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Abstract: This editorial introduces the special issue entitled “Applications of Internet of Things”,
of ISPRS International Journal of Geo-Information. Topics covered in this issue include three main
parts: (I) intelligent transportation systems (ITS), (II) location-based services (LBS), and (III) sensing
techniques and applications. Three papers on ITS are as follows: (1) “Vehicle positioning and
speed estimation based on cellular network signals for urban roads,” by Lai and Kuo; (2) “A method
for traffic congestion clustering judgment based on grey relational analysis,” by Zhang et al.;
and (3) “Smartphone-based pedestrian’s avoidance behavior recognition towards opportunistic
road anomaly detection,” by Ishikawa and Fujinami. Three papers on LBS are as follows:
(1) “A high-efficiency method of mobile positioning based on commercial vehicle operation data,”
by Chen et al.; (2) “Efficient location privacy-preserving k-anonymity method based on the credible
chain,” by Wang et al.; and (3) “Proximity-based asynchronous messaging platform for location-based
Internet of things service,” by gon Jo et al. Two papers on sensing techniques and applications are as
follows: (1) “Detection of electronic anklet wearers’ groupings throughout telematics monitoring,”
by Machado et al.; and (2) “Camera coverage estimation based on multistage grid subdivision,”
by Wang et al.

Keywords: internet of things; intelligent transportation systems; location-based services; sensing
techniques and applications

1. Introduction

In recent years, the techniques of Internet of Things (IoT) and mobile communication have
been developed to detect human and environment information (e.g., geo-information [1,2], weather
information [3,4], bio-information [5,6], human behaviors [7,8], etc.) for a variety of intelligent services
and applications. The three layers in IoT are sensor, networking, and application layers [9–11].
For sensor and networking layers, the rise of mobile technology advancements [12–15] (e.g., wireless
sensor networking, Wi-Fi, Bluetooth, smart mobile device, and Long Term Evolution (LTE)) has led to
a new wave of machine-to-machine (M2M), machine-to-human (M2H), human-to-human (H2H),
and human-to-machine (H2M) communications [16–20]. For the application layer, several IoT
applications, which include energy [21,22], enterprise [23,24], healthcare [25,26], public services [27,28],
residency [29,30], retail [31,32], and transportation [33,34], have been designed and implemented to
detect environmental changes and send instant updates to a cloud computing server farm via mobile
communications and middleware for big geo-data analyzes [35,36]. For instance, on-board units in
cars can instantly detect and share information about the geolocation of the car, speed, following
distance, and gaps with other neighboring cars [37–40]. While the area of IoT applications and mobile
communication is a rapidly expanding field of scientific research, several open research questions still
need to be discussed and studied. Therefore, the aim of this special issue is to introduce the readers a
number of papers on various aspects of IoT applications.

ISPRS Int. J. Geo-Inf. 2018, 7, 334; doi:10.3390/ijgi7090334 www.mdpi.com/journal/ijgi1
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This special issue has received a total of 23 submitted papers with only 8 papers [41–48] accepted.
A high rejection rate of 65.21% of this issue from the review process is to ensure that high-quality
papers with significant results are selected and published. The statistics of the special issue is presented
as follows:

• Submissions (23);
• Publications (8);
• Rejections (15).

The distribution of authors’ country is showed as follows:

• China (5);
• Korea (2);
• Brazil (1);
• Chile (1);
• Japan (1);
• Spain (1).

Topics covered in this issue include three main parts: (1) intelligent transportation systems (ITS),
(2) location-based services (LBS), and (3) sensing techniques and applications. The three topics and
accepted papers are briefly described below.

2. Intelligent Transportation Systems

Three papers on ITS are as follows: (1) “Vehicle positioning and speed estimation based
on cellular network signals for urban roads,” by Lai and Kuo [41]; (2) “A method for traffic
congestion clustering judgment based on grey relational analysis,” by Zhang et al. [42]; and (3)
“Smartphone-based pedestrian’s avoidance behavior recognition towards opportunistic road anomaly
detection,” by Ishikawa and Fujinami [43].

Lai and Kuo from China in “Vehicle positioning and speed estimation based on cellular network
signals for urban roads” proposed a vehicle positioning method and a speed estimation method to
analyze the cell IDs, cell sequences, and the cell dwell time of connected cells from cellular floating
vehicle data (CFVD). The cell sequences can be considered to support the analysis of the judgment
of urban road direction, and the cell dwell time of connected cells can be considered to support
the analysis of the discrimination of proximal urban roads. The location and vehicle speed can
be estimated by the k-nearest neighbor algorithm in accordance with the CFVD. In experimental
environments, six urban road segments in Kaohsiung and Pingtung in Taiwan were driven in 27 runs
for the evaluation of the proposed methods, and the results showed that the accuracies of vehicle
positioning and speed estimation were 100% and 83.81%, respectively [41].

Zhang et al. from China and Chile in “A method for traffic congestion clustering judgment based
on grey relational analysis” proposed a grey relational membership degree rank clustering algorithm
based on a grey relational clustering model to analyze the traffic information (e.g., traffic flow velocity,
traffic flow density and traffic volume) for the detection of traffic congestion. The proposed method
based on grey relational analysis can obtain the membership degree rank of classes for judging the
rank of data objects and improving the accuracy of traffic congestion detection. In experimental
environments, the practical traffic flow records were collected from 30 drivers to evaluate the proposed
method, and the results showed that the average accuracy of the proposed algorithm was 24.9% higher
than that of the K-means algorithm [42].

Ishikawa and Fujinami from Japan in “Smartphone-based pedestrian’s avoidance behavior
recognition towards opportunistic road anomaly detection” used a random forest method as the
classifier to analyze the azimuth patterns from smartphones for the detection of pedestrians’ avoidance
behaviors, and the road anomalies can be detected in accordance with the pedestrians’ avoidance
behaviors. In experimental environments, the practical pedestrians’ avoidance behaviors were collected
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from 7 males and 2 females to evaluate the proposed method, and the results showed that the average
accuracy of the proposed method was higher than that of other methods [43].

3. Location-Based Services

Three papers on LBS are as follows: (1) “A high-efficiency method of mobile positioning based
on commercial vehicle operation data,” by Chen et al. [44]; (2) “Efficient location privacy-preserving
k-anonymity method based on the credible chain,” by Wang et al. [45]; and (3) “Proximity-based
asynchronous messaging platform for location-based Internet of things service,” by gon Jo et al. [46].

Chen et al. from China in “A high-efficiency method of mobile positioning based on commercial
vehicle operation data” proposed a mobile positioning method to analyze the information of global
positioning system (GPS) and cellular network signals from commercial vehicle operation data for
estimating the location of each cell-RSSI (received signal strength indication) pair in training stage.
In the runtime stage, the trained location of each cell-RSSI pair was used to estimate the location of the
vehicle in accordance with the information of cell and RSSI for mobile positioning. In experimental
environments, 6,571,550 practical commercial vehicle operation records were collected to evaluate the
proposed method, and the results showed that the average location error of the proposed method was
lower than cell ID-based method [44].

Wang et al. from China in “Efficient location privacy-preserving k-anonymity method based on
the credible chain” analyzed the user’s environment and social attributes to determine the optimal k
value for a k-anonymous location privacy protection method, and the k location nodes were contained
in a fake trajectory which can be generated based on the credible chain. In experimental environments,
numerical analysis and simulations were given to evaluate the proposed method, and the results
showed that the service accuracy of the proposed method was 100% [45].

Gon Jo et al. from Korea in “Proximity-based asynchronous messaging platform for location-based
Internet of things service” proposed a distance-based asynchronous messaging platform based on a
location-based message-delivery protocol. The proposed platform and protocol can be used to disperse
traffic and improve stability. In experimental environments, the proposed platform and protocol were
implemented to analyze the transmission time and response time for the verification of obtaining
location-based messaging [46].

4. Sensing Techniques and Applications

Two papers on sensing techniques and applications are as follows: (1) “Detection of electronic
anklet wearers’ groupings throughout telematics monitoring,” by Machado et al. [47]; and (2) “Camera
coverage estimation based on multistage grid subdivision,” by Wang et al. [48].

Machado et al. from Brazil, Spain and Korea in “Detection of electronic anklet wearers’ groupings
throughout telematics monitoring” proposed sensor data fusion algorithms to analyze the data from
anklet positioning devices for tracking convicted individuals. The proposed algorithms can collect and
analyze the information of timestamps and locations to estimate the risk assessment. In experimental
environments, 10,000 simulated devices generated a set of paths which were obtained from GPS
module to evaluate the proposed method, and the response time of the proposed algorithms was
evaluated to demo the practicality of the proposed algorithm [47].

Wang et al. from China in “Camera coverage estimation based on multistage grid subdivision”
proposed a method based on multistage grid subdivision to efficiently estimate superior camera
coverage. This study defined 16 codes of grids, and the grid can be subdivided until each grid can be
covered as one of these codes. In experimental environments, the practical data from 15 cameras were
collected to evaluate the proposed method, and the results showed that the camera coverage can be
estimated by the proposed method with lower time consumption [48].

Author Contributions: C.-H.C. and K.-R.L. edited the special issue, entitled “Applications of Internet of Things”,
of ISPRS International Journal of Geo-Information. C.-H.C. and K.-R.L. wrote this editorial for the introduction of
the special issue.
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Abstract: In recent years, cellular floating vehicle data (CFVD) has been a popular traffic information
estimation technique to analyze cellular network data and to provide real-time traffic information
with higher coverage and lower cost. Therefore, this study proposes vehicle positioning and speed
estimation methods to capture CFVD and to track mobile stations (MS) for intelligent transportation
systems (ITS). Three features of CFVD, which include the IDs, sequence, and cell dwell time of
connected cells from the signals of MS communication, are extracted and analyzed. The feature of
sequence can be used to judge urban road direction, and the feature of cell dwell time can be applied
to discriminate proximal urban roads. The experiment results show the accuracy of the proposed
vehicle positioning method, which is 100% better than other popular machine learning methods
(e.g., naive Bayes classification, decision tree, support vector machine, and back-propagation neural
network). Furthermore, the accuracy of the proposed method with all features (i.e., the IDs, sequence,
and cell dwell time of connected cells) is 83.81% for speed estimation. Therefore, the proposed
methods based on CFVD are suitable for detecting the status of urban road traffic.

Keywords: intelligent transportation system; cellular networks; vehicle positioning; speed estimation;
machine learning

1. Introduction

In the last few years, a technical explosion has revolutionized and supported transportation
management and control for intelligent transportation systems (ITS). ITS can estimate and obtain
traffic information (e.g., traffic flow, traffic density, and vehicle speed) to road users and managers for
the improvement of service levels of the road network. The traffic information can be collected and
estimated by three approaches, which include: (1) vehicle detection (VD) [1–3]; (2) global positioning
system (GPS)-equipped probe car reporting [4–7]; and (3) cellular floating vehicle data (CFVD) [8].
However, vehicle data (VD) has high establishment and maintenance costs. GPS-equipped probe car
reporting has a low accuracy rate when the penetration rate of GPS-equipped probe cars is too low.
The CFVD can be obtained from mobile phones, which have high penetration in many countries [9],
and some studies pointed that CFVD could be used to estimate traffic status with high accuracy [10–27].
Collecting traffic information using CFVD is economic and low cost.

For traffic information estimation based on CFVD, some studies proposed methods to analyze
the signals of received signal strength indications (RSSIs), handoffs (HOs), call arrivals (CAs), normal
location updates (NLUs), periodical location updates (PLUs), routing area updates (RAUs), and
tracking area updates (TAUs). These studies illustrated that higher accuracies of traffic information
estimation were performed by using CFVD for highways [10–27]. However, these studies assumed
that vehicles can be tracked to the correct route, but the determination of the correct route driven by
the user of a mobile station (MS) is difficult and has not been investigated, especially for urban roads.
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Therefore, this study proposes a vehicle positioning method to capture CFVD and to track MSs
for ITS. Three features of CFVD, which include the IDs, sequence, and cell dwell time of connected
cells from the signals of MS communications, are extracted and analyzed. The feature of sequence can
be used to judge urban road direction, and the feature of cell dwell time can be applied to discriminate
proximal urban roads. Furthermore, this study proposes a vehicle speed estimation method to analyze
these three features of CFVD (e.g., IDs, sequence, and cell dwell time of connected cells) for obtaining
the real-time estimated vehicle speed.

The rest of this study is organized as follows: the literature reviews of cellular network architecture,
CFVD, and traffic information estimation are presented in Section 2; Section 3 proposes a vehicle
positioning method based on CFVD to analyze the signals of a mobile phone in a car which is driven
on urban roads; a speed estimation method is proposed to measure the speed of the mobile phone
in a car according to CFVD in Section 4; the experimental results and discussions are illustrated in
Section 5; and Section 6 gives conclusions and discusses future work.

2. Research Background and Related Work

In this section, three subsections, which include cellular networks, CFVD, and traffic information
estimation, are discussed for the estimation of traffic information based on CFVD.

2.1. Cellular Networks

This subsection describes the signals and interfaces of cellular networks, which include Global
System for Mobile Communications (GSM), General Packet Radio Service (GPRS), Universal Mobile
Telecommunications System (UMTS), and Long-Term Evolution (LTE). For circuit-switching networks,
MSs can perform the signals of HOs, CAs, NLUs, and PLUs through the A-interface in GSM and
through the IuCS-interface in UMTS. For packet-switching networks, MSs can obtain the signals of
RAUs through the Gb-interface in GPRS and through the IuPS-interface in UMTS, and the signals
of TAUs can be transmitted between MSs and the core network through the S1-MME-interface
in LTE [10–27]. Therefore, a network monitor system can be implemented to capture the cellular
network signals via the A-interface, the IuCS-interface, the Gb-interface, the IuPS-interface, and the
S1-MME-interface for CFVD.

2.2. CFVD

In recent years, CFVD has been analyzed to estimate traffic flow, traffic density, and vehicle speed
in some studies. For instance, the signals of HOs from GSM and UMTS could be used to analyze the cell
dwell time in cells and to estimate vehicle speed and travel time [8,11,12,16,25,26,28]. Figure 1 shows
a case study of CFVD for highway and urban roads. One highway (i.e., Highway 1) and four urban
roads (i.e., Urban Road 1, Urban Road 2, Urban Road 3, and Urban Road 4) are covered by three cells
(i.e., Cell 1, Cell 2, and Cell 3). When a MS performs a call and moves from Cell 1 to Cell 2, a HO signal
is generated and recorded. Moreover, the MS keeps moving from Cell 2 to Cell 3, another HO signal is
also generated and recorded. These two HO signals can be analyzed to obtain the cell dwell time of
Cell 2. Then the vehicle speed and travel time of Highway 1 can be estimated in accordance with the
cell dwell time [8,11,12,16,25,26,28].

Although the previous studies provided high accuracies of traffic information estimation, they
focused on highways and assumed that vehicles can be tracked to the correct route. In practical
environments, a cell usually covers only one highway, and a cell may cover several urban roads.
For instance, Cell 1 covers Highway 1, Urban Road 1, and Urban Road 2. Therefore, the determination
of the correct route driven by the MS user is difficult, especially for urban roads.

Some studies proposed a route classification method based on vehicular mobility patterns [12,29,30].
The route classification method recorded the list of cells which covered a same road. For example,
the list of cells for Urban Road 1 in Figure 1 is {Cell 1, Cell 2, and Cell 3}. The method could estimate
the similarity of the cell list of a route and the list of connected cells of a MS for determining the route
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which is driven by the MS user [12,29,30]. However, the previous method could not determine the
road direction, and the proximal urban roads might lead to lower accuracy of route classification.

Figure 1. The case study of CFVD for highway and urban roads.

2.3. Traffic Information Estimation

For traffic information estimation, the amount of HOs and NLUs could be collected and analyzed
for traffic flow estimation [8,10,14,17], and the amount of CAs and PLUs could be retrieved and used
for traffic density estimation [8,10,14,15]. Then the vehicle speed can be estimated in accordance
with the estimated traffic flow and the estimated traffic density. Furthermore, some studies proposed
mobile positioning methods to measure and analyze RSSIs between the MS and base stations (BSs) to
determine the location of the MS [20–23]. The time difference and the distance between two locations of
the same MS can be measured for vehicle speed estimation and travel time estimation. The estimated
traffic information-based CFVD can be referred and analyzed to develop traffic control strategies
for governments.

3. Vehicle Positioning Method

A vehicle positioning method is proposed to collect and analyze CFVD (e.g., the IDs, sequence,
and cell dwell time of connected cells) from the signals of MS communications (e.g., call arrivals
and handoffs) for determining urban road segments which are driven by MS users in their cars.
For instance, Figure 2 shows a case study of an urban road network and cell coverage. There are five
cells (i.e., Cell1 to Cell5) and three urban road segments (i.e., Road1 to Road3) in this case. When the
MS moves and performs handoff signals, the road segments which are driven by the MS user in their
car can be tracked according to the IDs, sequence, and cell dwell time of connected cells. In this case,
Cell5, Cell4, Cell3, and Cell2 may be connected by a MS when the MS moves through Road1 to Road2;
Cell5, Cell4, Cell3, and Cell1 may be connected by a MS when the MS moves through Road1 to Road3.

 

Figure 2. The case study of an urban road network and cell coverage.
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Therefore, the proposed vehicle positioning method is designed to analyze CFVD and to apply the
k-nearest neighbor algorithm (kNN) for determining the location of the vehicle. This method includes
four steps (shown in Figure 3) which include: (1) collecting connection and handoff signals from
cellular networks; (2) analyzing cell ID, sequence, and cell dwell time of connected cells; (3) retrieving
k1 similar records from a historical dataset; and (4) determining the location of the vehicle. The details
of each step are presented in following subsections.

Figure 3. The steps of vehicle positioning method.

3.1. Collecting Connection and Handoff Signals from Cellular Networks

Step 1 captures and collects the cell IDs and timestamps from cellular network signals (e.g.,
call arrivals and handoffs) which are obtained by MS and core networks via A and IuCS interfaces.
This study applies an international mobile subscriber identity (IMSI) as the ID of the MS for tracking
each MS. For instance, a call was performed by IMSI1 at PM 16:08:02 on 18 May 2016, and the cellular
network signals during this call were collected and showed in Table 1. When this MS moved from
Cell1 to Cell2, a handoff procedure was performed at PM 16:10:35. However, cell oscillation might
occur between 16:10:35 and 16:11:07. Then, the MS kept moving and entered the coverage of Cell3, and
a handoff signal was generated at PM 16:15:58. Finally, a call complete procedure was performed at
16:18:39. These signals can be captured and used as CFVD for vehicle positioning and speed estimation.

Table 1. The cellular network signals during a call performed by IMSI1 on 18 May 2016.

Record ID Mobile Station ID Time Cell ID Signals

1 IMSI1 18 May 2016 16:08:02 Cell1 Call Arrival
2 IMSI1 18 May 2016 16:10:35 Cell2 Handoff
3 IMSI1 18 May 2016 16:10:46 Cell1 Handoff
4 IMSI1 18 May 2016 16:11:07 Cell2 Handoff
5 IMSI1 18 May 2016 16:15:58 Cell3 Handoff
6 IMSI1 18 May 2016 16:18:39 Cell3 Call Complete

3.2. Analyzing Cell ID, Sequence, and Cell Dwell Time of Connected Cells

Step 2 can analyze the records (i.e., cell IDs and timestamps) from Step 1 and extract three features,
which include the cell IDs, sequence, and cell dwell time of connected cells. This study assumes
that n cells are available in experimental environments. The extraction processes of each feature are
illustrated in the following subsections.
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3.2.1. Cell ID

For the feature analysis of cell ID, this study sets the value of Celli (ci) as 1 if Celli is connected
during a call, but otherwise the value of cell is 0. The feature of cell ID, which can be presented as
a vector space model (C), is defined in Equation (1). For example, Cell1, Cell2, and Cell3 are connected
by IMSI1 in Table 1, so the values of c1, c2, and c3 are 1 (shown in Equation (2)).

C = {c1, c2, c3, c4, ..., cn} , where ci =

{
1, if Celli is connected during a call
0, otherwise

(1)

C = {1, 1, 1, 0, ..., 0} (2)

3.2.2. Sequence

For the judgment of urban road direction, the handoff sequence is an important feature, so this
study analyzes the sequence of connected cells for determining the road segment driven by a MS user.
When Celli is firstly connected, the value of Celli (oi) is given with a higher weight value. Then the
feature of sequence which can be presented as a vector space model (O) is defined in Equation (3).
Furthermore, this study only considers the first x connected cells, and a vector set of weight values (A)
for the feature of sequence is defined in Equation (4). For instance, this study set the value of x as 3,
and Equation (5) is adopted to set the values of A (i.e., a1 = 1; a2 = 0.5; a3 = 0.25). In the case of IMSI1 in
Table 1, Cell1 is firstly connected, so the value of Cell1 (o1) is given as 1 (i.e., a1). Then Cell2 is secondly
connected, and the value of Cell2 (o2) is adopted as 0.5 (i.e., a2). Finally, this study set the value of Cell3
(o3) as 0.25 (i.e., a3) and the values of other cells as 0 (shown in Equation (6)).

O = {o1, o2, o3, o4, ..., on} , where oi = the corresponding weight value of Celli (3)

A = {a1, a2, ..., ax} (4)

A = {1, 0.5, 0.25} (5)

O = {1, 0.5, 0.25, 0, ..., 0} (6)

3.2.3. Cell Dwell Time

For the discrimination of proximal urban roads, the cell dwell time is an important feature, so
this study analyzes the cell dwell time of each connected cell during the same call. However, cell
oscillation may occur, especially in a city. Therefore, the total cell dwell time of each cell is considered
and summarized. Then, the feature of cell dwell time, which can be presented as a vector space model
(T), is defined in Equation (7). Moreover, this study only considers the first y cells with longer cell dwell
time, and a vector set of weight values (B) for the feature of cell dwell time is defined in Equation (8).
For example, cell oscillation might occur between 16:10:35 and 16:11:07 in Table 1. Therefore, the total
cell dwell time of Cell1 is 174 s (i.e., 174 = 153 + 21), and the total cell dwell time of Cell2 is 302 s (i.e.,
302 = 11 + 291). Then, the cell dwell time of Cell3 is 161 s. In this study, the value of y is adopted as 3,
and Equation (9) is adopted to set the values of B (i.e., b1 = 1; b2 = 0.5; b3 = 0.25). The cell dwell time
of Cell2 is the longest in the case of Table 1, so the value of Cell2 (t2) is given as 1 (i.e., b1). Then, the
values of Cell3 (t3) and Cell1 (t1) are adopted as 0.5 (i.e., b2) and 0.25 (i.e., b3), respectively. Finally, this
study sets the values of other cells as 0 (shown in Equation (10)).

T = {t1, t2, t3, t4, ..., tn} , where oi = the corresponding weight value of Celli (7)

B = {b1, b2, ..., bx} (8)

B = {1, 0.5, 0.25} (9)
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T = {0.25, 1, 0.5, 0, ..., 0} (10)

3.2.4. Combination

This study considers the features of cell ID, sequence, and cell dwell time simultaneously and
combines vector space models of C, O, and T into the vector set of R (shown in Equation (11)).
For instance, the records of IMSI1 can be modeled in Equation (12):

R = {C, O, T} = {c1, c2, c3, c4, ..., cn, o1, o2, o3, o4, ..., on, t1, t2, t3, t4, ..., tn} (11)

R = {1, 1, 1, 0, ..., 0, 1, 0.5, 0.25, 0, ..., 0, 0.25, 1, 0.5, 0, ..., 0} (12)

3.3. Retrieving k1 Similar Records from a Historical Dataset

In this study, m calls are transformed in accordance with Equation (11) and stored in a historical
database. These m records are defined as historical dataset H (shown in Equation (13)). Furthermore,
the driven road segment of each historical record is labeled in the database. When a new call is
performed and completed, the vector set of this call (r) (shown in Equation (14)) is transformed
according to Equation (11) and compared with each record in historical dataset H by Equation (15).
Then the most similar historical record with the distance g1 can be retrieved in accordance with
Equation (16), and Step 3 retrieves k1 similar records from the historical dataset for vehicle positioning.

H = {h1, h2, ..., hm}
where hi = {Ci, Oi, Ti}

= {ci,1, ci,2, ci,3, ci,4, ..., ci,n, oi,1, oi,2, oi,3, oi,4, ..., oi,n, ti,1, ti,2, ti,3, ti,4, ..., ti,n}
(13)

r = {C, O, T} = {c1, c2, c3, c4, ..., cn, o1, o2, o3, o4, ..., on, t1, t2, t3, t4, ..., tn} (14)

d (r, hi)

=

√√√√√√
⎡
⎢⎣ [

c1 − ci,1 · · · cn − ci,n

] ⎡⎢⎣
c1 − ci,1

...
cn − ci,n

⎤
⎥⎦ [

o1 − oi,1 · · · on − oi,n

] ⎡⎢⎣
o1 − oi,1

...
on − oi,n

⎤
⎥⎦ [

t1 − ti,1 · · · cn − ci,n

] ⎡⎢⎣
t1 − ti,1

...
tn − ti,n

⎤
⎥⎦

⎤
⎥⎦
⎡
⎢⎣ 1

1
1

⎤
⎥⎦

=

√
n
∑

j=1

(
cj − ci,j

)2
+
(
oj − oi,j

)2
+
(
tj − ti,j

)2

(15)

g1 = min
1≤i≤m

d (r, hi) (16)

3.4. Determining the Location of a Vehicle

For the determination of vehicle location, Step 4 applies a majority rule to analyze the k1 similar
records, which include the corresponding driven road segment from Step 3. For instance, a case
study of a historical dataset and a new record is given in Table 2. There are five cells (i.e., n = 5) and
six historical records (i.e., m = 6), and the value of k1 is adopted as 3 in this case. Equation (15) is used to
calculate the distance between dataset r (i.e., a new record) and each historical record. The result shows
that the k1 similar records are h1, h2, and h4, so Road1 is supported by two records (i.e., h1 and h2).
Therefore, the driven road segment of this new record is determined as Road1.

Table 2. A case study of historical dataset and a new record.

Record Road ID Speed (km/h) c1 c2 c3 c4 c5 o1 o2 o3 o4 o5 t1 t2 t3 t4 t5

h1 Road1 60 1 1 1 0 0 1 0.5 0.25 0 0 0.25 1 0.5 0 0
h2 Road1 58 1 1 1 0 0 1 0.5 0.25 0 0 0.25 0.5 1 0 0
h3 Road1 40 1 1 1 0 0 0.5 1 0.25 0 0 1 0.5 0.25 0 0
h4 Road2 59 1 1 1 0 0 0.25 0.5 1 0 0 0.25 1 0.5 0 0
h5 Road2 50 0 0 1 1 1 0 0 0.5 1 0.25 0 0 1 0.5 0.25
h6 Road2 53 0 0 1 1 1 0 0 0.25 1 0.5 0 0 0.5 1 0.25
r ? ? 1 1 1 0 0 1 0.5 0.25 0 0 0.25 1 0.5 0 0
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4. Speed Estimation Method

This study proposes a method and applies the k-nearest neighbor algorithm to extract the features
of CFVD (e.g., the IDs, sequence, and cell dwell time of connected cells) and to estimate vehicle speed.
The proposed method includes four steps (shown in Figure 4) which include: (1) determining the
location of a vehicle; (2) analyzing cell ID, sequence, and cell dwell time of connected cells; (3) retrieving
k2 similar records with the same road segment from historical dataset; and (4) estimating the speed of
a vehicle. The details of each step are presented in following subsections.

Figure 4. The steps of speed estimation method.

4.1. Determining the Location of Vehicle

Step 1 determines the driven road segment of the MS in accordance with CFVD and the proposed
vehicle positioning method in Section 3. This study only considers and analyzes the historical records
with the same road segment to estimate vehicle speed. For example, when a new record is determined
as Roadl, the historical records with Roadl are considered in the following steps.

4.2. Analyzing Cell ID, Sequence, and Cell Dwell Time of Connected Cells

Step 2 adopts Equations (1), (3) and (7) to extract the features of historical records and new records
which include the IDs, sequence, and cell dwell time of connected cells. Each record can be transformed
as a vector space model (shown in Equation (11)). Historical records are presented as a vector set H,
and a new record is presented as a vector set r in accordance with Equations (13) and (14).

4.3. Retrieving k2 Similar Records with the Same Road from Historical Dataset

Step 3 retrieves k2 similar records with the same road segment from a historical dataset according
to Equation (15). Furthermore, the vehicle speed of each historical record is labeled in a database.
For instance, in the case of Table 2, the new record r is determined as Road1, so three historical records
(i.e., h1, h2, and h3) are considered to be analyzed for vehicle speed estimation. If the value of k2 is
adopted as 2 in this case, the records h1 and h2 are retrieved as the k2 similar records.

4.4. Estimating the Speed of a Vehicle

Step 4 applies a weighted mean method to analyze the k2 similar records for vehicle speed
estimation. In this study, new record r is determined as Roadl, and the distance between this record
and the more similar record with vehicle speed v1 is defined as p1 in Equation (17). Moreover, the
distance between this record and the j-th most similar record with vehicle speed vj is defined as pj.
Then the vehicle speed of this record is estimated as u by Equation (18). For example, the k2 similar
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records are h1 and h2 in Table 2 when the value of k2 is 2. The value of d(r, h1) is 0 (i.e., p1 = 0), and the
value of d(r, h2) is about 0.707 (i.e., p2 = 0). Then, Equation (18) is adopted to estimate the vehicle speed
of the new record r as 60 km/h (shown in Equation (19)).

p1 = mind (r, hi) where the driven road segment of hi is Roadl (17)

u =

[ pk2
−p1

pk2
−p1

pk2
−p2

pk2
−p1

· · · pk2
−pk2

pk2
−p1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2
...

vk2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[ pk2
−p1

pk2
−p1

pk2
−p2

pk2
−p1

· · · pk2
−pk2

pk2
−p1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

[
ω1 ω2 · · · ωk2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2
...

vk2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
ω1 ω2 · · · ωk2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where ωi =
pk2

−pi
pk2

−p1

=

k2
∑

i=1
(ωi×vi)

k2
∑

i=1
ωi

where ωi =
pk2

−pi
pk2

−p1

(18)

u = ω1×60+ω2×58
ω1+ω2

where ω1 = 0.707−0
0.707−0 = 1 and ωi =

0.707−0.707
0.707−0 = 0

= 60
(19)

5. Experimental Results and Discussions

The collection of CFVD and the information of urban road networks are presented in Section 5.1.
The collected CFVD is used to evaluate the proposed vehicle positioning method and speed estimation
method in Sections 5.2 and 5.3, respectively.

5.1. Experimental Environment

In experimental environments, a MS (e.g., HTC (Taoyuan, Taiwan) M8 running the Android
2.2.2platform) is carried in a car to perform call procedures when the car is driven on urban roads, and
the cellular network signals of these calls can be captured for the collection of CFVD. Six urban road
segments in Kaohsiung and Pingtung in Taiwan (shown in Figure 5) are driven in 27 runs. There are
64 different base stations (BSs) (i.e., n = 64) detected on these road segments in Taiwan.

For the evaluations of the vehicle positioning method and speed estimation method, some popular
machine learning methods (e.g., kNN, naive Bayes classification (NB), decision tree (DT), support
vector machine (SVM), and back-propagation neural network (BPNN) [31,32]), are implemented and
compared by using the R language [33,34] and Rstudio [35] to analyze collected CFVD in experiments.
This study uses the packages of class [36], e1071 [37], party [38], and neuralnet [39] to implement
kNN, NB, DT, SVM, and BPNN algorithms, respectively. Furthermore, the k-fold cross-validation
method [31,32] is used to analyze each test run. In the i-th iteration, the data of the i-th run is selected as
the test corpus, and the other test runs are collectively used to be training data for performance analyses.
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Figure 5. The urban road segments in the experimental environment.

5.2. The Evaluation of Vehicle Positioning Method

For the evaluation of the vehicle positioning method, this study considers different features and
machine learning methods to analyze CFVD. Considering cell ID and kNN first; it can be observed
that its performance of vehicle positioning is 51.85% (shown in Table 3). The cause of several errors
is direction misjudgment when only the feature of cell ID is considered. Then, the features of cell
ID and sequence are considered for the judgment of urban road direction, and the results show that
the accuracy of the vehicle positioning method is improved to 92.59%. However, some proximal
urban roads cannot be discriminated by using the features of cell ID and sequence. Finally, this study
analyzes all features (i.e., the IDs, sequence, and cell dwell time of connected cells) to determine the
driven road segment of the MS user, and the accuracy can be improved to 100%. Therefore, the feature
of cell dwell time can support for the discrimination of proximal urban roads.

Table 3. The comparisons of the proposed method with different features for vehicle positioning.

Feature Accuracy

Cell ID (Previous method [12,29]) 51.85%
Cell ID and sequence 92.59%

Cell ID and cell dwell time 88.89%
Cell ID, sequence, and cell dwell time 100%

For the comparisons of different machine learning methods, all features are considered and
analyzed to determine the driven road segment. Four factors, which include precision, recall,
F1 − measure (shown in Equation (20)), and accuracy are used to evaluate the performance of each
method. Table 4 shows that the performance of the proposed method is higher than other methods.

F1 − measure =
2

1
Precision + 1

Recall

(20)
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Table 4. The comparisons of different machine learning methods with all features for vehicle positioning.

Method Precision Recall F1-Measure Accuracy

Naive Bayes classification 91.90% 88.33% 90.08% 88.89%
Decision tree 11.67% 20.00% 14.74% 22.22%

Support vector machine 27.78% 50.00% 35.71% 55.56%
Back-propagation neural network 65.83% 56.67% 60.91% 59.26%

The proposed method 100% 100% 100% 100%

For the comparisons of different parameters, this study designs five cases which include {1, 0, 0},
{1, 0.5, 0}, {1, 1, 1}, {1, 0.67, 0.33}, and {1, 0.5, 0.25} for the values of A and B. Furthermore, Euclidean
distance, Minkowski distance, and Mahalanobis distance are considered for the proposed method.
The experimental results of these cases (in Table 5) indicated that the parameters A and B can be
adapted as {1, 0.5, 0.25} to obtain a higher accuracy of vehicle positioning.

Table 5. The comparisons of different parameters for vehicle positioning.

A B Distance Method F1-Measure Accuracy

{1, 0, 0} {1, 0, 0} Euclidean 87.50% 88.89%
{1, 0.5, 0} {1, 0.5, 0} Euclidean 91.67% 92.59%
{1, 1, 1} {1, 1, 1} Euclidean 89.17% 88.89%

{1, 0.67, 0.33} {1, 0.67, 0.33} Euclidean 96.67% 96.30%
{1, 0.5, 0.25} {1, 0.5, 0.25} Euclidean 100.00% 100.00%

{1, 0, 0} {1, 0, 0} Minkowski 87.50% 88.89%
{1, 0.5, 0} {1, 0.5, 0} Minkowski 91.67% 92.59%
{1, 1, 1} {1, 1, 1} Minkowski 92.50% 92.59%

{1, 0.67, 0.33} {1, 0.67, 0.33} Minkowski 96.67% 96.30%
{1, 0.5, 0.25} {1, 0.5, 0.25} Minkowski 100.00% 100.00%

{1, 0, 0} {1, 0, 0} Mahalanobis 87.50% 88.89%
{1, 0.5, 0} {1, 0.5, 0} Mahalanobis 91.67% 92.59%
{1, 1, 1} {1, 1, 1} Mahalanobis 89.17% 88.89%

{1, 0.67, 0.33} {1, 0.67, 0.33} Mahalanobis 96.67% 96.30%
{1, 0.5, 0.25} {1, 0.5, 0.25} Mahalanobis 100.00% 100.00%

5.3. The Evaluation of the Speed Estimation Method

For the evaluation of the speed estimation method, this study considers different features after
determining the driven road segment of the MS user. Table 6 shows the results of the proposed speed
estimation method with different features. These experimental results indicate that cell dwell time is
the most important feature, and the accuracy of vehicle estimation with all features can be improved
to 83.81%. Therefore, the proposed method based on CFVD is suitable for detecting the status of urban
road traffic.

Table 6. The comparisons of the proposed method with different features for speed estimation.

Feature Accuracy

Cell ID and sequence 78.34%
Cell ID and cell dwell time 80.86%

Cell ID, sequence, and cell dwell time 83.81%

6. Conclusions and Future Work

Several studies of CFVD focused on the traffic information estimation for freeways. Furthermore,
these studies assumed that the cellular network signals from the moving MSs on roads can be filtered.
However, a cell may cover several road segments of urban roads, so the assumption may not be
realized on urban roads.
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Therefore, this study proposes vehicle positioning and speed estimation methods to capture
CFVD and to track MSs for intelligent transportation systems. Three features of CFVD, which include
the IDs, sequence, and cell dwell time of connected cells from the signals of MS communications, are
extracted and analyzed. The feature of sequence can be used to judge the urban road direction, and
the feature of cell dwell time can be applied to discriminate proximal urban roads. The experiment
results show that the accuracy of the proposed vehicle positioning method is better than other popular
machine learning methods (e.g., NB, DT, SVM, and BPNN). Furthermore, the accuracy of the proposed
method with all features (i.e., the IDs, sequence, and cell dwell time of connected cells) is 83.81% for
speed estimation.

However, cell oscillation problems may disturb the cell dwell time of each cell and vehicle speed
estimation. This study summarizes the total cell dwell time of each cell to solve these problems, but
these problems may occur in accordance with some environment factors. Therefore, the environmental
factors may be analyzed to filter out cell oscillation in future work.

Acknowledgments: The research is supported by the Ministry of Science and Technology of Taiwan under the
grant No. MOST 104-2221-E-110-041.

Author Contributions: Wei-Kuang Lai and Ting-Huan Kuo proposed and designed the vehicle positioning and
speed estimation methods based on CFVD. Ting-Huan Kuo performed the proposed methods and reported the
experimental results. All of the authors have read and approved this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jang, J.; Byun, S. Evaluation of traffic data accuracy using Korea detector testbed. IET Intell. Transp. Syst.
2011, 5, 286–293. [CrossRef]

2. Ramezani, A.; Moshiri, B.; Kian, A.R.; Aarabi, B.N.; Abdulhai, B. Distributed maximum likelihood estimation
for flow and speed density prediction in distributed traffic detectors with Gaussian mixture model assumption.
IET Intell. Transp. Syst. 2012, 6, 215–222. [CrossRef]

3. Middleton, D.; Parker, R. Vehicle Detector Evaluation; Report No. FHWA/TX-03 /2119-1; Texas Transportation
Institute, Texas Department of Transportation: Austin, TX, USA, 2002.

4. Chen, W.J.; Chen, C.H.; Lin, B.Y.; Lo, C.C. A traffic information prediction system based on global position
system-equipped probe car reporting. Adv. Sci. Lett. 2012, 16, 117–124. [CrossRef]

5. Hunter, T.; Herring, R.; Abbeel, P.; Bayen, A. Path and travel time inference from GPS probe vehicle data.
In Proceedings of the Neural Information Processing Foundation Conference, Vancouver, BC, Canada,
5–10 December 2009.

6. Cheu, R.L.; Xie, C.; Lee, D.H. Probe vehicle population and sample size for arterial speed estimation.
Comput. Aided Civil Infrastruct. Eng. 2002, 17, 53–60. [CrossRef]

7. Herrera, J.C.; Work, D.B.; Herring, R.; Ban, X.J.; Jacoboson, Q.; Bayen, A.M. Evaluation of traffic data obtained
via GPS-enabled mobile phones: The mobile century field experiment. Transp. Res. Part C Emerg. Technol.
2010, 18, 568–583. [CrossRef]

8. Caceres, N.; Wideberg, J.P.; Benitez, F.G. Review of traffic data estimations extracted from cellular networks.
IET Intell. Transp. Syst. 2008, 2, 179–192. [CrossRef]

9. United Marketing Research. The Investigation Report on the Digital Opportunity about Phone Users.
Research, Development and Evaluation Commission, Executive Yuan, 2011. Available online: http://www.
rdec.gov.tw/public/Attachment/213014313671.pdf (accessed on 20 June 2016).

10. Lai, W.K.; Kuo, T.H.; Chen, C.H. Vehicle speed estimation and forecasting methods based on cellular floating
vehicle data. Appl. Sci. 2016, 6, 47. [CrossRef]

11. Wu, C.I.; Chen, C.H.; Lin, B.Y.; Lo, C.C. Traffic information estimation methods from handover events.
J. Test. Eval. 2016, 44, 656–664. [CrossRef]

12. Chang, M.F.; Chen, C.H.; Lin, Y.B.; Chia, C.Y. The frequency of CFVD speed report for highway traffic.
Wirel. Commun. Mob. Comput. 2015, 15, 879–888. [CrossRef]

13. Janecek, A.; Valerio, D.; Hummel, K.A.; Ricciato, F.; Hlavacs, H. The cellular network as a sensor: From mobile
phone data to real-time road traffic monitoring. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2551–2572. [CrossRef]

17



ISPRS Int. J. Geo-Inf. 2016, 5, 181

14. Chen, C.H.; Chang, H.C.; Su, C.Y.; Lo, C.C.; Lin, H.F. Traffic speed estimation based on normal location
updates and call arrivals from cellular networks. Simul. Model. Pract. Theory 2013, 35, 26–33. [CrossRef]

15. Chang, H.C.; Chen, C.H.; Lin, B.Y.; Kung, H.Y.; Lo, C.C. Traffic information estimation using periodic location
update events. Int. J. Innov. Comput. Inf. Control 2013, 9, 2031–2041.

16. Maerivoet, S.; Logghe, S. Validation of travel times based on cellular floating vehicle data. In Proceedings of
the 6th European Congress and Exhibition on Intelligent Transport Systems and Services, Aalborg, Denmark,
18–20 June 2007.

17. Caceres, N.; Romero, L.M.; Benitez, F.G.; del Castillo, J.M. Traffic flow estimation models using cellular
phone data. IET Intell. Transp. Syst. 2012, 13, 1430–1441. [CrossRef]

18. Valerio, D.; Witek, T.; Ricciato, F.; Pilz, R.; Wiedermann, W. Road traffic estimation from cellular network
monitoring: A hands-on investigation. In Proceedings of the IEEE 20th International Symposium on Personal,
Indoor and Mobile Radio Communications, Tokyo, Japan, 13–16 September 2009.

19. Valerio, D.; D’Alconzo, A.; Ricciato, F.; Wiedermann, W. Exploiting cellular networks for road traffic estimation:
A survey and a research roadmap. In Proceedings of the IEEE 69th Vehicular Technology Conference, Barcelona,
Spain, 26–29 April 2009.

20. Chen, C.H.; Lo, C.C.; Lin, H.F. The Analysis of Speed-Reporting Rates from a cellular network based on
a fingerprint-positioning algorithm. S. Afr. J. Ind. Eng. 2013, 24, 98–106. [CrossRef]

21. Chen, C.H.; Lin, B.Y.; Chang, H.C.; Lo, C.C. The novel positioning algorithm based on cloud
computing—A case study of intelligent transportation systems. Inf. Int. Interdiscip. J. 2012, 15, 4519–4524.

22. Cheng, D.Y.; Chen, C.H.; Hsiang, C.H.; Lo, C.C.; Lin, H.F.; Lin, B.Y. The optimal sampling period of
a fingerprint positioning algorithm for vehicle speed estimation. Math. Probl. Eng. 2013, 2013. [CrossRef]

23. Chen, C.H.; Lin, B.Y.; Lin, C.H.; Liu, Y.S.; Lo, C.C. A green positioning algorithm for campus guidance system.
Int. J. Mob. Commun. 2012, 10, 119–131. [CrossRef]

24. Gundlegård, D.; Karlsson, J.M. The smartphone as enabler for road traffic information based on cellular
network signaling. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation
Systems, Hague, The Netherlands, 6–9 October 2013.

25. Gundlegard, D.; Karlsson, J.M. Handover location accuracy for travel time estimation in GSM and UMTS.
IET Intell. Transp. Syst. 2009, 3, 87–94. [CrossRef]

26. Gundlegard, D.; Karlsson, J.M. Route classification in travel time estimation based on cellular network
signaling. In Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems,
St. Louis, MO, USA, 4–7 October 2009.

27. Gundlegard, D.; Karlsson, J.M. Generating road traffic information from cellular networks—New possibilities
in UMTS. In Proceedings of the 6th International Conference on ITS Telecommunications, Chengdu, China,
21–23 June 2006.

28. Demissie, M.G.; de Almeida Correia, G.H.; Bento, C. Intelligent road traffic status detection system through
cellular networks handover information: An exploratory study. Transp. Res. Part C Emerg. Technol. 2013, 32,
76–88. [CrossRef]

29. Fiadino, P.; Valerio, D.; Ricciato, F.; Hummel, K.A. Steps towards the extraction of vehicular mobility patterns
from 3G signaling data. Lect. Notes Comput. Sci. 2012, 7189, 66–80.

30. Becker, R.A.; Caceres, R.; Hanson, K.; Loh, J.M.; Urbanek, S.; Varshavsky, A.; Volinsky, C. Route classification
using cellular handoff patterns. In Proceedings of the 13th International Conference on Ubiquitous Computing,
Beijing, China, 17–21 September 2011.

31. Lai, W.K.; Kuo, T.H. An urban road segment determination method based on cellular floating vehicle data for
tracking mobile stations. In Proceedings of the 7th International IEEE Conference on Ubi-Media Computing
and Workshops, Ulaanbaatar, Mongolia, 12–14 July 2014.

32. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Morgan Kaufmann Publishers:
San Francisco, CA, USA, 2011.

33. Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314.
34. Ripley, B.D. The R project in statistical computing. MSOR Connect. 2001, 1, 23–25. [CrossRef]
35. Racine, J.S. RStudio: A platform-independent IDE for R and sweave. J. Appl. Econ. 2012, 27, 167–172.

[CrossRef]
36. Ripley, B.; Venables, W. Class: Functions for Classification. The Comprehensive R Archive Network 2015.

Available online: https://cran.r-project.org/web/packages/class/index.html (accessed on 20 June 2016).

18



ISPRS Int. J. Geo-Inf. 2016, 5, 181

37. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.C.; Lin, C.C. e1071: Nisc Functions
of the Department of Statistics, Probability Theory Group. The Comprehensive R Archive Network 2015.
Available online: https://cran.r-project.org/web/packages/e1071/index.html (accessed on 20 June 2016).

38. Hothorn, T.; Hornik, K.; Strobl, C.; Zeileis, A. Party: A Laboratory for Recursive Partytioning.
The Comprehensive R Archive Network 2015. Available online: https://cran.r-project.org/web/packages/
party/index.html (accessed on 20 June 2016).

39. Fritsch, S.; Guenther, F. Neuralnet: Training of Neural Networks. The Comprehensive R Archive
Network 2012. Available online: https://cran.r-project.org/web/packages/neuralnet/index.html (accessed
on 20 June 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

19





 International Journal of

Geo-Information

Article

A Method for Traffic Congestion Clustering
Judgment Based on Grey Relational Analysis

Yingya Zhang 1, Ning Ye 1,2,*,†, Ruchuan Wang 3,† and Reza Malekian 4,*

1 Department of Computer, Nanjing University of Post and Telecommunications, Nanjing 210003, China;
1014041108@njupt.edu.cn

2 Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China
3 Key Lab of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education,

Nanjing University of Post and Telecommunications, Nanjing 210003, China; wangrc@njupt.edu.cn
4 Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Av. Ecuador,

Santiago 3659, Chile
* Correspondence: yening@njupt.edu.cn (N.Y.); reza.malekian@ieee.org (R.M.);

Tel.: +86-138-1389-2478 (N.Y.); +27-12-420-4305 (R.M.);
Fax: +86-025-83492470 (N.Y.); +27-12-420-362-5000 (R.M.)

† These authors contributed equally to this work.

Academic Editors: Chi-Hua Chen, Kuen-Rong Lo and Wolfgang Kainz
Received: 17 January 2016; Accepted: 9 May 2016; Published: 18 May 2016

Abstract: Traffic congestion clustering judgment is a fundamental problem in the study of traffic jam
warning. However, it is not satisfactory to judge traffic congestion degrees using only vehicle speed.
In this paper, we collect traffic flow information with three properties (traffic flow velocity, traffic
flow density and traffic volume) of urban trunk roads, which is used to judge the traffic congestion
degree. We first define a grey relational clustering model by leveraging grey relational analysis and
rough set theory to mine relationships of multidimensional-attribute information. Then, we propose
a grey relational membership degree rank clustering algorithm (GMRC) to discriminant clustering
priority and further analyze the urban traffic congestion degree. Our experimental results show that
the average accuracy of the GMRC algorithm is 24.9% greater than that of the K-means algorithm
and 30.8% greater than that of the Fuzzy C-Means (FCM) algorithm. Furthermore, we find that our
method can be more conducive to dynamic traffic warnings.

Keywords: urban traffic; grey relational membership degree; traffic congestion judgment

1. Introduction

With the rapid development of urban traffic, urban vehicle surges and the pressure on traffic
capacities are increasing sharply. Therefore, traffic problems are becoming serious and bound the
development of a city. In China, the conditions of roads and vehicles are quite inconvenient, and
traffic congestion has caused substantial social and economic problems. In this case, traffic jams
not only waste time, delay work, and reduce efficiency but also cause a substantial waste of fuel,
increase the probability of accidents and exacerbate the already serious difficulties facing traffic control
and management. Since the 1980s, intelligent transportation systems (ITSs) consisting of integrated
computer technology, automatic control technology, communication technology and information
processing technology have achieved remarkable results worldwide. In addition, many aspects of ITSs
are based on traffic information. Furthermore, traffic information processing has become an important
aspect of ITSs [1]. The critical function of an ITS is to manage and control traffic flows and avoid the
development of traffic jams. When traffic jams occur, such systems should provide timely and effective
solutions and ease traffic pressure. Therefore, clustering and evaluating urban traffic congestion is of
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great importance and is thus a prerequisite for correctly inspecting traffic congestion. To determine the
road congestion degree, different definitions of traffic congestion are formulated. Rothenberg defined
the traffic congestion rank as the number of vehicles on the road exceeding the carrying capacity on
the general acceptable road service level [2]. Under such a definition, U.S. authorities divide Level of
Service (LOS) into six levels from A to F based on the ratio of the actual vehicle flow (volume) and
road capacity: V/C. In Virginia, when V/C is less than 0.77, LOS is at the D level, and the traffic
situation is considered to be a high-density but stable traffic flow. When LOS is at the E level, traffic
begins to deteriorate and results in a serious traffic jam. A method of assessing the traffic congestion
level (rank) is by comparing a certain traffic parameter with a threshold. When the parameter is
greater than a certain threshold, a traffic jam is considered to have formed. Specifically, the method can
detect whether traffic congestion occurs but cannot represent a comprehensive information evaluation
method for traffic congestion. Currently, we collect traffic flow information based on three properties
for Nanjing urban trunk roads to comprehensively weigh the level of traffic congestion in the same
time period. In addition, we judge which road is allowing smooth traffic flows, which is suffering from
a light traffic jam, which is suffering from a traffic jam, and which is suffering from a heavy traffic jam
state. Figure 1 represents the Nanjing transport network area in its geographical context. Using the
above information, we can provide reference values for traffic management.

At present, the method of judging traffic congestion can be divided into three categories: (1) Direct
detection method, such as video detection method. This method needs to install too many cameras
and the cost is higher. (2) Indirect detection method, which is mainly according to events’ influence on
traffic flow, used to detect the event’s existence. The method has low cost, simple and easy to operate,
but has lower detection rate, and high false alarm rate. (3) Based on theory model, design algorithm
to judge traffic congestion. This method is being used, and some mature theories have been applied,
such as cluster analysis, grey system theory, and rough set theory. Our work concentrates on clustering
traffic flow information based on grey relational analysis to judge traffic congestion situations [3].

 

Figure 1. Nanjing transport network area in its geographical context.

The paper is organized as follows. First, we give a brief summary of previous related work
in Section 2. Next, we introduce how to build the grey relational clustering model in Section 3.
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In Section 4, the grey relational membership degree rank clustering algorithm (GMRC) is described.
Then, we illustrate experimental results in Section 5. Finally, we conclude the paper in Section 6.

2. Related Work

2.1. Related Theories

Our work particularly involves grey system theory. Grey system theory was proposed by Professor
Julong Deng in 1982 and includes many aspects such as grey generation, grey analysis, grey modeling
and grey prediction [4]. This theory has been widely used in image processing, network security and
logistics management. In addition, grey relational analysis is not only an important aspect of grey
theory but also a type of measurement method for the study of the similarity of data. This analysis
also has no strict requirement on sample size, and it is usually used for analysis and comparison of
the geometric forms of curves described by several points in the space; the closer to the referenced
standard array, the higher the relational degree between the referenced standard and the higher its
rank. Next, we will briefly introduce rough set theory, which is a mathematical theory method used
to address uncertain, imprecise and fuzzy information. This theory has been applied in machine
learning, data mining, decision-making analysis, etc. In addition, rough set theory is an important
branch of uncertainty calculations, which include other theories such as fuzzy sets, neural networks
and evidence theory. In this paper, we analyze urban road traffic information using grey relational
clustering and combine the results with rough set theory to establish a decision table system. Finally,
we judge the degree of urban traffic congestion.

2.2. Clustering Techniques

Clustering analysis is the subject of active research in several fields such as statistics, pattern
recognition, machine learning, and data mining. It aims to partition a large number of data into
different subsets or groups so that the requirements of homogeneity and heterogeneity are fulfilled.
Homogeneity requires that data in the same cluster should be as similar as possible and heterogeneity
means that data in different clusters should be as different as possible.

At present, a number of cluster methods have been widely used, among which a weighted
adaptive algorithm based on the equilibrium approach is proposed wherein the grey method
is introduced to a spectral clustering algorithm [5] to measure the similarity between the data.
The experimental results show that the proposed algorithm can effectively overcome the shortcomings
of spectral clustering concerning the sensitivity of parameters. Another clustering algorithm based
on entropy that can automatically determine the number of clusters based on the distribution
characteristics of the data sample and reduce the user’s participation was proposed in [6]. The result is
more objective, and the algorithm can find large and small clusters of any shape. The disadvantages
of the algorithm are the selection of the initial points and the effects of noise and outliers. However,
these shortcomings can be overcome by screening and addressing the original data noise and outliers,
excluding false data and improving the reliability and separation of the data to minimize the influence
of noise and outliers. The two methods inspire our work such that we consider using an approach to
comprehensively evaluate data; therefore, we use grey relational theory, which can effectively process
multidimensional attribute data. However, those traditional algorithms are mostly a simple clustering
of similar data and do not consider what data attributes have what indicator characteristics. Moreover,
clustering results cannot reflect the rank of data that present greater clustering.

2.3. K-Means Algorithm and FCM Algorithm

Currently, the K-means algorithm and Fuzzy C-Means (FCM) algorithm are commonly used to
cluster data. We consider the two algorithms comparing with our proposed algorithm in our work.
First, our work will provide a brief introduction of the K-means algorithm. The K-means algorithm
is a classical clustering algorithm that is widely used in different subject areas. In addition, various
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improved algorithms have evolved based on the K-means algorithm. The K-means algorithm, however,
is an NP-hard optimization problem (Generally speaking, problems that will cost polynomial time
to solve and are easy to address are commonly regarded as P problems. Problems that cost super
polynomial time to solve are considered as difficult problems and are known as NP-hard problems),
which means that many problems cannot obtain global optimal results [7]. The Euclidean distance is
typically used as the criterion function of the K-means algorithm, where the distance between two
data points with different units is sometimes calculated. The Euclidean distance is the real distance
between two points in an m-dimensional space and is mainly determined by the heavily fluctuant
elements. Slightly fluctuant elements are often neglected, and the phenomenon is more obvious with
increasing ratio of the difference between corresponding elements.

FCM algorithm is a type of fuzzy clustering algorithm based on the objective function. First,
we introduce the concept of fuzziness: fuzziness is uncertainty. In addition, we usually say that an
object is what is certain. However, the uncertainty indicates the similarity between two objects [8,9].
For example, we regard twenty years of age as a standard of judging whether an individual is young or
not young. Therefore, a 21-year-old person is not young according to this division of certainty; however,
21 years of age is very young in our opinion. Thus, at this moment, we can vaguely think of the possibility
of a 21-year-old person belonging to young as 90% and that belonging to not young as 10%. Here, 90%
and 10% are not probabilities; rather, they are the degree of similarity. Although the FCM algorithm can
effectively perform clustering, it does not differentiate the rank to which the clustering belongs.

In view of the above problems, we mine traffic flow information relations with different attributes
via grey relational clustering. In addition, we propose the GMRC algorithm to judge the clustering
priority. Simultaneously, we combine the K-means and FCM clustering algorithms and contrast the
results with those of the GMRC algorithm to evaluate the performance of our algorithm.

3. Grey Relational Clustering Model

In this paper, we suppose that the traffic congestion state of roads is divided into four ranks (not
four clusters), namely, smooth, light jam, jam and heavy jam, which is our precondition, where smooth
characterizes the best condition, belonging to the first rank, and heavy jam characterizes the worst
condition, belonging to the fourth rank. According to the description of the different definitions of
traffic congestion, traffic congestion is not only related to certain parameters [10] (such as traffic volume
and traffic speed) but also includes many factors. Therefore, a single parameter used to describe traffic
congestion states is insufficient: when the vehicle’s speed is zero, it may be blocked by too many
vehicles on the road that cannot move or it may also be smooth, with no vehicles driving on the road.
Therefore, a light traffic flow can match two states: heavy jam and smooth. In addition, low density
may characterize traffic that is smooth and may also include more trucks and other large vehicles
on the road. However, comprehensive analysis of the three variables of traffic flows (traffic flow
velocity, traffic flow density and traffic volume) can reflect the real situation concerning traffic jams.
Our purpose is to evaluate the traffic jam degree of different roads based on a multiple-attributes index.
Thus, we introduce three variables of traffic flows to evaluate the degree of traffic jams. However,
to consider addressing data of multidimensional mixed attributes and obtain data clustering levels,
we use grey relational analysis theory.

Traffic flows are characterized by three properties [11]: traffic flow velocity, traffic flow density
and traffic volume. Traffic flow velocity indicates the average speed of vehicles on the road, in units of
km/h. The traffic flow density, namely, the density of vehicles, indicates the number of vehicles per
unit length that the road contains. The traffic volume is defined as the number of vehicles traveling
through a certain road section in unit time. This paper uses these three properties of traffic flows to
judge the traffic congestion state.

Definition 1. Assume the analysis domain data set X “ tXi|Xi “ pXi1, Xi2, Xi3qu i P N as the
comparative object set, where Xi represents the ith data object, each of which has three attributes:
traffic flow velocity, traffic flow density, and traffic volume.
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Definition 2. Suppose a reference standard array set as Y “ tYi|Yi “ pYi1, Yi2, Yi3qu
pi “ 1, 2, . . . , pq (referenced object set). We regard the traffic flow information (when the road
is in the smooth state or vehicles are traveling at the free stream velocity) as a reference standard
array set.

Each group of a reference sequence can obtain a clustering result when combined with a
comparative object set by the grey relational clustering method; therefore, p groups of referenced
arrays will produce p clustering results. In addition, the group of referenced standards extracted from
the data is used for clustering when combined with comparative object sets, which can produce a
clustering result. Thus, over the whole process, we can obtain p + 1 clustering results.

Definition 3. The evaluation information M is regarded as the output information of the grey
relational clustering system S, and F is defined as the evaluation function. Then, the relationship
between S and M is denoted as #

S “ ppX, Yq , Gq
F : X ˆ Y Ñ M

(1)

where G represents the grey relational similar matrix. The evaluation function F of the above model
leverages the decision table system of rough set theory to weigh the degree of contribution of the
cluster members to the clustering results. F is also called the grey relational membership function,
whose inputs are X and Y and output is M, which reflects the similarity between elements inside a
class and the similarity between classes.

In this paper, we propose the GMRC algorithm oriented to multidimensional attribute data to
judge clustering rank priority. The method’s procedure includes pre-processing data, transforming
the data into matrix form, setting the threshold, and filtering and deleting abnormal data objects.
Next, we cluster analysis domain data objects via grey relational clustering analysis and then apply
weighted decision analysis from rough set theory. Finally, the clustering results are calculated using
probability theory.

4. GMRC Algorithm

The architecture of the GMRC algorithm consists of the following phases (Figure 2):

 
Figure 2. The architecture of the grey relational membership degree rank clustering algorithm (GMRC).

According to the index feature of the three properties of the traffic flow data, the optimal referenced
standard is extracted from the data set of the analysis domain. Then, the optimal referenced standard
and referenced array set are used to calculate the grey relational degree in combination with the
dataset of the analysis domain. Subsequently, the grey relational matrix can be obtained, and the
cluster members can be calculated. Next, we use rough set theory, where cluster members are applied,
and build the decision information table to complete the fusion for the weighting of the cluster
members, according to which we need to calculate the rank of each data object using probability theory.
We regard the first category as the highest priority, which means that the data object is closer to the
referenced standard and simultaneously that the object is better, corresponding to the lightest traffic
congestion degree.
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4.1. Grey Relational Clustering Steps

4.1.1. Extracting Optimal Referenced Standard according to the Characteristics of Traffic Flow Data

Because the problem of clustering analysis is solved based on a given indicator system, it is very
important to choose the appropriate indicator to achieve reasonable and appropriate clustering. There
are three properties for each Xi from a data source, and based on the indicator attribute of the data
object, the optimal reference standard X0 can be extracted from the data source. Specific instructions
are as follows.

We know that the three properties units are different; therefore, we first need to convert the data
to the same format. “Ò” indicates that the property value is greater and thus better; “Ó” indicates the
opposition. (a, b), where a and b are numbers, indicates that, if the property value of a data object is in
this interval, the value will be better.

Extract the optimal referenced standard X0 according to the characteristics of the three properties,
and its expression is X0 “ tX01, X02, X03u, which is described as follows:

Considering the characteristic of the traffic flow velocity as “Ò”, we use

X0j “ maxXij pi P N, j “ 1q (2)

Considering the characteristic of the traffic flow density as “Ó”, we use

X0j “ minXij pi P N, j “ 2q (3)

Considering the characteristic of the traffic flow volume as “Ó”, we use

X0j “
"

Xij|min
ˇ̌̌
ˇXij ´ pa ` bq

2

ˇ̌̌
ˇ pi P N, j “ 3q

*
(4)

4.1.2. Data Normalization Processing

Because there are different types of data, the units are also different. According to the
characteristics of the properties, the data of the analysis domain are processed using different measures,
and the data are compressed to (0, 1). The processing is as follows:

For the traffic flow velocity of the whole data set, we use

Xi pjq “
ˇ̌̌
ˇ̌ Xij ´ Xj min

Xj max ´ Xj min

ˇ̌̌
ˇ̌ pi “ 0, 1, . . . , n, j “ 1q (5)

For the traffic flow density of the whole data, we use

Xi pjq “
ˇ̌̌
ˇ̌ Xij ´ Xj max

Xj max ´ Xj min

ˇ̌̌
ˇ̌ pi “ 0, 1, . . . , n, j “ 2q (6)

For the traffic volume of the whole data set, we use

Xi pjq “
$’&
’%

1 ´
ˇ̌̌

Xij´X0j
X0j

ˇ̌̌
,

ˇ̌̌
Xij´X0j

X0j

ˇ̌̌
ď 1 and i “ 0, 1, . . . , n, j “ 3

0,
ˇ̌̌

Xij´X0j
X0j

ˇ̌̌
ą 1 and i “ 0, 1, . . . , n, j “ 3

(7)

Xij is the original matrix element in the above Equations (5)-(7) and is normalized to Xi pjq, where
Xj max represents the maximum of the jth column and Xj min represents the minimum of the jth column,
and anything inside of braces is the limiting condition. After normalization, we obtain (p + 1) matrices,
namely, A0, A1, . . . , Ap where A0 can be acquired by normalizing the optimal referenced standard
X0 and the comparative object set. Meanwhile, A1, A2, . . . , Ap can be acquired by normalizing the
referenced array set and the comparative object set, where A0 and Ap are defined as
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A0 “

»
—————–

X1 p1q X1 p2q X1 p3q
X2 p1q X2 p2q X2 p3q

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
Xn p1q Xn p2q Xn p3q
X0 p1q X0 p2q X0 p3q

fi
ffiffiffiffiffifl Ap “

»
—————–

X1 p1q X1 p2q X1 p3q
X2 p1q X2 p2q X2 p3q

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
Xn p1q Xn p2q Xn p3q
Yp p1q Yp p2q Yp p3q

fi
ffiffiffiffiffifl (8)

The last row of the matrix A0 is normalized to the optimal referenced standard sequence, and the
last row of the matrix Ap is the pth normalized referenced standard array.

4.1.3. Calculating Grey Relational Degree and Generating Grey Relational Similar Matrix

(1) The grey relational degree reflects the high degree between two comparative objects.
For example, we focus on calculating the grey relational degree of the matrix A0. The formulas
are as follows (Equations (9) and (10)):

γ0ipkq “
min

i
min

k
|X0 pkq ´ Xi pkq| ` σmax

i
max

k
|X0 pkq ´ Xi pkq|

|X0 pkq ´ Xi pkq| ` σmax
i

max
k

|X0 pkq ´ Xi pkq| pk “ 1, 2, 3q (9)

γ0i “ 1
m

mÿ
k“1

γ0i pkq (10)

where σ is the resolution coefficient, which has a range of 0 to 1. Generally, we assume that σ is 0.5.
γoi pkq is the correlation coefficient between Xi and X0 at the kth point. The grey relational degree
is expressed by γoi pkq, where X0 is regarded as the referenced sequence and Xi is regarded as the
comparative sequence. Similarly, we can obtain γij when Xi is regarded as the referenced sequence
and Xj is regarded as the comparative sequence. Then, X1, X2, . . . , Xn, X0 are regarded as the
referenced sequence; meanwhile, the (n + 1) sequences are regarded as comparative sequences
(the (n + 1) sequences are not only referenced sequences but also comparative sequences). Finally,
we calculate the grey relational degree matrix Γ0

pn ` 1q ˆ pn ` 1q according to the grey relational analysis,

where Γ0
pn ` 1q ˆ pn ` 1q is obtained based on A0 and consists of any γij pi “ 1, 2, . . . , n, n ` 1, j “ 1, 2, 3q.

Similarly, we can calculate the grey relational degree matrices Γ1, Γ2, . . . , Γp based on A0, A1, . . . , Ap.

(2) Calculate grey relational similar matrix G

We calculate the similarity elements gij “ `
γij ` γji

˘ {2 in G. G0, for example, is the grey relational
similar matrix obtained when X0 is regarded as the referenced sequence, and the (n + 1)th row grey
relational similarity elements of G0 are calculated when X0 is regarded as the optimal referenced
sequence. Similarly, we can obtain p + 1 grey relational similar matrices: G0, G1, . . . , Gp.

4.1.4. Grey Relational Degree Clustering Analysis

Based on G, i.e., the grey relational similar matrix, we construct the maximal relational tree, which
consists of the values of the last row elements ordered in G. This is shown in Figure 3.

Figure 3. Maximal relational tree.

Based on G0, we can obtain gij, which is also called the closeness degree between Xi and Xj.
The greater gij is, the closer Xi and Xj are; in contrast, Xi and Xj are further away for decreased
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gij. Based on Figure 3, the maximal relational tree with closeness degrees is generated, as shown in
Figure 4, where ai represents the closeness degree between Xi and Xj.

 

Figure 4. Maximal relational tree with closeness degrees.

Based on Figure 4, we set the isolated point coefficient λ, which is in the interval (0, 1). We cut
the tree when the closeness degree is less than λ and when adjacent branches exhibit substantial
differences. Therefore, the disconnected tree is used to make its connected branches form k levels of
clusters along the horizontal. We consider the closest branch as the first level and the loosest branch as
the kth level (If k ě 4, we also classify the fifth branch, the sixth branch, the seventh branch, and even
the kth branch as the fourth rank. This is to say that smooth corresponds to the first rank and that
heavy jam corresponds to the fourth rank). Thus, in this way, we can obtain a cluster member of G.
Therefore, we use Γ0, Γ1, . . . , Γp to compute p + 1 grey relational similarity matrices G0, G1, . . . , Gp,
from which we can find the closeness relationship among each object. Therefore, we can obtain p + 1
clustering results, namely, cluster members.

4.2. Establishing Evaluation Function for Grey Relational Clustering System

According to the above initial clustering results, we use rough set theory to establish the decision
table system that is applied to weight the contribution of cluster members to the clustering results and
give weights to the cluster members.

4.2.1. Describing How to Establish the Decision Table System

First, the optimal referenced standard and the referenced standard set are combined with
the comparative object set through the grey relational clustering method to construct the decision
table system F “ xU, C, D, V, f y,where U “ tX1, X2, . . . , Xnu represents analysis domain data;
C “ �

c1, c2, . . . , cp
(

are conditional attributes and are cluster members formed by the referenced
standard set; D “ tdu, as the decisional attribute, is the cluster member obtained using the optimal
referenced standard; V “ VC Y VD, VC “ YVch , c P C are the range of the set of traffic flow properties,
where Vch represents the level in cluster member ch (h = 1, 2, . . . , p); f represents the evaluation
function, f : U ˆ pC Y Dq Ñ V ; and f pXi, chq P Vch represents the level of Xi in cluster member ch.

4.2.2. Calculating Information Entropy

In the decision table system, the information entropy weight Ipch, Dq indicates how important the
cluster member ch (conditional information) is for result D (decisional information) when the optimal
referenced standard is chosen to calculate the cluster member. According to the information entropy of
rough set theory, Ipch, Dq is described as follows:

I pc, Dq “ H pDq ´ H pD|tcuq (11)

H pcq “ ´
kÿ

i“1

P pRCiq log pP pRCiqq (12)

H pD|tcuq “ ´
kÿ

i“1

P pRDi|RCiq log pP pRDi|RCiqq (13)

P pRCiq “ |RCi|
|X| (14)
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P pRDi|RCiq “ |RDi X RCi|
|RCi| (15)

where i “ 1, 2, . . . , k (k is the number of clusters), RCi represents the ith divided cluster of cluster
member c, |RCi| represents the number of elements in the ith cluster, and |X| “ n. A larger conditional
attribute c is more important to the decisional information D. In addition, H pcq and HpD|tcuq are
determined by the conditional information entropy of rough set theory. Thus, the relative weight
of each cluster member can be determined, and a more important cluster member corresponds to a
greater weight.

4.3. Calculating the Level of Clustering Membership of Data Objects

Step 1: Calculate the importance of the attribute information entropy Eh “ I pch, Dq for each
cluster member ch in the decision system, where h “ 1, 2, . . . , p.

Step 2: Set the relative weight of each cluster member:

ωh “ Eh{
pÿ

h“1

Eh (16)

Step 3: Use probability theory to calculate the probability of each data object emerging in every
clustering based on the relative weights to choose the level whereby the probability is maximized.
Furthermore, obtain the final clustering results. In addition, data object Xi belonging to the jth level
pj “ 1, 2, . . . , kq is defined as

P
´

Xj
i

¯
“

pÿ
h “ 1

Mik “ j

wh (17)

where Mik represents the level of data object Xi in cluster member ch, which has been computed in
grey relational clustering. Thus, the grey relational membership degree level of Xi can be expressed as:

Level pXiq “ tj| max
j“1Ñk

pPpXj
i qqu (18)

The final result is C “
!

C1, C2, . . . , Ck
)

, where Ck includes all data objects whose grey relational
membership degree level is the kth level:

Ck “ tXi|Level pXiq “ k, Xi P Xu (19)

4.4. GMRC Algorithm Detail Description

In this paper, we study the problem of multidimensional-attribute information clustering for
traffic flow and propose the GMRC algorithm. First, we transform the dataset into matrix form, extract
the optimal referenced standard from the dataset, and then perform the normalized processing to
eliminate the effects of different units. Furthermore, we obtain the preliminary clustering results
according to grey relational theory analysis. Finally, we build a decision table system to calculate the
relative weight for each cluster member. The algorithm is described as follows.

Input: Analysis domain data set X “ tXi|Xi “ pXi1, Xi2, Xi3qu i P N,

Referenced array set Y “ tYi|Yi “ pYi1, Yi2, Yi3qu pi “ 1, 2, . . . , pq.
Output: The level (rank) set of analysis domain data objects
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Algorithm 1: GMRC (X,Y)

1 Level = null; Weight = null; Member = null; Entropy = null;
//Initialize sets Level, Weight; Matrix Member, Entropy

2 Data_ Preprocessing (X,Y); // Data pre-processing
3 X0 = ExtractOptimal (X); // Extract the optimal referenced standard
4 S = Normalization (X,Y); // Normalization processing
5 T = MaxRelTrees (S) // Construct the maximum relational trees
6 T’ = ClosenessTrees (T) // Construct the maximum relational tree with closeness degree
7 Member0 = GreyCluster (X,X0); // Regard X0 as referenced standard to compute cluster member
8 Foreach (Yi in Y)
9 Memberi = GreyCluster (X,Yi); // Regard Yi as referenced standard to compute cluster member

10 End
11 F = DecisionSystem (Members); // Establish the decision table system F
12 Entropy = CalculateEntropy (F); // Calculate the information entropy for each cluster member
13 Weight = CalculateWeight (Entropy); // Calculate relative weights for each cluster member
14 CalculateLevel (X); // Calculate membership degree level of Xi in X

The above steps of the algorithm are described as follows:
Step 1: Initialize the parameters, pre-process traffic flow data, set the threshold to filter and delete

abnormal data objects (lines 1 and 2).
Step 2: According to the features of the three properties of the traffic flow data, extract the optimal

referenced standard from the analysis domain data (line 3).
Step 3: Normalize the analysis domain data set in combination with the referenced standard

sequences (line 4).
Step 4: Compute the grey relational degree of the corresponding matrix; further, determine the

grey relational similarity matrices and then construct the maximum relational trees based on the
(n + 1)th row elements of those matrices (line 5).

Step 5: Based on Step 4, construct the maximum relational tree with closeness degrees (line 6).
Step 6: Compare the closeness degree between data objects, cut off the tree when the closeness

degree is less than λ and adjacent branches exhibit large differences, and then obtain k levels of
clustering results. Similarly, we obtain in total p + 1 cluster members from the p + 1 referenced arrays
(lines 7–10).

Step 7: Establish the decision table system based on p cluster members as conditional attributes
obtained from the referenced standard array set. In addition, the only cluster member obtained from
the optimal referenced standard (line 11) is regarded as the decisional attribute.

Step 8: Compute the information entropy of cluster members for decision making, which is used
to weigh the contribution of each cluster member to the clustering results (line 12).

Step 9: Calculate the weight of each cluster member (line 13).
Step 10: Calculate the probability of each data object emerging in every clustering; then, choose

the level when the probability is maximized. Furthermore, obtain the final clustering results (line 14).

4.5. Grey Relational Membership Function

The performance of the traditional clustering results depends on the distance between elements
inside classes and the distances between classes. Shorter distances between elements inside a class
indicate better classes; conversely, longer distances between classes indicate better classes [12].
Our purpose for clustering is to obtain the membership degree rank of classes and to judge the
rank of data objects. Thus, we construct a membership function reflecting the similarity between
elements inside a class and the similarity between classes based on the grey relational similarity degree.
Assume that γX,Y is denoted as the grey relational similarity degree between object X and object
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Y, and C “
!

C1, C2, . . . , Ck
)

represents divided clusters. SC, which is used to weigh the division C,
is defined as

Sc “ 1
k

kÿ
i“1

1ˇ̌
Ci

ˇ̌ ˆ ˇ̌
Ci

ˇ̌ ÿ
X,YPCi

γXY ` 1
k pk ´ 1q

kÿ
i“1

p
kÿ

i“1,l‰i

1ˇ̌
Ci

ˇ̌ ˆ ˇ̌
Cl

ˇ̌ ÿ
XPCi ,YPCl

γXYq (20)

5. Experimental Results and Analysis

In this paper, we collected traffic data for Nanjing trunk roads, which connect the main commercial
areas and which include high traffic volumes and high-density residential areas. These roads need to
be cleared in a timely manner before traffic jams can occur. Generally speaking, people’s daily routines
are very regular [13]: go to work in the morning and go home at dusk. However, this can quickly
lead to traffic congestion during rush hours. A previous study noted that a single parameter, such
as velocity, used to describe traffic congestion states is insufficient. To obtain detailed knowledge for
judging traffic congestion, comprehensive analysis of the three variables of traffic flows for determining
the traffic flow state can be used to reflect the real conditions of the road for predicting traffic jams [14].
To test our algorithm, we experimentally collected traffic flow data from 50 monitoring points along
Nanjing’s trunk roads during the time periods of approximately 7:00–9:30 a.m. and 4:30–7:00 p.m.,
which correspond to the rush hours. In addition, we chose 30 drivers with more than five years of
driving experience as testers and watched their vehicle driving videos to obtain their evaluation of
the traffic flows’ four states (smooth, light jam, jam, and heavy jam) [15]. Then, we evaluated the
clustering results to validate the accuracy of our algorithm compared with other clustering methods
such as the K-means algorithm and the FCM algorithm.

In this experiment, we assumed that the resolution coefficient σ is 0.5 and that the number of levels
is 4. Because the algorithm is stochastic in nature, the average results of 20 tests for each algorithm on
each dataset are used as the experimental results. Table 1 shows the corresponding information entropy
of the four cluster members obtained by the primary clustering data samples, namely, the relative
weights of the cluster members. To verify the performance of our algorithm, six sample points were
randomly selected from the dataset, as shown in Table 2. In Table 2, we find that the clustering of the
traffic state is most closely related to traffic flow velocity; however, the velocity cannot fully determine
the traffic state. For example, the traffic flow speed in the 459th group is 40.3 km/h, and the state
is a light jam. However, the traffic flow speed in the 812th group is 45.5 km/h, which is greater
than 40.3 km/h, but the state is a jammed state. This phenomenon occurs mainly because the traffic
volume of the latter is greater than that of the former. The three properties of the traffic flow should be
comprehensively considered rather than only the velocity.

Table 1. Relative weights of cluster members.

Cluster Members Relative Weights

C1 0.3746
C2 0.2644
C3 0.2128
C4 0.2481

Table 2. Random samples.

Samples Traffic Flow Velocity Traffic Flow Density Traffic Volume Results

15 66.0 58.2 16.2 Smooth
35 35.2 70.3 25.6 Jam
106 50.8 66.9 23.9 Smooth
459 40.3 68.3 31.2 Light Jam
689 10.8 81.9 41.7 Heavy Jam
812 45.5 63.6 58.9 Jam
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5.1. Complexity Analysis

We suppose k levels, n data objects, m dimensions, and p referenced standard sequences.
The complexity of the GMRC algorithm is described in the following.

5.1.1. Time Complexity Analysis

The time for constructing the initial matrix is O pm ˆ nq. Extracting the optimal referenced
standard requires access to all elements in the initial matrix, and the time complexity is also
O pm ˆ nq. The time complexity of the matrix normalization is O pp ˆ n ˆ mq. The grey relational
degree calculation requires access to all the elements in n grey relational similarity degree matrices;
therefore, its time complexity is approximately O pn ˆ m ˆ p ˆ nq. The time complexity of sorting
the (n + 1)th row grey relational degree elements for p grey relational similarity degree matrices is
O

`
p ˆ n2˘. Calculating the information entropy for the cluster members needs O pp ˆ kq. The time

needed to calculate the clustering membership degree analysis domain data is O pn ˆ p ˆ kq. According
to the above analysis, the average time complexity of the GMRC algorithm is O

`
k ˆ m ˆ p ˆ n2˘.

5.1.2. Space Complexity Analysis

The complexity of analyzing the domain initial matrix is O pm ˆ nq in space, and the complexity
of analyzing the similarity degree matrix with space complexity is O

`
p ˆ n2˘. In addition, the space

complexity of determining the grey relational membership degree in the GMRC algorithm is O pk ˆ pq.
Therefore, the total space complexity of the algorithm is O

`
k ˆ p ˆ n2˘.

5.2. Impact of Isolated Point Coefficient λ on the Clustering Results

From Figure 5, we can find that, based on different numbers of data samples, the grey relational
membership function value gradually increases with increasing λ. This is because with increasing λ,
the grey relational similarity degree between the elements inside classes increases, and this accounts
for the dominant position. Clearly, when λ is between 0.84 and 0.87, the function value is maximized.
Then, as λ continues to gradually increase, the function value decreases. This is because the grey
relational similarity degree between classes occupies the dominant position. From the perspective
of the grey relational similarity degree between data objects, we analyze the closeness degree inside
classes and among classes and fully utilize the multi-dimensional information feature and the overall
change in the three properties to better describe the closeness degree between data objects. Therefore,
in the next experiment, the range of λ is set as (0.84, 0.87).

Figure 5. Grey relational membership function as a function of λ.
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5.3. Comparison with Other Algorithms

Figure 6 illustrates the accuracy rate of the GMRC, K-means and FCM clustering algorithms
in each class. We find that the accuracy of GMRC in each class and under different λ is higher
than that of the K-means and Fuzzy algorithms. This is because the GMRC algorithm uses the data
attribute index feature to compute the grey relational similarity degree and takes the quality of cluster
members into consideration. Thus, the algorithm effectively improves internal class similarity to
achieve ranked clustering.

Figure 6. Comparison of accuracy rate of each class among GMRC, K-means and FCM algorithms.

Figure 7 shows the average accuracy of our GMRC algorithm under different λ and that of the
K-means and FCM algorithms. From Figures 6 and 7 we can conclude that the average accuracy of the
GMRC algorithm is higher than that of the K-means and FCM algorithms. In addition, the average
accuracy of the GMRC algorithm is 24.9% higher than that of the K-means algorithm and 30.8% higher
than that of the FCM algorithm. In addition, our new algorithm exhibits better stability. Because our
algorithm does not need to randomly choose the initial center point, as in the K-means algorithm,
the stability of the algorithm is not affected by the stochastic nature of the algorithm.

Figure 7. Comparison of average accuracy rate among the GMRC algorithm with different λ and the
K-means and FCM algorithms.
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6. Conclusions

Judging traffic congestion states is the premise and basis for dynamic traffic congestion warning,
traffic guidance, actively avoiding traffic congestion and ensuring smooth roads. However, traffic
jams are usually judged by experience. This paper collects traffic flow data and provides a more
effective judgment method. We introduce both grey relational analysis and rough set theory to the
GMRC algorithm and weigh the membership degree of data object clustering using comprehensive
information about the data. In this process, we construct the maximum relational tree with closeness
degree and compare the closeness degree between data objects. We cut off the tree when the closeness
degree is less than λ and when adjacent branches exhibit large differences. Consequently, we obtain
p + 1 cluster members. Next, we establish a decision table system based on p cluster members as
conditional attributes obtained from referenced standard array sets. Then, we calculate the probability
of each data object emerging in every clustering, choose the rank when the probability is maximized,
and finally obtain the final clustering results. Thus, our algorithm fills the gaps present in the literature
whereby the K-means and FCM algorithms cannot differentiate which rank a clustering belongs to.
The experimental results show that the proposed algorithm, which takes the characteristics of the
multidimensional data object attributes into consideration, is a superior algorithm. Next, we plan on
applying grey relational similarity to other algorithms and to consider reducing the computational
complexity of the algorithm.
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Abstract: Road anomalies, such as cracks, pits and puddles, have generally been identified by
citizen reports made by e-mail or telephone; however, it is difficult for administrative entities to
locate the anomaly for repair. An advanced smartphone-based solution that sends text and/or
image reports with location information is not a long-lasting solution, because it depends on
people’s active reporting. In this article, we show an opportunistic sensing-based system that
uses a smartphone for road anomaly detection without any active user involvement. To detect
road anomalies, we focus on pedestrians’ avoidance behaviors, which are characterized by changing
azimuth patterns. Three typical avoidance behaviors are defined, and random forest is chosen as
the classifier. Twenty-nine features are defined, in which features calculated by splitting a segment
into the first half and the second half and considering the monotonicity of change were proven to be
effective in recognition. Experiments were carried out under an ideal and controlled environment.
Ten-fold cross-validation shows an average classification performance with an F-measure of 0.89 for
six activities. The proposed recognition method was proven to be robust against the size of obstacles,
and the dependency on the storing position of a smartphone can be handled by an appropriate
classifier per storing position. Furthermore, an analysis implies that the classification of data from an
“unknown” person can be improved by taking into account the compatibility of a classifier.

Keywords: road anomaly; avoidance; behavior recognition; smartphone; opportunistic sensing

1. Introduction

Road anomalies, such as cracks, pits, puddles and fallen trees, are generally identified from
citizen reports and are repaired by administrative entities. In most cases, the reports are made by
telephone or e-mail, which makes it difficult for the administrative entities to identify the location of
the anomaly. To address this issue, administrative entities and third parties are attempting to provide
smartphone-based applications that accept text and/or image reports with location information [? ? ].
Such human-centric sensing is often called participatory sensing [? ]. Although the success of these
applications depends on people actively reporting tasks, very few of the citizens who downloaded
these applications have actually reported anomalies [? ]. Therefore, we propose a method to detect road
anomalies implicitly based on opportunistic sensing. Opportunistic sensing is another human-centric
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sensing paradigm, in which the data collection process is automated without any user involvement [?
].

To detect road anomalies, we focus on avoidance behaviors. Recognizing avoidance behaviors
and aggregating events with locations can help to generate automatic anomaly reports. Automatic road
anomaly detection techniques for cars and bikes have already been proposed [? ? ? ? ? ], but these
cases deal with relatively large movements. In contrast, we consider that pedestrians’ avoidance
behaviors are too slight to make the adaptation of existing methods acceptable. The contributions of
this article are as follows:

• A smartphone-based road anomaly detection system is presented, in which obstacle avoidance
behaviors are categorized into three classes. The three classes include: (1) returning to the
same line in the vicinity of avoiding an obstacle; (2) going straight after avoiding an obstacle;
and (3) reversing his/her course; which may indicate the impact of the obstacle on pedestrians.
The three classes may indicate the severity of obstacles, which would be helpful for an
administrative entity to plan a repair schedule.

• Twenty nine classification features are defined based on the characteristics of the azimuth change
of each class. The relevance of the features is evaluated.

• We extensively analyze the effects of various factors on the recognition performance.
This includes the individuals who provide data for training classifiers and the position of sensors
(i.e., smartphones) on their bodies, as well as the size of target obstacles.

An initial decision on the position and the class of an obstacle is made on the smartphone side
against a stream of sensor data, while the collected information from a number of pedestrians is
utilized to make the final decision. Low-power operation and server-side processing are beyond the
scope of this article. Furthermore, we do not deal with a method of distinguishing a normal behavior,
e.g., walking along a curved road, from avoidance behavior. Instead, we focus on classifying a data
segment of avoidance behavior into one of six (three classes × right and left turns) classes.

The remainder of this article is organized as follows. In Section ??, related work is presented.
Section ?? shows the system overview, followed by offline experiments in Section ??. Finally, Section ??

concludes the article. Note that, in [? ], we proposed the basic idea of smartphone-based road
anomaly detection. This article has extensions in the following points: a section of related work is
added in order to clarify the uniqueness of the work (Section ??); the overall system ideas are presented,
including not only the local processing on the smartphone, but also the server side processing to filter
out erroneous detection from the smartphone side (Section ??); the detail of avoidance behavior
recognition (on the smartphone) is described, including how the raw azimuth data stream is processed
into the final avoidance event and detail definition of features (Section ??); experiments were carried
out with different conditions, i.e., a type of behavior “straight” was excluded, because we considered it
could be done in the preprocessing stage; and extensive analyses about person dependency (Section ??),
sensor-storing position dependency (Section ??) and robustness to unknown obstacle size (Section ??)
were undertaken.

2. Related Work

Motorcycles and other vehicles are often used as a method of automatic road anomaly detection
and unsafe behavior detection [? ? ? ? ? ? ? ? ]. Thepvilojanapong et al. [? ] and Kamimura et
al. [? ] proposed a method using a smartphone-mounted accelerometer and gyroscope to detect
driving activities, such as turning left or right, going forward or bicycles and motorcycles going
past nearby cars. Iwasaki et al. [? ] proposed a method to recognize road characteristics, such
as an intersection with poor visibility and a congested road based on the bicycle riding behavior.
Additionally, a special sensor unit that measures rudder angle and velocity was developed for bicycle
riders to detect hazardous locations [? ]. The vertical displacements of vehicles passing over bumps
and potholes are often subject to monitoring in the case of cars [? ? ? ? ? ]. In contrast, Chen et
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al. recognized driving factors that cause horizontal displacements, such as a lane change, S-shaped
curved road, turning or L-shaped curved road [? ]. In the above-mentioned work, all but [? ] utilized a
smartphone-mounted accelerometer, gyroscope and/or magnetometer. This shows the possibilities
of smartphones as easy-to-deploy sensors in combination with a positioning technique, e.g., GPS.
Furthermore, the aggregation of data followed by proper analysis can create new types of information
content for comfortable and safe transport systems. Our work shares its motivations with the above
studies. However, we focus on road anomalies from the pedestrian’s point of view. In addition,
although the above-mentioned work on horizontal displacement [? ? ? ? ] might find similar
trajectories of moving objects, bicycles and cars have larger and faster movements than pedestrians,
and so, applying the existing methods to our domain would be difficult.

For pedestrian-based road condition monitoring, Jain et al. proposed a shoe-based ground
gradient sensing technique [? ]. A sensing unit composed of a magnetometer, accelerometer and
gyroscope is mounted on shoes, which collect data that detect the transitions between sidewalks and
streets through the recognition of dedicated slopes. The primary motivation of those studies was to use
the data to alert texting pedestrians who are about to step into the street. The slope sensing technique
can also detect the vertical condition of sidewalks, e.g., bumps. Additionally, the shoes can detect
turns and moving direction. These capabilities suggest that augmented shoes can be combined with
our system as a sensor to detect horizontal behavior changes.

3. Avoidance Behavior Recognition

3.1. System Overview

Figure ?? illustrates the concept of the proposed system. The proposed system is designed to
identify a road anomaly in an automatic manner, which consists of an avoidance behavior recognition
function with location measurement on the smartphone side and aggregation and filtering functions
on the server side. An avoidance behavior is recognized by measuring azimuth changes of the
walking direction by a smartphone-mounted accelerometer and magnetometer. In the Android API,
these two sensors are internally utilized to obtain azimuth data. The position where the avoidance
event occurs is measured by a positioning technique, such as GPS. The information is sent to a database
on the server side. In Figure ??, av1, av2 and av3 indicate the candidates of avoidance events. Note that
power consumption is a central issue for the success of opportunistic sensing from the user’s point
of view. To minimize the communication with a server, the processing for the avoidance event detection
is carried out on the terminal side, and only events of avoidance behavior are sent to the server.
Additionally, we assume the GPS receiver is activated only when an avoidance event is detected
(the positional gap between the time of event detection and that of GPS-ready is also considered).

The aggregated information may contain erroneous events that are falsely recognized as avoidance
behaviors, such as one person passing another person and looking behind with the smartphone
terminal in his/her hand, as well as the effect of positioning error. Therefore, spatio-temporal filtering
should be applied to extract only “static obstacles” on the road (e.g., [? ]). In Figure ??, av1 is such
a false detection, and the system finally identifies a road anomaly near the position of av2 and av3.
Calculating the center of the positions of avoidance behavior events is a simple solution. Additionally,
a geographical information system (GIS) for map-matching the position of an event on a road can
be applied. A GIS can also be utilized to eliminate an event falsely classified as avoidance, which is
actually normal behavior, by reflecting the semantics of the road, i.e., identifying that a curve exists at
position (x, y). This article focuses on the avoidance recognition functionality on the smartphone side.
Low-power positioning and server-side processing are beyond the focus of this article.
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Figure 1. Concept of the automatic road anomaly reporting system.

3.2. Avoidance Behavior Modeling

We focus on detecting anomalies on the road surface, such as pits, cracks, puddles, fallen trees
and landslides. These anomalies make pedestrians change their walking paths as a natural defensive
behavior [? ]. The avoidance behavior during walking is modeled by the combination of three elements:
(1) avoiding direction (left or right); (2) going through an obstacle (avoid) or going back (return);
and (3) a direction change after avoiding an obstacle. In total, six types of avoidance behaviors
are defined, as shown in Figure ??: avoidLR, avoidL, avoidRL, avoidR, returnL and “returnR”. Here,
the postfix “LR” indicates, for example, that the pedestrian changes direction to the left followed by a
change to the right, whereas the postfix “L” alone does not have the second change after the first change
to the left. The horizontal dotted line in Figure ?? indicates the pedestrian’s straight walking path.
Furthermore, d represents the size of an avoidance behavior, which is primarily determined by the
physical size of an obstacle, i.e., the avoidance behavior size equals the obstacle size. The perceived
size may also affect the behavior or, in other words, the severity of the anomaly. We collectively call
d “obstacle size” or “size of obstacle”. The typical waveforms of raw azimuth signals are shown in
Figure ??.

∟

Figure 2. Definition of avoidance behavior.
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Figure 3. Raw azimuth signals of avoidR (top), avoidRL (center) and returnR (bottom).

3.3. Avoidance Behavior Recognition

As shown in Figure ??, the recognition system takes a segment of the azimuth data as input
and classifies the segment into one of six behaviors. The recognition task should be performed on
streaming sensor data. Sliding variance can be calculated on streaming data to emphasize the start
and the finish of the change of walking direction. However, a change of walking direction also occurs
when a pedestrian turns a corner or walks along a curved road, which are normal behaviors and
should not be detected as obstacle avoidance. Therefore, special care is required to distinguish these
situations from one another. Automatic segmentation is beyond the focus of this article, and we utilize
manually-segmented data to focus on recognizing the six behaviors.

F = f1, f2, , f29( )T

Figure 4. Avoidance behavior recognition flow.
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3.3.1. Waveform Shaping

The waveform shaping process works as a preprocess and is composed of azimuth change
detection and smoothing. We obtain the azimuth value from an Android API. The value, which
is calculated from accelerometer and magnetometer data, ranges from 0◦ to 359◦. Therefore, a
non-contiguous change appears when the walking direction crosses the north, i.e., 0◦, as observed in B’
of Figure ??. In this case, a person is supposed to change the direction from near west-northwest (P =
335.2◦) to near east-northeast (Q = 21.4◦). Furthermore, the value is normalized by converting it from
the first value into a relative value. Then, the azimuth change in a segment is calculated by Algorithm
??, in which Lines 7 to 9 handle a non-contiguous change. The transformed signal is shown in C of
Figure ??.

Algorithm 1 Calculate Azimuth Change Relative to the First Value in a Segment.

1: procedure AZIMUTHCHANGE(araw) � araw represents an array of a segment.
2: th ← 200 � A threshold value to judge if a non-contiguous change appears
3: segnum ← araw.length
4: achange,0 ← 0
5: for i ← 1, segnum − 1 do

6: δ ← araw,i − araw,i−1
7: if |δ| > th then

8: δ ← δ − sgn(δ)× 360 � sgn(x) returns −1 if x < 0, 1 if x > 0, and 0 if x = 0.
9: end if

10: achange,i ← achange,i−1 + δ

11: end for

12: return achange � Returns an array of azimuth change relative to the initial value
13: end procedure

In addition, to remove the effect of body motion, i.e., smoothing, a moving average is applied as
a low-pass filter, as shown in D of Figure ??. The window size for the moving averages is 1/6 of the
segment of azimuth data, as determined in a preliminary experiment.

3.3.2. Behavior Classification

Behavior classification, which consists of feature calculation and supervised classification,
is performed after waveform shaping. In total, we specified 29 features, which are summarized in
Table ??. These features mainly contain basic statistics, such as mean, maximum, minimum, range, first
and third quartiles, inter-quartile range (IQR), variance, standard deviation, summation, summation of
squares, root mean square (RMS) and absolute values. In lining up features, we paid special attention
to the fact that the trajectories of avoidRL and avoidR are clearly distinguished from each other after
passing an obstacle (Figure ??), so we split a segment into two parts at the center of the segment.
Features calculated from the first half segment and the second half segment have subscripts FH and
SH, respectively. In contrast, features from an entire segment have the subscript ALL. Note that Table
?? is listed in order of contribution to the classification. Not all of the corresponding effects of features
can be significant or could even have a negative impact, which is discussed in Section ??.
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Figure 5. Segmentation of avoidRL and avoidR.

Table 1. Features, listed in order of contribution from upper left to lower right.

f1 minSH f16 maxFH
f2 maxSH f17 sum o f squaresSH
f3 meanSH f18 varianceALL
f4 sumSH f19 standard deviationALL
f5 meanFH f20 sum of absolute difference of
f6 meanALL both ends of 10 subsegments
f7 medianALL f21 sumFH
f8 ratio o f rangeALL to ΔSF f22 IQRALL
f9 sumALL f23 3rd quartileALL
f10 rangeALL f24 1st quartileALL
f11 minALL f25 RMSALL
f12 absolute minALL f26 sum o f squaresALL
f13 maxALL f27 varianceFH
f14 absolute maxALL f28 sum o f squaresFH
f15 minFH f29 varianceSH

ALL: an entire segment; FH and SH: first half and second half of a segment; IQR: inter-quartile range;
RMS: root mean square; ΔSF: absolute difference between values at the start and the finish.

To calculate the eighth feature, ( f8) is introduced to represent the monotonicity of the azimuth
change in a segment. As shown in Figure ??a and expressed by Equation (??), the feature gets
larger as the maximum (maxALL) and the minimum (minALL) values approach both ends (startALL
and f inishALL). We consider that “returnR” has the largest value of the three behaviors because the
azimuth change of “returnR” is ideally a monotonic increase or decrease (see Figure ??).

f8 = | maxALL − minALL
startALL − f inishALL

| (1)

a

b

maxALL

minALL

startALL

finishALL

a0/10
a1/10
a2/10

a3/10
a4/10
a5/10a6/10

a7/10
a8/10
a9/10

a10/10

Figure 6. Notations for f8 and f20.
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For the 20th feature ( f20), a segment is equally divided into 10 subsegments, and the absolute
difference between both ends of each subsegment is summed up to 10 subsegments. The notation
is illustrated in Figure ??b, as well as expressed by Equation (??). The rationale for introducing this
feature is that a behavior with a large azimuth change tends to have a large absolute difference.
As shown in Figure ??, avoidR has a smaller value than avoidRL due to a lack of azimuth change in the
second half of the segment. Meanwhile, returnR should have the largest change because the walking
direction changes to the opposite side.

f20 =
9

∑
i=0

|a(i+1)/10 − ai/10| (2)

Regarding the recognition (classification) functionality, handmade rule-based approaches [? ? ],
a statistical machine learning approach (J48decision tree) [? ] and a probabilistic approach (hidden
Markov model (HMM)) [? ] were utilized in the literature of horizontal displacement recognition.
A handmade rule-based approach can be considered as a form of decision tree in that “if-then” rules
are set using the expert knowledge. Therefore, the decision-making process is more interpretive than
what the J48 decision tree provides; however, the approach requires the careful design of the rule, and
thus, the case with a small number of recognition classes seems to be suitable, e.g., three for [? ] and
two for [? ]. The avoidance behavior recognition problem can be regarded as a time series pattern
recognition, in which HMM is one of the following: popular approach speech [? ], hand-written
character [? ] and gesture recognition [? ]. However, the HMM-based system is considered to require a
sizable amount of training to data to perform well [? ? ]. Based on these considerations, we utilized
a supervised learning classifier. The comparison among various types of classifiers is presented in
Section ??.

4. Offline Experiment

An offline experiment was carried out on various aspects, such as contributing features and
the difference in individuals, the storing positions and the sizes of obstacles, in addition to the basic
classification performance.

4.1. Dataset

Data collection was performed as summarized in Table ??, and Figure ?? shows a scene of
data collection. A “cross” mark was placed on the ground as an obstacle. Subjects were asked to walk
on a straight path while avoiding obstacles with directed types of avoidance behaviors. They started
walking about seven meters behind the center of the obstacle. The timing of the start and the finish in
each avoidance behavior was based on their decisions, although they were asked to walk past a mark
that represented the edge of an obstacle. The segmentation was done by hand.

Figure 7. A scene of data collection.
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Table 2. Condition of data collection.

Types of avoidance avoidRL, avoidR, returnR

Size of obstacles (d) 0.2, 0.5, 0.7, 1.0, 1.5 m

Storing positions
hand (texting), trousers front pocket,

trousers back pocket, chest pocket

Subjects 7 males and 2 females in their 20s

Number of trials 6 times per condition

Terminal Samsung, Galaxy Nexus

Android version Android 4.2.1

Sensor type Sensor.TYPE_ORIENTATION

Sampling rate 10 Hz

In addition to the original data, we synthesized avoidLR, avoidL and returnL based on the findings
that avoidance behaviors have left-right symmetry [? ]. As shown by Equation (??), the synthesis
is realized by inverting the sign of each sample. Here, aL,k and aR,k indicate the k-th sample in the
collected data and in the synthesized data, respectively. Finally, the profile of the collected and
synthesized dataset is summarized in Table ??. Note that data with obstacle sizes 0.5 and 1.0 m were
only used in Section ?? to evaluate the robustness of the classifier against the unknown size of obstacles.

aL,k = −aR,k (3)

Table 3. Profile of the dataset.

Type Segments Person Segments Size Segments

avoidRL 865 A 540 0.2 844
avoidR 866 B 262 0.5 486
avoidLR 865 C 508 0.7 838
avoidL 866 D 528 1.0 480

returnR 215 E 288 1.5 814

returnL 215 F 336 Stored Segments

G 358 hand 952
H 538 trousers front pocket 966
I 534 trousers back pocket 968

chest pocket 1006

Note that the azimuth measurement relies on the magnetometer that may be affected by
architectural construction, including metal, high-voltage current and magnetism. The data collection
was carried out in an environment where no building and machinery exist around the subjects, in
which we did not observe any unstable reading from the sensor. However, to observe if any disturbance
in sensor reading exists, we empirically walked near air conditioner’s outdoor units, vehicles, vending
machines, exterior wall of buildings, etc., and visually checked a graph of the data stream. As a result,
we found disturbance in very limited cases of passing by an electric vehicle and passing through
a narrow passage surrounded by a reinforced concrete wall. In both cases, the data appear to be
randomly and rapidly changing. Therefore, we consider that such a situation is distinguishable
to avoid misrecognition of avoidance behavior; however, further study is required to recognize an
avoidance behavior that occurs in such a situation.

45



ISPRS Int. J. Geo-Inf. 2016, 5, 182

4.2. Basic Classification Performance

4.2.1. Method

First of all, various types of classification methods, i.e., classifiers, are compared by applying
10-fold cross-validation (CV) to fix one classifier for later evaluation. Here, naive Bayes (a baseline
approach), Bayesian network (a graphical model approach), multi-layer perceptron (MLP, an artificial
neural network approach), sequential minimal optimization (SMO, a support vector machine
approach), decision tree (J48) and random forest (an ensemble learning approach) were used.
Table ?? summaries the parameters for each classifier used in a machine learning toolkit Weka
ver. 7.3.13 [? ], in which default values were utilized. The parameter symbols can be referred to
as the reference manual of Weka.

Table 4. Classifier parameters in Weka.

Classifier Parameter

Naive Bayes N/A
Bayesian network -Q K2 “-P 1 -S BAYES” -E SimpleEstimator “-A 0.5”

MLP -L 0.3 -M 0.2 -N 500 -V 0 -E 20 -H a
SMO -C 1.0 -P 1.0E-12 -K “PolyKernel -E 1.0 -C 250007”
J48 -C 0.25 -M 2

Random forest -I 100 -K 0

4.2.2. Result and Analysis

Figure ?? shows the F-measure of each classifier, in which random forest performed the best
followed by MLP. Another advantage of random forest is the small number of tuning parameters. In the
Weka implementation, the number of major parameters is two, while that of MLP is five. Therefore,
we consider that random forest is easy for tuning. Hereinafter, random forest with 100 trees is utilized.

Figure 8. Comparison of various supervised classifier models.

Table ?? shows the confusion matrix, in which the row indicates the labeled class and the column is
the recognition result. Table ?? summarizes the results of recall, precision and F-measure. Note that we
normalized the recognition results by the smallest number of segments throughout this article because
the number of data varies by class, as shown in Table ??. The result shows an average classification
performance with an F-measure of 0.89 and a range from 0.84 to 1.00.
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Table 5. Confusion matrix of 10-fold cross-validation (CV) using random forest.

Label\Recognition (1) (2) (3) (4) (5) (6)

(1) avoidRL 182 19 7 7 0 0
(2) avoidR 25 179 6 6 0 0
(3) avoidLR 7 6 183 19 0 0
(4) avoidL 7 6 24 179 0 0
(5) returnR 0 0 0 0 215 0
(6) returnL 0 0 0 0 0 215

Table 6. Recall, precision and F-measure using random forest.

Class Recall Precision F-Measure

avoidRL 0.85 0.83 0.84
avoidR 0.83 0.85 0.84
avoidLR 0.85 0.83 0.84
avoidL 0.83 0.85 0.84

returnR 1.00 1.00 1.00
returnL 1.00 1.00 1.00

Average 0.89 0.89 0.89

Classes avoidRL and avoidLR were misclassified into avoidR and avoidL, respectively. We consider
that this occurred because the second half of the segment of these classes is flat, which made it difficult
to distinguish the classes from each other. In contrast, returnR and returnL were perfectly classified.
We assumed that the start and the end of the walking direction of avoid are identical, whereas the start
and the end of return are different, i.e., on the opposite side. We consider that the features of return
had large differences from those of avoid.

The recognition of road anomaly class is useful for a road administration office; however,
to prioritize their repairing tasks, the size of the road anomaly should be recognized, since a large
avoidance behavior indicates the significance of the anomaly. Currently, we have a dataset with
five obstacle sizes. Defining new classes for each size is not practical. Therefore, we will build a
regression model based on some features and the obstacle size, which will be applied after classifying
datasets into the six avoidance behavior classes.

4.3. Feature Relevance

4.3.1. Method

To understand effective features for avoidance behavior recognition, the relevance of features
was evaluated based on information theory. Information gain is commonly used in feature selection,
where the gain of information provided by a particular feature is calculated by subtracting a conditional
entropy with that feature from the entropy under a random guess [? ]. We used InfoGainAttributeEval
and Ranker in Weka [? ] as implementations for evaluating information gain and generating
ranking, respectively.

As described in Section ??, Table ?? is already listed in order of contribution (relevance) with the
above implementations. To observe the change of classification performance against the number
of features, a 10-fold cross-validation was carried out against a dataset with the top-k features,
and F-measures were calculated. Here, k varies from one (best) to 29 (all).
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4.3.2. Result and Analysis

As shown in Figure ??, the F-measure for the top five features rapidly increases. From the top six
to 20 features, the F-measure gradually increases by very slight up-and-down movements. Finally,
the increase almost levels off for more than 20 features. As described in Section ??, we split a segment
into two parts: first half (FH) and second half (SH) (see Figure ??). By looking at Table ??, the top-four
contributing features are derived from SH. This indicates that the decision to calculate features by
dividing them into FH and SH proved to be correct. Note that the division of the two parts is based on
the number of samples in a segment under the assumption that people walk at a constant velocity;
however, in practice, the speed might change in the vicinity of an obstacle. This makes the two divided
parts not as clear as those shown in Figure ??. Detecting such a changing point would emphasize the
difference of activities more clearly and improve the performance.

Figure 9. Classification performance with top-k contributing features. Features are provided in Table
??.

Furthermore, the “ratio of rangeALL to ΔSF” ( f8), which was added to get the the monotonicity
of the change, appeared as the eighth in the ranking. In the two-thirds of the ranking, features that
eliminate negative values are found ( f12, f14, f17, f25, f26 and f28). This implies that the component of
direction is more important than the magnitude of movement. As opposed to the expectation on the
accumulated azimuth change described in Section ??, “sum of the absolute difference of both ends of 10
subsegments” appears in the 20th ranking ( f20). We consider that f20 contributes to discriminate return
from avoid because of the large change in the direction. However, the difference of the accumulated
change between avoidR and avoidL is not so large as other features and less contributive. Furthermore,
since f20 represents the amount of change, it is difficult to discriminate avoidRL from avoidLR, which
are symmetric about the horizontal axis.

4.4. Person Dependency

4.4.1. Method

The classification performance shown in Section ?? was obtained by 10-fold cross-validation
against the dataset from all subjects. This represents the average performance of the classification
method. To evaluate the method under realistic conditions, where the data of a user are not used
to train the classifier, we conducted leave-one-subject-out cross-validation (LOSO-CV). In LOSO-CV,
the dataset of a particular subject is used for testing purposes, while the dataset of the rest of the
subject group, i.e., eight subjects, is utilized for training a classifier. This process was iterated for all
subjects, and an average was calculated.

It is not difficult to foresee that the best performance comes from using a personalized classifier,
in which a classifier is trained with the dataset of a particular person and tested with the dataset of the
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same person (e.g., [? ]). Therefore, to see the performance under this best condition, we conducted
10-fold cross-validation using personalized classifiers. This evaluation is referred to as self-CV.

4.4.2. Result and Analysis

Figure ?? shows the comparison in individual differences (Subjects A to I) and the averages for
the two evaluation conditions. As shown in this figure, all subjects had equal or better classification
performance with self-CV than with LOSO-CV. On average, self-CV performed better than LOSO-CV
with an F-measure difference of 0.07.

Figure 10. Individual differences in self-cross-validation (CV) and leave-one-subject-out
cross-validation (LOSO-CV).

The differences between the F-measure of self-CV and LOSO-CV for Subjects B, D and I are
relatively large (0.11, 0.12 and 0.15, respectively). To analyze the reasons, a classifier was tuned for each
subject. The classifiers were then tested with the datasets from other subjects. Figure ?? summarizes
the resulting F-measures. In this table, the grayscale levels are normalized between the minimum
(0.54) and the maximum (0.94) values to white and black, respectively. Furthermore, the values on the
diagonal line of the same subject IDs indicate the F-measures of self-CV, shown also in the first row of
Figure ??. As a result, we consider that “noisy” data are included in the LOSO-CV for Subjects B, D
and I. In other words, some of the training data may have some subjects whose data were incompatible
with Subjects B, D and I. In Figure ??, Subject H seems to be incompatible with Subjects B and D,
as shown by the lowest values in each column (0.56 and 0.54, respectively). Furthermore, Subject B
seems to be an incompatible subject for Subject I (0.58). To validate these thoughts, we built classifiers
with datasets from “compatible” subjects as follows. First, an average of the F-measure excluding the
self-CV value is calculated for each column. Then, the datasets of the subjects whose personalized
classifiers performed better than the average are used to train a new classifier. Hence, Subjects C, D,
E, F and G were selected as compatible subjects for Subject B, while Subjects A, B, E, F and G were
selected as compatible subjects for Subject D. Similarly, as compatible subjects for Subject I, Subjects A,
E, G and H were selected. As a result of testing with these new classifiers, the F-measures of LOSO-CV
against Subjects B, D and I were improved to 0.80, 0.85 and 0.86, respectively; this was an increase
of 0.05, 0.07 and 0.09 from the original LOSO-CV. In the future, we will investigate a method to find
compatible persons to build a classifier in a systematic manner.

The F-measures of self-CV for Subjects E and F are relatively low, i.e., 0.75 and 0.81, respectively.
This indicates that the features obtained from them failed to capture the characteristics of the target
behaviors due to the large variation within subjects. Moreover, the average number of segments
per class for Subjects E and F are 48 and 52, respectively, as calculated from Table ??. Therefore, the
classifiers for these subjects are trained with around 44 and 47 segments (nine-tenths of the number of
segments), respectively. We consider that these classifiers were not trained sufficiently.
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A B C D E F G H I Ave.

A 0.87 0.67 0.88 0.81 0.75 0.76 0.83 0.89 0.87 0.81

B 0.69 0.86 0.69 0.83 0.73 0.77 0.90 0.60 0.58 0.74

C 0.83 0.75 0.94 0.73 0.71 0.75 0.84 0.78 0.70 0.78

D 0.80 0.75 0.81 0.90 0.68 0.67 0.81 0.73 0.69 0.76

E 0.71 0.70 0.74 0.80 0.75 0.77 0.83 0.85 0.82 0.77

F 0.73 0.77 0.84 0.87 0.79 0.81 0.86 0.80 0.68 0.79

G 0.84 0.80 0.89 0.83 0.77 0.75 0.92 0.82 0.74 0.82

H 0.82 0.56 0.76 0.54 0.73 0.61 0.70 0.92 0.82 0.72

I 0.82 0.60 0.80 0.71 0.71 0.61 0.80 0.89 0.92 0.76

Ave. 0.79 0.72 0.82 0.78 0.74 0.72 0.83 0.81 0.76

Figure 11. Applicability of person-dependent classification model.

4.5. Effect of Sensor Storing Position

4.5.1. Method

As investigated by Ichikawa et al. [? ], people carry their smartphone terminals in various
positions, such as their trousers pocket and chest pocket. We carried out an experiment to see the
impact of storing position on the classification performance. The experiment was carried out by
training a classifier with a dataset from a particular position and testing the classification with the
datasets from the other positions.

4.5.2. Result and Analysis

Table ?? summarizes the F-measure results. In this table, the row indicates the storing positions
from which datasets for training position-specific classifiers were obtained, and the column represents
the datasets for testing. Note that the values on the diagonal line at the same positions were obtained
by 10-fold cross-validation. These values indicate the ideal performance when classifiers are tuned
for dedicated positions, and the average is 0.87. The table demonstrates that the classifiers tuned for
particular positions did not predominantly perform best. This observation allows us to propose two
approaches for constructing classification models.

Table 7. Robustness to storing position variation.

Trained with\Test with (1) (2) (3) (4) Average

(1) Hand (texting) 0.86 0.82 0.82 0.91 0.86
(2) Trousers front pocket 0.85 0.85 0.86 0.89 0.86
(3) Trousers back pocket 0.83 0.85 0.88 0.88 0.86
(4) Chest pocket 0.86 0.83 0.80 0.91 0.85

Average 0.85 0.84 0.84 0.90 –

The first approach is a straightforward one that constructs a single classifier with the datasets
from all positions. This is the case shown in Section ??, and we obtain an F-measure of 0.89. This is
better than the average of the tuned classifier approach (0.87). However, to realize this approach,
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datasets from all positions should be collected. The second approach is to share classifiers with
some positions. In this case, a tuned classifier for the position “hand” is shared with the case in which
the position of a terminal is judged as “chest pocket”, since the performance of “chest pocket” using
a classifier tuned for “hand” is as high as with a tuned classifier for “chest pocket”. This can omit
training data collection for the “chest pocket” classifier. Similarly, a classifier built from the dataset
from “trousers back pocket” is shared with the data obtained from “trousers front pocket”. As shown
in [? ], front and back trousers pockets are often misrecognized for each other. Therefore, sharing
the classifier between two positions can become robust against the mistake of the underlying storing
position recognizer. In the second approach, the averaged F-measure is 0.88. Table ?? summarizes
the result. The second approach has a slightly worse F-measure; however, it just needs to collect the
dataset from two positions, “hand” and “trousers back pocket”, which we consider a great advantage
in reducing the cost of data collection. Such low-cost modeling accelerates the deployment of the
system. The sharing approach may sacrifice the accuracy of recognition; however, it could be improved
on the server side if a number of people utilized the system.

Table 8. Dealing with position dependency.

Approach Average

(0) Tuned classifier for each position 0.87
(1) Single classifier with the dataset from all positions 0.89
(2) Sharing classifiers with some positions 0.88

4.6. Robustness to Unknown Obstacle Size

4.6.1. Method

The performance evaluations above were performed by the classifiers trained by datasets with
the obstacle sizes 0.2, 0.7 and 1.5 m. To understand the robustness against unknown sizes of obstacles,
we used the datasets of obstacle sizes 0.5 and 1.0 m for the test, in which the dataset of obstacle sizes
0.2, 0.7 and 1.5 m was used to train the classifiers, as before.

4.6.2. Result and Analysis

The F-measures of the results are shown in Table ??, where we can find that all values are better
than the ones in the rightmost column in Table ??. We consider that this is because the obstacle size
used for this test is in the range of the training dataset, i.e., 0.2 to 1.5 m. Therefore, the features obtained
from the dataset with unknown obstacle sizes might fit into the ranges of trained features. The result
implies that a classifier can be trained with a limited size of obstacles, i.e., probably for detecting upper,
middle and lower sizes of obstacles.

Table 9. Performance against unknown obstacle size.

Class avoidRL avoidR avoidLR avoidL returnR returnL Average

F-measure 0.93 0.91 0.92 0.91 1.00 1.00 0.94

5. Conclusions

In this article, we proposed a road anomaly detection system based on opportunistic sensing
by using pedestrians’ smartphone terminals. Opportunistic sensing requires no explicit user
involvement, which is expected to lower the barrier of people’s participation to the sensing activity.
Although automatic road anomaly detection methods have already been proposed for cars and bikes,
we considered that pedestrians’ avoidance behaviors are too slight to adapt these existing methods.
After showing the overall system concept, we focused on the design of an obstacle avoidance behavior
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recognition system, in which waveform shaping, feature extraction and supervised classifiers were
presented as major components. Six classes of avoidance behaviors were defined to test the recognition
system from various aspects after collecting data from nine people with 410 trials on average.
The following results were obtained:

• A 10-fold CV showed an average classification performance with an F-measure of 0.89 for
six avoidance behaviors.

• The recognition system could handle the obstacle sizes of 0.2 to 1.5 m. Untrained sizes of obstacle
avoidance were also recognized with an F-measure of 0.94.

• A user-independent classifier classified six avoidance behaviors with an F-measure of 0.81.
The possibility of improving a user-independent classification by choosing classifiers trained by
compatible persons was shown.

• Features resulting from (1) splitting a segment into the first half and the second half and
(2) considering the monotonicity of change effectively recognized avoidance behaviors.

• The performance slightly depends on the sensor (smartphone) storing position on the body.
Selecting a classifier for a particular position improves the performance. To reduce the cost of
data collection, only the data from “hand” and “trousers back pocket” need be collected.

The results are obtained under an ideal and controlled environment; however, the results indicate
that the proposed recognition method is robust against the size of obstacles and that the dependency
on the storing position of a smartphone can be handled by an appropriate classifier per storing
position. Furthermore, an analysis implies that classification of data from an “unknown” person can
be improved by taking into account the compatibility of a classifier. The next step toward an all-in-one
road anomaly detection system is to investigate an automatic avoidance event segmentation method
that was performed by hand in this article. The key challenge is to discriminate normal behaviors
that are associated with a change of walking direction, e.g., a pedestrian turns a corner or walks
along a curved road, from true obstacle avoidance. We will leverage the characteristics in the azimuth
difference and the walking distance to complete the change of walking direction to distinguish these
situations. A real-world experiment is also required to assess the robustness of the proposed system.
Lower-power operation is a critical issue for opportunistic sensing to be accepted by people because
GPS-based positioning is generally a power-intensive approach [? ]. Unlike continuous positioning,
such as a noise map [? ], our system can take an event-driven positioning, in which the positioning is
performed only when an obstacle is detected. The challenge here is the positioning error due to the
delay of activating a GPS receiver, i.e., the actual position of an avoidance event may be backward
from the position where a GPS receiver returns. We will investigate a correction method by leveraging
a pedestrian dead-reckoning (PDR) technology. Finally, server-side aggregation and the filtering
technique will be investigated to realize the overall system.
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Abstract: Commercial vehicle operation (CVO) has been a popular application of intelligent
transportation systems. Location determination and route tracing of an on-board unit (OBU) in
a vehicle is an important capability for CVO. However, large location errors from global positioning
system (GPS) receivers may occur in cities that shield GPS signals. Therefore, a highly efficient mobile
positioning method is proposed based on the collection and analysis of the cellular network signals
of CVO data. Parallel- and cloud-computing techniques are designed into the proposed method
to quickly determine the location of an OBU for CVO. Furthermore, this study proposes analytical
models to analyze the availability of the proposed mobile positioning method with various outlier
filtering criteria. Experimentally, a CVO system was designed and implemented to collect CVO
data from Chunghwa Telecom vehicles and to analyze the cellular network signals of CVO data
for location determination. A case study found that the average errors of location determination
using the proposed method vs. using the traditional cell-ID-based location method were 163.7 m and
521.2 m, respectively. Furthermore, the practical results show that the average location error and
availability of using the proposed method are better than using GPS or the cell-ID-based location
method for each road type, particularly urban roads. Therefore, this approach is feasible to determine
OBU locations for improving CVO.

Keywords: mobile positioning; commercial vehicle operation data; cellular network;
cloud computing

1. Introduction

In recent years, consumption and logistics patterns have changed with the development of
economies and the gradual increases in national incomes. Furthermore, distribution channels
have changed from direct distribution to the use of distribution centers (DCs). DCs can ship
goods both upstream and downstream. The use of intelligent transportation fleet management
technology to control the transit of goods is more efficient than traditional methods, and logistics
companies receive higher economic benefits. Therefore, commercial vehicle operation (CVO) has been
a popular application of intelligent transportation systems (ITS). The components of CVO include
fleet administration, freight administration, electronic clearance, commercial vehicle administrative
processes, international border crossing clearance, weigh-in-motion, roadside CVO safety, on-board
safety monitoring, CVO fleet maintenance, hazardous material planning and incident response, freight
in-transit monitoring, and freight terminal management.

Location determination of a vehicle by an on-board unit (OBU) is important for CVO. Precise
location information can be used to support fleet administration, freight administration, freight

ISPRS Int. J. Geo-Inf. 2016, 5, 82; doi:10.3390/ijgi5060082 www.mdpi.com/journal/ijgi55



ISPRS Int. J. Geo-Inf. 2016, 5, 82

in-transit monitoring, etc. For example, DCs can monitor the locations and movements of OBUs and
provide the status of freight to users and receivers. The Global Positioning System (GPS) is the most
popular location determination method for OBUs [1]. However, because of interference with GPS
signals in cities, location errors may be generated from GPS. Therefore, this paper considers mobile
positioning techniques to obtain location information when the signals of GPS satellites are weak.
Various techniques have been proposed to analyze the signals from radio frequency identification
(RFID) [2], Bluetooth [3], wireless local area networks (WLAN) [4–6], wireless sensor networks
(WSN) [7,8], and cellular networks [9] for location determination [10]. However, the transmission
ranges of RFID, Bluetooth, and WLAN are short, and they may be not suitable for CVO. Therefore, this
study proposes a high-efficiency mobile positioning method to analyze the cellular network signals of
CVO data. The method can be combined with cloud computing techniques to quickly determine the
location of an OBU. Furthermore, a CVO system is proposed and implemented in this study, including
OBUs and a CVO server.

The remainder of the paper is as follows. Section 2 presents and discusses the various techniques
that exploit the cellular network for location determination. A high-efficiency mobile positioning
method based on CVO data is proposed and illustrated in Section 3. Section 4 proposes analytical
models to analyze the feasibility of the proposed mobile positioning method with various outlier
filtering criteria. Section 5 describes a CVO system implementation and analyzes practical records to
evaluate the proposed method. Finally, Section 6 discusses our conclusions and proposed future work.

2. Cellular-Based Positioning Methods

The 3rd Generation Partnership Project (3GPP) defined three classes of cellular-based positioning
methods: the assisted global position system (A-GPS), mobile scan report (MSR)-based location
methods, and database lookup methods [9].

2.1. Assisted GPS

A-GPS is designed to transfer almanac data from an assisted-positioning server to a mobile device
through a network connection [11,12]. This method requires less time than traditional GPS method,
approximately thirty seconds, for searching for satellites and determining location.

2.2. MSR-Based Location Methods

The MSRs, which include received signal strength indication (RSSI), round-trip delay (RTD), and
relative delay (RD), are analyzed for location determination. MSR-based location methods can be
classified into three categories: angle of arrival (AoA) [13–15], time of arrival (ToA) [13,14,16], and
time difference of arrival (TDoA) [9,10,13]. This approach requires higher computation power than
other methods [12,17–19].

2.3. Database Lookup Methods

Database lookup methods are used to determine the location of a mobile device quickly through
static database queries. These methods can be classified into three categories: a cell-ID-based
method [19], a handover-based method [20–22], and a fingerprint positioning method [23–28].
However, the lengths of cells and handoff zones are approximately 2 km and 200 m, respectively, and
the location error depends on the cell size [12,19,29]. Although precise location estimation can be
obtained by the fingerprint positioning method, higher computation power and an establishment fee
are required [30].

To resolve these disadvantages, this study proposes a high-efficiency mobile positioning method
based on the database lookup method to determine the location of mobile device quickly. Additionally,
this method considers the RSSI of the connected cell to increase the accuracy of the estimated location.
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3. High-Efficiency Mobile Positioning Method

A high-efficiency mobile positioning method is proposed to analyze and determine the location of
each cell-RSSI pair from CVO data. The following subsections present two stages: (1) a pre-deployment
stage and (2) a runtime stage.

3.1. Pre-Deployment Stage

In this stage, a mobile positioning algorithm is proposed to retrieve the location information
and cellular network signals (i.e., cell ID and RSSI) of historical data from GPS-equipped commercial
vehicles and to estimate location for each cell-RSSI pair. For the computation requirements of the
voluminous CVO data, the MapReduce programming model [31] and HIVE [32] are assumed to be
built into cloud computing environments for quick location determination.

3.1.1. Input Data

Input data are CVO data. Each record of CVO data includes the longitude Hive and latitude
of an OBU, the ID of the current connected cell, and the RSSI of the connected cell. Each OBU can
periodically send CVO data (i.e., longitude and latitude of the OBU, the ID of the current connected
cell, and the RSSI of the connected cell) to CVO servers every 30 s. The RSSI and cell ID are paired and
called the cell-RSSI pair. For example, the cell ID is presented as 10721_47366 when location area code
(LAC) is 10721 and service area code (SAC) is 47366. The cell-RSSI pair is presented as 10721_47366_21
when the cell ID is 10721_47366 and the RSSI is ´21 dBm [33].

The notations of this study are summarized below:

‚ There are n cells in CVO data, and the RSSI range of each cell is between 0 and m dBm. Therefore,
there are n ˆ m cell-RSSI pairs, and all cells have the same RSSI range.

‚ The number of records of the i-th cell-RSSI pair is defined as ri.
‚ The longitude of the j-th record of the i-th cell-RSSI pair is defined as xi,j, and the latitude of the

j-th record of the i-th cell-RSSI is defined as yi,j.
‚ The mean of xi,j is defined as μx,i, and the mean of yi,j is defined as μy,i.
‚ The standard deviation of xi,j is defined as σx,i, and the standard deviation of yi,j is defined as σy,i.

‚ After outlier filtering, the number of records of the i-th cell-RSSI pair is defined as ri
1
.

‚ After outlier filtering, the longitude of the j-th record of the i-th cell-RSSI pair is defined as xi,j
1
,

and the latitude of the j-th record of the i-th cell-RSSI is defined as yi,j
1
.

‚ The mean of xi,j
1

is defined as μx,i
1
, and the mean of yi,j

1
is defined as μy,i

1
.

‚ The longitude of the i-th cell-RSSI pair xi is assumed to be normally distributed with mean μx,i
and standard deviation σx,i. The probability density function (PDF) of its normal distribution is

defined as f
`
xi, μx,i, σx,i

˘ “ 1
σx,i

?
2π

e
´ pxi´μx,iq2

2σx,i
2 [33,34].

‚ The latitude of the i-th cell-RSSI pair yi is assumed to be normally distributed with mean μy,i
and standard deviation σy,i. The PDF of its normal distribution is defined as f

`
yi, μy,i, σy,i

˘ “
1

σy,i
?

2π
e

´ pyi´μy,iq2

2σy,i
2

[33,34].

A study of cell-RSSI pair 10721_47366_21 helps to evaluate the assumptions of longitude and
latitude distributions. The historical location data of this cell-RSSI pair were collected by the CVO
system of Chunghwa Telecom from November 2013 to January 2014. The cumulative distribution
functions (CDFs) of longitudes and latitudes based on 13,231 historical records were calculated
and are illustrated in Figure 1. The chi-square goodness of fit test [26,35,36] is used to evaluate
the distributions of practical data and normal distribution. Chi-square tests of these assumptions
showed that χ2 “ 0.653 ă χ2

11,0.05 “ 19.675 when α “ 0.05 for the longitude distribution and
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χ2 “ 0.414 ă χ2
11,0.05 “ 19.675 when α “ 0.05 for the latitude distribution. No significant difference

was observed, so the distributions of longitude and latitude were similar to normal distributions.

Figure 1. The distributions of longitudes and latitudes.

3.1.2. Process

Three steps comprise the mobile positioning method, as follows: (a) computation of the mean
and standard deviation; (b) outlier filtering; and (c) location determination (see Figure 2).

 Mean and standard 
deviation computation

Outlier filtering

Location determination

Figure 2. The steps of the mobile positioning method.

Mean and Standard Deviation Computation

For computation of the center, this study uses Equations (1) and (2) to calculate the means and
standard deviations of longitudes and uses Equations (3) and (4) to calculate the means and standard
deviations of latitudes, respectively:

μx,i “

riř
j“1

xi,j

ri
(1)

σx,i “

riř
j“1

`
xi,j ´ μx,i

˘2

ri ´ 1
(2)
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μy,i “

riř
j“1

yi,j

ri
(3)

σy,i “

riř
j“1

`
yi,j ´ μy,i

˘2

ri ´ 1
(4)

Outlier Filtering

This step performs an outlier filtering mechanism to clean historical CVO data to determine
location information precisely. The mechanism uses a threshold t that is defined as an outlier filtering
criterion. The value of t can be set according to standard deviations σx,i and σy,i. The longitude of
record xi,j will be filtered out when it is smaller than μx,i ´ t or larger than μx,i + t. Latitude records yi,j
can be filtered with the same threshold t.

Location Determination

After outlier filtering, the means of the longitude and latitude of each record are calculated with
Equations (5) and (6), respectively. This method determines the longitude and latitude of the i-th
cell-RSSI pair as μx,i

1
and μy,i

1
:

μx,i
1 “

r1
iř

j“1
xi,j

1

r1
i

, where μx,i ´ t ă xi,j
1 ă μx,i ` t (5)

μy,i
1 “

r1
iř

j“1
yi,j

1

r1
i

, where μy,i ´ t ă yi,j
1 ă μy,i ` t (6)

In these steps, the means and standard deviations can be calculated using cloud computing
(e.g., the MapReduce programming model). The key is the cell-RSSI pair, and the values are longitudes
and latitudes. The MapReduce programming model can be implemented for center computation.

3.1.3. Output Data

The location of each cell-RSSI pair is the output of the mobile positioning algorithm. This
information can be calculated in the pre-deployment stage and stored in a cloud computing database
for the runtime stage. The HBase technique [31] is used to implement this cloud computing database,
and the HIVE technique [32] is used to perform the operations of cloud computing database.

3.2. Runtime Stage

In this stage, the ID of the connected cell and RSSI of the OBU can be retrieved by the CVO server
when GPS is unavailable. The cell-RSSI pair obtained with the cell ID and RSSI is then used to query
the pre-deployment cloud database for real-time location determination.

4. Analytical Models with Different Outlier Filtering Criteria

This section proposes an analytical model and presents numerical results to analyze the feasibility
of the proposed mobile positioning method with different outlier filtering criteria.

4.1. Analytical Models

This section proposes models to analyze the relationships of location error and availability to
different outlier filtering thresholds t.
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4.1.1. Location Error

The locations of the same cell-RSSI pair are assumed to be normally distributed, and the
expected ranges of the longitude and latitude of the i-th cell-RSSI pair are defined as dx,i and dy,i
(see Equations (7) and (8)). The location errors may be generated in accordance with these ranges:

dx,i “ � μx,i`t
μx,i´t

ˇ̌
xi ´ μx,i

ˇ̌
f
`
xi, μx,i, σx,i

˘
dxi, where f

`
xi, μx,i, σx,i

˘ “ 1
σx,i

?
2π

e
´ pxi´μx,iq2

2σx,i
2

“ � μx,i`t
μx,i

`
xi ´ μx,i

˘¨˝ 1
σx,i

?
2π

e
´ pxi´μx,iq2

2σx,i
2

˛
‚dx`

� μx,i
μx,i´t

`
μx,i ´ xi

˘¨˝ 1
σx,i

?
2π

e
´ pxi´μx,iq2

2σx,i
2

˛
‚dx

“
2σx,i

¨
˝1´e

´ t2
2σx,i

2

˛
‚

?
2π

(7)

dy,i “ � μy,i`t
μy,i´t

ˇ̌
yi ´ μy,i

ˇ̌
f
`
yi, μy,i, σy,i

˘
dyi, where f

`
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e
´ pyi´μy,iq2
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2
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¨
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˛
‹‚
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4.1.2. Availability

The locations of the same cell-RSSI pair are assumed to be normally distributed, and the
availability of the i-th cell-RSSI pair is defined as px,i and py,i (see Equations (9) and (10)). The
function g(z) in Equations (9) and (10) is a Gaussian error function, which can be expressed as the
Taylor series [37] 2?

π

ř8
n“0

z
2n`1

śn
k“1

´z2

k s [33]:

px,i “ � μx,i`t
μx,i´t f

`
xi, μx,i, σx,i

˘
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“ 1
σx,i

?
2π

e
´ pxi´μx,iq2
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2
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˙
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π
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2

k

(9)
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py,i “ � μy,i`t
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4.2. Numerical Analyses

To demonstrate the proposed analytical model, the following parameters were adopted to estimate
the expected ranges of the longitude and latitude of the i-th cell-RSSI pair: μx,i = 120.3259728,
μy,i = 22.56716916, σx,i = 0.001271737, σy,i = 0.000940652. Figure 3 shows the expected ranges
of longitude with different outlier filtering thresholds t. The expected range is approximately
0.001003427 (i.e., 103.03 m) when t = 3 ˆ σx,i (i.e., t = 0.003815211). Moreover, the expected range is
2σx,i?

2π
“ 0.001014699 (i.e., 104.19 m) when t = 8. Therefore, the improvement of location determination

is 1.16 m after outlier filtering with t = 3 ˆ σx,i. However, the availability px,i decreases when the
outlier filtering threshold t is decreased. Therefore, there is a trade-off between the location error
and availability.

Figure 3. The expected ranges of longitude with different outlier filtering thresholds.

Figure 4. The expected ranges of latitude with different outlier filtering thresholds.
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Figure 4 shows the expected ranges of latitude with different outlier filtering thresholds t. The
expected range is approximately 0.000742194 (i.e., 82.53 m) when t = 3 ˆ σy,i (i.e., t = 0.002821957), and
2σy,i?

2π
“ 0.000750532 (i.e., 83.46 m) when t = 8. Therefore, latitude location determination improves to

0.97 m after outlier filtering with t = 3 ˆ σy,i.

5. Implementation and Evaluation of a Commercial Vehicle Operation System

In this section, the architecture of a CVO system is proposed and implemented, and the
experimental practical results from the CVO system are compared with different location determination
methods to evaluate the proposed mobile positioning method [33].

5.1. CVO System

This subsection proposes a CVO system composed of OBUs, a CVO server, and a cloud computing
database server (shown in Figure 5).

 

 

Figure 5. The architecture of the CVO system.

A GPS receiver and a cellular network module can be equipped in each OBU for periodically
transmitting location information (i.e., longitude and latitude) determined from GPS and cellular
network signals (i.e., the ID and RSSI of the connected cell) to the CVO server. When GPS is unavailable,
the OBU sends only cellular network signals, which are presented as cell-RSSI pairs. The CVO server
can perform the proposed mobile positioning method using the cell-RSSI pair as a key and querying
the pre-deployment cloud computing database based on Hadoop [31], MapReduce [31], and Hive [32]
techniques. The corresponding location of cell-RSSI pair can then be retrieved for determining the
location of the OBU.

5.2. Experimental Results and Discussions

This subsection presents a case study and analyzes three months of CVO data to evaluate the
proposed mobile positioning method. From November 2013 to January 2014, 67 OBUs were driven
in experimental environments and 18,508 different cells were detected and connected. These OBUs
obtained 6,571,550 CVO records and transmitted them to the CVO server for analyses of location
information and cellular network signals.
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5.2.1. Case Study

An OBU was selected on 23 November 2013 as a case study to present the results of the proposed
mobile positioning method. The experiments were conducted on a highway segment 614 km long
between Kaohsiung and Taoyuan in Taiwan (shown in Figure 6).

 

Figure 6. The experiment environment on Highways No. 1 and No. 3 in Taiwan on 23 November 2013.

Figures 7 and 8 show the location information of the OBU with different positioning methods. The
green point locations were determined by GPS; the red points were determined by mobile positioning
methods. In these cases, the GPS satellite signals were weak. Many locations determined with the
cell-ID-based positioning method [9] are not properly on the road segment in Figure 7. The results
show that the cell-ID-based positioning method cannot provide precise location information. However,
Figure 8 shows that the locations determined using the proposed positioning method fit the road
segment. Therefore, the proposed positioning method is more suitable than cell-ID-based positioning.

 

Figure 7. The results of the cell-ID-based positioning method on 23 November 2013.
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Figure 8. The results of the proposed positioning method on 23 November 2013.

5.2.2. Evaluation and Discussions

The practical results of using the proposed mobile positioning method are illustrated and
evaluated in this section. In this study, the CVO data from October 2013 to January 2014 was collected
for evaluation. The data of October 2013 was used as training data, and the data from November 2013
to January 2014 was used as testing data.

For the analyses of OBU traces, Table 1 shows the practical results of location determination
with different positioning methods (i.e., GPS, cell-ID-based method, and the proposed method) on
23 November 2013. The location information obtained from a GPS receiver was defined as the
baseline data. In this case, the availability of GPS was only approximately 6.31%, so 93.69% of total
records would lack GPS location information. This study compared location information using mobile
positioning methods and GPS when GPS was available. The cell-ID-based positioning method [9] was
considered to be implemented and evaluated, and the errors in location determination and availability
were approximately 521.2 m and 99.51%, respectively. Finally, this study implemented and evaluated
the proposed mobile positioning method, and the errors of location determination and availability
were approximately 163.7 m and 99.58%, respectively. The CDFs of location errors in this case are
shown in Figure 9. In another case, Table 2 and Figure 10 compare different positioning methods
on 4 December 2013. The results indicate that the availabilities of the cell-ID-based method and the
proposed method are 72.50% and 99.49%, respectively. These results show that the proposed mobile
positioning method can provide the precise location information and is suitable for CVO.

Table 1. The comparison of different positioning methods on 23 November 2013.

GPS Cell ID Based Method The Proposed Method

Average Location Error (m) Baseline 521.2 163.7
Availability 6.31% 99.51% 99.58%

This study evaluates the proposed method for the six road types defined in [38] (national highway,
provincial highway, urban road, county road, village road, and alley). From November 2013 to January
2014, 6,571,550 records were collected, and the ratio of records for each road type was calculated in
Table 3. Because commercial vehicles are usually driven on national highways and urban roads, the
ratios of national highways and urban roads are 36.470% and 42.639%, respectively. Tables 4 and 5
show the analyses of average location error and availability rate using various location determination
methods. The practical experimental results indicate that the average location error using the proposed
method is lower than using the cell-ID-based positioning method (Figure 11). The proposed method
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obtained more precise location information for each road type. Furthermore, when GPS is unavailable,
the proposed method with its higher availability rate can be used to determine the locations of
commercial vehicles for each road type, particularly urban roads.

Figure 9. The comparison of different positioning methods on 23 November 2013.

Figure 10. The comparison of different positioning methods on 4 December 2013.

Table 2. The comparison of different positioning methods on 4 December 2013.

GPS Cell ID Based Method The Proposed Method

Average Location Error (m) Baseline 597.8 193.4
Availability 99.26% 72.50% 99.49%

Figure 11. The comparison of different positioning methods.
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Table 3. The ratio of historical records for each road type.

Road Type The Number of Records Ratio

National Highway 2,396,671 36.470%
Provincial Highway 559,433 8.513%

Urban Road 2,802,047 42.639%
County Road 275,894 4.198%
Village Road 237,131 3.608%

Alley 300,374 4.571%
Total 6,571,550 100%

Table 4. The analyses of average location errors for each road type (unit: m).

Road Type Cell ID Based Method The Proposed Method

National Highway 858.3 249.6
Provincial Highway 444.4 133.6

Urban Road 458.4 133.2
County Road 918.7 53.8
Village Road 324.6 49.3

Alley 474.8 132.9
Average 705.0 176.1

Table 5. The analyses of availabilities for each road type.

Road Type GPS Cell ID Based Method The Proposed Method

National Highway 99.996% 99.998% 99.998%
Provincial Highway 99.997% 99.999% 99.999%

Urban Road 95.296% 99.951% 99.943%
County Road 99.990% 99.996% 99.996%
Village Road 99.994% 99.999% 99.999%

Alley 99.977% 99.994% 99.994%
Average 99.208% 99.989% 99.988%

6. Conclusions

A high-efficiency mobile positioning method is proposed to collect and analyze the cellular
network signals of CVO data. Parallel computing and cloud computing techniques are designed
into the proposed mobile positioning method to quickly determine the location of an OBU for CVO.
Furthermore, this study proposes analytical models to analyze the availability of the proposed mobile
positioning method with different outlier filtering criteria. In experimental environments, a CVO
system was designed and implemented to collect CVO data from Chunghwa Telecom and to analyze
the cellular network signals of CVO data for location determination. A case study determined that
the average location errors using the proposed method and the traditional cell-ID-based method were
163.7 m and 521.2 m, respectively. Furthermore, the practical results show that the average location
error and availability of using the proposed method are better than using GPS and the cell-ID-based
method for each road type, particularly urban roads. Therefore, this approach is feasible to determine
the location of an OBU for CVO improvement.

In future work, the signals of neighboring cells can be analyzed simultaneously to improve
mobile positioning. Moreover, the proposed method for generating precise location information can
be applied to support other ITS applications (e.g., advanced public transportation services, advanced
traffic information services, etc.).

Acknowledgments: We would like to thank editor and reviewers for their comments. We also thank MDPI
publisher for their supports.

66



ISPRS Int. J. Geo-Inf. 2016, 5, 82

Author Contributions: Chi-Hua Chen and Kuen-Rong Lo conceived and designed the experiments;
Chi-Hua Chen performed the experiments; Chi-Hua Chen and Jia-Hong Lin analyzed the data; Ta-Sheng Kuan
contributed analysis tools; Chi-Hua Chen wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hsu, C.L.; Lin, J.C.C. A study of the adoption behavior for In-Car GPS navigation systems. Int. J. Mob.
Commun. 2010, 8, 603–624. [CrossRef]

2. Liu, L.M.N.Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor location sensing using active RFID. Wirel. Netw.
2004, 10, 701–710.

3. Zhou, S.; Pollard, J.K. Position measurement using Bluetooth. IEEE Trans. Consum. Electron. 2006, 52, 555–558.
[CrossRef]

4. Roos, T.; Myllymaki, P.; Tirri, H.; Misikangas, P.; Sievanan, J. A probabilistic approach to WLAN user location
estimation. Int. J. Wirel. Inf. Netw. 2002, 9, 155–164. [CrossRef]

5. Youssef, M.; Agrawala, A. The Horus WLAN location determination system. In Proceedings of the 3rd
International Conference on Mobile Systems, Applications, and Services, Seattle, Washington, DC, USA,
6–8 June 2005; pp. 205–218.

6. Chiou, Y.S.; Wang, C.L.; Yeh, S.C. An adaptive location estimator using tracking algorithms for indoor
WLANs. Wirel. Netw. 2010, 16, 1987–2012. [CrossRef]

7. Guarnieri, A.; Pirotti, F.; Vettore, A. Low-cost MEMS sensors and vision system for motion and position
estimation of a scooter. Sensors 2013, 13, 1510–1522. [CrossRef] [PubMed]

8. Cenedese, A.; Ortolan, G.; Bertinato, M. Low-density wireless sensor networks for localization and tracking
in critical environments. IEEE Trans. Veh. Technol. 2010, 59, 2951–2962. [CrossRef]

9. 3GPP. Technical Specification Group (TSG) Services and System Aspects; TS 22.071; 3GPP: Valbonne, France, 2015.
10. Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of wireless indoor positioning techniques and systems.

IEEE Trans. Syst. Man Cybern. 2007, 37, 1067–1080. [CrossRef]
11. Open Mobile Alliance: Secure User Plane Location V2.0 Enabler Release Package. Available

online: http://member.openmobilealliance.org/ftp/Public_documents/LOC/Permanent_documents/
OMA-ERP-SUPL-V2_0-20080627-C.zip (accessed on 26 March 2016).

12. Venkatachalam, M.; Etemad, K.; Ballantyne, W.; Chen, B. Location services in WiMAX networks.
IEEE Commun. Mag. 2009, 47, 92–98. [CrossRef]

13. Cong, L.; Zhuang, W. Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems.
IEEE Trans. Wirel. Commun. 2002, 1, 439–447. [CrossRef]

14. Qi, Y.; Kobayashi, H.; Suda, H. Analysis of wireless geolocation in a non-line-of-sight environment.
IEEE Trans. Wirel. Commun. 2006, 5, 672–681.

15. Niculescu, D.; Nath, B. Ad Hoc Positioning System (APS) using AOA. In Proceedings of the IEEE INFOCOM
Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, San Francisco, CA,
USA, 30 March–3 April 2003; pp. 1734–1743.

16. Addlesee, M.; Curwen, R.; Hodges, S.; Newman, J.; Steggles, P.; Ward, A.; Hopper, A. Implementing a
sentient computing system. Computer 2001, 34, 50–56. [CrossRef]

17. Savvides, A.; Han, C.C.; Strivastava, M.B. Dynamic fine-grained localization in ad-hoc networks of sensors. In
Proceedings of the ACM/IEEE MOBICOM International Conference on Mobile Computing and Networking,
Rome, Italy, 16–21 July 2001; pp. 166–179.

18. Bshara, M.; Orguner, U.; Gustafsson, F.; Biesen, L.V. Fingerprinting localization in wireless networks based
on received-signal-strength measurements: A case study on WiMAX networks. IEEE Trans. Veh. Technol.
2010, 59, 283–294. [CrossRef]

19. Bshara, M.; Orguner, U.; Gustafsson, F.; Biesen, L.V. Robust tracking in cellular networks using HMM filters
and cell-ID measurements. IEEE Trans. Veh. Technol. 2011, 60, 1016–1024. [CrossRef]

20. Chang, M.F.; Chen, C.H.; Lin, Y.B.; Chia, C.Y. The frequency of CFVD speed report for highway traffic.
Wirel. Commun. Mob. Comput. 2015, 15, 879–888. [CrossRef]

21. Gundlegård, D.; Karlsson, J.M. Handover location accuracy for travel time estimation in GSM and UMTS.
IET Intell. Transp. Syst. 2009, 3, 87–94. [CrossRef]

67



ISPRS Int. J. Geo-Inf. 2016, 5, 82

22. Paek, J.; Kim, K.H.; Singh, J.P.; Govindan, R. Energy-efficient positioning for smartphones using Cell-ID
sequence matching. In Proceedings of the 9th International Conference on Mobile Systems, Applications,
and Services, Bethesda, MD, USA, 28 June–1 July 2011; pp. 293–306.

23. Chen, C.H.; Lin, B.Y.; Lin, C.H.; Liu, Y.S.; Lo, C.C. A green positioning algorithm for campus guidance
system. Int. J. Mob. Commun. 2012, 10, 119–131. [CrossRef]

24. Lin, B.Y.; Chen, C.H.; Lo, C.C. A novel speed estimation method using location service events based on
fingerprint positioning. Adv. Sci. Lett. 2011, 4, 3735–3739. [CrossRef]

25. Chen, C.H.; Lo, C.C.; Lin, H.F. The analysis of speed-reporting rates from a cellular network based on a
fingerprint-positioning algorithm. S. Afr. J. Ind. Eng. 2013, 24, 98–106. [CrossRef]

26. Chen, C.H.; Lin, B.Y.; Chang, H.C.; Lo, C.C. The novel positioning algorithm based on cloud computing—A
case study of intelligent transportation systems. Information 2012, 15, 4519–4524.

27. Cheng, D.Y.; Chen, C.H.; Hsiang, C.H.; Lo, C.C.; Lin, H.F.; Lin, B.Y. The optimal sampling period of a
fingerprint positioning algorithm for vehicle speed estimation. Math. Prob. Eng. 2013, 2013, 1–12. [CrossRef]

28. Wigren, T. Adaptive enhanced cell ID fingerprinting localization by clustering of precise position
measurements. IEEE Trans. Veh. Technol. 2007, 56, 3199–3209. [CrossRef]

29. Kuo, S.P.; Lin, S.C.; Wu, B.J.; Tseng, Y.C.; Shen, C.C. GeoAds: A middleware architecture for music service
with location-aware advertisement. In Proceedings of the IEEE International Conference on Mobile Ad-hoc
and Sensor Systems, Pisa, Italy, 8–11 October 2007.

30. Chen, C.H. Traffic Information Estimation Methods Based on Cellular Network Data. Ph.D. Thesis,
Department of Information Management and Finance, National Chiao Tung University, Hsinchu,
Taiwan, 2013.

31. Apache Software Fundation, Apache Hadoop 2.3.0. 2015. Available online: http://hadoop.apache.org/
(accessed on 26 March 2016).

32. Apache Software Fundation, Apache Hive 0.12.0. 2015. Available online: http://hive.apache.org/ (accessed
on 26 March 2016).

33. Chen, C.H.; Lin, J.H.; Kuan, T.S.; Lo, K.R. A high-efficiency mobile positioning system by using commercial
vehicle operation data based on cloud computing techniques. In Proceedings of the IEEE International
Conference on Internet of Things, Taipei, Taiwan, 1–3 September 2014.

34. Chen, C.H.; Lin, S.Y.; Chang, H.C.; Lo, C.C. On the design and development of a novel real-time transaction
price estimation system. Adv. Mater. Res. 2011, 393–395, 213–216. [CrossRef]

35. Levine, D.; Krehbiel, T.C.; Berenson, M.L. Basic Business Statistics: Concepts and Applications, 10th ed.; Pearson
Education: New York, NY, USA, 2005.

36. Chen, C.H.; Lin, H.F.; Chang, H.C.; Ho, P.H.; Lo, C.C. An analytical framework of a deployment strategy for
cloud computing services: A case study of academic websites. Math. Prob. Eng. 2013, 2013, 1–14. [CrossRef]

37. Wikipedia, Error Function. 2015. Available online: http://en.wikipedia.org/wiki/Error_function (accessed
on 26 March 2016).

38. Ministry of Justice of the Republic of China, Highway Act. 2015. Available online: http://law.moj.gov.tw/
LawClass/LawAll.aspx?PCode=K0040001 (accessed on 26 March 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

68



 International Journal of

Geo-Information

Article

Efficient Location Privacy-Preserving k-Anonymity
Method Based on the Credible Chain

Hui Wang 1,2, Haiping Huang 1,2,3,4,*, Yuxiang Qin 1,2, Yunqi Wang 1,2 and Min Wu 1,2,3

1 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
hughwangmail@yeah.net (H.W.); 18705192253@163.com (Y.Q.);
wangyunqi773@163.com (Y.W.); wumin@njupt.edu.cn (M.W.)

2 Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China
3 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China
4 Institute of Computer Technology, Nanjing University of Posts and Telecommunications,

Nanjing 210003, China
* Correspondence: hhp@njupt.edu.cn

Academic Editors: Chi-Hua Chen, Kuen-Rong Lo and Wolfgang Kainz
Received: 9 December 2016; Accepted: 30 May 2017; Published: 1 June 2017

Abstract: Currently, although prevalent location privacy methods based on k-anonymizing spatial
regions (K-ASRs) can achieve privacy protection by sacrificing the quality of service (QoS),
users cannot obtain accurate query results. To address this problem, it proposes a new location
privacy-preserving k-anonymity method based on the credible chain with two major features. First,
the optimal k value for the current user is determined according to the user’s environment and
social attributes. Second, rather than forming an anonymizing spatial region (ASR), the trusted
third party (TTP) generates a fake trajectory that contains k location nodes based on properties of
the credible chain. In addition, location-based services (LBS) queries are conducted based on the
trajectory, and privacy level is evaluated by instancing θ privacy. Simulation results and experimental
analysis demonstrate the effectiveness and availability of the proposed method. Compared with
methods based on ASR, the proposed method guarantees 100% QoS.

Keywords: k-anonymity; location-based services; location privacy; the credible chain

1. Introduction

As one of the most important forms of digital information, geographical location data play a
critical role in various applications (e.g., smart cities, social networks and intelligent navigation) via
big data processing, mobile communications and sensing technologies. Consequently, location-based
services (LBS) have become some of the most prevalent tools used in all kinds of Internet of things’
applications. Many location applications can be downloaded via the applications market through
users’ smart phones or tablet computers. With the help of these applications, users can easily obtain
location query services and relevant points of interest (POI) returned by a location server. For example,
users can query nearby hospitals, restaurants or gas stations.

Location data can disclose private personal information while offering convenience to users;
as such, data not only include user location coordinates but also reveal other sensitive personal
data such as users’ habits, health conditions, and social affiliations [1]. The abuse of location
information can considerably compromise user privacy. Several ways to address such issues of
location privacy have been proposed over the past few years. Such methods can be divided into
two categories: those based on the location privacy-preserving model with the trusted third party
(TTP) and those based on the location privacy-preserving model without TTP. The privacy-preserving
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model without TTP exacerbates communication costs, delays and computational complexity levels
and presents obvious problems of usability and stability. The location privacy-preserving model
based on TTP is consequently more suitable in use in practical scenarios in combination with a
trusted third party service [2]. The model adds a firewall between the user and LBS server and
uses location perturbation and obfuscation to achieve privacy protection, and most commonly via
k-anonymity. To achieve k-anonymity, TTP expands the queried location into a broader anonymizing
spatial region (ASR) that covers several other users (e.g., other k − 1 users) geographically. As a
result, it is difficult for an untrusted LBS server to determine a user’s real location from other k − 1
dummy locations [3]. However, these approaches based on k-anonymity achieve high-level privacy
protection while sacrificing service quality levels. While a broader ASR achieves greater user privacy
protection, it occurs at the cost of lower service quality and higher communication and computation
costs. Therefore, the trade-off between privacy protection, service quality and resource costs is a major
concern with respect to location privacy protection technologies.

This paper proposes a location privacy-preserving method of k-anonymity based on the credible
chain. The method should not affect the QoS of LBS, as it adopts a trajectory that protects location
privacy rather than constructing an ASR. This paper adopts a classical LBS system architecture based
on a central anonymity server (anonymizer) and determines the best k value for a user based on the
user’s environment and social attributes. To address contradictions between privacy protection levels,
service quality and resource costs, it utilizes properties of the credible chain to predict the next state
and constructs an illusive location trajectory that contains k locations.

The main contributions of this paper can be summarized as follows:
(1) It proposes a new location privacy-preserving method of k-anonymity based on the credible

chain. Rather than forming a k-ASR similar to existing schemes, a TTP forms a fake trajectory that
includes k-locations based on properties of the credible chain. It can achieve 100% service accuracy
while protecting user location privacy.

(2) A feasible k value selection scheme is proposed as a way to reduce unnecessary communication
overhead while guaranteeing user location privacy. The k value is not static and is calculated in terms
of a user’s current environment and social attributes.

(3) Finally, it conducts privacy metrics by instancing θ privacy to validate the effectiveness and
accessibility of this method. Compared with existing schemes, the proposed method achieves superior
service performance.

The remainder of the paper is organized as follows. Related works are summarized in Section 2.
The system model is introduced in Section 3. Section 4 describes the location privacy-preserving
method of k-anonymity based on the credible chain in detail. Section 5 presents privacy metrics that
involve instancing θ privacy. Section 6 presents the experimental analysis and performance evaluation.
Finally, Section 7 draws conclusions.

2. Related Works

Several ways to ensure location privacy have been proposed [3–17].
As noted above, these approaches can be divided into two categories according to system

structures: those related to the location privacy-preserving model based on TTP, which can protect
a user’s personal information via concealment or confusion, and those based on the location
privacy-preserving model without TTP, which can be divided further into collaborative and
non-collaborative methods.

For the former, many solutions have been proposed such as methods based on anonymous
boxes and data features, for which k-anonymity is now the most widely used tool. Sweeney et al. [3]
developed a k-anonymity model as a privacy protection measure for ensuring personal data privacy.
In 2003, k-anonymity was first applied to location privacy protection by Gruteser et al. [4]. In [4],
location perturbation of k-anonymity method is performed via the quadtree-based algorithm, which
adopts spatial and temporal cloaking. However, this approach presents two drawbacks: (1) first,
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it uses a static k value as a privacy parameter for all mobile users, which likely affects service
quality levels for those users whose privacy needs can likely be satisfied using a smaller k value.
Furthermore, this assumption is unrealistic, as mobile users tend to have alterable privacy protection
needs under different conditions and on different subjects. (2) Second, it can easily generate an excess
anonymous region, which not only increases computation costs but also affects the quality of services.
To address static k value issues, Gedik et al. [5] proposed the CliqueCloak method, which adopts an
individualization k-anonymity model to protect location privacy. However, it only supports small k
values (5–10) given its high degree of computational complexity. In [6], Bottom-Up Grid Cloaking and
Top-Down Grid Cloaking methods are proposed as ways to form anonymous regions by respectively
merging or decomposing grid regions. Bottom-Up Grid Cloaking is used to manage location queries
with fewer privacy requirements and Top-Down Grid Cloaking is used to manage location queries
with greater privacy requirements. Jagwani et al. [7] proposed a k-anonymity method based on fuzzy
spatiotemporal contexts. While this method involves determining the k value to prevent location
disclosure and using current fuzzy spatiotemporal attributes to guarantee a more reasonable k value,
it does not account for a user′s social attributes such as the correlation degree between identity and
location and the associated number for others. To address excess anonymous regions issues, the Casper
algorithm [8] was proposed by Mokbel as a way to form an ASR based on [4]. When a user’s number
of current quadtree leaf nodes where the request sender is located is less than k, the area of the current
leaf node is merged with that of its adjacent sibling node. When a user’s number of anonymous areas
is still less than k, the area of the parent of the existing leaf node must be searched for. The Casper
algorithm is superior to the algorithm shown in [4], as it reduces computation costs and allows
users to more easily control privacy parameters. However, it still suffers from excess anonymous
regions and unsatisfactory service quality levels. Yong et al. [9] present a location privacy-preserving
k-anonymous method based on service similarities. The location service similarity is introduced to
assist anonymity servers in looking for anonymous areas, which not only improves an individual′s
need for high-quality information services to some extent (however, not 100%), but also reduces the
computation and communication overhead. Niu et al. [10] propose the Dummy-Location Selection
(DLS) and enhanced-DLS algorithms. The DLS algorithm carefully selects dummy locations based on
the entropy metric, as side information can be exploited by adversaries. The enhanced-DLS algorithm
ensures that selected dummy locations are spread out as much as possible, and it can expand the
cloaking region while maintaining privacy levels similar to those of the DLS algorithm.

Location privacy-preserving model without TTP consists of an LBS server and several mobile
users, and mobile users form a fake location or k-ASR through a cooperative or independent way
to meet the anonymous area requirement to achieve location privacy protection. Chow et al. [11]
proposed a peer-to-peer spatial cloaking algorithm for anonymous location-based services. The main
premise of this algorithm is that before requesting any location-based service, a mobile user must
form a group based on his/her neighbor users. A user of the group is then selected to send a service
request to the LBS server. The algorithm proposed in [11] has since been improved by Chow [12],
who increased the system′s availability by allowing a user to use his/her historical neighbor data
and corresponding anonymity levels to achieve location privacy when enough time is available.
Zakhary et al. [13] proposed an HSLPO (Social-aware Location-Privacy in Opportunistic mobile social
networks) algorithm that can identify a users’ social network and use it to obfuscate service requests
and to hide the original sender’s location. The HSLPO algorithm can achieve higher levels of location
privacy and service quality than other algorithms in terms of success ratios. However, these methods
cannot address inherent defects of the location privacy-preserving model without TTP (i.e., due to
high communication or computation costs).

In addition, some new methods combined with anonymous chains were proposed [14–17].
Historical trajectories are used to form anonymous location chains in [14,15] in order to achieve
privacy protection. Many existing chain structures have also been introduced into privacy protection,
Markov chain is one of the examples. Kang et al. achieved the user’s ID secure authentication with
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Markov chain [16]. Montazeri et al. proved that Markov chain, as the result of stochastic process,
can be used to simulate the users′ location trajectory, and, meanwhile, it achieves perfect location
privacy [17]. However, how to combine the Markov chain with the real world has not been explained
in [17]. Different from these methods, this paper introduces the users′ states and social attributes into
an anonymization model and form a fake trajectory in real areas.

Most of the existing methods are devoted to protecting the location privacy with ASR, and some
others (e.g., the proposal in this paper) try to achieve the win-win situation between the quality of
service and the privacy protection. In this paper, it protects the privacy with a group of fake points
and makes them up into a fake trajectory. With the help of anonymity algorithms, these fake points are
creditable and not easily distinguishable from real points by the attackers. With this method, it can
hide the user’s true location information and keep the 100% quality of service at the same time.

3. Systems Model

When building a safe LBS model, three factors must be considered:

(1) The quality of service (QoS).
(2) When information (part of the database) disclosure occurs and LBS data are leaked, leaked

information can be controlled as little as possible.
(3) When location-based services are taken over by an attacker, the attacker can be misled with

false data.
(4) The LBS will adopt the timestamp from the received request messages to provide location services.

When the LBS is contacted without a TTP and information is sent directly, the accuracy of a given
service can be ensured. However, this method is less secure when subjected to attacks. When the
k-anonymous method is used, the real user’s location is merely a point in an ASR, and the redundant
area inevitably results in inaccuracy and QoS degradation. However, when an attacker takes over an
entire LBS, he can likely navigate the ambiguous areas of real location by using a fuzzy user trajectory.

It is true that there are still some disadvantages in the privacy-preserving model with TTP.
For example, all of the protections are in vain if the TTP is thoroughly taken over by the attacker.
However, taking computation cost and convenience of network management into account, it is believed
that the privacy-preserving model with TTP is still the better choice in most real situations compared
with that without TTP whose computation completely relies on individuals’ devices. Consequently,
an assumption needs to be considered in this paper: TTP is trusted and secure. The purpose of this
paper is mainly to protect the users’ information from the potential security threats in LBS.

One strong solution involves combining a real location with fake locations via a TTP and sending
this location data to an LBS. Once a reply from the LBS is received, the TTP can return the correct
answer to the user. This can be carried out to ensure QoS and privacy at the same time. However, an
experienced attacker can exclude fake points via logical plausibility analysis. For example, one cannot
travel around a city in 10 min or stand in the middle of a lake. After applying such exclusions, user
location data are probably exposed to the attacker. Therefore, the key to the success of this method
involves generating ‘trusted points’ and forming a ‘trusted trajectory’.

To apply this idea, it generates ‘trusted points’ and transforms a user’s location into a fake
trajectory rather than a dummy region. As is shown in Figure 1, a true node is a user′s true location
node, and the fake1, fake2, fake3, . . . fake(k − 1) nodes are selected from a cloud server to form a fake
trajectory. A cloud server is a server from a TTP that stores previous requests or realistic points and
that can ensure that fake points are located in viable areas rather than in locations that a request cannot
cover. A trajectory is a sequence of moving object location data sorted by time. Hence, the anonymity
server must change the timing of nodes to allow the trajectory to confuse and distract attackers.
In Figure 1, the fake1 node starts the trajectory followed by the fake2 node via the true node and finally
the fake(k − 1) node. The resulting user position accuracy is superior to that of an ASR, and a user can
achieve higher QoS while ensuring his/her location privacy.
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Figure 1. Diagrammatic sketch of the trajectory.

Based on Figure 1, it adopts the system structure shown in Figure 2. When a user sends a service
request, the client determines the k value that meets the user’s anonymous needs according to the
user’s environment and social attributes, and then the client sends this k value to the anonymity server.
The anonymity server then obtains k − 1 fake nodes by communicating with the cloud server, and k − 1
fake nodes and the true node are constructed into a fake trajectory. Finally, the LBS server carries out
inquiry processing for nodes of the fake trajectory in order.

Figure 2. System structure.

4. k-Anonymity Method Based on the Credible Chain

Based on the above system model, it proposes a k-anonymous location privacy protection method
based on the credible chain.

4.1. Preliminary Knowledge

Definition 1. (Request message Q) the requested message Q can be expressed as a six tuple:

Q = {id, loc, t, qry, k, s},

where id is the identity information of the user who sends the request; loc is the user’s location, which can be
directly obtained from a Global Position System (GPS) or using other positioning devices; t denotes the time at
which the user sends the request; qry is the content that the user wants to request; k is the anonymous parameter
of the location privacy level, which can be determined from the system; and s is the anonymous region where
the user located. For example, if the user is in Shanghai, the history points, which will be chosen in following
sections, can only be in the same city.

Definition 2. (The credible chain) Let {X(t), t ≥ 0} denote a discrete time process taking values in state space I
= {0,1, 2, . . . }. For 0 ≤ t1 < t2 < . . . < tn+1 and i1, i2, . . . , in+1 ∈ I, P{X(tn+1) = in+1 | X(t1) = i1, X(t2) = i2,
. . . , X(tn) = in} = P{X(tn+1) = in+1 | X(tn) = in}. Note that {X(t), t ≥ 0} is defined as the credible chain.

When the locations where the user is positioned at the present time tn and at all past times are known,
the location where the user is located in the future tn+1 is only related to tn. In addition, P{X(tn+1) = in+1 | X(tn)
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= in} �= 0 denotes that from the location where the user is currently located at time tn, the user can arrive at the
location where he/she will be positioned at time tn+1.

There are two advantages to adopting the credible chain:
(1) The unit of a credible chain is only related to the units preceding it. This ensures the uniformity of the

entire trajectory and renders it more ‘trusted’.
(2) Due to the non-aftereffect properties of the credible chain, it is impossible for an attacker to identify

previous points according to leaked data.

Definition 3. (Trajectory based on the credible chain T) The trajectory is generated by a TTP and includes at
least k request messages (containing a user request message), the location of qi and the next reachable location of
qi+1 (i = 0,1, . . . ,k − 1) satisfy the inequality P{X(ti+1) = qi+1 .loc | X(ti) = qi .loc } �= 0.

Definition 4. (Query function R) R (loc) is a function that queries POI according to loc, and it can obtain a
sorted set of top-m POIs. Sorting rules can be customized by an LBS (e.g., distance, popularity, rate and quality
of service). The Euclidean Distance between the user and POI is adopted as the sorting rule.

Definition 5. (Candidate result set W) W denotes the set of all query results searched by the LBS based on
location nodes of the trajectory provided by the anonymity server.

4.2. k Value Selection

k is an important value in this model that represents the anonymous parameter of the location
privacy level and that can be calculated through the system. It also denotes the number of points in
the fake trajectory.

To further improve location privacy outcomes, the optimal user k value must be determined.
There are a lot of factors that may influence the disclosure of the users’ privacy information. Sometimes,
the users’ personal requirements need to be considered. According to users’ location privacy
requirements, investigation and analysis [18], in this paper, the four most prevalent factors are chosen
which can be directly analyzed with the TTP’s database or set by the users without the help of other
data sources or technical tools. It is worth stressing that these factors are not essential to all anonymous
scenarios, which can be substituted or added in terms of actual demands and situations, and they
should not affect the effectiveness and availability of the algorithm.

(1) Density of the anonymous area
The density of the anonymous area (crowdedness) has a strong effect on location privacy.

While individuals do not wish to expose themselves to less crowded areas, they may feel relatively
safe in crowded areas. The less the density of the anonymous area is, the more important the location
information is. In this paper, anonymous area density levels can be classified into four categories:
sparse, moderately crowded, crowded, and extremely crowded. Such classifications are not fixed and
can be altered according to realistic conditions. For example, the number of levels can be three, five, or
greater. Level classifications do not affect the validity of the algorithm.

(2) Time interval of one day
Different users have different location privacy needs for different time intervals based on

distinguished social attributes. For example, at night, individuals who work during the day usually
have greater location privacy needs than those who work at night, and they thus require larger k values.
Time intervals for a single day can be classified into 4 levels: night, morning, afternoon and evening.

(3) Correlation between identity and location
Users often have different location privacy needs even when they are located in the same

area because, in certain environments, their locations are closely related to their identities.
When relationships between user identity and location are stronger, smaller k values are required.
For example, when a teacher queries an LBS on a campus, the value of k should be smaller than that
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used when the teacher is located in a bar. For example, correlation levels can be classified into four
levels: irrelevant, low, moderate, and high.

(4) Associations with others
In forming social networks, many users determine their respective social circles. Associations

with others denote the extent of a user’s social circle. The larger the number of associations becomes,
the stronger privacy-preserving demands become. For example, movie stars always keep their locations
private, as their fans would bloat their number of associations, thus requiring a larger k value. Here,
the number of associations can be divided into four levels: few, some, many and numerous.

The above four factors are considered to strongly influence user location privacy. Linguistic
variables are used to describe the influence levels of the four factors. The linguistic variable is typically
a fuzzy value (e.g., “few” or “many”) rather than an accurate value (0, 1, 2, 3, etc.), thus allowing
users to make decisions more intuitively. The number of levels for factors can be adjusted according
to the user experience and actual demands of applications. The users have chances to choose their
own levels of refinement. Actually, it does not affect the validity of the algorithm. These factors cannot
be directly applied due to their varying scales. To eliminate the influence from the scales of different
factors, the weight of each factor must be scientifically measured. The value of k will be calculated in
turn based on these weights.

When calculating weights, it is necessary to obtain a large number of surveyed samples regarding
the factors on a user’s location privacy. In order to reflect different users’ social attributes, these factors
are quantified into specific values Xij (the value of the ith factor of the jth sample). In this case, Xij can
be 0, 1, 2, 3, . . . , n − 1, which denote the number of levels of each factor. Then, average the value of
each factor via Equation (1):

Xi =
∑N

j=1 Xij

N
(i = 1, 2, 3, 4) (1)

where N represents the total amount of surveyed samples selected from the database.
The weight of each factor can be standardized via Equation (2):

Wi =
Xi

X1 + X2 + X3 + X4
(i = 1, 2, 3, 4) (2)

Thus, the weights can be between 0 and 1.
It can calculate a synthetic factor ∑4

i=1(Wi ∗ Ui)whose value lies in the range [0, n − 1] due to
different emphases from four factors, where Ui denotes the value of the ith factor of the current user.
Based on the synthetic factor value, it is important to find the most optimal k value for each user
between Kmax and Kmin. The anonymous value k (i.e., the number of location nodes in the credible
chain) is calculated according to Equation (3):

k =

⌈
kmax − kmin

n
∗
(
∑ 4

i=1(Wi ∗ Ui)− 1
)⌉

+ kmin. (3)

The lower and upper bound values of anonymous levels are expressed as kmax and kmin,
respectively, and both of them can be set according to the specific situation by the anonymity server.
The results in Equation (3) should round upwards to the nearest integer because k is an integer.

In Equation (3), the value of k is directly proportional to the values of the user’s attributes.
The more sensitive user data is the higher privacy level user needs (the value of k is bigger). However,
the specific relationship between k and the factor values is various and alternative. A questionnaire
has been conducted to investigate the user’s privacy requirements and the corresponding results have
been taken into linear regression to prove the feasibility to use linear dependency.
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4.3. Anonymous Processing

Anonymous processing is a critical step of the location privacy-preserving model, where a user’s
location is involved in a fake trajectory based on the credible chain generated via an anonymity
server. In this paper, two anonymous parameters (k and s) can be set according to a user’s demands
and background knowledge to satisfy his/her personalized location privacy-preserving needs.
The procedure described above can be explained via Algorithm 1.

Algorithm 1 Make a fake trajectory

Input: The user’s request q
Output: array P
1: q1:k−1 ← k − 1 messages selected by anonymity server
2: p1:k ← RANDOMSHUFFLE (q,q1, . . . ,qk−1) // The details of this step are shown in Algorithm 2
3: // The following steps are just outlines, the details of the following part are shown in Algorithm 3
4: for i = 2, 3 . . . k do
5: T ← NECESSARYTRAVELTIME (pi−1, pi)
6: If T ≤ tpi − tpi−1

7: tpi ← tpi + T + RandomDelay
8: End If

9: End for

10: Return P

The following two algorithms will show the details of some parts of Algorithm 1.
In Algorithm 2, k − 1 messages will be selected from the server. Then, the true request message

will be mixed into them according to the request time.

Algorithm 2 Initial anonymous processing algorithm

Input: The anonymity server selects k − 1 messages from the cloud server according to s generated by the user
and then places k − 1 messages and the user’s message q0 into the array Q (namely Q = {q0, q1, q2, . . . , qk−1}).
Output: array P
11: date = q0.t // Assign q0.t (the time of the user’s request message) to the variable date.
12: i = 1
13: ΔT = max (q0-qi), i∈[1, k − 1]
14: while i ≤ k − 1 do // Update the k − 1 message selected from the cloud server in turn.
15: qi.id = q0.id
16: qi.k = q0.k
17: qi.s = q0.s
18: if qi.t/∈(date − random(ΔT), date) then

19: qi.t = date + random (ΔT)
20: end if // Substitute date + random(ΔT) for qi.t while qi.t does not fall within the range of (date −
random(ΔT), date). The function of random(ΔT) is used to generate a random number in the range of (0, ΔT),
and the random number is retained to one decimal place.
21: i = i + 1
22: end while

23: P = Sort ({Q − qi}) // Place these messages from the array Q into the other array P after sorting according
to the value of t.
24: Return P

In the process of selection, the region s can be divided into k sub-regions with the same size.
For each sub-region where the current user is not located, it picks up the most inactive (i.e., the least
frequently used recently) historical request message from the sub-region. If there is no inactive message
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in this sub-region, then one from the nearest sub-region can be borrowed. Thus, it can finally select
k − 1 fake messages as the input of Algorithm 2.

In this algorithm, messages that have been requested before date − random (ΔT) will be put
after the true request message and their request time will be reset as date + random (ΔT). By this
means, the true point can be mixed with those fake points. However, the request time of true point
is the current time, and the attacker can recognize it easily. The fake points may not be accessible at
the current speed within the current time interval, and they can be easily excluded by the attacker.
Algorithm 3 is used to solve all of these problems.

Each point in this trajectory has a region that it can access with its current speed in the current
time interval. The transition probability for each point in this accessible region is equal, while the
transition probability out of this region is zero. In this paper, all of the fake points are historical
points chosen from the cloud service. The transition probability of each point in the trajectory is 1/M,
M is the number of the historical points within the current point’s accessible region (a round area
with the radius of Si,i+1/vi,i+1). Any point of this trajectory is inaccessible if its last point’s transition
probability is 0. In this case, it needs to delay the request time of the current point to expand its last
point’s accessible region and make the current point accessible. The detailed steps are described as
the following.

Algorithm 3 The credible chain algorithm

Input: array P = {p0, p1, p2, . . . , pk−1}, date
Output: the user’s trajectory T based on the credible chain
1: T = {p0} // Initialization should be completed before the credible chain is formed, and p0 is placed into the
trajectory T.
2: if p0.t = date
3: flag = 0 // When the message p0 is exactly the user’s message, flag is set to 0. This denotes that the user’s
message has been added to the credible chain.
4: else flag = 1
5: end if

6: Δ = 0; i = 0 // Δ is the interval between the time of the user’s request message after anonymity and the real
time of the user’s request message.
7: while i ≤ k − 2 do

8: if Δt = Si,i+1/vi,i+1 > (pi+1.t − pi.t) do // pi.loc cannot arrive at pi+1.loc.
9: if pi+1.t − Δ = date && flag then // Judge whether pi+1 is the user’s message.
10: Δ = pi.t + Δt − date
11: end if

12: pi+1.t = pi.t + Δt // pi+1.t is updated to guarantee that pi.loc can arrive at pi+1.loc.
13: end if

14: add (pi+1) // pi.loc can arrive at pi+1.loc, illustrating that P{X(ti+1) = qi+1.loc | X(ti) = qi .loc} �= 0.
Hence, pi+1 should be added to the trajectory T.
15: delete (pi+1) // pi+1 should be removed from the array P.
16: when pi+1.t − Δ = date, then // Determine whether pi+1 is the user’s message.
17: flag = 0; // if the user’s message has been added to the credible chain, and flag should be set to 0.
18: end if

19: i = i + 1
20: end while

21: Return T

Algorithm 3 is executed after Algorithm 2, and the input for Algorithm 3 is obtained from the
result of Algorithm 2. Initialization needs be carried out before the credible chain is formed. The critical
step involves determining whether Δt = Si,i+1/vi,i+1 > (pi+1.t− pi.t) (where Si,i+1 is the distance between
qi.loc and qi+1.loc and vi,i+1 is the maximum average speed at which the user arrives at qi+1.loc from
qi.loc. This can be fabricated based on actual conditions.). Algorithm 3 adopts a one-pass approach
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that can decrease the memory complexity while dealing with quantities of data. Furthermore, to avoid
a time span that is too long, Algorithm 3 will check whether the node needs additional time (whether
it is reachable with the current situation).

The request time of each point in the trajectory is related to all of its previous points. Figure 3
displays how to change the request time according to Algorithms 2 and 3 when the value of k is set
as 5. At the phase of initialization, t1, t2, t3 and t4 are the request times of fake points while t0 is the
request time of true points. Algorithm 2 forms the trajectory by reorganizing the request time as t3

′, t4
′,

t0
′, t1

′ and t2
′. If the point of t3

′ cannot arrive at that of t4
′ within the time interval between t3

′ and t4
′,

then it delays t4
′ to t4”. However, the time interval t0

′ − t4” will be changed due to the delay. It needs
to check whether it is accessible from the point of t4” to that of t0

′.
Therefore, if the request time of any point ahead of the true point is changed, the request time

of the true point may be changed due to Algorithm 3, and it may not be the current time anymore.
Even if one point’s request time is still the current time, the attacker cannot ensure whether it is a
coincidence (e.g., t4

′′ = t0
′).

Figure 3. The paradigm of request time change according to Algorithms 2 and 3.

4.4. Inquiry Processing

The anonymity server sends a query request involved in trajectory T, and then the LBS server
responds to the request. The LBS server identifies query results by traversing all message nodes in T
and then adds the results to a candidate result set W in order. Finally, W is returned to the anonymity

server. The final result of this process is W =
k−1∪
i=0

R(pi.loc).

In the above process, the LBS server traverses all message nodes in T, and W is the union of all
message query results after T is received from the anonymity server. When the anonymity server
receives W from the LBS server, TTP will find out the answer to the user’s original request by selecting
that the reply from W whose t before modification matches the user’s request time. Finally, the user’s
real message node will be returned to the user.

5. Privacy Metrics

In this section, it proposes a privacy measure mechanism for evaluating the efficiency of privacy
protection in the service system presented. For guaranteeing the availability and effectiveness of the
proposed scheme, θ privacy instancing [19] will be adopted.

It uses a series of true user historical location data including position coordinates loc and time
t, which have been collected by an attacker before the user’s current location node is attacked.
The attacker can thus probe all message nodes in the credible chain to determine their authenticity
according to the latest user location data collected. This is defined as follows:

P{U|Lt} − P{U} ≤ θ. (4)
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In Equation (4), θ denotes the degree of location privacy protection, and, meanwhile, it can be
defined as the difference degree of the attack effect between an attacker with background knowledge
and someone without background knowledge; P{U|Lt} denotes the posterior probability that an
attacker will infer the user’s real location in the current credible chain on the premise that he collects
these location data before the moment t; P{U} denotes the priori probability that an attacker will infer
the user’s real location in the current credible chain. Assume that the number of inaccessible nodes
excluded by the attacker is α, that the total number of nodes is k, the value of P{U|Lt} is 1/(k − α) and
the value of P{U} is 1/k. Consequently, Equation (4) can also be substituted as Equation (5):

1
k − α

− 1
k
≤ θ (5)

Assume that the sequence of all location nodes in the credible chain is p1, p2 . . . pi . . . pk and that
the latest user location node information collected by the attacker is p0. The method for calculating the
value of θ is described as follows:

Step 1: Judge whether inequality (pi.loc − p0.loc)/v0,i ≤ (pi.t − p0.t) is established. Inequality
denotes whether from the location of p0 the user can arrive at the location of pi. In this case, proceed to
step 2; otherwise, proceed to step 3.

Step 2: Inequality is established, denoting that node pi may be the user’s true node. The value of
α is then put into Equation (5) to determine the value of θ.

Step 3: Inequality is not established, denoting that the node pi is a dummy node. Then, α++ and
i++. Proceed to step 1 to continue the calculation.

As is shown in Figure 4, it assumes that k is 4 and that a credible chain {p1, p2, p3, p4} has been
constructed by the anonymity server. An attacker collects a series of true user historical location data,
and the latest user location data is p0. First, it determines whether inequality (pi.loc − p0.loc)/v0,i ≤
(pi.t − p0.t) is established according to the above steps in order to calculate the value of θ. As location
p0 cannot arrive at location p1, p1 is a dummy one and the value of α is added to 1. It then determines
whether location p0 can arrive at location p2. As location p0 cannot arrive at location p2, the value of α

is 2. Subsequently, it determines whether location p0 can arrive at location p3. As location p0 can arrive
at location p3 and location p3 can arrive at location p4, p3 and p4 may be the true nodes of the user.
Finally, it can derive the value of θ as 1

4 .

2

Figure 4. Calculating the value of θ.

6. Experimental Analysis

In this section, the performance of the proposed location privacy-preserving method will be
evaluated from three aspects using MATLAB: the degree of anonymity, θ privacy and the quality of
service (QoS).
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6.1. Degree of Anonymity Analysis

In this paper, the degree of anonymity is determined based on the value of k. It uses a series of
data to simulate four weights of influencing factors that can be set as W1 = 0.16, W2 = 0.15, W3 = 0.4,
and W4 = 0.29. It samples some location requests from different identities and locations, which are
partly shown but not limited in Table 1.

Table 1. The data on the user’s environment.

User Location Density
Time

Interval
Correlation

Degree
Associated

Number

Student 1 canteen crowded morning high few
Student 2 hospital crowded afternoon low numerous

AIDS patient hospital crowded morning high numerous
White collar 1 home sparse morning high numerous
White collar 2 road sparse night irrelevant numerous

Movie Star market extremely crowded evening low numerous
Teacher 1 campus moderately crowded afternoon high many
Teacher 2 bar crowded night irrelevant many

Tourist scenic area crowded morning irrelevant some

Users have different privacy needs due to their different identities and environments. To obtain a
better k value, it analyzes the effects of kmax and n on the selection of k using the data shown in Table 1.

Assume that kmin is 5 for ease of analysis. According to Figure 5, it can conclude that the value
of anonymity degree k should increase as the maximum of the anonymity degree kmax increases.
This means that the location privacy-preserving method can be used to determine a reasonable kmax

value to obtain a suitable k according to different anonymity needs while further enhancing the
protection of real location data. The value of anonymity degree k should likely decrease or remain
unchanged while influencing factor n (the number of levels) grows. When influencing factors cannot
be classified specifically, privacy requirements cannot be comprehensively determined or analyzed,
and more location messages are needed to complete the anonymity process. It can marginally reduce
the number of location messages used in the anonymity process while each influencing factor is
accurately classified and measured. It is beneficial to reduce time costs, improve efficiency and protect
real location data when forming the credible chain.

Figure 6 displays the relationship between the anonymity degree k, the maximum anonymity
degree kmax and influencing factors n tri-dimensionally.

As is shown in Figure 6, the value of k will gradually increase as kmax gradually increases
or as n gradually decreases. This means that more location data must be used in the anonymity
process, and, accordingly, communication costs should increase. Thus, the value of k must be set
within a reasonable range to limit unnecessary communication overhead; meanwhile, fine-grained
classifications of influencing factors and reasonable kmax values are needed.
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Figure 5. Cont.
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(g) effect of kmax on k (n = 5) (h) effect of kmax on k (n = 5) 
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6.2. θ Privacy Analysis

It uses θ to measure the privacy level. The smaller θ is, the higher the user’s location privacy
level becomes. In Equation (5), α denotes the number of inaccessible nodes excluded by the attacker
according to the user’s previous locations. Different values of α in a credible chain denote that the
attacker has different background knowledge.

According to Figure 7, as the value of α increases, the value of θ also increases. This shows that
when the attacker has more background information, the user′s degree of location privacy decreases
and protection costs increase, as more fake nodes must be added to the chain. When the value of k
increases gradually, the value of θ gradually tends toward 0, which denotes perfect privacy.
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Figure 7. The relationship between k and θ under different background knowledge conditions.

Figure 8 denotes the relationship between k, the number of excluded fake nodes α, and the value
of θ privacy.
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Figure 8. The relationship between k, α, and θ privacy.

According to Figure 8, when the number of excluded fake locations is constant, the larger the
value of k is, the smaller the value of θ becomes and the better the degree of privacy protection becomes.
When k is constant, the larger the number of excluded fake locations is, the larger the value of θ

becomes and the worse the degree of protection becomes.
Assume that the user’s current position in the trajectory is x, and the attacker has maximum attack

capacities. For example, in Figure 9, A-O-B is a fake trajectory (k = 8 in this figure), and P-H-O is the
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user’s true trajectory. Therefore, the attacker holds all of the request messages ahead of O in the true
trajectory. It can only ensure that, in A-O-B, for any two adjacent nodes, the previous one to the next
one is accessible. Thus, P-O-B is also accessible between any two nodes. It is not certain whether it is
accessible from H to any point between A and O (for example, Q). The worst situation is that all points
between A and O are excluded. In this case, α = 4 (α = x − 1).

Figure 9. True trajectory P-H-O and fake trajectory A-O-B.

After these analyses, the expected values of α and θ can be figured out, respectively.
Under normal circumstances, the value of α can vary from 0 to (x − 1) with equal probability.

Therefore, the following equation regarding α can be derived:

E(α) =
x−1

∑
i=0

i
x
=

x − 1
2

(6)

It can also calculate the expected value of θ by listing all valid combinations of α and x.
The value of x can vary from 1 to k with equal probability. Under this premise, the value of α can

vary from 0 to (x − 1) with equal probability. Therefore:

E(θ) = 1
k

k
∑

x=1

{
1
x

x−1
∑

α=0
[θ(α, k)]

}

= 1
k

k
∑

x=1

{
1
x

x−1
∑

α=0

[
1

k−α − 1
k

]}

= 1
k

k
∑

x=1

{
1
x
[
Hk − Hk−x − x

k
]}

= 1
k

k
∑

x=1

{
Hk−Hk−x

x − 1
k

}
= 1

k

{
k
∑

x=1

[
Hk−Hk−x

x

]
− 1

}
(7)

where Hn means the n-th harmonic number (H0 := 0).
With this result, the relationship between θ and k can be depicted in Figure 10, where k = 1 means

that TTP sends the true point to LBS, while k = 2 means that there are only one fake point and one
true point in the fake trajectory. These two situations will be excluded in reality. Therefore, it can be
concluded that the bigger k is, the smaller E(θ) and the higher the privacy-preserving level of the user
data will be.
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Figure 10. The relationship between k and E(θ).

6.3. Quality of Service (QoS) Analysis

The following representative anonymous methods are used for comparisons in this section: the
quadtree-based [2], Casper [6], service similarity [7] and enhanced-DLS algorithms [8]. Simulation
experiments are conducted under the same conditions to compare service accuracy. The service
accuracy of an anonymity server can be denoted as C = Wtrue

W , denoting the ratio between the valid
number of queries and the total value. An increase in C indicates that the accuracy of query results has
improved. When C = 1, all feedback results are correct. Moreover, 100 random queries are simulated
in each algorithm.

According to Figure 11, the proposed method always achieves a service accuracy level of 1
(or 100%), while values achieved by other anonymous methods decline as the value of anonymity
degree k increases. This is because the proposed method forms a credible chain based on a user’s real
location and several fake locations, ensuring that the positional accuracy levels are never reduced.
The other methods form ASRs based on k user locations, which decreases positional accuracy levels.
From Figure 11, it can be concluded that the proposed method does not suffer from the service accuracy
limitations of existing algorithms based on ASRs.

Figure 11. The relationship between k and service accuracy.
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7. Conclusions

To address the issue that privacy levels are improved by sacrificing the quality of service in current
location privacy-preserving mechanisms, it proposes a location privacy-preserving k-anonymity
method based on the credible chain. The method involves utilizing properties of the credible chain and
forming a fake trajectory of k location nodes by changing their timing. It also optimizes the value of k
and renders it suited to current users’ environments and social attributes, thus reducing communication
overhead. Furthermore, privacy metrics is suggested by instancing θ privacy. The experimental
analysis results show that the proposed method is more effective at addressing contradictions between
service accuracy and location privacy. All of the parameters in this paper are extensible and can be
changed according to actual requirements. However, the significance of this algorithm is protecting
the database and preventing user data from being sold by the LBS providers. If the attacker takes
over the LBS and launches a real-time and well-planned attack, the proposed method will degenerate.
Future work will involve using big data techniques to analyze and process location data to further
improve the effectiveness of location anonymization measures. It is also important to find a suitable
method to deal with the real-time and well-planned attack and avoid algorithm degradation. At the
same time, the security of third parties and more reasonable k value selection methods also need
further investigation.
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Abstract: The Internet of Things (IoT) opens up tremendous opportunities to provide location-based
applications. However, despite the services around a user being physically adjacent, common
IoT platforms use a centralized structure, like a cloud-computing architecture, which transfers
large amounts of data to a central server. This raises problems, such as traffic concentration, long
service latency, and high communication cost. In this paper, we propose a physical distance-based
asynchronous messaging platform that specializes in processing personalized data and location-based
messages. The proposed system disperses traffic using a location-based message-delivery protocol,
and has high stability.

Keywords: location-based service; Internet of Things; distributed system architecture

1. Introduction

With the recent development of network and embedded system technologies, interest has grown
in the Internet of Things (IoT). For example, a smart home service [1] can check and control appliances
in the home by connecting the devices to a network. A smart healthcare service [2] manages the
personal medical state by connecting with wearable devices, fitness equipment, and medical equipment.
Mobile-asset monitoring [3] provides real-time monitoring and tracking of mobile assets in a factory.

However, despite the devices being physically adjacent, common IoT platforms transfer large
amounts of data, generated by multiple devices, to a central server via a global network. This causes
problems, such as network congestion due to traffic concentration, service-delay problems caused by
multi-hop communication, and a high communication cost because the device is always connected
with a centralized server via a global network. In addition, many mobile objects require a complex
network protocol, like 6LoWPAN (IPv6 over Low-power Wireless Personal Area Networks) or TCP/IP
(Transmission Control Protocol/Internet Protocol), to connect to a network. This is difficult to
implement in mobile phones and resource-constrained embedded systems like wearable devices.
From the end user’s viewpoint, since the personal device information is stored in a central server,
privacy violations and security issues [4,5] are possible.

In this paper, to solve the above problems, we propose a physical distance-based asynchronous
messaging platform between neighboring nodes. IoT services closely related to people have
personalized and localized features, like smart home services and smart healthcare services. Therefore,
we define the location-based IoT (LIoT) service, combining IoT services and location information.
This specialized platform processes personalized data and location-based messages. The proposed
system is composed of (1) a wireless communication proxy that is responsible for direct communication
between various mobile nodes; (2) a self-organizing localized IoT messaging hub (SLIM Hub) that
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makes up the autonomous overlay network; and (3) an ePost-it messaging platform that provides
a common format for the services. The proposed system can disperse traffic by delivering messages
based on location, increase the system stability via asynchronous message transmission, and solve
the privacy issue by using personal or temporary storage rather than unnecessary centralized storage.
Especially, our platform can fundamentally prevent personal information leaks by storing private data
to personal or temporary storage and providing a service to a user after identifying the user’s location.

The remainder of this paper is structured as follows. In Section 2, we introduce related work.
Section 3 provides an overview of the LIoT service and the proposed system concept. Section 4 describes
the detailed design of the wireless communication proxy responsible for direct communication with
a mobile node, and Section 5 presents a detailed design of the ePost-it middleware to provide the LIoT
service. Section 6 introduces the implementation of the proposed system and evaluates its performance.
Finally, conclusions are drawn in Section 7.

2. Related Work

Real-world location-based applications aim to detect the location of targets in various service
domains, such as medical personnel or equipment in a hospital [6,7], smart home management
system [8] or stored inventories in a warehouse [9]. There has been research on IoT devices such as
Bluetooth low Energy (BLE) sensor module [10] and power consumption issues on IoT devices [11].
EZ [12] is a gateway that supports an efficient asynchronous protocol in IoT. EZ enables the creation
of gateways with either C or Java platforms without requiring developers to have any substantial
understanding of either relevant protocols or low-level network programming. These research works
well-define the characteristics of location-based services (LBS) and IoT. However, they have the
aforementioned problems of centralized architecture.

Apple, Inc. has developed the iBeacon [13] service using BLE. A beacon node installed in
a fixed location sends a beacon message with its location ID. Then, a mobile node scans this beacon
message and determines the location by comparing the signal strength of each beacon. The iBeacon is
a localization system without a central server; however, it must go through a service server for real
service. NextMe [14] is a phone-based localization system for providing location-based services in IoT.
It uses mobile call patterns, which are strongly correlated with co-location patterns. However, it has
disadvantages, such as low precision when providing indoor service.

Many researchers have attempted to address the traffic concentration in IoT platforms. Wang and
Ranjan discussed the capabilities and limitations of big-data technologies in the fifth installment of
“Blue Skies” [15]. The concept of fog computing [16] was introduced to disperse the mass of traffic,
based on location. Fog computing can distribute large-scale data and improve the service response time
by storing large amounts of data on terminal devices, such as a network router, rather than a central
server. However, since fog computing only disperses the data using the network location, regardless
of the actual physical location, it is not suitable for location-based services. In addition, privacy issues
are still present because it saves all the information in a distributed database on the router.

3. Proposed System Concept

This section provides an overview of LIoT service and the proposed platform concept. First, we
introduce the scenario for LIoT under a real environment, and then itemize the characteristics of the
proposed LIoT service. The design consideration and the proposed platform concept are followed in
the next subsection. Finally, we introduce some protocols suggested in our previous research to realize
the proposed platform.

3.1. Overview of the Location-Based Internet of Things Service

Figure 1 is a representation of a location-based IoT service scenario in a hospital environment.
A hospital has numerous mobile assets, such as wheelchairs, chemicals, medicine, and hazardous
waste materials. The administrator will request typical IoT services, such as (a) monitoring the location
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and status of equipment; and (b) checking the path of hazardous materials to confirm their safety
(shown as green line). In addition, a nurse can request location-based services, such as (c) finding or
reserving an available wheelchair near her current position; (d) broadcasting only to the position of the
patient who called rather than broadcasting to the entire hospital; or (e) checking the proper medicine
by proximity-based direct Device to Device (D2D) communication with a patient’s wearable device.
Lastly, (f) a user uses the private data such as daily activity or vital signal stored in personal storage.

Figure 1. Scenario for Location-based IoT service.

The proposed LIoT service is composed of two types of hardware devices: an end device and
a SLIM Hub. The end device is any service device that can identify the user or provide a service.
These devices are classified as mobile nodes since they can be moved, even though they may have
been installed in a fixed position, e.g., a TV or printer. SLIM Hubs are installed in a unit space such
as a room or corridor, representing the installed area and providing a network-access point to the
end devices. Thus, an end device can determine its location according to the proximity of a SLIM
Hub. In addition, a SLIM Hub is a management device installed at a fixed location to collect assorted
information from the end devices in the service area, and provide location-based services based on the
proposed messaging middleware.

In this paper, we proposed the LIoT service platform, which is optimized for collecting and
delivering localized data by combining the location information and an IoT messaging platform.
Devices in our system provide services through proximity-based communication between neighbors,
and store personal information to the user’s personal device storage. Therefore, the proposed system
solves the above-mentioned issues by storing collected personal data to the individual’s distributed
storage, not the central server, and performing location-based neighbor searching.

3.2. Characteristics of Location-Based IoT Data

LIoT service data has different features than other existing services. Briefly, it has characteristics
of both location-based services (LBS) and IoT services. The following are the characteristics of LIoT:

‚ Locality

Most IoT services have a centralized structure, e.g., cloud-computing architecture. However, LIoT
services have location-based characteristics, such as data collection from the required area and
service matching based on the current location. Therefore, it is important to combine the location
information and service-messaging path.
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‚ Real-time service

In a user-centric service, response time is an important part of the service quality [16]. Particularly,
if the service occurs near a user, the response time should be limited to a few seconds to avoid
inconvenience for the user. However, in existing centralized structures, the service delay time
increases because of the inevitable communication delay when connecting with the server. To solve
this problem when using a distributed infrastructure, it is necessary to make the communication
distance between the service elements as short as possible.

‚ Data sharing and privacy

The LIoT service has a variety of service-connection methods between devices: 1:1 connections
for text messaging, 1:N for notification messaging, and N:1 for monitoring an area. Hence, the
service platform supports a flexible connection method for sharing data. However, the common
centralized storage and messaging architecture have a possibility of personal data leak. To prevent
such an occurrence, it needs a distributed architecture equipped with a personal storage and
a location-based messaging system.

‚ Asynchronicity

LIoT has steps such as data acquisition, processing, and delivery. In this process, each device
connection is asynchronous. Since mobile devices also participate in the service, the LIoT service
requires asynchronous transfer capability to improve the communication reliability.

‚ Heterogeneity

Each service device has many variations, e.g., the type of sensors used for data acquisition, the
communication method to be delivered to the service platform, and the format of the data to be
distributed. The final stage of the IoT services needs to provide services through generalizing the
data obtained from the disparate devices.

‚ Small message size, huge data volume [17]

The data generated by devices, e.g., sensor values and status, are small. However, the total
amount of data becomes huge, since numerous devices participate in the service. To handle
these data efficiently, LIoT must have a communication structure suitable for a large number of
small messages.

3.3. Design Considerations

To provide a service that matches the characteristics of the LIoT data in Section 3.2, we organized
the following requirements and proposed a location-based asynchronous messaging platform.

‚ Message-oriented platform

To asynchronously transfer a large number of small data messages, message-oriented middleware
(MOM) is a suitable messaging platform, since it is designed to rapidly convey large numbers
of messages [17]. MOM’s publish/subscribe structure has a specialized feature for data sharing
between devices. In addition, MOM creates a weak coupling between the mobile nodes and
service applications by communicating asynchronously, thereby removing the communication
dependency. Thus, it is possible to perform highly reliable communication in an unstable
environment, even if traffic congestion occurs.

‚ Localization system

A localization system is needed to collect data with regional properties and provide location-based
services. A localization system recognizes the position of the mobile node and records the location
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to provide location-based services. In addition, it has a location-based message transmission
architecture, rather than a centralized architecture.

‚ Protocol gateway

The gateway is essential for communicating with mobile nodes that have various protocol types.
The protocol gateway provides connection transparency for a mobile node using any protocol by
abstracting various communication protocols.

‚ Worst-case performance evaluation

As described above, an important question in LIoT services is “How long will it take to respond?”
The service response time is associated with “How much traffic can a service platform handle
simultaneously?” Therefore, in an environment with a large number of messages, the environment
should evaluate whether it can respond to the user without the service running out of control.

3.4. Asynchronous Messaging Platform Concept

Figure 2 shows the proposed system’s asynchronous-messaging structure. The proposed platform
is composed of mobile devices, protocol gateway, and Self-Organized Software platform (SoSp)
middleware. Mobile devices are connected to SoSp middleware using various protocols; a mobile
device using TCP/IP directly connects to the messaging middleware, and the other protocol devices can
communicate to the messaging middleware through the protocol gateway. By just adding a protocol
driver into the protocol gateway, the proposed platform can support any communication protocol for
mobile devices. A SLIM Hub includes protocol gateway, local storage, and messaging middleware.

 

Figure 2. Concept diagram of asynchronous messaging platform.

The messaging flow is composed of the following two communication stages.

‚ Stage 1: Mobile nodesØ Protocol gateway

First, a message generated by a mobile node is transferred to the protocol gateway through direct
wireless communication, and stored in the direct communication buffer inside the gateway. In this
process, various communication protocols are abstracted by the protocol gateway, so that the
message delivery is entrusted to it. For example, for a Bluetooth Low Energy communication,
which is usually mounted on a mobile device and has a short maximum transmission unit
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(MTU) size of about 20 bytes, we can provide enhanced services without the MTU limitation by
abstracting the communication. We named this the ‘wireless communication proxy’.

‚ Stage 2: Message oriented middlewareØ SoSp messaging middleware

After that, the message is transferred to the SLIM Hub (SH), and stored in local storage
inside the SH. The stored message will be delivered to personal storage via a preset path,
or stored in temporary storage until the SH finds the destination using a location-based
neighbor-searching protocol.

3.5. Previous Research for Proposed Platform

Protocols have been suggested in previous research to support the distributed location-based
services. By adding the concepts of Section 3.4, based on the localization and discovery protocols, we
designed a proximity-based asynchronous-messaging platform.

Location-ID exchange and asynchronous message delivery (LIDx & AMD) [18,19] can provide
real-time localization for numerous mobile nodes in a complex and dynamic indoor environment,
such as a hospital, warehouse, or museum. Each stationary node installed in a unit space, like a room,
periodically sends a beacon message with its location ID. A mobile node can determine its location by
selecting the nearest stationary node, which is done by comparing the signal strengths of the beacon
messages. This localization protocol uses a simple bidirectional communication between the stationary
node and the mobile node, so it guarantees efficient movement of mobile devices.

The location-based service discovery protocol (LSDP) [20] is a resource-discovery protocol. In this
protocol, stationary nodes make an overlay network based on the physical-neighbor relationship.
A stationary node uses only information about resources within its management range and those of its
neighboring stationary nodes. Then, the protocol searches for target resources, using an algorithm
similar to graph traversal. This discovery protocol uses only information about the local area and the
neighboring stationary nodes, so we can freely look up a resource using distributed-service discovery
without a centralized server.

4. Wireless Communication Proxy

A wireless communication proxy is responsible for direct communication with the mobile nodes,
using localization and asynchronous message delivery. The proxy is composed of the frontend module
(FE) for abstracting the wireless communication, and RFProxy for generalizing the messages from the
mobile nodes.

4.1. Structure of Wireless Communication Proxy

Figure 3 shows the elements of the frontend module and the RFProxy agent. The FE supports
a variety of wireless-communication protocols using a communication manager. The address book
converts an address from a communication address (like a MAC address) to an identification address (like
a unique user ID), or reversely. It helps that we can communicate with a mobile device using a unique
ID without concerns about the real communication protocol. The network manager and connection
manager manage the specific protocol depending on the characteristics of the communication protocol.
Particularly, the connection manager manages connect-based protocols, such as Bluetooth, allowing
them to communicate with a number of mobile nodes by repeatedly connecting and disconnecting
as necessary. The message controller divides a message into a size suitable for the communication
protocol and combines the divided message into a single service message once it arrives.

The RFProxy agent abstracts the mobile node information and messages. It communicates with
the FE over serial communication, combines the user ID and data from the mobile node, and forwards
the message to the appropriate service agent. The message monitor checks the delivery result of the
messages transferred asynchronously, and notifies the result to the sender. The message converter
abstracts a message by converting a compressed binary to the common format.
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Figure 3. Component diagram of frontend module and RFProxy agent.

4.2. Process of Wireless Communication Proxy

4.2.1. Communication between the Mobile Node and SH

Asynchronous message delivery via direct communication between the mobile node and the
frontend module can be classified into two types, depending on the transmission direction, i.e., to
or from the mobile node. Moreover, a connection-less protocol, such as IEEE 802.15.4, can easily
communicate with a mobile node; however, a connection-based protocol, such as Bluetooth, requires
a connection-management mechanism that creates and deletes the communication connection with the
mobile node. Following is the communication process for a mobile node and a frontend module using
the Bluetooth protocol.

Figure 4 shows how the frontend module sends a message to the mobile node. If the FE receives
a message request (1, 2), it switches the Bluetooth mode to a central mode, which can create a connection.
When it is connected to the mobile node (3), the FE transmits the message and saves the results (4, 5).
Next, the FE forwards the result to RFProxy (7, 8). If the transmission fails because the mobile node
has moved, the message is re-transmitted by a location-based protocol, so the message is transferred
regardless of the mobile node’s movement.

Figure 4. Messaging sequence from SLIM Hub (SH) to target mobile node.

Figure 5 shows the messaging procedure from the mobile node to the SH. When the outgoing
message is prepared (1), the transmission starts by advertising that there is a transmission message (3).
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If the mobile node knows its location, it advertises with the MAC address of the FE responsible for its
position; thus, the SH knows that there is a request from the mobile node (4). Then, the FE initiates
a connection (6), communicates with the mobile node (7), and forwards the message to the RFProxy (8).
However, the mobile node may not know its current location; therefore, it must request help from the
SH to determine which of several FEs it should connect to. When a FE receives an advertising message
without a target FE address (9), the RFProxy uses the mobile-node list to determine who is in charge of
the mobile node (11). After that, the SH that manages the mobile node communicates with it (12–16).

Figure 5. Messaging sequence from source mobile node to SH.

4.2.2. Communication between Mobile Node and Service Agent

Figure 6 is a sequence diagram showing how the service agent and mobile node reconnect
when the mobile node changes location. First, the mobile node binds with various service agents
in its previous location. Here, “bind” refers to the path for asynchronous message delivery, not the
connection binding for synchronous messaging. When the mobile node moves to the new location,
the location leader informs the new RFProxy of the movement of the mobile node, with information
on the previous RFProxy (2). The new RFProxy receives the service information associated with the
mobile node from the previous RFProxy (3, 4), and requests a re-binding to the service agents (6, 8).
Now, the service agents and the mobile node can communicate through the RFProxy (10). By running
this process as a mobile node changes its location, the proposed system allows the service agents and
mobile node to communicate without a central server to relay the connection.
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Figure 6. Sequence diagram of service rebinding when a mobile node is moved.

5. ePost-it Middleware

5.1. ePost-it Structure

5.1.1. ePost-it Concept

To implement asynchronous messaging among various devices and services, we propose the
ePost-it concept to provide location-based asynchronous messaging. This concept comes from Post-it
in the real world, which can be easily separated or attached to the target.

Following are the features of the ePost-it concept, as shown in Figure 7:

‚ It has a complete message-block type containing a string, encoded binary data, etc.
‚ It will last as long as the survival time configured in the message.
‚ It can be sent to all of the users in the region by targeting the area as the destination.
‚ It can easily be temporarily stored and moved anywhere along the target.

Figure 7. Features of the ePost-it concept.

We defined the common ePost-it data structure in XML format so it can be easily recognized by
a variety of devices and services. Figure 8 shows the XML structure of the ePost-it. It has a variety of
attributes to process the ePost-it: a callback attribute to obtain the messaging result, and source and
destination fields to represent the sender and receiver, respectively. It can select various devices via
RFProxy, or select an SH for targeting a region. The contents field can be defined as required for the
service. For example, it is possible to include a simple text-based message or an encoded audio file.
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Figure 8. XML schema for ePost-it.

5.1.2. Structure of ePost-it Middleware

In this paper, we propose the ePost-it middleware by adding an ePost-it agent, based on
previously developed SoSp middleware [20]. Figure 9 shows the structure of the ePost-it middleware.
All SoSp middleware service messages are delivered in ePost-it format through RFProxy or WiFi, and
processed by the ePost-it agent. The ePost-it agent analyzes the destination described in the XML
document, searches the destination SH to find where the message should be delivered—using the
location-based search algorithm [20]—and transfers the message to the messaging agent of the target
SH. The messaging agent is responsible for processing and transmitting. First, it stores the message
into the local buffer. Then, the message is conveyed directly to the service agents or pushed through
a push agent. The push agent transfers the messages to the target according to the device type: it
uses RFProxy for small embedded devices and the local push protocol for WiFi devices. If the ePost-it
destination is specified as the region, it sends the message to the entire mobile node, to visit the area
during the specified time to live (TTL).

 

Figure 9. Software structure of ePost-it middleware.
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5.2. ePost-it Middleware Process

5.2.1. Message Delivery Process

Figure 10 describes the process of delivering ePost-its. A message generated in the mobile
node is transmitted to the ePost-it agent of the source SH (1, 2). Then, the ePost-it agent obtains
the target SH information using a lookup engine (3, 4), and transmits the message to the messaging
agent in the target-SH managing destination (5). The message stored in the message buffer (6) is
transferred through the push agent (7–10). Finally, the ePost-it message is removed, as the message
was successfully delivered or its TTL expired.

Figure 10. Delivery sequence of an ePost-it message.

5.2.2. Push flow of ePost-it

ePost-it middleware use four types of push methods to deliver a message to a mobile node using
various communication protocols. Figure 11 illustrates the process of transmitting an ePost-it to mobile
nodes of various kinds. The messaging agent forwards the message to the destinations, depending on
the destination type. A message targeted to a service agent is transmitted directly. A message targeted
to a mobile node is passed to a push agent, and the push agent transfers the message according to the
mobile node’s communication type. A global pushing system, such as Google Cloud Messaging (GCM)
or Apple Push Notification Service (APNS), transfers the message to a mobile node outside of the SoSp
infrastructure. A local pushing protocol transfers it to a mobile node inside the SoSp infrastructure.
RFProxy is used for small embedded devices.

Figure 11. Messaging flow from messaging agent to target agents or devices.
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6. Implementation and Evaluation

6.1. Test Environment

Figure 12 shows the hardware used to evaluate the proposed platform. The SLIM Hub acts as
a gateway and provides the location-based services (LBS). It includes speakers, LCD, and ethernet
access, and is connected to adjacent SHs using TCP/IP. The frontend module is a protocol gateway
connected to an SH to abstract the communication with mobile nodes, such as BLE and ZigBee.
The mobile tag is a type of mobile node. The tags are used to evaluate the abstraction and management
of a connection-based protocol. Finally, to verify the ePost-it middleware performance, a mobile node
connected by TCP/IP is simulated on a PC.

Figure 12. Hardware module used to evaluate the proposed platform.

6.2. Performance of the Frontend Module

To evaluate the FE, we tested the traffic performance. Figure 13 shows the average total
transmission time while increasing the number of mobile nodes, each of which sends only one message
to the FE. First, a mobile node sends a variable size message to the FE. For a given number of mobile
nodes, we measured a total transmission time until all queued requests are processed and calculated
an average of 30 runs. As shown in the figure, despite a number of nodes requesting a connection to
send a message, the FE can process all the requests sequentially using connection management.

Figure 13. Total transmission time according to the number of mobile nodes.

To estimate the performance with more devices, we measure the time used for messaging during
a connection. Figure 14 shows the transmission time for sending a message to the FE according to the
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message size. The transmission time is composed of the connection time and the data-transmission
time, as described in Equation (1). By regression analysis of Figure 14 (95% confidence interval), we
determined the constants as Tconnection “ 110 ms and Tbyte “ 1.56 ms.

Ttransmission “ Tconnection ` Tdata transmssion “ Tconnection ` Tbyte ˆ pnumber of bytesq (1)

Figure 14. Transmission time per connection according to the message size.

6.3. Performance of the ePost-it Middleware

We created a simple service scenario to verify the performance of the ePost-it. In a conference
with a large number of users participating, a presenter wants to distribute the presentation materials
to the people in attendance. SHs are installed in each presentation room, and an SH sends the file
to the mobile devices by detecting the presence of a user. Figure 15 shows the response time from
user’s entrance to receiving the message, according to the number of mobile nodes. As shown in the
figure, the response time increases slowly as the number of mobile nodes increases. We determined
that an SH responds within a few seconds, in spite of numerous mobile nodes.

Figure 15. Response time of ePost-it according to the number of mobile nodes.

7. Conclusions

In this paper, we introduced the LIoT service and investigated a proximity-based asynchronous
messaging platform specialized in processing personalized data and location-based message.
To address traffic congestion and privacy issues, the problems of centralized architectures, the proposed
system disperses traffic using a location-based message-delivery protocol, and stores collected personal
data to the individual’s storage, not the central server. To implement the asynchronous mechanism
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in IoT, we designed the following components. The direct communication buffer in a FE abstracted
the communication protocol and provided a loosely coupled connection between a mobile node
and IoT services. The temporary storage held personal data until the data was transferred by the
asynchronous-messaging mechanism. The ePost-it middleware supported location-based messaging
services. We experimentally evaluated the performance. The results showed that the FE could
sequentially process numerous requests, spending a few hundred milliseconds in a connection, and
the SH could rapidly provide location-based messaging.

In future work, we will focus on extending the messaging platform to support continuous data
streaming, regardless of the device movement; e.g., healthcare applications for a vital-signal streaming
system, which requires the transmission and sharing of large waveform data.
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Abstract: Ankle bracelets (anklets) imposed by law to track convicted individuals are being used in
many countries as an alternative to overloaded prisons. There are many different systems for
monitoring individuals wearing such devices, and these electronic anklet monitoring systems
commonly detect violations of circulation areas permitted to holders. In spite of being able to
monitor individual localization, such systems do not identify grouping activities of the monitored
individuals, although this kind of event could represent a real risk of further offenses planned by
those individuals. In order to address such a problem and to help monitoring systems to be able
to have a proactive approach, this paper proposes sensor data fusion algorithms that are able to
identify such groups based on data provided by anklet positioning devices. The results from the
proposed algorithms can be applied to support risk assessment in the context of monitoring systems.
The processing is performed using geographic points collected by a monitoring center, and as result,
it produces a history of groups with their members, timestamps, locations and frequency of meetings.
The proposed algorithms are validated in various serial and parallel computing scenarios, and the
correspondent results are presented and discussed. The information produced by the proposed
algorithms yields to a better characterization of the monitored individuals and can be adapted to
support decision-making systems used by authorities that are responsible for planning decisions
regarding actions affecting public security.

Keywords: anklet monitoring and tracking; detection algorithms; geoprocessing; Law Enforcement
Telecommunications Systems (LETS); sensor data fusion

1. Introduction

The use of electronic anklets by investigated and convicted persons has been applied by the
Brazilian enforcement authorities to try to reduce mass incarceration in the country. According to
December 2013 data from the National Penitentiary Department (DEPEN - Departamento Penitenciário
Nacional ) of the Ministry of Justice, Brazil has one of the largest prison populations in the world,
with 581,507 inmates [1]. The number of people incarcerated increased 52% in the 2005–2013 period.
At the same time, there is a growing deficit of prison capacity (Figure 1), resulting in overloaded
prisons. In Figure 1, the presented information was extracted from the Penitentiary Information
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Integrated System (INFOPEN - Sistema Integrado de Informação Penitenciária) from DEPEN, last
updated in July 2014.

Figure 1. Evolution of the Brazilian incarcerated population; source: authors adapted from [1].

Sentence serving effectiveness inside current overloaded prisons has been stressed by
indoctrinators, who claim that such prisons, together with their management methods, are a failure as
a means of rehabilitating offenders. Moreover, these indoctrinators argue that this institution has not
been proven for behavior rehabilitation, but serves on the contrary as a “true school for criminals”.

In principle, prison sentence serving in Brazil must follow well-defined parameters regarding the
respect to and the dignity of the prisoner, a requirement of the entire prison community, thus respecting
the limitations arising from the sentence, as well as social, economic and cultural rights. Therefore,
the possibility that the convict regains her or his dignity through social interaction is one of the goals
that guides all sentence serving schemes and, consequently, law enforcement. It seems that a remedy
contributing to rehabilitation is to re-socialize a convict, asking the State to rigorously perform the
monitoring of this process.

In this sense, the use of convict surveillance by telematics means has proven to be a viable
alternative for monitoring sentence servings, thus leading to the development of innovations in the
control of individuals who violate criminal laws. One such alternative is the monitoring of convicts
who are required to wear electronic anklets that integrate GPS sensors, a form of surveillance that
proved effective both in the United States and Europe [2]. Thus, criminal justice systems use GPS
devices to monitor offenders, individuals that are out of prison, but forced by law to wear anklets
that report their locations to monitoring agencies [3]. This electronic monitoring of convicts may
be considered an effective means of social reintegration, which can be gradual since the individual
monitoring can be adapted to different sentence serving regimes, as for instance the closed, semi-open
and open regimes in the Brazilian legal system.

The use of electronic monitoring brings a breakthrough to the criminal enforcement system.
First, from the social point of view, it provides better reintegration for the rehabilitating convict into
a society that otherwise is not prepared for dialog and much less prone to assist convicted individuals
in the social reintegration process. Furthermore, electronic monitoring answers the issue of the intimate
life privacy of the monitored persons and their families. Taking into account that currently “35% of the
prison population in Brazil is made up of pre-trial detainees and 30% of inmates were sentenced for
committing crimes without violence or serious threat” [4], electronic monitoring is presented as a key
to evolving the penitentiary system.

Another advantage is that electronic monitoring saves public money expenses regarding the prison
system, especially considering the issue of the operational effort and cost of surveillance. A succeeding
convict monitoring system can reduce, to a great extent, the number of gradual steps to freedom that
are currently employed in prison regime progression, including temporary leaves. Similar savings can
be obtained from other applications for convict monitoring without direct supervision.
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The architectures used in monitoring systems with electronic anklets follow, in general, the following
workflow: geodesic coordinates collected by the anklet devices are sent through a GSM/General Packet
Radio Service (GPRS) data transmission network via mobile network operators, thus pushing the data
to the monitoring center. This latter processes geographic data from the anklets and issues reports and
alerts for the relevant authorities to take action in accordance with the policies of each state. The most
common monitoring information output is the indication of a tracked offender entering forbidden
geographical areas.

Following, we briefly describe the main elements that are part of the structure used for an anklet
monitoring system, since these elements are necessary for understanding the system operation and its
respective data stream:

• GPS:

Global Navigation Satellite Systems (GNSS) comprise constellations of satellites that by
transmitting signals to a receiver, make it possible to determine its coordinates. These signals,
which are transmitted at specific frequencies, possess peculiar characteristics that allow their
identification by receivers, characterizing what is called GNSS observables [5]. The GNSS adopted
for this paper presentation is the North American Global Positioning System (GPS). Through this
system, electronic devices constantly receive signals from satellites and determine their distance
from these satellites by calculating the time elapsed for receiving the signal and their speed. Given
the distances between the devices and the satellites, the device calculates its relative position on
the globe and generates a pair of numbers that identifies its location (coordinates), observing
a specific georeferencing system.

• GSM/GPRS:

The Global System for Mobile (GSM) standard is a digital communications system that allows
data to be moved both synchronously and asynchronously and also preserves the GSM Short
Message Service (SMS) existing in previous systems [6]. General Packet Radio Service (GPRS) is
considered an intermediary between GSM and 3G cellular networks, offering data transmission
via a GSM network in the range of 9.6 Kbits–115 Kbits. Furthermore, GPRS technology supports
telephone calls and data transmission at the same time, thus allowing for example a GPRS mobile
phone user to make calls and receive e-mail messages, simultaneously. GPRS reserves radio
resources only when there are data to send and reduces reliance on traditional circuit-switched
network elements, then enabling IP protocol data transmission over GSM [6].

• The monitored device:

The device comprises a box with an electronic circuit equipped with a GPS module for geolocation.
It also has slots for one or more mobile network connection SIM cards for pushing data via
GSM/GPRS. In order to maintain a continuous operation, the device has a built-in battery
that must be recharged periodically by the user via a charger supplied with the equipment.
A survey carried out among electronic anklet suppliers shows that most devices have the following
characteristics: quad-band GSM/GPRS 850/900/1800/1900 MHz, GPS signal reception from
at least 20 satellites, the ability to operate with one or more mobile operators (multiple SIM
card slots), sufficient memory to accumulate at least the last 24 h of trajectory in case of off-line
communications, at least 24 h of battery life, a sensor and warning indicator for low battery events,
a sensor and warning about the physical violation of the device, a radio jamming detection sensor
and data communication encryption.

• The monitoring central system:

The most common information output from an anklet monitoring system is an indication of
a tracked offender entering restricted areas. Thus, its central system must deploy storage and
computing resources able to capture data from the monitoring network, organize this data,
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perform calculations in maps, register forbidden areas for individuals and support the functions
of authentication, authorization and auditing.

Moreover, this paper considers the possibility that the monitoring center can also provide
additional services related to data on the formation of groups of monitored individuals, based on
proximity detection regarding the coordinates provided by the anklets. In addition to showing the
groups and their location, it is also possible to consolidate information on the time elapsed during
which each group remains together, the number of individuals, as well as the frequency and time of the
meetings. Such information has the potential of contributing to risk analysis that includes preventive
actions by law enforcement agencies.

Law Enforcement Telecommunications Systems (LETS) should take into account the actual risk
posed by specific groups, taking into consideration factors, such as the danger level posed by their
elements and the types of offenses committed by each of them, among others factors [7]. Therefore,
it is important to design algorithms that provide data in order to corroborate risk assessments and
decision-making in this context. The objective is to thereby issue alerts informing of probable riot
formation, preparation for criminal activities, among other suspicious activities.

The core contribution of this paper is to design a set of articulated algorithms, providing
a systemic model able to process data from the monitoring network in order to: (1) verify
proximities (detection of pairs); (2) group devices that are in proximity with each other into clusters
(detection of groups); and (3) record groupings’ duration and the average number of grouped
elements (detection of risks). Additional contributions are described regarding the implementation and
performance aspects of these algorithms. It is interesting to point that such algorithms are applicable
in other situations, e.g., monitoring animal groupings in forests.

The remainder of this article is organized as follows: Section 2 discusses related papers. Section 3
describes the problem of grouping detection and introduces the systemic model of the proposed
solution. Section 4 provides an analysis of the systemic model and the results from the algorithms in
a simulated environment. Section 5 concludes this paper and presents possible further research.

2. Related Works

This paper subject pertains to the general domain of multi-sensor data fusion ([8,9]), but is more
specifically related to the works presented below.

Papers addressing geographic point processing and cluster identification are generally based on
the search for the concentration of points by analyzing their distribution. However, they do not take
into account the specific need of identifying individuals gathered at points that are within a minimum
distance, which characterizes a meeting. Without such consideration, a possibly detected concentration
of points can refer to points separated by distances to the order of kilometers and not just a few meters,
which is inconsistent with the concept of a meeting or gathering of monitored people.

Liu et al. [10] addresses algorithms that identify clusters of objects classified into categories,
considering purely geographical aspects or other associated attributes. It mainly discusses the
“Density-Based Spatial Clustering” (DBSC) algorithm that identifies clusters by using both spatial
proximity and attribute similarity. DBSC involves building proximity relationships between points
obtained through Delaunay triangulation [11]. In order to obtain the triangles formed by the points in
the proximity required by the algorithm, the distance between the points must be previously calculated,
but without considering a time frame restriction that we consider in the present paper. The cited paper
assumes that the geographic points are static and do not consider any displacement and transformation
of clusters over time, changing characteristics that are also considered in our view of groups.

Carlino [12] argues about the influence of the physical proximity of research and development
(R&D) laboratories on the impact of knowledge in their area of concentration. For that effect,
it compares the location of laboratories in the U.S. territory with patent registrations in the same
area, showing their connection. Then, it approaches a way to measure the extent of the spatial
concentration of activities of laboratories and defines the cluster formed by neighboring laboratories
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considering a circle around each location point with an initial radius of a quarter mile. It then lists the
number of points within the circle. As a result, many circles overlap, thereby forming the cluster to be
analyzed and compared with the registration of patents. It also considers static points in relation to
the addresses of laboratories. In the problem presented, there is no need to analyze a change in the
cluster over time. Additionally, the cluster area is obtained by delimiting circles in the geographic
space applied to all points, which in the article is fixed approximately at 1000 without a perspective
of growth.

The DBSCAN algorithm proposed by Louhichi et al. [13] seeks to identify clusters with different
kinds of geographical objects (points, polygons, lines, etc.). Each adjacent group in a given radius
must contain at least a minimum number of points, i.e., its density surpasses a given threshold, which
makes clear that point to point processing is performed by using the relationship of distance between
points similarly to the present paper. The cited paper proposes estimating the distance value in order
to distinguish the idea of the concentration of points from the idea of scattered points outside the
concentration (noise). However, in our present paper, this value is not necessary since we use the GPS
precision (accuracy).

The above papers are not in the field of LETS and do not meet the requirements of the problem
addressed in the present article, namely: (1) they do not consider the evolution of the group over
time by identifying the duration of the concentration of points and the size (number of points) of the
group; (2) they do not have a time frame processing threshold and cluster identification; and (3) some
algorithms do not impose a minimum distance limit between points in the clusters.

Morreale [14] proposes a design for Wireless Network Information and Identification System
sensor (WINS Id) where a large volume of geographically distributed sensor temporal data is collected,
stored and presented in real time. This article does not compare the results of real-time processing
with previous results showing some evolution for analysis. A basic difference between the monitoring
architecture for electronic anklets and the sensor network architecture is the fact that in the first
case, there is no daisy-chaining or concentration of data traffic nodes within the network, since in
anklet monitoring, the data are sent directly to the monitoring center responsible for processing
the data as a whole. This design meets the simplicity of anklet devices designed to connect via
GSM/GPRS networks.

Another related field for this paper is the study of data mining techniques on the collected and
stored data to knowledge discovery, such as Zhu [15]. In this case, variations on the number of
identified groups, number of group elements, frequency, etc., can be processed by the DTW technique
for raising monitored abnormal behaving individuals as a whole. It proposes a single system to record
offender events with a focus on mobile devices where the current location of the device is used to
identify the geographic area where the event occurred. The geographic coordinates are gathered from
devices, such as smart phones or tablets, while in the present article, we refer to electronic anklets with
less processing power. The cited paper proposes as future work applying data mining techniques on
the records in order to establish preventive measures against crimes. In this sense, we consider that
integrating a system as proposed by Jakkhupan and Klaypaksee [16] with monitoring by anklets could
in certain circumstances accelerate misbehavior detection by identifying suspects present in the crime
area at the time that a crime occurred.

Using data mining techniques, Sathyadevan [17] proposes an approach to predict crimes by
geographical areas. The processing flow comprises data collection, classification, pattern identification,
prediction and visualization. Among the sources of the data, the paper cites “web sites, news sites,
blogs, social media, RSS feeds etc.”, and the unstructured data are stored in MongoDB. The structured
records and groups identified by our technique discussed in the present article could be added to enrich
the predictive analysis of the occurrence of crimes. The cited paper demonstrates the development of a
mobile application for criminal case records, removing the need for citizens to go to a police agency to
fill out bureaucratic forms. Thus, in addition to increasing the number of recorded incidents (many
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are not registered because of the bureaucracy), it also reduces possible errors in filling, providing for
instance the correct indication of the place of occurrence.

The intersection of data from electronic anklets, as given by the proposal in the present paper, with
records of occurrences suggested by Oduor [18] could provide better support for the investigations of
those cases. It proposes a monitoring architecture for electronic anklets with a topology that considers
interim autonomous agents between devices and a center. Agents are dynamic software components
that provide collaborative operation services. Using these agents, the system can make decentralized
decisions, streamlining the alerting process. Park [19] cites as an example the various levels of warnings
about the proximity of a sex offender and monitored children. However, the work provides no details
about the infrastructure and the location of these agents and how to connect to the devices and the
control panel.

On the other hand, Urbano and Dettki [20] address the issues of creating and maintaining a
database in PostgreSQL with the PostGIS extension, which stores geographic data transmitted by
sensors located in Italy. It describes the steps for creating the database and the necessary tables for
geographic data demonstration and storage. The present paper complements such analysis with
more details on the database and implementation requirements in order to validate the algorithms
presented hereafter.

Given the need to process the geographic points within a specific time window, even with a large
amount of geographic coordinates in the collected sample, it becomes relevant to adopt algorithms that
can be parallelized, especially as regards the identification of pairs of points in proximity. Therefore,
it is interesting to cite Ding and Densham [21], who present some options addressing the possible
division of a geographical space for processing parallelization.

3. Description of the Problem and Systemic Model

Satellite-based device tracking systems consist of several integrated technologies to track
rehabilitating convicts in open and semi-open serving regimes and under house arrest. Associated
with the joint actions by the civil and military police, these systems allow efficient law enforcement
through a monitoring center, which transmits the alarms to the police stations nearest to the locality
where an irregular event is detected by monitoring devices.

Several companies offer electronic monitoring solutions through anklets in Brazil and the world.
As a basic functionality; they use GPS geolocation equipment and send location data through mobile
phone networks, identifying zone violations in the form of inclusion (areas the monitored convict
cannot leave) or exclusion (areas the monitored convict cannot enter). The monitoring center is
responsible for processing the location points and sending alerts to the appropriate authorities in the
case of such violations.

3.1. The Problem

From the point of view of law enforcement monitoring, the concentration of monitored devices in
a geographical area does not necessarily indicate a grouping of individuals in a meeting. For example,
considering a concentration of monitored points in a geographical space area where the shortest
distance found between observed points is 1 km, one cannot immediately deduce that the monitored
subjects are actually in a meeting, although the observed concentration is even visually observed in
a map. In fact, for two or more monitored individuals to be considered together in a group, the distance
between the points representing these individuals must be less than a certain proximity threshold.
Precision on the concept of proximity is given hereafter in Section 3.1.1.

The algorithms proposed in this paper are required to perform the processing of geographic
points to identify groupings of monitored subjects considering such a threshold distance, in addition
to updating a database with additional data, such as the duration of group formation and its number
of elements.
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Furthermore, the algorithms’ steps should be performed in a period of time that does not exceed
an established processing window due to law enforcement requirements regarding the freshness of
monitored information. This window is parameterized and arbitrarily set at one minute without
any prejudice to the obtained results. Moreover, it is interesting to comment that this value is also
a performance threshold for our algorithms, because if this time window is exceeded, there is a risk of
accumulating the processing of successive actualization windows, possibly overloading the processing
and storage sub-system or leading to information loss.

Another important issue is that, for a system to monitor rehabilitating criminals, which implies
public security concerns, the calculation of the real risk posed by a group involves much more factors,
including the level of danger of grouped individuals and the types of offenses previously committed by
each of them, among other factors. Therefore, our processing algorithms shall provide data to support
risk analysis, not being ultimately responsible for the analysis itself. This is an important consideration
before addressing the concept of proximity adopted throughout the remainder of this paper.

3.1.1. Definition of Proximity

For two or more monitored individuals to be considered together in a group, there must be
a minimum distance established between the points representing them. The algorithms proposed in
this paper are functionally specified to consider this distance for processing geographical points in
order to identify groupings of monitored convicts.

The minimum distance that characterizes a meeting, which is used as a threshold in the processing,
must take into account the margin of error (ε) inherent to GPS equipment (Figure 2).

Figure 2. Minimum distance between two points to characterize proximity. Source: the authors.

According to the National Satellite Test Bed/Wide Area Augmentation System (NSTB/WAAS)
T&E Team [22], the accuracy of GPS devices is slightly smaller than 10 m. Thus, considering this
margin of error, Equation (1) is applied to set the meeting distance threshold (lr). In other words,
in practice, for calculation purposes, any two points separated by a distance under 20 m will be
considered monitored subjects in proximity.

lr = 2 · |εmin| (1)

3.1.2. Duration of a Possibly Detected Group

Detection of groups is performed considering not only the grouping of points in space at a given
moment, but also the evolution of this group over time. Thus, indicators, such as group duration
and average number of elements, are pieces of information that can be generated by comparing and
identified groups in each sample points sent by the devices. Our proposed algorithms shall then
provide for the processing of this information.

By maintaining a base of active and inactive groups updated at every sample processing, other
information can be easily extracted such as the frequency and time that each group meets. This
information supplements the analysis showing any real risk of imminent criminal action or a continued
criminal relationship.
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Figure 3a,b illustrates the measurement of group duration, respectively in situations where people
are standing or moving. During the interval for computing points proximity, t0 is a specific time when
there is not enough proximity between points to consider them as being grouped. At time t1, with the
points coming close to each other, they are considered to be part of a group that at minimum has two
member points. During the following processing times (t2 and t3), the same points still remain within
the proximity range. At time t4, the two points separate from each other. The system will compute t1
as the start date and time of the group meeting and t3 the end of this meeting. Such data comprise the
duration of the group existence. This same reasoning shall be applied both to stationary (Figure 3a)
and mobile (Figure 3b) points in proximity.

Figure 3. (a) Anklet monitoring system with stopped group detection; (b) Anklet monitoring system
with moving group detection. Source: the authors.

When two monitored individuals intersect in some location, for instance an avenue, their physical
proximity may be detected by these calculations, but it does not necessarily mean a grouping of
monitored individuals. In order to avoid such situations defined as “false positive”, groups whose
duration is less than a predetermined value should be discarded. Initially, this variable is set to
a minimum of 5 min. In other words, considering minute to minute samples, when the same group is
identified in the processing of five consecutive samples, those points in proximity will be considered
as an effectively detected group.

3.1.3. Number of Elements in a Detected Group

The number of elements that are part of a grouping influences the evaluation of risk. For example,
groups of five elements can pose a greater risk than groups of two elements, as this situation may
represent a more severe and organized offense through the division of activities between group
members. Hence, providing the number of individuals in a group at the end of the processing is
important to support decision-making.

We should also consider that during the existence of a group, its number of individuals may
increase or reduce, variations that can be detected by computing their proximity. These variations
do not disqualify the group. Thus, we consider the average value of the number of individuals in
the group during its existence, an indicator that allows us to consider proportionality in possible
comparisons among groups.

However, a variation in the number members of a group can impact the comparison of this
group with previously detected groups. This brings the question of how to accurately establish that a
previously detected group that had, say, 10 individuals is for the most part the same as one that now
has 12 elements: how many members the two groups have in common that yield the conclusion that
one group is indeed a reduced or an expanded incarnation of the other. In order to consider this sort
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of recurrence of a group, we include in the routine that performs comparisons of groups a variable
called “commonality”, which corresponds to the number of individuals common to both groups
(current and former) divided by the total amount of former group elements, expressed as a percentage.
If the commonality among two groups is equal to or greater than a commonality threshold, which is
initially set to 50%, we consider that they are the same group, and in this case, an attribute containing
the average amount of these group members is properly updated. Otherwise, the group under analysis
is considered a new group to be remembered.

3.1.4. Time Limits for Running the Algorithms

Anklet devices are configured to periodically send their geographical coordinates or points,
typically every 1 min approximately, although this time is usually configurable. Thus, the algorithms
to identify groups and gather associated data must run in less time than this whole period boundary,
i.e., before the next set of coordinates arrives for new calculation. Moreover, this limit is a performance
threshold, because, if this limit is exceeded, there is a risk of accumulating tasks, or computing threads
with the processing of the previous set, or overloading the equipment responsible for processing, or
loosing information. Therefore, the whole algorithm must run in a time window that does not exceed
the set of coordinates’ arrival period, which is set to 1 min in this paper.

The algorithm is required to tackle a computational complexity problem related to the number of
pairs of points to be treated, since we need to calculate the distance for each of these pairs, as shown in
Figure 4. The distance from one point to the other in a pair of points allows evaluating if the two points
are in proximity, a condition required to subsequently verify the points that are associated in groups.
As the number of points belonging to a collected group increases, so does the number of comparisons
necessary to identify these grouped points.

Figure 4. Increase in computation due to the increased amount of points. Source: the authors.

The number of comparisons for the verification of proximity is given by the simple combination
formula (Equation (2)) where n is the number of items in a collection and p is the number of elements
in each combination, so the result Cn,p refers to the combination of n things taken k at a time without
repetition. In our calculations, p is set to two since we refer to pairs of points in a sample of coordinates
that must be treated each time.

Cn,p =
n!

p!(n − p)!
=

n.(n − 1).(n − 2)!
2.(n − 2)

=
n.(n − 1)

2
(2)

For example, in a sample of 10,000 points, there would be approximately 50 million distance
calculations. This number of computations and the required processing time window are critical
factors for a successful implementation. Furthermore, it is important to control these factors since the
amount of monitored individuals can grow with the evolution of an anklet-based monitoring system
utilization, given the prison population growth rate, as shown in Figure 1.

The problem is solved partly by dividing the total coordinate space into subareas, which allows
breaking down the processing instances, as described in Section 3.1.5. The proposed solution can
be completed with the cooperation of parallel computing nodes. Indeed, to prevent the amount
of monitored individuals from compromising the processing within a defined time window, the
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alternative proposal is an algorithm that processes subareas of the coordinate space in parallel. In this
case, as the number of points to process grows, one can add more parallel nodes to the system for the
completion of the processing within a required time window.

3.1.5. Division of the Coordinate Space into Subareas to Allow Processing Parallelization

The problem of executing a number of proximity-related computations within a required
processing time window demands a solution where more computational power can be added to
the system when the number of monitored individuals increases or when there is a reduction in the
processing time window. Thus, the division of the coordinate area into smaller areas is proposed here
so that the processing can be divided into several processing units.

Referring to Figure 5, we consider an initial area computed from the farthest points in a periodical
sample reported by the monitored devices. This constitutes the abstraction of a square geographical
area containing all of the sample points. Then, a recursive division of this area takes place guided by a
divide-and-conquer strategy as follows, also supported by the work from Ding and Densham [21].

Figure 5. Subdivision of the total area into subareas. Source: the authors.

First, the abstracted area is divided into four smaller areas of equal size (quadrants), and the
number of points in each quadrant is counted. If it is observed that a quadrant contains more points
than a quadrant population threshold, this quadrant will be further divided so that the recursive
quadrant divisions result in a number of quadrants, each one containing a number of points that do
not represent a performance processing problem regarding proximity calculations within the limited
time window. The quadrant population threshold, i.e., the maximum amount of points a quadrant
can have, is arbitrarily fixed in this paper, but as this threshold is bound to the available processing
capacity, it should be considered as a variable whose behavior is a matter of future study. Furthermore,
a quadrant cannot be subdivided if the length of its size is less than the proximity distance threshold.

This recursive subdivision of the original space is similar to that proposed by Xia et al. [23] using
a quadtree structure. However, this study does not consider the hierarchical link between subareas.
The central interest is that each of these areas can be processed independently from the other areas,
which enables processing parallelization. In another alternative view, the distance calculations occur
only inside the quadrants where the points are, thus reducing processing effort. However, although
we no longer compare points that are from distant quadrants and thus reduce the number of distance
calculations, there will be situations where two points are in proximity in adjacent quadrants, and
there is a possible identification failure for that pair. Referring to Ding and Densham [21], we have
an alternative to solve this problem, by expanding the area of a newly-created quadrant (Figure 5)
by adding to it a margin equivalent to the minimum distance for identifying points in proximity
(Figure 6).
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Figure 6. Area expansion to contemplate the proximity of points in adjacent areas. Source: the authors.

Considering this added margin, each area overlaps the adjacent ones, allowing proximity
calculations for points that are close to points in adjacent quadrant borders. Since the calculations for
a quadrant are independent of those for another quadrant, it is possible to obtain duplicate responses
for the same pair of points in proximity (A-B and B-A). Such duplication does not pose a problem as
duplicates are eliminated by the groups detection algorithm explained in Section 3.2.4 and shown as
Step 3 of the systemic model (Figure 7).

Figure 7. Processing steps. Source: the authors.

3.2. Systemic Model and Associated Algorithms

Figure 7 shows the systemic model proposed in this paper, which divides the processing into
three steps: (1) detection of pairs: receive a collection of points sent by the devices through the network,
and calculate the points in proximity; (2) detection of groups: group the points in proximity in clusters;
and (3) detection of risk indicators: add data on group duration and the number of participants.

The first step receives as input a collection of points collected at a given instant (collected points),
whose structure is described in Table 1. The collected points are treated in the second step by the
detection of pairs algorithm, which generates a list of points in proximity (Table 1). Subsequently, the
detection of groups algorithm examines in Step 2 the list of pairs and generates a list of identified
groups whose risk attributes are then calculated in Step 3, resulting in the final output structured as
specified in Table 2.
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Table 1. Collected points: Algorithm 1 (detection of pairs) input.

Attribute Type Description

Device Integer Device identifier number
Date/time Date/time Date, hour and minute when the point was collected

Point Geographic coordinate Geographic point consisting of latitude and longitude

Table 2. Groups and risks: Algorithm 3 (detection of risks) output.

Attribute Type Description

Group Integer Uniquely identifies the group
Start Date/time Date/time Date/time when the group convenes
End date/time Date/time Date/time the group dispersed
Processing turn Integer Number of processing turns in which the group was detected

Devices quantity Integer Cumulated sum of the number of group elements used for
calculating the average number of group members

List of devices List of device identifier numbers List of devices that have been members of the group

3.2.1. Algorithm 1: Detection of Pairs

Referring to Figure 8, detailing Step 1 of Figure 7, the coordinate points are compared to each
other, and the pairs whose distance is less than or equal to lr (Equation (1)) are identified as pairs of
points in proximity and added to a list that will be part of the output of the algorithm. In this case, it
it worth remembering the distance considered for this approach is 20 m due to precision errors that
occur in GPS systems as detailed in [22]. Its input is a list of points collected with the structure detailed
in Table 1, and its steps are detailed in Table 3.

This step is the most costly in computational terms, as it implies the comparison between all of
the points in the sample to identify points in proximity (Figure 4).

Figure 8. Algorithm 1: detection of pairs. Source: the authors.
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Table 3. Detailed steps of Algorithm 1 (detection of pairs).

# Description

1 Since it is necessary to compare the points to each other, the process starts a loop considering all
collected points.

2 It takes each point obtained in the previous item relative to Loop A.
3 It sweeps again all collected points (Loop B) to be compared with Loop A points.
4 It takes each point obtained in the previous item relative to Loop B.
5 This filter prevents the calculation of the distance from A to B to be repeated for B to A. If A is greater

than B, it ignores this pair and goes back to Step 4.
6 It uses a geoprocessing function and obtains the distance from A to B in meters.
7 If the distance is greater than lr meters, then Points A and B are not in proximity, and the flow proceeds

to the next point to be used in Loop B.
8 If Points A and B are at lr meters or less away from each other, then they are considered to be in

proximity and are recorded/stored for the grouping step.
9 If there are more points relative to Loop B to be compared, then it diverts the flow to capture the next

Point B.
10 If there are more points relative to Loop A to be compared, then it diverts the flow to capture next

Point A. If there are no more points, the comparison processing is completed, and as a result, it outputs
records with pairs of devices in proximity.

3.2.2. Algorithm 1.1: Recursive Division of the Original Space into Subareas

Given the concepts presented on the definition of proximity and the idea of dividing the space into
smaller quadrants as a function of the number of points to be treated, we have devised the algorithm
shown in Figure 9, which is responsible for receiving the collected points, then defining the adequate
quadrants and listing the points that are inside these quadrants (Figure 5).

Figure 9. Algorithm 1.1: distribution of points into subareas. Source: the authors.

The first two functions define an initial area covering all collected points and links all points
to this initial area. This is necessary so that Function 3 can work recursively. Function 3 always
receives an area with its points and then makes a decision whether it is necessary to subdivide this
area into smaller quadrants. The decision criterion stipulates that if the number of points inside the
area exceeds the quadrant population threshold, this area must be subdivided into smaller areas that
will be recursively submitted to Function 3. The details of this algorithm are specified in Table 4.

Table 4. Detailed steps of Algorithm 1.1: division into subareas.

# Description

1 It obtains the most distant points of the map and generates a square geographical area that covers all
points to be processed.

2 It links the points to be processed to the area created in the previous item. This step is required as a
preparation for the first call to the recursive function described in the next item. The input parameter
for this function is the area with its collection of points.

3 The recursive function divides the received area into quadrants (four new areas) and modifies the links
of the points from the received area to the new quadrants according to the coordinates of these points.

The recursive function shown in Figure 9 has its algorithm shown in Figure 10, while Table 5
describes the steps of this recursive function.
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Figure 10. Flow of the recursive space division function in Algorithm 1.1. Source: the authors.

Table 5. Steps of the recursive space division function in Algorithm 1.1.

# Description

3.1 The area received as input is divided into four quadrants. Recursively, this division is performed for
the initial processing of the total area or when one of the quadrants has a number of points that exceeds
the quadrant population threshold. Each created quadrant has its area expanded to contemplate
proximity among points that are close to each other, but pertain to different adjacent quadrants.

3.2 It reads all of the points that are linked to the area provided as input, preparing then to move each of
the new quadrants according to their coordinates.

3.3 With the points supplied in the previous item, a finite loop is run to assign the appropriate treatment.
3.4 According to the coordinate of the point, it is copied from the input area to the corresponding quadrants.

Due to the area expansion of each quadrant performed in 3.1, a point may appear in more than
one quadrant.

3.5 During the loop, if the number of points linked to a quadrant reaches a maximum value, this quadrant
is used as input for a recursive call to further divide this quadrant.

3.6 If there are still points to be treated, the loop is repeated for the next point.

Each subarea set of points can be assigned to be processed on different computational nodes,
which allows the work to be parallelized. While on the one hand, we ensure that each subarea has a
number of points smaller than an established threshold, on the other hand, we may have subareas with
a small number of points. This may represent a potential waste of computing and memory resources
since the processing varies according to the number of points in the subareas. However, a scheduling
process was adopted in this work that distributes sequentially the subareas in the available threads,
minimizing possible differences in the total processing time in the nodes.

Algorithm 1.1 generates a list of points with their respective subareas to be processed in parallel
by Algorithm 1.2. Such a structure is detailed in Table 6.

Table 6. Groups and risks: Algorithm 3 (detection of risks) output.

Attribute Type Description

Device Integer Device identifier number
Date/time Date/time Date, hour and minute of point collection

Point Geographic coordinate Geographic point consisting of latitude and longitude
Subarea Integer Identifier of the subarea containing the point

3.2.3. Algorithm 1.2: Detection of Pairs within Subareas

The algorithm for the detection of pairs within subareas is the same described in Figure 8, only
differing on the list of points to be processed. The output of this algorithm is a list containing pairs of
points in proximity whose structure is detailed in Table 7.
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Table 7. Algorithm 1.2 output structure (detection of proximity pairs).

Attribute Type Description

Pair Integer Pair identifier number
Date/time Date/time Date, hour and minute of point collection
Device A Integer Device identifier number
Point A Geographic coordinate

Device B Integer Device identifier number
Point B Geographic coordinate Geographic latitude and longitude of the point

3.2.4. Algorithm 2: Detection of Groups

This algorithm, Number 2 of Figure 7, takes the pairs of points considered in proximity
by Algorithm 1.2 and then finds those that are grouped by looking for neighbors of a neighbor,
i.e., in situations where Point A is close to B and Point B is close to C; hence, A, B and C form a group
of monitored individuals. This detection of groups algorithm is presented in Figure 11, while its details
are specified in Table 8 and its output in Table 9 with a list of groups, each one having an identifier,
a timestamp for the moment the points were collected and a list of devices composing the group.

Figure 11. Algorithm 2: detection of groups. Source: the authors.

Table 8. Detailed steps of Algorithm 1 (detection of pairs).

# Description

1 It obtains each pair, A and B points, of the set obtained in the previous step.
2 It checks for any group from previous iterations that already has Points A and B and eliminates any

possible repetition.
3 If a group with the 2 points is identified, then nothing needs to be done, and the loop must continue to

the next pair.
4 It checks for any group that has at least Point A.
5 If the group is located, then it does not have Point B.
6 It adds Point B to the group located in the previous item.
7 It checks for any group that has at least Point B.
8 If the group is located, then it does not have Point A.
9 It adds Point A to the group located in the previous item.
10 If no group is located containing either A or B, then a new group must be created with the A and B

pair. This group can then be completed as new points are discovered in later iterations.
11 If there is still a pair to be processed, then it processes the next pair; else the algorithm ends.
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Table 9. Algorithm 2 output structure (detection of groups).

Attribute Type Description

Group Integer Group identifier number
Date/time Date/time Date, hour and minute of point collection
Device list Integer list List of devices that make up the group

3.2.5. Algorithm 3: Computation of Risk Indicators

Detection of risks, which corresponds to Algorithm 3 in Figure 7, computes for a group of
monitored individuals additional data regarding the duration of the group and the average number
of elements, indicators that are updated as new samples are collected from monitored devices. From
the standpoint of anklet monitoring, these data about groups may contribute to the risk analysis to be
conducted subsequently to performing the specified algorithms. The proposed solution in this paper
just computes the risk indicators linked to identified groups and stores these data for a risk analysis
activity to be performed outside the monitoring system.

During its execution (Figure 12 and Table 10), Algorithm 3 collects the following data: (i) group
duration: this indicator comes from the perception that groups that last longer may be indicative
of greater risk and even that groups with a very short duration may be discarded; (ii) the average
number of elements in each group: groups with a higher number of elements can indicate larger scale
violations involving, for example organized crime or conspiracy.

In order to indicate the duration or permanence of a group, the algorithm must update this
previously identified group with data regarding duration (start/end date/time). When the end
date/time attribute is not populated, it indicates that the group is still active, i.e., it has been
continuously sustained until the last data fusion execution. Registered dates/hours for the group do
not represent the exact instant of this group start or end, as they are influenced by wait and service
times during sensor data collection and the execution of the algorithms themselves.

As discussed before, the output of Algorithm 3 is specified in Table 2. The resulting structure is
then available for risk analysis and for future processing turns.

Figure 12. Algorithm 3: computation of risk indicators. Source: the authors.
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Table 10. Algorithm 3 specification (group risk indicators).

# Description

1 It obtains each group detected in the current processing turn.
2 In the set of previous active groups, it identifies the groups that possess at least 50% of its members in

common with a group detected in this processing turn. The 50% percentage parameter is an arbitrary
choice to be further investigated in future studies.

3 If no compatible group is found, then the flow is directed for the creation of a new group in Item 5.
4 It updates the number of processing turns for the group and adds up the number of elements counted

in each processing turn. These two attributes provide the necessary data for averaging the number of
members of the group during its existence.

5 It creates a new group considering the processing count attribute as 1, the start date/time attribute as
the timestamp of the current processing and the elements count attribute as the respective number of
group members.

6 If there are more groups to be processed, then it directs the flow to capture the next group; else it then
closes the existing groups, as per Step 7.

7 Existing groups that were not identified in the current processing turn should be ended. This is done
by updating the group’s end date/time with the value corresponding to the immediately previous
processing turn, i.e., the last time the group was detected. As a result of the processing, a set of
groups is generated, as well as their duration and number of members for utilization in the next
processing turn.

4. Validation Scenarios and Results

In order to validate the algorithms presented in this paper, a simulated database was used with
approximately 10,000 devices. The simulation of groups was performed by creating variations of a set
of paths obtained from real GPS equipment. The simulated new routes were composed using the
horizontal and vertical displacement of the original device coordinate points in the geographic space,
also increasing the number of coordinate points in the sample. Moreover, new routes were created
by reversing the latitudes and longitudes and attributing them to new simulated points. As a result,
three sets with 10,000 points each were generated. These samples correspond to three consecutive
collections of points from simulated anklets in a simulated schedule, respectively corresponding to
the date 25 May 2015 at time tags: (i) 12:00, (ii) 12:01 and (iii) 12:02. In Table 11, there is a sampling of
records randomly extracted from the simulated database.

Table 11. Sampling extracted from simulated database.

Timestamp Device ID Latitude Longitude

25 May 2015 12:00:00–03 12133 −29.903980255127 −51.169883728027
25 May 2015 12:00:00–03 1096 −30.062665939331 −51.192127227783
25 May 2015 12:00:00–03 41978 −29.778089523315 −51.108917236328
25 May 2015 12:00:00–03 817 −30.028823852539 −51.225776672363
25 May 2015 12:00:00–03 40413 −30.093103408813 −51.177989959717

... ... ... ...
25 May 2015 12:01:00–03 12123 −30.087636947632 −51.231784820557
25 May 2015 12:01:00–03 10871 −30.049358333333 −51.162086666667
25 May 2015 12:01:00–03 1969 −30.114995956421 −51.362251281738
25 May 2015 12:01:00–03 91523 −29.70588684082 −53.802436828613
25 May 2015 12:01:00–03 91042 −30.050704956055 −51.21089553833

... ... ... ...
25 May 2015 12:02:00–03 5575 −30.016288757324 −51.11653137207
25 May 2015 12:02:00–03 11716 −30.062965393066 −51.142623901367
25 May 2015 12:02:00–03 12165 −30.201919555664 −51.134094238281
25 May 2015 12:02:00–03 5954 −29.986715316772 −51.1682472229
25 May 2015 12:02:00–03 1047 −30.086135864258 −51.234657287598

... ... ... ...

121



ISPRS Int. J. Geo-Inf. 2017, 6, 31

As an example of a coverage area, the 10,000 points regarding Timestamp 25 May 2015 12:00:00-03
sampling are spread in a geographic area as illustrated in Figure 13.

Figure 13. Sampling points at 25 May 2015 12:00:00-03. Source: the authors.

The computing configuration used to validate the proposed algorithms execution is presented in
Table 12.

Table 12. Equipment used in tests.

Resource Specification

Processor Core i5-2467M 1.6 GHz (dual core with hyper-threading)
Memory 8 Gigabytes

Hard drive 516 Gigabytes 5400 RPM hard disk
Operating system Ubuntu 14.04.4

DBMS PostgreSQL 9.4

The proposed algorithms are implemented and evaluated in five scenarios. The first one is
a serial implementation in a relational database query language (scenario). This classical scenario
for application development is taken as a baseline for comparing the results in this paper since it
does not deploy any particular performance contribution, though it presents the complete correct
functionality proposed in this paper. The other scenarios gradually present the contributions of
parallelism (Scenario 2) and programming language (Scenarios 3 and 4) for the proposed algorithms,
maintaining the same functionality. The possible distributed processing scenario is analyzed in the
discussion of the results.

Specifically, for correction purposes, in all evaluated scenarios, the number of records resulting
from the execution of each algorithm applied to the simulated data is given in Table 13.
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Table 13. Results of the algorithms’ processing.

Algorithms
Collection of Points

12:00 12:01 12:02

Number of Subareas 22 37 91
Detection of Pairs 9103 9580 14,686

Detection of Groups 1673 1762 1854

Detection of Risks Indicators 406 active groups in all collections

In the presentation of each scenario’s results hereafter, measurement values are the average of
10 repeated executions.

4.1. Scenario 1: Serial Processing in PL/pgSQL

In this scenario, the described Algorithms 1–3 are fully executed in serial processing, and the
performance of each one is measured. Each of the three algorithms is measured separately, and then,
their summed response time is presented. This method is chosen to enable reasonable comparisons
with results from subsequent scenarios, when parts of those algorithms are replaced by modules in
parallel processing or in C language or in distributed processing.

4.1.1. Algorithm 1: Detection of Pairs

The implementation is of a simple algorithm that compares all of the coordinate points by
obtaining a list of pairs of points in proximity generated via a SQL statement that performs a self-join
on the table of points. In this SQL command, a filter in the where clause selects only the points whose
calculated distance is less than the proximity threshold. This threshold was defined at 20 m as stated
in Section 3.1.1. Furthermore, in this where clause, a filter is added that considers only the points
where the ID of a point A is smaller than the ID of a point B. This filter prevents calculating two
times the distances between the same pair, i.e., distance from A to B and from B to A, thus reducing
processing effort. As output, a table of pairs is generated. For instance, the output table, corresponding
to our sample tagged 25 May 2015 12:00, has an approximate number of 9103 records (pairs of points
in proximity).

This algorithm was tested with distance varying 10, 20 and 40 m as the threshold. Though there
was variation on the amount of pairs detected because of the distance variable, the response time
remained approximate. Besides, 20 m is acceptable within the error precision [22].

4.1.2. Algorithm 2: Detection of Groups

In order to identify groups of points in proximity, the developed the PL/pgSQL code specified in
Figure 11 generates a table of groups with 1673 identified groups.

4.1.3. Algorithm 3: Computation of Risk Indicators

This algorithm is a PL/pgSQL module according to Figure 12. However, the implementation
language allows a code improvement by applying an update on the set of records that meet the
filter instead of checking each group obtained in the recent processing against each of the previously
detected groups.

4.1.4. Response Time Results

Notably, the algorithm that detects pairs of points in proximity presents a much higher processing
time than Algorithms 2 and 3, reaching an average time of 280 s (Figure 14). When considering
the required overall performance threshold (fixed to a 1-min processing window), the sum of times
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from the three processing algorithms exceeds this value, which forewarns of their impracticality.
However, the measured values are interesting as a baseline for the subsequent validation scenarios.

Figure 14. Response time by the algorithms. Source: the authors.

Scenario 1’s results illustrate the response time issue when identifying coordinate points in
proximity without the use of parallel processing, which justifies the next scenario.

4.2. Scenario 2: PL/pgSQL Processing with Multiple Parallel Instances

In Scenario 1, the Algorithm 1 for the detection of pairs, which takes much more time than
the other two algorithms, is the observable candidate for improvement, thus being reformulated
in Scenario 2 by adding an inner algorithm to distribute points into subareas (Algorithm 1.1),
which allows the identification of pairs (Algorithm 1.2) to be executed in multiple parallel instances.
As Algorithms 2 and 3 are not modified from Scenario 1, they are not presented in Scenario 2.

The division of the whole coordinate space into smaller quadrants implies the corresponding
division of the number of coordinate points to be compared in each quadrant processing. Now, there is
a trade-off regarding the number of points that is used as a decision criterion for recursive sub-divisions
of quadrants. It is necessary to set the maximum amount of points per quadrant subarea, considering
that the smaller this number, the greater the number of subareas.

Given that we have established a database of 10,000 coordinate points for all validation scenarios,
we define four cases for the maximum number of points per subareas (respectively 250, 500, 1000 and 2000)
and obtain response time figures for these cases.

4.2.1. Algorithm 1.1: Distribution of Points per Subareas

This algorithm, implemented in PL/pgSQL according to the flows in Figures 9 and 10, based on
10 repeated executions, presents the average response time results shown in Figure 15, for each of the
maximum values of points per subarea.

Figure 15. Response time by maximum points by area. Source: the authors.
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Data concerning the sub-divisions of the coordinate area are presented in Table 14. As expected,
the larger the maximum number of points per area, the less is the average area size to be processed.
The size of the largest area is always the same since it corresponds to the first subdivision of the total
area corresponding to 146.56 km2.

The lesser the maximum amount of points per subarea, the smaller the average size of the subareas.
The size of the smallest area resulting from the most recursive division into quadrants also decreases
with the number of points per area. In the smallest of the cases, the resulting subarea is approximately
150 square meters wide.

Table 14. Maximum points per area and area size.

Max Points per Area

2000 1000 500 250

Number of Subareas 22 37 91 151
Average Area Size (m2) 6,662,905.40 3,961,789.13 1,610,986.67 970,874.14
Smallest Area Size (m2) 9023.61 2275.65 578.85 149.74
Largest Area Size (m2) 36,643,506.10 36,643,506.10 36,643,506.10 36,643,506.10

4.2.2. Algorithm 1.2: Detection of Pairs with Multiple Parallel Instances

The pair detection algorithm from Scenario 1 is adapted to run in parallel. Since PostgreSQL
does not support developing routines in PL/pgSQL, we use a shell script running under an Ubuntu
operating system that concurrently submits different instances of the same routine so that each instance
considers a group of distinct areas.

4.2.3. Response Time Results

Figure 16 shown the compared response time results for the parallel processing taking into
account the four values for the maximum points per coordinate subarea (250, 500, 1000 and 2000) and
the number of processing threads used (2, 4, 8 and 16).

The amount of subareas will typically be greater than the number of computing nodes (or cores)
available to handle them. Despite knowing that it is not the best technique due to variation in
the amount of points per subarea (zero to the max points per area), we assume in this paper that
the distribution of subareas among the computing nodes will be applied in stages, similarly to a
round-robin algorithm. This can result in an overload of specific nodes while others become idle.
A better distribution processing technique between nodes is a subject for further work.

Figure 16. Response times by thread using PL/pgSQL Language. Source: the authors.
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Figure 16 shows that as the maximum number of points per area is reduced, so is reduced the
corresponding processing time due to the lower number of comparisons between points necessary
for processing and calculating the distance. For the sample used in this work and considering the
results in Scenario 1, the response time reduction is significant and tends to flatten with the reduction
of points per subarea.

The equipment used has processors with two cores and hyper-threading technology that simulates
four logical cores. It was expected that the best response time would be with four threads. However,
for areas with a higher number of points (1000 and 2000), the cases with eight and 16 threads showed
better results. For areas defined with less points, the difference regarding the number of threads is
smaller. It should be taken into account that, as the processing performs some disk read and write
operations, the consequent I/O wait time seems to explain the better response time when processing
with more threads.

4.3. Scenario 3: Algorithm 1.2 in C Language without Parallel Processing

In this scenario, for comparison, a routine was developed using the C language for implementing
the algorithm for the detection of pairs (Figure 9) without parallel processing. All points are compared
with the others identifying those who are in proximity by calculating the respective distance. In this
case, there is no division of points into subareas, and the entire process is performed serially. The
routine reads the 10,000 points from a file in a file system and writes the result as a text file in the same
file system.

The processing response time (Figure 17) for Algorithm 1.2 in C language was approximately
20-times faster than the same routine in PL/pgSQL (14.66 s in Scenario 3, while it was 280 s in
Scenario 1). Of course, this superiority is expected in terms of performance, thus indicating which
language is most appropriate for this class of application.

Figure 17. Response time by language.

4.4. Scenario 4: Algorithm 1.2 in C Language with Multiple Parallel Instances

With the routine in C language developed in the previous scenario being executed now in multiple
instances separated by coordinate subarea and running such instances with 2, 4, 8 and 16 threads,
the response time results are shown in Figure 18.
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Figure 18. Pair detection algorithm response time in C language.

The results obtained for the parallel execution of the routine in C language, in every case under
2 s, are generally well below those obtained in PL/pgSQL. A noticeable observation is that, unlike the
results obtained in processing with PL/pgSQL, the differences are significant regarding the number of
running threads, with the best performance being achieved when running with four threads. The lower
response time obtained with four threads is justified because of the architecture of the processor
of the equipment used in the test, which has four logical cores with hyper-threading technology
(two physical cores).

4.5. Discussion

The proposed algorithms were applied on the three sets of points for checking their results and
response time in the different scenarios. In the first scenario, we address the application of algorithms
directly on the PostgreSQL database using PL/pgSQL and the PostGIS extension.

In the second scenario, the processing was divided into two steps seeking to reduce the overall
run time of the algorithms. In this scenario, the proposed solution is the distribution of coordinate
points into subareas of the original area allowing processing parallelization for these subareas.

In the third scenario, without parallel processing, the slower task was implemented in C language,
but it was found that even in a higher performing language, response time could still be enhanced.

Consequently, in the fourth scenario, the pair identification algorithm implemented in C language
was run in multiple parallel instances, giving way to better response time results.

When comparing the lowest possible processing times for each scenario (including the set
of algorithms for the identification of pairs of points in proximity, grouping of these pairs and
identification of risk indicators), we obtain the graph shown in Figure 19. Scenarios 1 and 3,
corresponding to processing without parallelism in PG/pgSQL and in C, respectively, have a final result
with higher response times. Scenarios 2 and 4 showed better response times, which became possible
due to the utilization of parallel processing for the identification of proximity among coordinate pairs.

In all scenarios, the processing of Algorithms 2 and 3 (detection of groups and computation
of risk indicators) is performed with PL/pgSQL language modules due to the good response time
obtained with this programming language, which allows the minimum total time to stay at 7.75 s
(Scenario 4). Future implementation with all algorithms in C language would further reduce the
shortest execution time of the whole process.

This paper does not address the integration of routines in C language being activated by calls from
PL/pgSQL functions, a feature supported by PostgreSQL 9. It is estimated, however, that the execution
times of the routines in this situation are very close to those measured in our presented scenarios.

127



ISPRS Int. J. Geo-Inf. 2017, 6, 31

Figure 19. Lowest processing time by scenario.

4.6. On the Feasibility of Using Distributed Processing

As parallel processing with multiple threads performed better compared to single thread, both in
PL/pgSQL and in C language, it is therefore natural to think of an experiment in a distributed
processing environment in a big data-oriented architecture. In this context, one of the most
frequently-used platform is Hadoop. However, some features of this type of processing should
be considered:

(a) Big data assumes a massive amount of data to be processed. It seems that this is not the
case described in this paper. Although high performant processing is implied by application
requirements, the amount of data processed at a time (for instance, the 10,000 points proposed
here) is not an impressive data volume. As a result, without any special configuration, loading
these data into a multiple node environment as expected in a big data environment, this volume
of data tends to be loaded on a single node, thus eliminating the possibility of distributed
processing. As discussed by Davenport [24], the term big data is basically defined in terms of
volume, variety and velocity, characteristics that guide the implementation of big data platforms.
The first characteristic (volume) is already compromised in our use case.

(b) To be treated in a distributed processing environment, the whole process takes a few seconds
(in some cases, even minutes) to be ready for processing. This necessary initial time can make it
unfeasible to meet the initial requirement described in our problem, which assumes a 1-min time
window to perform data samples’ processing, in our case with the 10,000 simulated coordinate
points for our validation.

It seems that the applicability of the presented algorithms for distributed processing with the big
data Hadoop platform, though it can be useful if anklet monitoring is expanded to larger populations,
is still an issue to be investigated, since although the offered processing capacity is relatively higher,
the amount of data to be processed is low, but requires important preparation effort, which makes big
data for now unsuitable as an alternative solution to the problem.

5. Conclusions

The process of monitoring convicts by means of electronic anklets can be improved by producing
additional data to support risk analysis for decision making. In this paper, the challenge of identifying
a gathering of groups of monitored convicts, the time of permanence of these groups and the number
of their members was proposed with the addition of a limited processing time restriction. The use of
serial algorithms was shown to be a problem due to their exceeding processing response time. It was
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observed that the longest processing time concerned the calculation of pairs of device coordinates
regarding their proximity.

The proposed solution to increase performance is the division of the total geographical area
containing all coordinate points into smaller areas (quadrants) so that each area can be processed
independently, thus allowing parallel processing when identifying points of proximity. Dividing the
total area into smaller areas involved dealing with the situation where the points in proximity were in
adjacent subareas, which was solved by expanding each area by the GPS precision factor (10 m) in all
directions and the elimination of duplicates in the grouping of points in proximity.

The adoption of routines using PL/pgSQL for implementing the algorithms alone would not
meet the required time window. However, when using a low-level language, such as C, to implement
the same algorithms, the overall response time experiences a substantial reduction.

This response time reduction, however, does not justify giving up parallelism in the proposed
processing, since even the routine time in C language without using parallelism (which corresponds
to approximately 1/4 of the defined window limit) could compromise the performance requirement.
For instance, a linear increase in the number of points to be processed increases exponentially the
number of comparisons to be performed to calculate the distance, which directly impacts response
time. In this case, even adopting the C language to implement the routines relating to the proposed
algorithms, it is appropriate to use a parallel processing solution.

Computing with Graphics Processing Units (GPU) is appropriate in cases of short and parallel
routines, as is the case of the detection of nearby points by calculating and comparing distances.
Although restricted to specific hardware, but abundantly available on the market, this alternative
should be considered in the case of the need for even greater reduction in the response time for the
algorithms addressed in this paper. While GPU-accelerated computing should be considered in future
works due to the intense and parallel processing characteristics or the pair detection algorithm, other
big data platforms, such as Hadoop, can be further studied and tested, in order to address a simplified
manner to reach the process performance requirements.

Unlike other algorithms, the solution proposed in this paper includes the monitoring of formed
groups over time, periodically updating the data of each group, thus supporting the analysis
based on group duration (the time interval in which the group remains assembled) and on the
average number of elements of the group during its existence. Moreover, when considering inactive
groups (those that have been identified in the past and are now ended), the frequency and time at
which certain groups usually meet can also be informed.

We emphasize that this paper is dedicated to issues related to proximity calculations and their
performance, although we recognize that there are several other issues equally important to be
treated, such as the date-related fusion aspects addressed by Khalegui [9] who classified the related
questions as imperfection, correlation, inconsistency and disparateness issues. Thus, the data used
in our simulations could be modified and completed to represent situations prone to these problems.
Then, for our algorithms to be tolerant to these data quality problems, they must include filters with
respect to data characteristics, as for instance invalid dates, eventually missing points, repeated or
delayed point collections, etc.

Other issues related to the mobility of groups will be addressed in future work due to the
complexity of their identification and treatment. Such problems occur, for example, when there is a
tracked device in a meeting and this device fails to submit the coordinates, thus causing the wearer to
be considered outside the group in the corresponding periodic processing. Indeed, groups identified
and tracked, being stationary or on the move, are handled the same way in the proposed algorithms,
although each of these situations may pose different risks.

The integration of the data produced in this work with other complementary databases, such as
those registering crimes occurring at the same time and location of the meetings detected, and the
registry of individual dangerousness are important to increase and improve the information made
available to the investigation teams. Such integration should be addressed as future work.
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Abstract: Visual coverage is one of the most important quality indexes for depicting the usability of
an individual camera or camera network. It is the basis for camera network deployment, placement,
coverage-enhancement, planning, etc. Precision and efficiency are critical influences on applications,
especially those involving several cameras. This paper proposes a new method to efficiently estimate
superior camera coverage. First, the geographic area that is covered by the camera and its minimum
bounding rectangle (MBR) without considering obstacles is computed using the camera parameters.
Second, the MBR is divided into grids using the initial grid size. The status of the four corners of
each grid is estimated by a line of sight (LOS) algorithm. If the camera, considering obstacles, covers
a corner, the status is represented by 1, otherwise by 0. Consequently, the status of a grid can be
represented by a code that is a combination of 0s or 1s. If the code is not homogeneous (not four
0s or four 1s), the grid will be divided into four sub-grids until the sub-grids are divided into a
specific maximum level or their codes are homogeneous. Finally, after performing the process above,
total camera coverage is estimated according to the size and status of all grids. Experimental results
illustrate that the proposed method’s accuracy is determined by the method that divided the coverage
area into the smallest grids at the maximum level, while its efficacy is closer to the method that
divided the coverage area into the initial grids. It considers both efficiency and accuracy. The initial
grid size and maximum level are two critical influences on the proposed method, which can be
determined by weighing efficiency and accuracy.

Keywords: camera coverage estimation; multistage grid subdivision; line of sight; viewshed
analysis; obstacle

1. Introduction

Visual coverage is an essential quantifiable feature of an individual camera and camera network,
which perform the most fundamental requirements of any surveillance tasks and computer vision
applications. Such diverse applications as camera reconfiguration, optimal camera placement, camera
selection, camera calibration, and tracking correspondence are required for capturing coverage
information, even though they vary in objectives and constraints. Virtually all camera network
applications depend on or can benefit from knowledge about the coverage of individual cameras, the
coverage of the network as a whole, and the relationships of cameras in terms of their coverage [1].
Camera coverage is always an essential issue in Visual Sensor Network (VSN), Directional Sensor
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Network (DSN), and Wireless Multimedia Sensor Network (WMSN). Visual coverage is also an
important issue for (geo-tagged) video data models and retrieval [2], video geospatial analysis [3] and
the integration of GIS and video surveillance [4–6].

In the surveillance system, the physical coverage is crucial for spatial analysis, for example to
determine whether a suspect or vehicle is exactly covered by a certain camera, to count the number of
a certain kind of features covered by camera network, and so on. Consequently, the accurate geometry
of the individual cameras and camera network is desperately needed. Moreover, the acceptable
speed for coverage estimation is crucial when the number of cameras is large or/and the parameters
will be changed frequently—for example optimal camera network deployment, camera network
reconfiguration, and so on. Consequently, coverage estimation method considering the trade-off of
efficacy and accuracy is desirable.

References are seldom explicit concerning the process of estimating coverage even though almost
all applications aim to maximize the overall coverage area sometimes with other constraints, which
depend upon the specific application. The coverage problem involves camera parameters, a scene
model and task parameters [1]. Because the works themselves are very complex and time-consuming,
requiring some approximations when dealing with coverage, the camera model and scene model
are often simplified according to the task. The camera model is simplified as a fixed-size sector or
quadrilateral. The target fields are often considered as a 2D plane with or without obstacles. A few
references investigate algorithms for applications such as coverage optimization considering 3D
modeling of the monitored area. In experimental applications, the target area is sampled by regularly
arranged grids, so the overall coverage of the target area is represented by the coverage of these
grids [7]. It is less time-consuming than methods without sampling, but the result is that simulated
experiments with the above assumptions are discordant with the actual applications. These works
emphasize efficacy rather than accuracy, and the geometry of the individual cameras and camera
network is ignored.

In this paper, we estimate camera coverage considering the trade-off of efficacy and accuracy.
We propose a grid subdivision algorithm for estimating camera coverage. The main idea is that the
surveillance area is divided gradually into grids of multiple grid sizes, while the coverage area depends
on the coverage statuses of grids in different subdivision levels for the following reasons: (1) the camera
coverage is not large, which demands a high precision data source; (2) a high precision DEM (Digital
Elevation Model) is not always accessible; and (3) the occlusions for line of sight (LOS) from cameras
to targets, including buildings, vegetation and other surveyed heights, are often stored in vector
features. We assume that the cameras are deployed in 3D geographic space while the surveillance area
is a relatively flat ground plane with some occlusions such as buildings, trees and others in vector
format. It is more suitable for real-world implementations in most city areas where the ground is
seldom rolling.

The remainder of the paper is organized as follows. After a literature review of related work in the
next section, the method is described in detail in the third section. Performance of the proposed method
is validated through experiments with simulated data and cameras deployed in a real geographic
space, and the results are evaluated in the fourth section. Finally, concluding remarks and discussions
are presented.

2. Related Works

The researchers in VSN, DSN and WMSN often try to find an efficient algorithm to obtain
an optimized configuration scheme for a camera network for different tasks, such as optimal
placement [7,8], automated layout [9], coverage-enhancement [10–13], coverage improvement [14],
planning optimization [15,16], coverage estimation [17,18], optimal deployment [19–21], camera
reconfiguration [22], object coverage [23], scalable target coverage [24], resource-aware coverage [25], etc.
Hundreds of cameras are engaged and their parameters frequently changed to estimate coverage in
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real time, which poses substantial computational challenges. Thus, more emphasis is placed on specific
camera coverage models for tasks than the optimization algorithms themselves.

The works mentioned above consider the 3D camera model, but the region of interest is simplified
as a 2D plane with/without occlusions and sampled by grid points or control points. Even though
this is a feasible way to estimate coverage rate and reduce computing time, it results in inaccurate
estimation of the geometric shape of a camera or camera network. Ignorance of the coverage geometry
cannot benefit camera network visualization, camera spatial retrieval or later spatial analysis.

Camera coverage can be considered as a particular viewshed analysis because it involves not
only geographic data but also the imaging principle of cameras. Viewshed analysis is applied more
frequently because of the many potential algorithm parameter changes such as altitude offset of the
viewpoint, visible radius, location of viewpoints, effect of vegetation, light refraction, and curvature
of the earth. The computational bottleneck poses a significant challenge to current GIS systems [26].
Consequently, the classic viewshed algorithms, such as inter-visibility based on LOS, the Xdraw
algorithm, and the reference plane algorithm were improved by a variety of algorithms to speed up
calculations [27–31]. Some authors proposed effective parallel viewshed algorithms [26,30,32]. Current
research mainly focuses on viewshed analysis in terrain models whose data structure is a DEM or
TIN (Triangulated Irregular Network). When combined with a Digital Surface Model (or a Digital
Terrain Model), the line of sight method is very effective for surveillance camera placement because
it allows introduction of some important characteristics of cameras such as the 3D position of each
camera, observation azimuth, field of view, the range of the camera, etc. [33]. However, for most public
sources of elevation data, the quality is variable and, in some areas, is very poor (especially in some
mountain and desert void areas). This implies that in some situations it is difficult to obtain enough
elevation points of the region of interest to build a proper DEM [34]. Occlusions including buildings,
vegetation and other surveyed heights are often stored in vector features. Argany et al. [35] stated that
besides positional accuracy, semantic accuracy, the completeness of spatial information, and the type
of spatial representation of the real world is another important issue that has a significant impact on
sensor network optimization. An accurate determination of sensor positions in a raster representation
of the space such as in 3D city models is more difficult because visibility could be estimated more
accurately in vector data [35].

Overall, in VSN, DSN and WMSN, the researchers designed a camera coverage model to meet
the demands of specific optimal tasks. Some of them employed 2D camera models with or without
occlusions, and some of them presented 3D camera coverage models considering one or more of FOV
(Field of View), resolution, focus, angle and occlusions. The criterion to estimate the camera network is
the coverage rate that is determined by the coverage of grid points or control points sampled from the
region of interest rather than the physical coverage of cameras. In GIS, the researchers implemented
various effective viewshed analysis algorithms. In some works, camera coverage is estimated using
an ArcGIS tool [36]. However, the estimated coverage does not exactly conform to the projection
principles of camera. An accurate and effective method to estimate camera coverage is desirable to
visualize a camera’s physical FOV and various optimal applications of a camera network.

3. Camera Coverage Estimation

3.1. Overview of the Method

When the target area is sampled into regularly arranged grids of the same size, the grid size is
the most important factor for coverage estimation [35]. If it is undersized, the coverage estimation
is of high precision and lower computing efficiency. If it is oversized, the coverage estimation is of
low precision and higher computing efficiency because some details are ignored. It is hard to balance
the precision and computing efficiency when the target area is sampled into grids of the same size.
This paper proposes a method to meet this challenge. The proposed method is shown as Figure 1.
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Figure 1. Flowchart of the proposed method.

First, the theoretical camera coverage and its minimum bounding rectangle (MBR) are computed
according to camera parameters. Second, the minimum bounding rectangle is subdivided into grids of
the initial size written as w0, and the grid division level, which is written as l, is set to 0. The status of
each corner of a grid is estimated by the method depicted in Section 3.2. If a corner point is covered by
a camera, then its status is marked as ‘1’; otherwise, it is marked as ‘0’. Thus, four digital numbers
(0 or 1) are used to code the status of a corresponding grid. Encoding (0000) means that the grid is not
covered by a camera and encoding (1111) means that the entire grid is covered. Other encodings such
as (0101), (0011), which contain both 0 and 1, mean that the grid is partly covered. The presentation
status of a grid is discussed in Section 3.3. Third, each grid in level l whose encoding is not (0000) or
(1111) must be subdivided into four sub-grids. The sub-grids will be divided until encoding is (0000)
or (1111). Infinite subdivision is not appropriate because it is time-consuming and does not increase
accuracy. We stop subdivision when the division level l reaches the threshold max_level. The detail of
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subdivision is presented in Section 3.4. Finally, the geometry of camera coverage is the union of grids
whose encoding is not (0000); the area is also estimated.

3.2. Coverage Model for Ground Point

Two conditions need to be satisfied if a point is covered by a camera: the ray from the camera to
the point should intersect with the image plane and there should not be an obstacle between the camera
and the point. The former relates to the camera model and the latter to obstacles in the geographic
environment. The camera model is illustrated in Figure 2. Camera C is located at (XC, YC, HC).
Its coverage in theory is the pyramid C-D1D2D3D4, which is determined by intrinsic and external
parameters of the camera. Intrinsic parameters include focal length f, principle center (u0, v0), etc.
External parameters include pan angle P, tilt angle T, roll angle v, etc. P is the angle between the
north direction and the principal optic axis in a clockwise direction, T is the angle from the horizontal
direction to the principal optic axis in a clockwise direction, while v is often close to 0 and is ignored in
this paper. The point G in the geographic environment is located at the coordinates (XG, YG, HG), the
corresponding image point g, which is projected from point G by a camera, is located at the coordinates
(x, y) in an image coordinate system. The camera model is shown as Equation (1), where λ is a non-zero
scale factor: ⎡

⎢⎣ f
x
y

⎤
⎥⎦ =

⎡
⎢⎣ cos T 0 − sin T

0 1 0
sin T 0 cos T

⎤
⎥⎦
⎡
⎢⎣ cos P sin P 0

− sin P cos P 0
0 0 1

⎤
⎥⎦
⎡
⎢⎣ XG − XC

YG − YC
HG − HC

⎤
⎥⎦. (1)

Figure 2. Camera model.

A point G is visible in an image if and only if the sight line CG determined by camera C and point
G crosses the image plane and there is no obstacle across the sight line CG. As shown in Figure 2, the
point G1 is visible, but the point G2 is blocked by obstacle B. The profile is shown in Figure 3. (XB, YB,
HB) are the coordinates of B. The height H of the line of sight CG at the location of B is calculated by
Equation (2):

H =
l2

l1 + l2
HG +

l1
l1 + l2

HC, (2)

where l1 = ‖(XB − XG, YB − YG)‖, l2 = ‖(XB − XC, YB − YC)‖. If HB ≥ H, then the current point is
visible. HB can be obtained from the attribute tables of vector data.
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Figure 3. Profile of an object point, obstacle and camera.

3.3. Presentation for Grid

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to their
visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-down.
Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the grid is (0000),
the grid is not covered. If the status is (1111), the grid is covered. Other codes in the table represent
partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to ambiguity. Under the
circumstances, an extra point should be sampled in the grid center to confirm the actual coverage.

Table 1. Codes of grids.

ID Code Coverage ID Code Coverage ID Code Coverage

0 0000

6 0110

10 1010

1 0001 11 1011

2 0010 7 0111 12 1100

3 0011 8 1000 13 1101

4 0100

9 1001

14 1110

5 0101 15 1111

3.4. Multistage Grid Subdivision

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a
level, there are two issues that need to be resolved: (a) convert and (b) conflict.
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(a) convert

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory.
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points
of the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial
grid size w0. We record a corner point as (l, i, j), where l is the subdivision level of the points, i and j
are the number of current corner points in the current subdivision level. A corner point (l, i, j) and
its location in geographic coordinate (X, Y) can be converted from one to the other by following
Equations (3) and (4): ⎧⎨

⎩
i =

⌊
(X−XMin)×2l

w0

⌋
j =

⌊
(Y−YMin)×2l

w0

⌋ , (3)

{
X = min(XMin + i × w0

2l , XMax)
Y = min(YMin + j × w0

2l , YMax)
. (4)

The points (l, i, j) and (l + 1, 2 × i, 2 × j) are located at the same place. Likewise, the points (l, i, j)
and (l + n, 2n × i, 2n × j) are the same point. When the grids are subdivided, only new points need to
be estimated. Others can inherit their status from upper levels.

 

w0

 

w0/2

 

w0/22

 

(a) (b) (c) (d) 

Figure 4. Different levels for grid-subdivision. (a) sample of FOV in theory; (b) sample grid (l = 0);
(c) sample grid (l = 1); (d) sample grid (l = 2).

(b) conflict

The sample grid in blue shown in Figure 4a, whose status is (1101) in level 0 (see Figure 4b),
is partly covered by the camera because of occlusion. Therefore, it needs further subdivision to the
next level, which is shown in Figure 4c. The right-up grid masked in yellow in Figure 4c is coded
as (1111); it does not need to be subdivided. However, its left neighbor grid needs to be subdivided,
a new mid-point of the adjacent edge is added and its status is 0. This means that the grid masked in
yellow must be subdivided because it is not completely covered by the camera. The current grid will
be subdivided to the same level as its neighboring grid. Therefore, the grid is subdivided in Figure 4d.
Likewise, if the status of the new mid-point is 1 and its neighboring grid is coded as (0000), then the
neighboring grid will be subdivided.

Here is the algorithm (Algorithm 1):
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Algorithms 1: Camera Coverage Estimation Based on Multistage Grid Subdivision

Input: Camera parameters, obstacle information, initial grid size w0, max level max_level
Output: Geometry and area of coverage
Process:

Subdivide the MBR of FOV in theory into grids with size w0
Set current subdivision level l to 0.
While l < max_level and not all grids are coded as (0000) or (1111) do

l++
for each grid in level l

Obtain and record the statuses of each grid (l, i, j).
If its code is not (0000) or (1111), then

detect the coverage statuses of five new points, which are composed of the center of the
current grid, and the mid-points of four edges.

record the statuses of each grid.
For each new mid-point

if it conflicts with the neighbor grid,
then subdivide the neighbor grid to the current level..

Convert the grid information from (l, i, j) to (X, Y)
Generate the geometry of coverage, which is the union of all the grids in different levels.
Obtain the area of coverage according to the geometry information.

4. Experiments and Results

The initial grid size and max level are two important factors that affect the accuracy and efficiency
of the proposed method. To determine the impacts of the initial size and level of grid on the proposed
method, a series of experiments were performed using simulated and real data.

In the experiments, we used the number of points needing to be judged for coverage by the camera
to represent the efficiency of the method because the judgment process is the most time-consuming
step. The more points that need to be judged, the more time-consuming the process. We employed the
percentage of coverage area relative to real area to represent the accuracy of the simulated experiments.

4.1. Prototype System

Our method is designed for camera coverage estimation for the prototype system shown
in Figure 5. The system is deployed in the sever with four main modules: (1) optimal camera
network deployment, (2) camera control, (3) physical coverage visualization, and (4) spatial analysis
for coverage. The system requires the accurate geometry of the individual cameras and camera
network for coverage visualization and spatial analysis, and the acceptable speed to obtain optimal
deployment scheme. Only the certain camera parameters need to be transferred between system and
the corresponding camera other than camera coverage. The communication complexity is out of range
of our method. Consequently, coverage estimation method considering the trade-off of efficacy and
accuracy is desirable.

The experimental environment of this study is Ubuntu 64-bit operating system, Intel i5 processor,
2.0 G memory (San Jose, CA, USA, Apple). The study uses Python as the developing language, an
open source QGIS to carry out geometric target description and topological relations operation.

140



ISPRS Int. J. Geo-Inf. 2017, 6, 110

 
Figure 5. System prototype.

4.2. Simulated Data

In this section, we employed three geometrical objects to simulate different geographic
environments with different complexity. Three geometric shapes are covered by a camera, and the
other areas covered by the camera are ignored because the process for them is the same for our method
as for others. We employed a circle with a radius of 100 units, a diamond with side length of 100 units,
and a five-pointed star with external and internal radiuses of 100 and 50 units to simulate different
coverage situations. The circle is the simplest one, while the five-pointed star is the most complex.

As shown in Figures 6 and 7, the red area is the real coverage and the blue area is obtained by the
proposed method with different initial grid sizes and max levels. Points filled with white mean the
corner points are not covered by a camera while the ones filled with black mean that they are covered.
In Figure 6, the max level is set to 1, and the initial grid sizes are specified as 100, 75, 50, 25 and 5.
Similarly, in Figure 7, the initial grid sizes are set to 100, and the max level for subdivision is specified
as 1, 2, 3 and 4.

 

   

  
(a) (b) (c) (d) (e) 

Figure 6. Different initial grid sizes for the proposed method with max level = 1. (a) initial grid
size = 100; (b) initial grid size = 75; (c) initial grid size = 50; (d) initial grid size = 25; (e) initial grid
size = 5.
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(a) (b) (c) (d) 

Figure 7. Different max levels for the proposed method with initial grid size = 100. (a) level = 1;
(b) level = 2; (c) level = 3; (d) level = 4.

The results of experiments with different initial grid sizes and max levels are shown in Figures 8–10.
In these figures, the point number stands for efficiency, which is represented by the number of points
needing to be judged for whether they are covered by the camera. The coverage rate stands for
accuracy, which is represented by the percentage of the coverage area relative to the real area.

(a) 

 
(b) 

Figure 8. Results for the circle with different initial grid sizes and max levels. (a) point number;
(b) coverage rate.
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(a) 

(b) 

Figure 9. Results for the diamond with different initial grid sizes and max levels. (a) point number;
(b) coverage rate.

(a) 

(b) 

Figure 10. Results for the five-pointed star with different initial grid sizes and max levels. (a) point
number; (b) coverage rate.
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From the details illustrated in Figures 6–10, the following considerations can be remarked.

(a) When the initial grid size is fixed, as the max level increases, the geometries of the simulated
shapes are closer to the real shapes, and the point number of the proposed method increases
dramatically. There are twice the point numbers of the former max level, and as the max level
increases accuracy increases.

(b) When the max level is fixed, as the initial grid size increases, the geometries of the simulated
shapes are closer to the real shapes, and the point number of the proposed method decreases.
At a small initial grid size, the number of points declined sharply and leveled off gradually with
the increase of the initial grid size. As the initial grid size increased, the coverage rate decreased
overall. The larger the max level is, the slower the coverage rate decreases.

(c) When the initial grid size is small, in the experiments, it is set to 5, and the accuracy of the
proposed method for all three shapes is high, approaching 99%. The point number increases
dramatically as the max level increases.

(d) When the initial grid size is large, in the experiments, it is larger than half the shape width, and
the accuracy of the proposed method for all three shapes is slightly unstable, but it decreases
overall. The point numbers become close to each other.

(e) The point numbers for the five-pointed star are more than the other two shapes, and the coverage
rate is a little less with the same initial grid size and max level. Because the five-pointed star
simulated the complex geographic phenomenon, most of the grids needed to be subdivided.

(f) The coverage rate vibrates, which is shown in Figures 8–10. The points filled in red, blue and
green in Figure 11 are the grid points, which the FOV is divided into with the certain initial grid
size of 25, 15 and 10. In addition, the corresponding sub-grid points are filled in with similar
colors. As shown in Figure 11, the sub-grid points need to be judged with initial grid size of 25,
15 and 10 not overlapping. Consequently, the status of each grid point is not the same, and then
the coverage rate vibrates as shown in Figures 8–10.

 

Figure 11. Initial grid size and subdivision.

4.3. Real Geographic Environment Data

As illustrated in Figure 12, there are 15 cameras deployed, including eight PTZ (Pan/Tilt/Zoom)
ones and seven still ones. PTZ cameras can rotate and tilt at a certain angle and provide optical zoom;
therefore, their coverage is a sector composed of the coverages from all possible camera positions.
In the experiment, the steps for pan and tile are one degree. If the pan and tile range are (230,310) and
(25, 65) respectively, then the coverage is estimated 3200 times. Consequently, the point numbers of
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PTZ cameras is the sum of point numbers from cameras with certain pan and tile. The still camera’s
coverage is a quadrangle. All the camera parameters are listed in Table 2. Their locations and coverages
are illustrated in Figure 12. The digits in red represent the ID of the camera, and the areas in transparent
blue are the coverages estimated by our proposed method. In the experiment, the buildings are the
major obstacles because the height of the cameras is much lower than building height. There are
85 features in the building layer.

Figure 12. Cameras’ coverage in geographic environment.

Table 2. Camera parameters.

Type Id
Height
(Meter)

Format
(Millimeter × Millimeter)

Focal
(Millimeter)

Pan (Degree) Tilt (Degree)

Mini Max Mini Max

PTZ
Camera

1 14 4.8 × 3.6 3.6 230 310 25 65
2 14 4.8 × 3.6 3.6 163 243 46 86
3 16.8 4.8 × 3.6 3.6 50 130 25 65
4 14 4.8 × 3.6 3.6 240 320 20 60
5 6 4.8 × 3.6 3.6 185 265 20 60
6 6 4.8 × 3.6 3.6 350 70 20 60
7 6 4.8 × 3.6 3.6 185 265 20 60
8 4.8 × 3.6 3.6 5 85 20 60

Still
Camera

9 3 3.2 × 2.4 3.6 90 80
10 3 3.2 × 2.4 3.6 280 80
11 3 3.2 × 2.4 3.6 90 80
12 3 3.2 × 2.4 3.6 270 80
13 3 3.2 × 2.4 3.6 270 80
14 3 3.2 × 2.4 3.6 270 80
15 3 3.2 × 2.4 3.6 270 80

In this experiment, we first set the initial grid size to 4, 2, 1 and 0.5 m. Then, we estimated
camera coverages without further subdivision. Second, we set the initial grid size to 4 m and set
the max level to 0, 1, 2 and 3. Third, we set the size of the grid max level to 0.5 m. In other words,
we set the initial size and max level as 4 m and three levels, 2 m and two levels, 1 m and one
level, and 0.5 m without subdivision. Because of ignorance of the ground truth, we compared our
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estimated results with ones taking 0.5 m as the initial grid size and 0 level as the max level. Because of
differences in the order of magnitude, the results of PTZ cameras and still cameras are illustrated in
Figures 13 and 14, respectively.

 
(a) 

 
(b) 

 
(c) 

Figure 13. Results for PTZ cameras (a) point number; (b) coverage area; (c) time-consuming.
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(a) 

 
(b) 

 
(c) 

Figure 14. Results for still cameras (a) point number; (b) coverage area; (c) time-consuming.

From the results illustrated in Figures 13 and 14, the same conclusions can be made as with the
experiment with simulated data, along with the following considerations:

(a) When the size of the grid in max level is the same, which is 0.5 m for example, the initial size
and max level are set as 4 m and three levels, 2 m and two levels, 1 m and one level, the point
numbers increase with the initial grid size, and they are significantly lower than results with
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0.5 m as the initial grid size and 0 as the max level. However, the coverage areas are close to the
ground truth.

(b) When the size of the grid in max level is similar, for example, the initial size and max level are set
as 3 m and three levels, 5 m and four levels, 7 m and four levels, the point numbers and coverage
area are close to each other.

(c) On one hand, the point number depends on the camera’s physical coverage, which is influenced
by camera parameters and geographic environment. As the physical coverage increases, the
point number increases. On the other hand, the point number is influenced by the initial grid size
together with the max level proposed by our method.

(d) As shown in Figures 13c and 14c, with the same initial grid size, the processing time of different
cameras increases as the max level increases. With the same max level, the processing time
increases with the initial grid size. When the size of the grid at the max level is the same, the
processing times of different cameras are close to each other. Even though the point numbers of
different cameras are close to each other, the processing times vary. Moreover, the processing
times of different cameras vary because of their locations, poses and obstacles.

(e) The processing times of PTZ cameras is very time-consuming because the total coverage is
combined with lots of coverages estimated with certain pan and tile.

5. Analysis and Discussion

The accuracy and efficiency of our proposed method are greatly influenced by camera parameters,
obstacles, initial grid size and max level. The camera parameters can be employed to estimate the FOV
in the theory, and obstacles must be considered when physical coverage is needed. However, it is
hard to make a quantitative analysis of the influences before camera deployment. In general, cameras
for city public security are usually deployed in entrances, exits and road intersections for monitoring
moving targets. The geographic environment with obstacles such as buildings and trees is simpler
than the simulated five-star. Consequently, in the paper, we emphasized the later factors: the initial
grid size and the max level.

We use Nl and Ml to represent the row and column number of grid points from subdivision of the
MBR with unified grid size w0/2l , where w0 is the initial grid size, and l is the current subdivision level:

⎧⎨
⎩

Nl =
⌈
(XMax−XMin)×2l

w0

⌉
+ 1

Ml =
⌈
(YMax−YMin)×2l

w0

⌉
+ 1

. (5)

Therefore, the number of grid points from subdivision of the MBR with unified grid size w0, which
is written as GridPointNum0, is computed by Equation (5) with l = 0. The number of grid points
from subdivision of the MBR with unified grid size w0/2l is written as GridPointNuml in Equation (6).
In theory, the number grid points should be estimated in the proposed method with initial grid size w0

and max level l, which is written as GridPointNumw0_l , not less than GridPointNum0 and not bigger
than GridPointNuml . That is, GridPointNumw0_l ∈ [GridPointNum0, GridPointNuml ]:{

GridPointNum0 = N0 × M0

GridPointNuml = Nl × Ml
. (6)

Consequently, the time complexity of our algorithm is O(GridPointNumw0_l × f eatureNum). To
avoid judging the status of gird point repeatedly, our method needs to record the judged grid points.
Consequently, the space complexity is also O(GridPointNumw0_l). In reality, when the camera is
deployed in an environment with complex occlusions, the efficacy of the proposed method is close to
GridPointNuml . When the camera is deployed in a relatively flat area with few obstacles, the proposed
method is more efficient.
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On average, our method trades off efficacy and accuracy. Experiments with simulated and real
data reveal the same conclusions. Overall, the oversize initial grid results in less accuracy, and the
oversize max level is less efficient without obvious accuracy improvement. An undersize initial grid
results in more computing time, and the undersize max level could cause less accuracy. Consequently,
it is important to choose a proper combination of the initial grid size and max level. In application,
there are three suggestions resulting from our experiments:

(1) If high efficacy is given priority over high accuracy, a larger initial grid size and smaller max level
should be chosen.

(2) If high accuracy is given priority over high efficacy, a smaller initial grid size and larger max level
is appropriate.

(3) When the focus is a balance between accuracy and efficacy, the parameters can be determined by
the following steps: (a) roughly estimate the FOVs in theory and their MBRs; (b) estimate the
smallest grid size and max level for the desired accuracy; and (c) estimate the initial grid size and
max level for acceptable efficacy and accuracy using Equations (5) and (6).

In this paper, there are some limitations. This is unavoidable when sampling. In theory, if the grid
size is small enough, a best grid approximation will be obtained, but it is impractical to divide the area
infinitely. It is usually divided into grids according to practical requirements.

(1) If the initial grid size is not small enough, our method may ignore the conditions, which
are illustrated in Figure 15. When the grid coded as (1111) has a few holes, its geometry and area
are overestimated. When the grid coded as (0000) has a few islands, its geometry and area are
underestimated. To avoid or reduce the impacts of sampling without loss of computing efficiency, it is
suitable to choose a relatively smaller initial grid size and then determine the max level according to
the desired deepest grid size. The conditions shown in Figure 15 are infrequent.

 
(a) 

 
(b) 

Figure 15. Exceptions for grid subdivision. (a) holes; (b) islands.

(2) The efficacy and accuracy of our method is affected by boundaries. As shown in
Figures 5 and 6, the boundary of physical coverage is not perpendicular to the vertical or horizontal
direction. Therefore, the estimated coverage is serrated, and the grids crossing the boundary need to be
divided by the max level to approach the physical coverage, which may cause more computing time.

(3) The monitored area in our method is flat ground, some errors may result when the area is
rolling, and a few points may be occluded by the terrain. Our method can be improved for 3D terrain
because its core for a visibility test is LOS when high precision DEM/DSM is accessible.

6. Conclusions

In this paper, a method is proposed to estimate camera coverage that balances accuracy and
efficacy. In this method, the camera FOV in theory is divided by grids of different sizes with on-demand
accuracy rather than by grids with one fixed size. Accuracy is approximately equivalent to the method
employing the same deepest grid size, but efficacy is equivalent to the method employing the same
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initial grid size. It is suitable for a camera network, which contains hundreds of cameras and needs to
obtain coverage frequently because of reconfiguration, coverage enhancement, optimal placement, etc.
In this paper, we employed the LOS to estimate the visibility of the grid corner points. Even though
the experiments cater to 2D areas with obstacles in vector format, it is easy to expand to 3D camera
coverage when the high-precision grid DEM is available. In addition, different LODs of 3D buildings
will be considered in our future works.
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