2,232 research outputs found

    Develop Guidelines for Pavement Preservation Treatments and for Building a Pavement Preservation Program Platform for Alaska

    Get PDF
    INE/AUTC 12.0

    Automatic Classification and Quantification of Basic Distresses on Urban Flexible Pavement through Convolutional Neural Networks

    Full text link
    [EN] Pavement condition assessment is a critical step in road pavement management. In contrast to the automatic and objective methods used for rural roads, the most commonly used method in urban areas is the development of visual surveys usually filled out by technicians that leads to a subjective pavement assessment. While most previous studies on automatic identification of distresses focused on crack detection, this research aims not only to cover the identification and classification of multiple urban flexible pavement distresses (longitudinal and transverse cracking, alligator cracking, raveling, potholes, and patching), but also to quantify them through the application of Convolutional Neural Networks. Additionally, this study also proposes a methodology for an automatic pavement assessment considering the different stages developed in this research. This methodology allows for a more efficient and reliable pavement assessment, minimizing the cost and time required by the current visual surveys.The study presented in this paper is part of the research project titled SIMEPU Sistema Integral de Mantenimiento Eficiente de Pavimentos Urbanos, funded by the Spanish Ministries of Science and Innovation and Universities, as well as the European Regional Development Fund under Grant No. RTC-2017-6148-7. The authors also acknowledge the support of partner companies Pavasal Empresa Constructora, S.A. and CPS Infraestructuras, Movilidad y Medio Ambiente, S.L. and the Valencia City Council.Llopis-Castelló, D.; Paredes Palacios, R.; Parreño-Lara, M.; García-Segura, T.; Pellicer, E. (2021). Automatic Classification and Quantification of Basic Distresses on Urban Flexible Pavement through Convolutional Neural Networks. Journal of Transportation Engineering, Part B: Pavements. 147(4):1-8. https://doi.org/10.1061/JPEODX.000032118147

    A prototype knowledge-based system for pavement analysis

    Get PDF
    Highway engineers have addressed the problem of pavement maintenance by developing remaining life assessment methods based on structural analysis of computer simulations of pavements tested in the field by non-destructive testing devices such as the Falling Weight Deflectometer (FWD). However the methodologies followed have been shown to be unable to provide accurate solutions without undue reliance on the knowledge of the expert engineer who conducts the analysis. A knowledge-based system (KBS) is proposed to "inject" engineering knowledge into the conventional techniques. It has been established on a systematic basis and seeks to cover the variety of the issues which may be encountered in such systems. In its prototype form the system consists of three parts: 1. The finite element analytical program ROSTRA-1. 2. A deductive database. 3. A back-analysis subsystem. The analytical program carries out the analysis of the pavements tested in the field. The deductive database holds the properties of a variety of paving materials and establishes the analytical model. The back-analysis subsystem seeks to perform the tasks required for the analysis of the FWD deflection bowl. To build this system, the POPLOG-Prolog computer language operated under VAX/VMS was selected to work in connection with the analytical program. An evaluation procedure was carried out to investigate the performance characteristics of the prototype system. The results indicated that the POPLOG-Prolog development environment is not the ideal tool for such an application. In addition, it appears unlikely that there is any other development tool available which is markedly more effective than that used. However it is felt that similar functions to those required by the POPLOG-Prolog environment, may be implemented using conventional programming. To permit this, a logical design of a KBS to conduct this task is presented

    An Exploration of Recent Intelligent Image Analysis Techniques for Visual Pavement Surface Condition Assessment.

    Get PDF
    Road pavement condition assessment is essential for maintenance, asset management, and budgeting for pavement infrastructure. Countries allocate a substantial annual budget to maintain and improve local, regional, and national highways. Pavement condition is assessed by measuring several pavement characteristics such as roughness, surface skid resistance, pavement strength, deflection, and visual surface distresses. Visual inspection identifies and quantifies surface distresses, and the condition is assessed using standard rating scales. This paper critically analyzes the research trends in the academic literature, professional practices and current commercial solutions for surface condition ratings by civil authorities. We observe that various surface condition rating systems exist, and each uses its own defined subset of pavement characteristics to evaluate pavement conditions. It is noted that automated visual sensing systems using intelligent algorithms can help reduce the cost and time required for assessing the condition of pavement infrastructure, especially for local and regional road networks. However, environmental factors, pavement types, and image collection devices are significant in this domain and lead to challenging variations. Commercial solutions for automatic pavement assessment with certain limitations exist. The topic is also a focus of academic research. More recently, academic research has pivoted toward deep learning, given that image data is now available in some form. However, research to automate pavement distress assessment often focuses on the regional pavement condition assessment standard that a country or state follows. We observe that the criteria a region adopts to make the evaluation depends on factors such as pavement construction type, type of road network in the area, flow and traffic, environmental conditions, and region\u27s economic situation. We summarized a list of publicly available datasets for distress detection and pavement condition assessment. We listed approaches focusing on crack segmentation and methods concentrating on distress detection and identification using object detection and classification. We segregated the recent academic literature in terms of the camera\u27s view and the dataset used, the year and country in which the work was published, the F1 score, and the architecture type. It is observed that the literature tends to focus more on distress identification ( presence/absence detection) but less on distress quantification, which is essential for developing approaches for automated pavement rating

    Deep Learning Framework For Intelligent Pavement Condition Rating: A direct classification approach for regional and local roads

    Get PDF
    Transport authorities rely on pavement characteristics to determine a pavement condition rating index. However, manually computing ratings can be a tedious, subjective, time-consuming, and training-intensive process. This paper presents a deep-learning framework for automatically rating the condition of rural road pavements using digital images captured from a dashboard-mounted camera. The framework includes pavement segmentation, data cleaning, image cropping and resizing, and pavement condition rating classification. A dataset of images, captured from diverse roads in Ireland and rated by two expert raters using the pavement surface condition index (PSCI) scale, was created. Deep-learning models were developed to perform pavement segmentation and condition rating classification. The automated PSCI rating achieved an average Cohen Kappa score and F1-score of 0.9 and 0.85, respectively, across 1–10 rating classes on an independent test set. The incorporation of unique image augmentation during training enabled the models to exhibit increased robustness against variations in background and clutter

    Low-cost deep learning UAV and Raspberry Pi solution to real time pavement condition assessment

    Get PDF
    In this thesis, a real-time and low-cost solution to the autonomous condition assessment of pavement is proposed using deep learning, Unmanned Aerial Vehicle (UAV) and Raspberry Pi tiny computer technologies, which makes roads maintenance and renovation management more efficient and cost effective. A comparison study was conducted to compare the performance of seven different combinations of meta-architectures for pavement distress classification. It was observed that real-time object detection architecture SSD with MobileNet feature extractor is the best combination for real-time defect detection to be used by tiny computers. A low-cost Raspberry Pi smart defect detector camera was configured using the trained SSD MobileNet v1, which can be deployed with UAV for real-time and remote pavement condition assessment. The preliminary results show that the smart pavement detector camera achieves an accuracy of 60% at 1.2 frames per second in raspberry pi and 96% at 13.8 frames per second in CPU-based computer
    corecore