitoring by using multi-objective optimization. Furthermore, we take into consideration more constraints that were not taken into account before. This includes the maximum capacity per link and the node-disjoint routing. Since maximum capacity constraint is essential to study the data delivery over limited-capacity wireless links, node-disjoint routing is necessary to achieve load balancing and longer wireless sensor networks lifetime. We list the results of the previous problems, and then we evaluate the corresponding results

    Multi-objective routing optimization using evolutionary algorithms

    No full text
    Wireless ad hoc networks suffer from several limitations, such as routing failures, potentially excessive bandwidth requirements, computational constraints and limited storage capability. Their routing strategy plays a significant role in determining the overall performance of the multi-hop network. However, in conventional network design only one of the desired routing-related objectives is optimized, while other objectives are typically assumed to be the constraints imposed on the problem. In this paper, we invoke the Non-dominated Sorting based Genetic Algorithm-II (NSGA-II) and the MultiObjective Differential Evolution (MODE) algorithm for finding optimal routes from a given source to a given destination in the face of conflicting design objectives, such as the dissipated energy and the end-to-end delay in a fully-connected arbitrary multi-hop network. Our simulation results show that both the NSGA-II and MODE algorithms are efficient in solving these routing problems and are capable of finding the Pareto-optimal solutions at lower complexity than the ’brute-force’ exhaustive search, when the number of nodes is higher than or equal to 10. Additionally, we demonstrate that at the same complexity, the MODE algorithm is capable of finding solutions closer to the Pareto front and typically, converges faster than the NSGA-II algorithm

    Energy efficient data transmission using multiobjective improved remora optimization algorithm for wireless sensor network with mobile sink

    Get PDF
    A wireless sensor network (WSN) is a collection of nodes fitted with small sensors and transceiver elements. Energy consumption, data loss, and transmission delays are the major drawback of creating mobile sinks. For instance, battery life and data latency might result in node isolation, which breaks the link between nodes in the network. These issues have been avoided by means of mobile data sinks, which move between nodes with connection issues. Therefore, energy aware multiobjective improved remora optimization algorithm and multiobjective ant colony optimization (EA-MIROA-MACO) is proposed in this research to improve the WSN’s energy efficiency by eliminating node isolation issue. MIRO is utilized to pick the optimal cluster heads (CHs), while multiobjective ant colony optimization (MACO) is employed to find the path through the CHs. The EA-MIROA-MACO aims to optimize energy consumption in nodes and enhance data transmission within a WSN. The analysis of EA-MIROA-MACO’s performance is conducted by considering the number of alive along with dead nodes, average residual energy, and network lifespan. The EA-MIROA-MACO is compared with traditional approaches such as mobile sink and fuzzy based relay node routing (MSFBRR) protocol as well as hybrid neural network (HNN). The EA-MIROA-MACO demonstrates a higher number of alive nodes, specifically 192, over the MSFBRR and HNN for 2,000 rounds

    A Deterministic Algorithm for the Deployment of Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made up by communicating sensor nodes that gather and elaborate information from real world in a distributed and coordinated way in order to deliver an intelligent support to human activities. They are used in many fields such as national security, surveillance, health care, biological detection, and environmental monitoring. However, sensor nodes are characterized by limited wireless communication and computing capabilities as well as reduced on-board battery power. Therefore, they have to be carefully deployed in order to cover the areas to be monitored without impairing network lifetime. This paper presents a new deterministic algorithm to solve the coverage problem of well-known areas by means of wireless sensor networks. The proposed algorithm depends on a small set of parameters and can control sensor deployment within areas even in the presence of obstacles. Moreover, the algorithm makes it possible to control the redundancy degree that can be obtained in covering a region of interest so as to achieve a network deployment characterized by a minimum number of wireless sensor nodes

    Balancing the trade-off between cost and reliability for wireless sensor networks: a multi-objective optimized deployment method

    Full text link
    The deployment of the sensor nodes (SNs) always plays a decisive role in the system performance of wireless sensor networks (WSNs). In this work, we propose an optimal deployment method for practical heterogeneous WSNs which gives a deep insight into the trade-off between the reliability and deployment cost. Specifically, this work aims to provide the optimal deployment of SNs to maximize the coverage degree and connection degree, and meanwhile minimize the overall deployment cost. In addition, this work fully considers the heterogeneity of SNs (i.e. differentiated sensing range and deployment cost) and three-dimensional (3-D) deployment scenarios. This is a multi-objective optimization problem, non-convex, multimodal and NP-hard. To solve it, we develop a novel swarm-based multi-objective optimization algorithm, known as the competitive multi-objective marine predators algorithm (CMOMPA) whose performance is verified by comprehensive comparative experiments with ten other stateof-the-art multi-objective optimization algorithms. The computational results demonstrate that CMOMPA is superior to others in terms of convergence and accuracy and shows excellent performance on multimodal multiobjective optimization problems. Sufficient simulations are also conducted to evaluate the effectiveness of the CMOMPA based optimal SNs deployment method. The results show that the optimized deployment can balance the trade-off among deployment cost, sensing reliability and network reliability. The source code is available on https://github.com/iNet-WZU/CMOMPA.Comment: 25 page
    • …
    corecore