48 research outputs found

    Efficient joint call admission control and bandwidth management schemes for QoS provisioning in heterogeneous wireless networks

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 150-157).Next generation wireless network (NGWN) will be heterogeneous where different radio access technologies (RATs) coexist. This coexistence of different RATs necessitates joint radio resource management (JRRM) for enhanced QoS provisioning and efficient radio resource utilization. Joint call admission control (JCAC) algorithm is one of the joint radio resource management algorithms. The basic functions of a JCAC algorithm are to decide whether or not an incoming call can be accepted into a heterogeneous wireless network, and to determine which of the available RATs is most suitable to admit the incoming call. The objective of a JCAC algorithm is to guarantee the QoS requirements of all accepted calls and at the same time make the best use of the available radio resources. Traditional call admission control algorithms designed for homogeneous wireless networks do not provide a single solution to address the heterogeneous architecture, which characterizes NGWN. Consequently, there is need to develop JCAC algorithms for heterogeneous wireless networks. The thesis proposes three JCAC schemes for improving QoS and radio resource utilization, which are of primary concerns, in heterogeneous wireless networks. The first scheme combines adaptive bandwidth management and joint call admission control. The objectives of the first scheme are to enhance average system utilization, guarantee QoS requirements of all accepted calls, and reduce new call blocking probability and handoff call dropping probability in heterogeneous wireless networks. The scheme consists of three components namely: joint call admission controller, bandwidth reservation unit, and bandwidth adaptation unit. Using Markov decision process, an analytical model is developed to evaluate the performance of the proposed scheme considering three performance metrics, which are new call blocking probability, handoff call dropping probability, and system utilization. Numerical results show that the proposed scheme improves system utilization and reduces both new call blocking probability and handoff call dropping probability. The second proposed JCAC scheme minimizes call blocking probability by determining the optimal call allocation policy among the available RATs. The scheme measures the arrival rates of different classes of calls into the heterogeneous wireless network. Using linear programming technique, the JCAC scheme determines the call allocation policy that minimizes call-blocking probability in the heterogeneous network. Numerical results show that the proposed scheme reduces call-blocking probability in the heterogeneous wireless network

    Forecaster-aided User Association and Load Balancing in Multi-band Mobile Networks

    Full text link
    Cellular networks are becoming increasingly heterogeneous with higher base station (BS) densities and ever more frequency bands, making BS selection and band assignment key decisions in terms of rate and coverage. In this paper, we decompose the mobility-aware user association task into (i) forecasting of user rate and then (ii) convex utility maximization for user association accounting for the effects of BS load and handover overheads. Using a linear combination of normalized mean-squared error and normalized discounted cumulative gain as a novel loss function, a recurrent deep neural network is trained to reliably forecast the mobile users' future rates. Based on the forecast, the controller optimizes the association decisions to maximize the service rate-based network utility using our computationally efficient (speed up of 100x versus generic convex solver) algorithm based on the Frank-Wolfe method. Using an industry-grade network simulator developed by Meta, we show that the proposed model predictive control (MPC) approach improves the 5th percentile service rate by 3.5x compared to the traditional signal strength-based association, reduces the median number of handovers by 7x compared to a handover agnostic strategy, and achieves service rates close to a genie-aided scheme. Furthermore, our model-based approach is significantly more sample-efficient (needs 100x less training data) compared to model-free reinforcement learning (RL), and generalizes well across different user drop scenarios

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Mobility prediction and multicasting in wireless networks : performance and analysis

    Get PDF
    Handoff is a call handling mechanism that is invoked when a mobile node moves from one cell to another. Such movement may lead to degradation in performance for wireless networks as a result of packet losses. A promising technique proposed in this thesis is to apply multicasting techniques aided by mobility prediction in order to improve handoff performance. In this thesis, we present a method that uses a Grey model for mobility prediction and a fuzzy logic controller that has been fine-tuned using evolutionary algorithms in order to improve prediction accuracy. We also compare the self-tuning algorithm with two evolutionary algorithms in terms of accuracy and their convergence times. Our proposed method takes into account signal strengths from the base stations and predicts the signal strength of the next candidate base station in order to provide improved handover performance. The primary decision for mobility prediction is the accurate prediction of signal strengths obtained from the base stations and remove any unwanted errors in the prediction using suitable optimisation techniques. Furthermore, the model includes the procedures of fine-tuning the predicted data using fuzzy parameters. We also propose suitable multicasting algorithms to minimise the reservation of overall network resource requirements during handoff with the mobility prediction information. To be able to efficiently solve the problem, the situation is modelled using a multicast tree that is defined to maintain connectivity with the mobile node, whilst ensuring bandwidth guarantees and a minimum hop-count. In this approach, we have tried to solve the problem by balancing two objectives through putting a weight on each of two costs. We provide a detailed description of an algorithm to implement join and prune mechanisms, which will help to build an optimal multicast tree with QoS requirements during handoff as well as incorporating dynamic changes in the positions of mobile nodes. An analysis of how mobility prediction helps in the selection of potential Access Routers (AR) with QoS requirements - which affects the multicast group size and bandwidth cost of the multicast tree -- is presented. The proposed technique tries to minimise the number of multicast tree join and prune operations. Our results show that the expected size of the multicast group increases linearly with an increase in the number of selected destination AR's for multicast during handoff. We observe that the expected number of joins and prunes from the multicast tree increases with group size. A special simulation model was developed to demonstrate both homogeneous and heterogeneous handoff which is an emerging requirement for fourth generation mobile networks. The model incorporates our mobility prediction model for heterogeneous handoff between the Wireless LAN and a cellular network. The results presented in this thesis for mobility prediction, multicasting techniques and heterogeneous handoff include proposed algorithms and models which aid in the understanding, analysing and reducing of overheads during handoff

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    Applications of Internet of Things

    Get PDF
    This book introduces the Special Issue entitled “Applications of Internet of Things”, of ISPRS International Journal of Geo-Information. Topics covered in this issue include three main parts: (I) intelligent transportation systems (ITSs), (II) location-based services (LBSs), and (III) sensing techniques and applications. Three papers on ITSs are as follows: (1) “Vehicle positioning and speed estimation based on cellular network signals for urban roads,” by Lai and Kuo; (2) “A method for traffic congestion clustering judgment based on grey relational analysis,” by Zhang et al.; and (3) “Smartphone-based pedestrian’s avoidance behavior recognition towards opportunistic road anomaly detection,” by Ishikawa and Fujinami. Three papers on LBSs are as follows: (1) “A high-efficiency method of mobile positioning based on commercial vehicle operation data,” by Chen et al.; (2) “Efficient location privacy-preserving k-anonymity method based on the credible chain,” by Wang et al.; and (3) “Proximity-based asynchronous messaging platform for location-based Internet of things service,” by Gon Jo et al. Two papers on sensing techniques and applications are as follows: (1) “Detection of electronic anklet wearers’ groupings throughout telematics monitoring,” by Machado et al.; and (2) “Camera coverage estimation based on multistage grid subdivision,” by Wang et al

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period
    corecore