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Deep learning framework for intelligent pavement condition rating: A 
direct classification approach for regional and local roads 

Waqar S. Qureshi a,*, David Power b, Ihsan Ullah c, Brian Mulry b, Kieran Feighan b, 
Susan McKeever a, Dympna O’Sullivan a 

a Centre for Sustainable Digital Technologies, School of Computer Science, Technological University Dublin, Dublin 7, Ireland 
b Pavement Management Services Private Limited, Athenry, County Galway, Ireland 
c Insight SFI Research Center for Data Analytics, University of Galway, Galway, Ireland   

A R T I C L E  I N F O   
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A B S T R A C T   

Transport authorities rely on pavement characteristics to determine a pavement condition rating index. How
ever, manually computing ratings can be a tedious, subjective, time-consuming, and training-intensive process. 
This paper presents a deep-learning framework for automatically rating the condition of rural road pavements 
using digital images captured from a dashboard-mounted camera. The framework includes pavement segmen
tation, data cleaning, image cropping and resizing, and pavement condition rating classification. A dataset of 
images, captured from diverse roads in Ireland and rated by two expert raters using the pavement surface 
condition index (PSCI) scale, was created. Deep-learning models were developed to perform pavement seg
mentation and condition rating classification. The automated PSCI rating achieved an average Cohen Kappa 
score and F1-score of 0.9 and 0.85, respectively, across 1–10 rating classes on an independent test set. The 
incorporation of unique image augmentation during training enabled the models to exhibit increased robustness 
against variations in background and clutter.   

1. Introduction 

Transport departments regularly inspect pavement (road) surfaces to 
assess the surface condition. Pavement deterioration is primarily due to 
traffic, weather, and sunlight. Pavement or road surfaces can be cate
gorized into four general classes, i.e., asphalt, concrete, gravel, and brick 
and block [1]. Asphalt, also known as flexible pavement, is widely used 
to construct national, regional, or local roads across the road network 
and has different sub-categories depending on its construction. Over 
90% of the total European road network has an asphalt surface. 

Maintenance and improvement of pavements is expensive. For 
example, Ireland’s government spent 850 million euros in 2021 to 
improve and maintain local, regional, and national primary and sec
ondary roads [2]. In Ireland, there are 5413 km of national highways 
(primary, secondary, and motorways), 13,124 km of regional roads, and 
81,300 km of local roads adding to a total of 99,830 km of road network. 
The manual visual rating of pavements conducted for regional and local 
roads is subjective and expensive, requiring time and cognitive skills 

built through extensive training and experience. Automated methods for 
pavement assessment need to be faster, more reliable, and economical. 

Pavement surface distresses in different geographical regions can be 
divided into six groups, i.e., cracks, surface openings, surface deforma
tion, surface defects, joint deficiencies, and miscellaneous distresses [3]. 
Distresses apparent on the surface may be simply due to wear and tear or 
may indicate a fault in the construction. Distresses can differ in scale and 
appearance between rural and urban regions, depending on the surface 
type, the severity (low, medium, high) of the underlying problem, and 
other environmental conditions. Distresses can generally be detected 
through visual inspection (standard practice) of pavement surfaces, and 
their quantity and severity can be recorded using manual measurement 
tools [4]. 

Local authorities use pavement condition rating indices, incorpo
rating all or a subset of pavement characteristics, to rate the pavement 
condition. These condition rating systems vary from country to country 
(or within a state in the USA), considering local variations, the charac
teristics of the pavements, the environmental condition, and the 
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economic conditions [3]. Pavement condition is assessed through visual 
surveying and usually consists of three steps: 1) pavement data collec
tion, 2) distress identification and quantification, and 3) assigning a 
pavement rating index to a stretch of pavement using a standard rating 
scale (e.g., pavement surface evaluation rating - PASER [5]) that is 
typically localized to a specific geographical region [6]. 

In step 1, data for pavement condition assessment is usually acquired 
from 2D or 3D sensors mounted on a vehicle with a computer and GPS 
(global positioning system). Two configurations are usually used for 
sensor placement - externally mounted 3D sensors with a ‘top-view’, or 
internally mounted 2D cameras on the front of a dashboard giving a 
‘frontal-view.’ The top view gives a higher ground sampling distance but 
covers less area per image than wide-view images. Vehicles with 
external 3D sensors are more expensive to operate and maintain than 
vehicles with an internal high-resolution camera with a frontal view [3]. 
In step 2, engineers manually visually inspect the collected data to 
identify and quantify various pavement distresses. The quantity and 
severity of distresses is used to compute and apply a pavement rating 
index for a given stretch of road in step 3. Images are captured every 
approximately x meters, and in practice, ratings are given to continuous 
stretches of roads with a similar condition, with ‘y’ meters (where, 
ymeters = xmeters*Nimages) being the minimum length to have its’ distinct 
rating. When rating images captured by a video camera, a rating is given 
by a data analyst viewing images on a computer offline. The rating 
expert assigns a rating to the first ‘x’ meters and adjusts the rating as the 

pavement condition changes. 
There are several standards for visual surface assessment, including 

Pavement Surface Evaluation Rating (PASER) [5], Pavement Condition 
Index (PCI) [7,8], Pavement Surface Condition Index (PSCI) [9], and the 
Road Condition Indicator (RCI) [10,11]. PASER [5] is a direct rating on a 
scale of 10–1 (9–10 is excellent condition, while 2–1 is extremely poor). 
The ASTM (American Society for Testing and Materials) standard for 
pavement is PCI, a rating on a scale of 100–0 (100–85 is a good condi
tion, while 10–0 completely deteriorated [7]. The Irish PSCI [9,12,13] 
rating is on a scale from 1 to 10, like PASER, where index-1 is the lowest 
(surface wholly worn out or failed), and index-10 (no distress, new 
pavement) is the highest. Standard ratings differ in scale granularity, 
pavement characteristics for evaluating the conditions localized to the 
geographic region and the formula to estimate a value on the rating 
scale. 

The PSCI rating system (see Table 1) is based solely on visual 
pavement distresses. The impact of surface-related distresses, structural- 
related distresses, and other defects that affect the overall rating system 
is identified. Table 1 shows the primary rating indicators, the identified 
distresses, secondary rating indicators, the quantification measure of 
surface and structure quality, and the visual colour bands used for 
treatment measures. 

In this paper, we developed a deep learning framework for direct 
automated pavement rating which aims to ensure more consistent and 
accurate pavement condition ratings and as well as to reduce the overall 

Table 1 
PSCI rating system and treatment measures for asphalt pavement [9].  

PSCI 
rating 

Primary rating indicators Secondary rating indicators Treatment measures Surface Structure 

10 No Visible Defects. Road surface in perfect condition. 
Routine Maintenance 

Excellent 

9 
Minor Surface Defects. 
Ravelling or Bleeding <10% 

Road surface in very good condition. Very Good 

8 Moderate Surface Defects. 
Ravelling or Bleeding 10% to 30%. 

Little or No Other defects. 
Resealing & Restoration of Skid 
Resistance 

Fair 
Good 

7 Extensive Surface Defects. 
Ravelling or Bleeding >30%. 

Little or No Other defects. 
Old surface with aged appearance. 

Poor 

6 

Moderate Other Pavement Defects. 
Other Cracking <20%. 
Patching generally in Good condition. 
Surface Distortion requiring some 
reduction in speed. 

Surface defects may be present. No structural 
distress3. 

Surface Restoration Fair 

Fair 

5 

Significant Other Pavement Defects. 
Other Cracking >20%. 
Patching in Fair condition. 
Surface Distortion requiring reduction 
in speed. 

Surface defects may be present. Very localized 
structural distress (< 5 m2 or a few isolated 
potholes). 

Carry out localized repairs and treat with 
surface treatment or thin overlay. 

Poor 

4 

Structural Distress Present. 
Rutting, Alligator Cracking or Poor 
Patching for 5% to 25%. 
Short lengths of Edge Breakup/ 
Cracking. 
Frequent Potholes. 

Other defects may be present. Structural Overlay  

Poor 
Overall 

Poor 
Overall 

3 

Significant Areas of Structural 
Distress. 
Rutting, Alligator Cracking or Poor 
Patching for 25% to 50%. 
Continuous lengths with Edge Breakup/ 
Cracking. More frequent Potholes. 

Other defects may be present. 
Required to strengthen road. 
Localized patching and repairs required 
prior to overlay. 

2 

Large Areas of Structural Distress. 
Rutting, Alligator Cracking or Very Poor 
Patching for >50%. 
Severe Rutting (> 75 mm). 
Extensive Very Poor Patching. Many 
Potholes. 

Very difficult to drive on. 
Road Reconstruction 
- Very Poor Overall 

1 

Extensive Structural Distress. 
Road Disintegration of surface. 
Pavement Failure. 
Many large and deep Potholes. 
Extensive Failed Patching. 

Severe Deterioration. 
Virtually undriveable. 

Needs full depth reconstruction with 
extensive base repair. 

Failed Overall  
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time required for pavement rating. We propose a deep learning 
approach using image segmentation and classification methods. 

1.1. Related work 

Researchers have proposed several methods for automating visual 
surface condition assessment based on computer vision, machine 
learning, and, more recently, deep learning [14–17]. Researchers have 
recently reviewed various automated pavement distress detection and 
data acquisition, including 1D sensors, 2D sensors, and 3D sensors 
[18–24]. Much of the literature focuses on automating step 2 – auto
matic distress identification and quantification - while there is less 
emphasis on automating step 3 – directly computing a pavement index 
rating from image data. 

1.1.1. Digital data collection and pavement image datasets for condition 
assessment 

Digital data collection is essential to automating pavement distress 
identification, quantification, or direct condition assessment. A guide on 
data collection, including visual data for pavement quality management, 
is presented in [25]. The guideline presents standard procedures and 
practices to obtain data for pavement quality assessment and manage
ment. For visual pavement condition assessment through images, either 
of two views is recommended, i.e., a front-mounted camera placed 
orthogonal to pavement surface normal, or a back-mounted camera 
placed inline to pavement surface normal. However, vehicles with 
external 3D sensors are more expensive to operate and maintain than 
vehicles with an internal high-resolution camera with a frontal view [3]. 

In [21], the authors list contributions to existing publicly available 
pavement image datasets for distress detection. These very limited 
datasets can be categorized based on the view angles (top-view, wide- 
view, hand-held), and imaging technologies (3D or intensity) mainly 
focused only on a subset of distress types (different crack types, potholes, 
and patches) found locally in the geographical regions (USA, China, 
India, Japan, Czech Republic, Brazil, Italy, and Mexico). Two frontal 
view datasets focus on pavement rating; the first is the Paris-Saclay and 
the second is the Road Quality Dataset (R.Q.) [26]. The Paris-Saclay 
dataset [27] is annotated for pavement condition rating for a stretch 
of a road based on PASER for New York roads. The frontal-view images 
are extracted from Google Maps API, while the ground truth annotation 
for each stretch is extracted from the pavement condition rating of New 
York [28]. The ground truth annotation contains the street index, the 
number of images in the street, the PASER rating for each street 
segment, and the course rating of good, fair, and poor for each street 
segment. A similar image dataset can be extracted from Google images 
for Oakland, USA, while the street segment pavement rating based on 
PCI can be generated from the database available [29]. R.Q. Dataset 
[26] is a manually annotated frontal-view image for pavement condition 
index ratings based on six different condition ratings for the Czech Re
public. The pavement condition rating criteria are defined in [26], while 
the images are obtained using Google Maps API. The image dataset 
annotated for pavement rating indices is also limited and does not cover 
the full range of standard visual rating scales, i.e., PASER and PSCI. Over 
the years, researchers have made available datasets for benchmarking 
automated distress detection systems, mainly covering different types of 
cracking and potholes [30]. Only a few focus on other distresses 
detection or visual pavement condition rating classification. 

1.1.2. Automated distress detection and identification 
Deep learning architectures have recently been applied to pavement 

condition detection and classification [31–48]. These methods can be 
segregated into pavement condition rating through image classification, 
pavement distress detection using object detection, and semantic seg
mentation approaches for pavement cracking. Researchers in [34,49] 
have used aerial images through drones as input and presented a con
volutional neural network architecture for automated pavement distress 

detection (mainly cracks) and evaluation, respectively. In [48], an 
automated smartphone-based application is proposed to detect potholes 
and cracks. An accelerometer, global positioning system (GPS) sensor, 
and compass are used to record the location of the potholes. Recall, 
precision and accuracy are reported for eight distresses, with the lowest 
recall recorded as 5% for lateral linear cracks, 65% for alligator 
cracking, and the highest for crosswalk blur and white line blur at 95%. 
Authors in [22,41,50] also used a smartphone mounted on the dash
board of a vehicle to capture images from multiple countries and 
develop distress detectors, based on CNN, for alligator cracks, longitu
dinal cracks, transverse cracks, and potholes. The distress objects are 
similar to [48], and the measures reported for the three countries are F1- 
score and mean average precision. Pavements in different countries have 
different F1-score with a maximum F1-score of 52% for alligator 
cracking and a minimum F1-score of 29% for linear transverse cracking 
for Japanese roads. In [51], a CNN-based crack segmentation method 
consists of a novel architecture of five layers; the input layer is a line 
feature detector filter, followed by two convolutional layers and two 
fully connected layers to segment crack pixels in the 3D images of 
asphalt surfaces. The evaluation reported precision, recall, and F1-score 
with an F1-score of 88%. This method is specifically for 3D data from the 
PaveVision3D laser system, which is mounted on a video van, viewing 
an orthogonal top view of the road. 

In [52] authors present the first CNN-based ravelling detection by 
training macro texture features obtained from the 3D images from 
PaveVision3D [53]. In [54] authors propose an automatic patch detec
tion system using object detection techniques with state-of-the-art 
models (Faster RCNN and SSD MobileNet-V2). The results show suc
cessful detection of patches in LCMS images, suggesting integration with 
existing systems. 

In general, most classification-based approaches focus on identifying 
types of distress in an image patch of higher-resolution images. Local
ized distresses are investigated, i.e., potholes and cracks. Patch-based 
classification and identification of distress instances are helpful for 
localized distresses; the technique is suitable for images that capture the 
top view of the road. The deep-learning-based segmentation algorithms 
perform well when the test data is similar to the training images (i.e., 
from the same device); however, the performance degrades when the 
multiple training datasets are combined, or the test dataset is from a 
different capturing device and region. The performance of the object 
detector-based distress detection deteriorates for multiple distress 
detection compared to detectors that detect one or two distresses [3]. 
Recall or accuracy for detecting cracks (linear or edge) using a frontal 
view image is less when object detection networks such as Yolo [55] are 
used compared to top-view images. Methods that focus on automated 
distress detection and identification are not directly able to estimate the 
pavement condition rating on a standard rating scale. 

Most of the work in automated image-analysis-based pavement 
condition assessment is focused on two primary distress types, i.e., 
distinct types of cracks and potholes. For PASER (used in the U.S. and 
other regions) and PSCI (used in Ireland), the ratings 10–7 are decided 
based on the amount of ravelling and bleeding alone. Very few experi
ments can be seen in the literature on ravelling or bleeding distresses 
(see [56,57]), which are forms of surface defects and contribute towards 
a unified pavement surface rating. Other surface distress such as 
patching, utility patches, and utility cover is also seldom considered (see 
[54]). 

1.1.3. Direct pavement rating 
The primary purpose of distress detection and identification is to 

evaluate the pavement condition using a standardized scale. Distresses 
must first be identified and then the number of distinct distresses and 
their severity must be considered over a given stretch of pavement to 
compute a rating. Most research focuses on distress identification (see 
Section 1.1.2) but falls short of automatically computing a direct 
pavement rating for a stretch of pavement. One approach to computing 
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direct ratings is described in [45]. The authors present a hybrid model of 
an object detector and semantic segmentation for classifying and 
quantifying distress severity on pavements and predicted PASER indices 
for each patch. The images are collected from Google Street View maps, 
70-degree wide-angle views, and 90-degree birds-eye view images. 
Wide-view photos are used for crack and pothole detection, and top- 
view images to quantify crack severity. The results from the hybrid 
model are then fed to a linear and weighted regressor for predicting 
PASER indices. A YOLO model was trained to detect distresses (cracks 
and potholes) and a U-Net (based on a fully convolutional layer) model 
to classify crack severity. The results from the two models are then 
combined to find the crack density per pavement defect. The results are 
then fed to a linear and a weightage regressor to label each image a 
PASER index. The predicted PASER model fits with an R2 of 0.9382 or 
test data with a root mean square error of 10.45. One of the limitations 
of this research is the use of Google API images that are quite old. In this 
system, only two distresses are used to compute the rating (cracks and 
potholes); however, in most practical scenarios, cracks, potholes, 
patches, ravelling, and bleeding also need to be considered, requiring 
transfer learning for adding localized distresses to the algorithm. 

In [39], the authors present an image classification approach to 
surface rating where they used a three-rating index - good, regular, and 
bad. The dataset used for the experiments is RTK [46], caRINE [58], and 
KITTI [59]. It classifies roads into three different types (unpaved, paved, 
asphalt) and three different ratings (good, regular, bad). The surface 
type accuracy is reported to be 98% for three types. The classification 
accuracy for the three asphalt quality types is 98% for good and 96% for 
bad. The precision of classifying the good class is 86.7% while classi
fying the bad asphalt class is 81%. The number of rating indices is 
limited to three – good, bad, and regular and judging on a scale of 3 
levels is not very useful in real life. Maintenance discussions are based 
on the overall rating and the individual distresses that lead to that rat
ing. As such further experiments are required to increase the number of 
classes useful for visual standards such as PASER or PSCI. 

In [60], the authors used pixel segmentation using a semantic seg
mentation CNN-based model from [61] to extract roads, marks, and 
background pixels. They analyzed the state-of-the-art EfficientNet V2 
[62] image classification approach for automating PSCI ratings. Each 
image in the training and test set has a ‘segmented’ pavement image, an 
‘augmented’ image, and an ‘original’ image. Image height is cropped 
250 pixels from the top and 50 pixels from the bottom to remove the sky 
and pavement pixels further away from the camera and pavement pixels 
too close to the camera. The “Augmented” images are computed by 
combining the pavement segmented intensity image, the pavement plus 
mark pixel intensity image, and the original intensity image. They used a 
combination of these images to evaluate the performance of their clas
sifier. For a 10-class classification based on PSCI, the best model ach
ieved an F1-score of 0.57, while an F1-score of 0.73 was achieved for 
five-class classification after combining adjacent classes. 

On the commercial side, a few companies in the U.S and Japan do 
provide automated solutions for pavement condition ratings. RoadBotics 
[63], working locally for U.S roads, use a limited version of PASER [5], i. 
e., they rate pavement condition from 1 to 5. An automated rating sys
tem from Ricoh [64] estimates the amount and location of cracks on 50 
cm × 50 cm patches and has adopted its rating system for Japanese 
roads based on PCI. 

The current literature on pavement condition assessment is limited in 
its scope. Existing methods focus on specific types of distress present in a 
particular region, use an orthogonal view of the pavement, or are 
focused solely on distress detection and identification. Little work has 
been done on direct pavement condition rating classification using a 
low-cost camera mounted on the front of a vehicle, which is a low-cost 
approach for pavement condition assessment for regional and local 
roads. Experts typically use standardized rating scales, such as PCI, 
PASER, or PSCI, to provide an objective assessment of pavement con
dition rating or severity classification. These non-linear scales consider 

various factors, including the type, extent, and severity of pavement 
distress, and provide an overall rating based on visual distress, including 
surface-related and structural-related issues. Table 1 outlines the visual 
distress rating criteria for PSCI. To maintain quality control, it is com
mon for multiple experts to rate an image, and inter-rater reliability is 
calculated using the Cohen’s kappa score. This statistical measure con
siders the agreement between two or more raters beyond chance 
agreement and ranges from − 1 to 1, with values closer to 1 indicating 
stronger agreement between raters. While automated pavement distress 
detection and quantification methods exist, they are not yet accurate or 
consistent and may require extensive labelled data, person-hours, and 
complex algorithms to develop a non-linear model based on deep neural 
networks. To address this, we hypothesize that a well-designed training 
set capturing different distributions of visual distress and severity with 
reliable expert applied labels can enable the creation of a direct DL- 
based classifier. 

Direct classification offers a comprehensive approach to evaluating 
pavement condition by directly identifying and classifying various types 
of distresses present in pavement images. Unlike quantified calculation 
approaches, direct classification considers the overall condition of the 
pavement and can capture subtle variations and complex patterns that 
may be challenging to accurately quantify using predefined metrics. This 
flexibility allows direct classification to adapt to different types of dis
tresses and variations in pavement conditions without relying on spe
cific predefined rules or thresholds. 

However, it is important to note that direct classification requires 
labelled pavement images with accurate annotations for each rating 
scale. To ensure the models can generalize and accurately classify 
pavement conditions across different scenarios, they need to be trained 
on a diverse and representative dataset. This dataset should encompass 
various pavement conditions and include a wide range of distress types 
and severities. 

We propose a deep neural network framework for direct pavement 
condition rating specifically designed for flexible asphalt regional and 
local roads. Unlike the traditional approach of distress detection, 
quantification, and rating, which can be computationally complex and 
time-consuming, our framework employs a direct classification meth
odology, simplifying the assessment process. The framework leverages 
the Pavement Surface Condition Index (PSCI) rating (see Table 1), which 
establishes a relationship between primary and secondary distresses and 
their objective measures, treatment measures, and defect segregation as 
required by local authorities. Within our framework, we have developed 
deep learning-based models for two key components: pavement seg
mentation and condition rating classification blocks. These models are 
integrated into the proposed architecture to enable accurate pavement 
assessment. To achieve this, we trained and evaluated various state-of- 
the-art deep learning architectures, including transformer-type models 
such as DeepLabV3 and SegFormer, as well as convolutional neural 
network (CNN) models like ConvNeXt, ResNet50, and Swin-V2. 

In the first stage, the deep learning model is developed to extract 
pavement pixels from the input images, enabling precise pavement 
segmentation. This pixel-level segmentation is crucial for isolating the 
pavement surface from the background and other objects, ensuring ac
curate condition assessment. In the second stage, the deep learning 
model is developed to classify the pavement condition based on the PSCI 
rating system. By examining the segmented pavement regions, the 
models assign the corresponding PSCI condition rating to each image, 
providing an overall assessment of the pavement’s condition. To 
enhance the robustness to different background changes and clutter we 
incorporated unique image augmentation technique during the training 
process. 

By combining the direct classification methodology, deep learning- 
based models, and innovative image augmentation techniques, our 
framework offers a comprehensive and efficient solution for pavement 
condition rating. The integration of the PSCI rating system ensures that 
the assessment aligns with the objective measures, treatment measures, 
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and defect segregation required by local authorities. 
Our method incorporates a comprehensive visual inspection of the 

pavement surface, encompassing various distresses including cracks, 
potholes, surface deterioration, and other visible signs of distress. By 
considering this wider range of defects, our method provides a more 
holistic assessment of pavement condition, allowing for better prioriti
zation of maintenance and rehabilitation efforts. Our framework and 
augmentation techniques are generalizable to other visual inspection- 
based rating system such as PASER and implicitly account for broader 
range of distresses, however would require specific training data to 
finetune the model. 

We collected a large dataset of publicly available images captured 
from various regional and local roads in Ireland. The dataset is rated 
using the PSCI rating scale from 1 to 10 by two expert raters who have 
years of experience in pavement condition rating using the standard 
rating scale. Our framework comprises a number of pipelined blocks - 
pavement-segmentation, data (image) cleaning, image cropping and 
resizing, and image classification. To test our framework, we developed 
a dataset of 7453 images captured from different regional and local 
roads in Ireland, which are rated on a PSCI rating scale by a team of 
experts. The road segmentation model was trained on 3349 images, and 
the PSCI rating classification model on 4581 images. In the sections to 
follow, we outline the methodology, including dataset, deep learning 
frameworks, training parameters, and evaluation criteria. In Section 3 
we present the results of the framework, and we conclude with a dis
cussion in Section 4. 

2. Material and methods 

The input to our pipelined framework for direct pavement rating 
classification are images of flexible asphalt pavements of regional and 
local roads from urban and rural environments across Ireland. The im
ages are acquired using a camera mounted on the front dashboard of a 
video van (see Fig. 1(a)). The camera is attached to a server for recording 
images. A remote laptop accesses the server over the network to label 
each image stretch of the pavement—the server linked to the camera 
capture image every five meters. 

The image deep learning framework consists of number of blocks – 
semantic (object) segmentation, image processing and, PSCI rating 
image classification, and extract and blur block (see Fig. 2). The se
mantic segmentation and classification blocks are deep-learning-based 
models. Pavement segmentation infers a segmented pavement image 
using semantic segmentation. Image processing eliminates poorly 
segmented image pairs and crops and resizes the image before feeding it 
to the classifier. The classification step infers a PSCI rating for each 

image. The extraction and blur blocks generate the final output image 
after blurring the human faces and vehicles by using the mask generated 
by the segmentation block. 

In this text to follow, we first explain the image labelling, then the 
dataset created for training and testing, and finally explain each block of 
the pipelined framework. 

2.1. Dataset and labelling 

The size of the image captured by the camera is 720 × 576, with 
three channels (red, green, and blue). We created two labelled image 
datasets extracted from video frames captured. 1) The first dataset 
(IrishRoadSurvey-1) is used to develop and test our semantic segmen
tation model that can classify pixels into seven classes (i.e., background, 
human, pole, road, traffic light, traffic sign, and vehicles). 2) The second 
dataset (IrishRoadSurvey-2) is used to develop and test our model for 
image classification that can assign pavement surface condition indices 
(PSCI 1–10) to each pavement surface in the image. 

2.1.1. Training and test set for image segmentation 
IrishRoadSurvey-1 consists of five hundred colour images (374 

training, 180 test) of different flexible pavement surfaces of Irish roads 
(urban, local, motorway, national primary, national secondary, and 
regional). Of these, 42% were national primary, secondary, and mo
torways, and 58% were local and regional roads. All pixels in both 
training and test images were labelled into seven different classes. In 
addition to IrishRoadSurvey-1, we customized the original Cityscapes 
[65] dataset containing 2975 training and 500 test images that has 
previously been labelled for 19 different classes, to train the image 
segmentation deep learning model. We relabelled the Cityscapes dataset 
into seven classes, cropped it, and resized it to a lower resolution (720 ×
567). By combining the IrishRoadSurvey-1 and customized Cityscapes 
[65] dataset, there were 3349 training images and 680 test images for 
developing and evaluating a semantic segmentation model. 

2.1.2. Training and test sets for image classification 
The size of the available dataset is relatively small; therefore, we 

followed 70% training and 30% test ratio for all our experiments; the 
images for both sets were randomly chosen at the start. 
IrishRoadSurvey-2 initially consisted of 7453 colour images (5024 
training, 2429 test) of flexible pavement surfaces classified into ten 
condition rating indices from the PSCI rating scale. The images are of the 
same size as IrishRoadSurvey-1. The images are not frames from a 
continuous video; they have been selected from different regional and 
local flexible asphalt pavements across Ireland. We removed image 

Fig. 1. Typical camera position, captured image, and the image after different pre-processing steps. (a) is the picture of a typical camera position mounted on the 
video van. (b) the output of the camera with a rating of 10. 
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frames with motion blur, images with insufficient lighting due to 
shadow from trees, and images with focus blur. The simple elimination 
technique (see Section 2.2.2 for details) removed around 613 images 
that were initially part of the IrishRoadSurvey-2 dataset. The dataset 
after removal of images consisted of 6855 colour images (4581 training, 
2274 test). Our dataset is an extension of the PSCI dataset developed by 
Qureshi et.al [60] and has 56% more images than the original dataset. 

Table 2 shows the total number of images in the Training and Test 

IrishRoadSurvey-2 dataset before and after elimination. The removed 
images had <25% extracted pavement pixels in the image (see image 
processing explanation in Section 2.2.2). As the pavement pixels were 
extracted using the semantic segmentation model, we found two pri
mary reasons for poor segmentation in the eliminated images: firstly, 
fewer actual pavement pixels due to the camera view and zoom; sec
ondly, fewer segmented pavement pixels due to poor performance of the 
segmentation algorithm on those images due to lighting or other 

Fig. 2. Block diagram for Deep learning framework for an intelligent pavement condition rating direct classification.  

Table 2 
No. of images available for segmentation and PSCI classification dataset and their categorisation.  

Segmentation dataset PSCI classification dataset 

S⋅No Folder Images S⋅No Folder Images S⋅No PSCI unclean clean 

1 Aachen 174 1 Frankfurt 267   Train validate Train validate 
2 Bochum 96 2 Lindau 59 1 1 487 209 301 137 
3 Bremen 316 3 Munster 174 2 2 372 160 334 135 
4 Cologne 154 4 IrishRoadSurvey-1 180 3 3 394 169 384 168 
5 Dardmstad 85 5 Total 680 4 4 406 175 376 168 
6 Dusseldorf 221 Sub category of IrishRoadSurvey-1 5 5 415 170 370 153 
7 Erfurt 109 6 6 682 571 674 562 
8 Hamburg 248 S⋅No Category Images 7 7 608 261 512 244 
9 Hanover 196 1 Urban 80 8 8 654 281 644 281 
10 Jena 119 2 Disintegrated local 30 9 9 527 227 508 220 
11 Krefeld 99 3 Local 90 10 10 479 206 478 206 
12 Monchengladbach 94 4 Motorway 90 11 Sub-total 5024 2429 4581 2274 
13 Strasbourg 365 5 National primary 58 12 Total 7453 6855 
14 Stuttgart 196 6 National secondary 60  
15 Tubingen 144 7 Regional 92 
16 Ulm 95 Total 500 
17 Wwimar 142  
18 Zurich 122 
19 IrishRoadSurvey-1 374 
20 Total 3349  
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environmental conditions while capturing the image. 

2.1.3. Image labelling 
We used CVAT [66], to label pixels in IrishRoadSurvey-1 and 

labelled images in IrishRoadSurvey-2. The CVAT is open-source soft
ware for labelling and can run on a local server. It provides different 
labelling and annotation methods. Two labellers performed pixel-level 
annotation for the segmentation task; one performed the actual anno
tation, while the other counter-checked the labelling done by the first 
labeller. The labellers were directed to complete fine annotations for 
humans, roads, backgrounds, and vehicles while keeping course anno
tations for traffic lights, traffic signs, and poles. 

The images in IrishRoadSurvey-2 were annotated offline using a PSCI 
[6] scale of 1–10 by two data analysts. Table 3 show the difference in the 
ratings between two data analysts while classifying RoadSurveyDataset- 
2. It shows a high rating agreement between the raters about the labels 
applied to the images used to develop the models with a weighted kappa 
score of 0.97. As described in Table 3, the PSCI rate was determined by 
two labellers (trained and experienced) who reviewed each sample 
independently. If there was no agreement (i.e., no exact same rating 
value provided by both) between the two labellers, a third expert data 
analyst was consulted to make the final determination. Regarding the 
choice of using the PSCI rate labelled by expert data analyst-1 as the 
ground truth, this decision was made based on our belief that expert data 
analyst-1 had the most experience and knowledge in this area, and 
therefore their labels were deemed to be the most accurate and reliable. 
However, we acknowledge that this decision may have introduced some 
bias into our dataset. We ensured that all labellers were highly trained 
and experienced in the task of rating PSCI. Nonetheless, in real-world 
analysis, such limitations are often managed by providing a confi
dence level of the rating assigned by the analyst and by implementing 
quality control loops to ensure accuracy and reliability. 

For our experiments, the images are divided into classes 1–10 ac
cording to the PSCI ratings. Fig. 3 shows the sample images from the 
IrishRoadSurvey-2 labelled by the expert PSCI data analyst for PSCI 
ratings from 1 to 10. The original images were used for annotation. The 
classes are imbalanced and representative of a real-world scenario for 
pavement conditions for regional and local roads. Fig. 3 can be used 
along with Table 1 to understand the sample of different type of pave
ment condition in each rating index. For example, Image rated as 3 have 

more severe alligator cracking than image rated as 4. While image rated 
5 has visible linear cracks; image rated 6 has clean utility patches. Im
ages 7–9 are classified based only on the amount of bleeding and 
ravelling present, and do not show any other sign of distress; images 
rated as 10 do not have any visual distress. 

In the IrishRoadSurvey-2 dataset, for each rating scale, there is a 
disagreement between the labellers for a few images; this disagreement 
is usually between adjacent rating classes. We observe that manual 
rating can have some randomness, especially for multiclass problems. 
However, we took several steps to minimize this randomness (see 
Table 3). The raters are working professionals and have years of expe
rience of rating Irish roads for pavement condition ratings for local 
counties. Firstly, we provided raters with clear instructions on how to 
rate the pavement images. Secondly, we trained the raters on a subset of 
the dataset to ensure they were consistent in their ratings. Finally, we 
provided the raters with the standard PSCI manual to help clear defi
nition for each rating category to help them make consistent and accu
rate ratings for each image. 

2.2. Pipelined framework blocks 

In the following text, we explain each of the individual pipeline 
blocks and our choice of the internal architecture of the framework 
shown in Fig. 2. 

2.2.1. Semantic segmentation block 
We observed in an earlier attempt [60] that the intel OpenVino li

brary [67] provides a ready-to-use road segmentation model with a 
mean accuracy of 89.9% and an average IOU of 84.4% for four classes, 
mainly road (IOU = 95.5%), curbs, background, and road lane markings 
on Might AI [68] test images. Our experiments on local and regional 
Irish roads showed that the performance of OpenVino model [67] de
creases significantly on deteriorated pavement surfaces [60], and the 
model provided by [67] does not allow transfer learning or retraining. 
Therefore, instead of developing a new architecture from scratch for 
road segmentation block, we evaluated existing deep learning segmen
tation architectures for developing seven class semantic segmentation 
models. We agree that the primary objective of the segmentation block 
in our framework is to extract the pavement from the background to 
analyse the PSCI. Heuristically, we found that reducing the problem to 

Table 3 
Confusion matrix showing agreement and disagreement between two raters for pavement surface condition rating. The diagonal shows the 
number of agreement images between the two raters. 
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binary classification (i.e., pavement and background), decreases the 
intersection of union for pavement pixels due to the imbalance of pixels 
between the two classes. To develop an image segmentation model, we 
labelled the images for the common features present in the image i.e., 
human, pole, road, traffic light, traffic sign, and vehicles, which has 
shown to improve the accuracy of pavement IOU as compared to binary 
classification of pixels, especially for those classes for which we have 
sufficient training data. 

The semantic segmentation-based deep learning architecture usually 
consists of two sub-blocks, the encoder and the decoder. The encoder 
usually consists of a stem block and feature extraction block, while the 
decoder generates the semantic segmentation mask using high-level 
features. we compared Deeplab v3 - with ResNet-50 encoder, and Seg
Former with Transformer encoder. Below, we briefly explain the ar
chitectures we evaluate for our segmentation task. 

2.2.1.1. SegFormer. SegFormer [69] is pixel-segmentation architecture 
consisting of Mix Transformer encoders (MiT), a lightweight multilayer 
perception (MLP) decoder, and a 1 × 1 convolutional head for gener
ating semantic segmentation masks. SegFormer initially proposed six 
different MiT sizes with the same architecture. We choose to use MiT-B2 
with moderate memory utilization and learning parameters. The novelty 
that makes SegFormer different from other segmentation algorithms is 
the hierarchical encoder which enables it to compute the deep features, 
allowing features to capture information at different spatial scales. As 
opposed to vision transformers, ViT [7], SegFormer does not need po
sitional encoding and increases performance when the testing resolution 
is different and the training resolution. The encoder hierarchically has 
four transformer blocks (T.F.), with a normalization layer after block. 
Each T.F. has an overlap patch merging followed by a self-Attention 
block and Mix FFN (a dense layer followed by the 3 × 3 depth-wise 
convolution and a Gaussian Error linear Unit). The MLP decoder en
ables the SegFormer to build up information from different encoder 
layers, combining local and global attention to a dense layer that pro
duces a semantic segmentation mask (see Fig. 2 in [69]). The encoder 
head we used was trained on ImageNet-1 K, while the decoder head was 
learned using fine-tuning technique on our customized dataset for the 
semantic segmentation model. 

2.2.1.2. DeepLabV3. DeepLabV3 [70] is an image segmentation deep 
learning architecture composed of fully convolutional layers. Usually, in 
an encoder-decoder-head type semantic segmentation architecture, the 
image size is reduced to reduce the number of parameters and compu
tations. Their encoder architecture uses “atrous “convolutional filters, a 
filter-up sampling technique applied to the original high-resolution 
image. This is achieved by up sampling the kernel filter and intro
ducing zeros between the filter sample instead of interpolating. The 
encoder consists of a standard deep feature detector, which in our case is 
ResNet-50 [71] consisting of five stages of convolutional blocks. We 
used two separate instances of ResNet i.e., ResNet50 [71] and 
ResNet50b [71,72], which is ResNet architecture with 50 layers and a 
sampling rate of eight. Here ‘b’ stands for a blur pooling. ResNet-50 is 
followed by a depth-wise separable Atrous convolution and Atrous 
Spatial Pyramid Pooling (ASPP) decoder. The ASPP decoder consists of 
ASPP modules (i.e., layers of depth-wise separable convolution modules, 
batch normalization, ReLU) and an image pooling layer. The decoding 
layer helps to classify each pixel corresponding to one of the seven 
classes. The output from the decoder is attached to a 1 × 1 convolution 
layer to get the final segmentation mask. The architecture used in the 
current study is slightly different from than the standard version. A 
separate, fully connected auxiliary head is attached for better optimi
zation of the models used in PSPnet [73]. 

2.2.2. Pavement segmentation and image processing 
For each image, the semantic segmentation block generates a mask, 

which is applied to the original image to compute an image containing 
only pavement pixels and is called a ‘segmented image.’ They are then 
passed to the image processing block along with the corresponding 
original image. The image processing block prepares images for the PSCI 
classifier. In the image processing block, we first find the images with 
pavement pixels less than a threshold ‘T’ in the segmented image and 
then remove them and their corresponding original image pair. The 
relation is shown in the equation Eq 1 below, where p is the pavement 
pixels in the image ‘x,’ and y is the binary variable to decide on keeping 
the image set for training. 

if
∑

px > T yx = True (1) 

Fig. 3. Sample images from the RoadSurveyDataset-2 labelled by the expert PSCI rater for PSCI from 1 to 10.  
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where T = (720 x 576)*0.35 
Then for each image set (i.e., ‘segmented image’ and original image), 

its height is cropped by 246 pixels from the top to remove the sky. Its 
width is cropped by 10 pixels on each size to make the resolution to 700 
× 330. The image set is then resized (224 × 224 or 384 × 384) to make it 
ready for the classification block. Fig. 4 show different stages of crop
ping and resizing of image before passing to the classifier. 

2.2.3. PSCI classifier block 
To develop a deep learning PSCI classifier for the classification 

pavements on a standard rating scale (PSCI 1–10) from pavement pixels 
extracted from images, we used a fine-tuning approach inspired by 
[74–76]. A deep learning architecture for classification usually consists 
of a stem block, layers of feature blocks, and a classification head. A stem 
block down samples the input image to an appropriate feature map. The 
feature block extract’ deep features for each image passed to the ar
chitecture. A fully connected neural network layer known as ‘classifi
cation-head’ is attached to the feature block for any image classification 
task. We developed three architectures, R, C, and S, for PSCI (1− 10) 
classifier by integrating a classification head on top of a ResNet50 [72], 
ConvNeXt [77], and the transformer-based Swin-V2 [78] feature blocks, 
respectively. We then compare our model results with the EfficientNet 
V2 model proposed by [60]. Since such applications must run on limited 
hardware resources (Embedded hardware or a tablet), our focus is to 
choose models with higher accuracy with limited memory resources (i. 
e., fewer parameters) and lesser floating-point computations and, 
therefore, smaller architectures. ResNet50 is the baseline, while Con
vNeXt [77] and Swin-V2 [78] are state-of-the-art classifiers from the 
convolutional and transformer bases, respectively. 

ResNet50 [71] which has 50 deep layers, is a ResNet family archi
tecture usually considered a baseline method for comparing neural 
networks. It uses residual bottleneck blocks for better convergence. The 
stem block contains a convolutional layer consisting of a 7 × 7 kernel of 
64 filters, followed by batch normalization layer, rectified linear unit 
(ReLU), and Max pooling to down sample four times the size of the input 
image. The feature block consists of four sequential layers with 3, 4, 6, 
and 3 bottleneck residual blocks in the first, second, third, and fourth 

layer, respectively. The filter channels are expanded from 64, 
128,256,512, 1024, and 2048 of size 3 × 3 filters in a hierarchical way 
towards the head. The bottleneck residual block consists of two 1 × 1 
convolutional layers and one 3 × 3 convolutional layer. The 1 × 1 
convolutional layers increase the depth and reduce the parameters by 
down sampling and then up sampling after the 3 × 3 convolution layer 
in the block. A batch normalization and ReLU layer follow each con
volutional layer. At the end of the residual bottleneck block, the output 
is added to the input of the residual block for better convergence of the 
optimization function. The ResNet50 backbone (stem and feature block) 
architecture output is a 8×8 × 2048 feature map (see Fig. 5). A linear, 
fully connected neural network layer is connected to the feature block to 
develop an image classifier ‘R’ model. 

ConvNeXt [77] is a recent work from Facebook research from 2022 
that argues the potential of CNN architectures over transformers-based 
architectures by redesigning the ResNet architecture family [71]. They 
use larger filters, change to layer normalization from batch normaliza
tion, use GELU [79] over ReLU, and separate down sampling layers. It 
uses a 96-channel filter of size 4 × 4 with a non-overlapping (i.e., stride 
4) strategy in the stem block. It works similarly to segmenting the im
ages into patches and applying feature mapping filters. The feature block 
consists of four sequential layers with 3, 3, 9, and 3 ConvNeXt blocks in 
the first, second, third, and fourth layer, respectively (see Fig. 6). A 
ConvNeXt blocks consist of a 7 × 7 convolution kernel with d-channels, 
where d varies from 96, 192, 384, and 768 in the four sequential layers. 
A bigger version of the ConvNeXt‑tiny, also used in our evaluation, with 
similar channels but different configurations (i.e., 3,3,27, and 3) of the 
blocks in each sequential layer is referred to as ‘ConvNeXt-small.’ The 
convolution layer is followed by a layer normalization layer and a 
Multilayer perceptron (MLP - a two-layer fully connected feedforward 
neural network). Like the residual bottleneck, at the end of the con
vNeXt, the output is added to the input of the block (skip connections) 
for better convergence of the optimization function. The ConvNeXt 
backbone (stem and feature block) architecture output is a 12 × 12 ×
768feature map (see Fig. 6). A linear, fully connected layer is connected 
to develop an image classifier ‘C’ models. 

Swin-V2 [78] is a state-of-the-art hierarchical vision transformer- 

Fig. 4. Different stages of cropping and resizing before passing to the classifier.  
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based deep neural network architecture that can be used for image 
classification and as an encoder for image segmentation tasks. The ar
chitecture mainly consists of a stem or patchify block, a feature block, 
and a fully connected linear head. The feature block consists of four 
sequential layers with 2, 2,6, and 2 Swin-Transformer-V2 blocks in the 
first, second, third, and fourth layer, respectively (see Fig. 4). The vision 
transformers differ from convolutional neural networks in that they 
divide the input image aggressively into non-overlapping regions in the 
stem block and pass the patches after flattening it into one dimension. 
The patchification is performed using a patch embedding in the stem 
block, which is a convolutional layer, followed by layer normalization 
and flattening in the stem block. Each of the four sequential layers is 
connected by a patch-merging layer. The swin2-transformer block is 
more complex than the ConvNeXt block or the residual bottleneck block, 
as shown in Fig. 4. The swin2-transformer block first has a weighted 
multi-head self-attention layer with a kernel size of 7 × 7 with a skip 
connection. It is followed by an MLP layer and a layer-normalization 
layer with a skip connection. The filter channel varies from 128, 256, 
512, and 1024 in the four sequential layers. The output for architecture 
is a 144 × 1024 feature map (see Fig. 7). A linear, fully connected layer 
is connected to develop an image classifier, ‘S’ models. 

2.3. Model training and empirical evaluation 

We used Python on Linux operating systems, on a system with a GTX- 
3060 NVIDIA GPU for Training and evaluating the models. For seg
mentation, we used the MMSegmentation [80] an opensource libraries 
by OpenMMLab [81] based on PyTorch [80], for the classification 
PyTorch-Image-Models(timm) [82] libraries were used. Both libraries 
provide a collection of state-of-the-art architectures, pre-trained models 
for deep-feature extraction, and basic building blocks of deep learning 
architecture, such as layers, utility functions, optimizers, schedulers, 
data loaders, and augmentation. We used such libraries to provide a 
reference implementation for evaluation and reproduction. We used 
Weights & Biases [83] for pavement rating classification experiments. It 
provides experiment tracking, dataset and model versioning, hyper
parameters, and data visualization. The backbone of a neural network 
(N.N.), also called encoder for segmentation or feature block in classi
fication N.N., requires extensive pre-training on image benchmarks to 
learn the filters’ weight and biases (also referred to as model parame
ters) for extracting distinctive features from images. ImageNet [84] has 
been widely used for pre-training deep learning architectures. It con
tains 1000 image classes, while ImageNet-21 K [85] contains 21,000 
image classes. These pre-trained parameters are provided by many open- 

Fig. 5. ResNet Network block diagram. a) is the overall block architecture. b) shows zoomed in view of the architecture of a ResNet head. c) shows the 1st residual 
block with 3 stages of convolution (each followed by batch normalization, and ReLU) and the residual path. The filter channel changes hierarchically from 64, 256, 
512, 1024, 2048 in the last sequential layer. 
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source libraries such as MMClassification [86], PyTorch-Image-Models 
[87], PyTorch-official model zoo [88], TensorFlow Model Zoo [89], 
and Model-Zoo [90]. We first explain the training parameters for image 
segmentation and then image classification tasks. 

2.3.1. Image segmentation 
A total of three models were developed and then evaluated to choose 

the best semantic (object) segmentation model for our task. The choice 
of the deep-learning architectures used is based on benchmark dataset 
performance tabulated by [91], memory required by the model to load, 
and the inference time (i.e., frame per second). Table 4 summarizes the 
three deep learning architectures used to develop the models, the pre
trained backbone used, memory requirement, and inference time. 

First, two models were developed by training a modified DeeplabV3 
architecture (with a separate auxiliary head for better optimization) for 
seven segmentation classes; one with ResNet50 [71] and the other with 
ResNet50b [71,72] encoder (backbone). The stem block has a stride of 8, 
i.e., eight times down sampling from 512 × 512 to 64x64x64. The 
padding configuration used is 1,1,2,4, and strides are 1,2,1,1 for the 1st, 
2nd, 3rd, and 4th sequential layers, respectively. The output of the 
encoder is a 1 × 2048 channels feature map. During training, the fully 
connected auxiliary head block is optimized using a SoftMax loss func
tion. We used the cross-entropy loss function for the decoder with a 
dropout ratio of 0.1 in the auxiliary head and the main decoder head, 
ASPP. A pre-trained model [82] initializes weight and biases for en
coders ResNet50 and ResNet50b. The decoder and the auxiliary heads 

were initialized with random normal distribution values with a standard 
deviation = 0.01. 

Second, one model was developed by training standard segFormer 
architecture. The encoder has four sequential layers with an overlapped 
patch embedding of 7, 3, 3, and 3, with the layers number of each 
transformer encode-layer as 3, 4, 6, and 3. The stride of each overlapped 
patch embedding is 4, 2, 2, and 2, with a spatial reduction rate of each 
transformer, encode layer to be 8, 4, 2, and 1—the encoder’s drop path 
rate = 0.1 and the dropout rate 0.1. The loss function used in the decoder 
is cross-entropy loss. A pre-trained model [82] is used to initialize 
weight and biases for the encoder. The decoder head is initialized with 
random values of a normal distribution with a standard deviation =
0.01. 

The input size of the image dataset is 720 × 576 × 3, while the input 
size of the model is 512 × 512 × 3. Therefore, an online training 
augmentation pipeline is used containing resize (size = 512 × 512, ratio 
0.5 to 2.0), random-crop (max-ratio = 0.75), random-flip (ratio = 0.5), 
photometric distortion, and normalization (with ImageNet standard 
deviation and mean) layers. We used stochastic gradient descent (SGD) 
for DeepLabV3 and Adam weight-decay for SegFormer as an optimiza
tion function with an initial learning rate = 0.01, learning rate decay 
policy = ‘polynomial’ with power = 0.9, momentum = 0.9, and 
weight_decay = 0.0005. The training was conducted for 160,000 itera
tions for all three models trained. 

Fig. 6. ConvNeXt Network block architecture. a) is the overall architectural design. b) show zoomed in view of the architecture of the head. c) Show the 1st 
ConvNeXt-small block in the 1st sequential layer. The filter channel changes hierarchically in the sequential layers. 
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2.3.2. PSCI rating classification 
As mentioned in the methodology, three architectures were devel

oped and evaluated for pavement rating classification—one with the 

baseline ResNet50 (R1, and R2 models), the second with ConvNeXt (C1, 
C2, and CT1 models), and the third with SwinV2-base (S1, and S2 
models) architectures. A list of seven developed models is shown in 
Table 5, which summarizes the type of input images used, size of images, 
total parameter counts in millions, batch size, number of the epoch, 
learning rate, momentum, and optimizer. The stem and feature block 
were initialized with the pre-trained mode [87]. The weights and biases 
of the classification head and the rest of the trainable model parameters 
are then retrained using the RoadSurvey-2 dataset with their ground 
truth labels. The images are to be classified for different pavement 
surfaces condition, which means the model should be trained to make a 
classification decision based only on the pavement pixels i.e. images 

Fig. 7. SwinV2-transformer Network block diagram. a) The overall block summary. b) show zoomed in view of the architecture of. Head. c) The 1st Swin-V2 building 
block of the sequential feature block 

Table 4 
Model used for evaluating the semantic segmentation algorithm for pavement 
pixel extraction.  

Method Pretrained-backbone Mem (GB) Inference time (fps) 

DeepLabV3 R-50-D8 6 2.74 
DeepLabV3 R-50b-D8 6 2.74 
Segformer MIT-B2 7.42 3.36  

Table 5 
List of seven developed models including the summary of the type of input images used, size of images, total parameter counts in millions, batch size, number of the 
epoch, learning rate, momentum, and optimizer.  

Models version-name Input image type Size of image P-count (Millions) Batch size Epoch lr momentum optimizer 

resnet50 
resnet50 R1 Segmented 224 25.56 32 300 0.0004 0.9 SGD 
resnet50 R2 Original + Segmented  

swinv2_base 
swinv2 base S1 Segmented 384 87.92 4    SGD 
swinv2 base S2 Original + Segmented 2  

convNeXt 
convNeXt-small C1 Segmented 384 50.22 16    adamw 
convNeXt-small C2 Original + Segmented 
convNeXt‑tiny CT1 Segmented 28.59  
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with pavement pixels extracted. On the other hand using the original 
image (the image with pavement as well as the rest of the pixels) along 
with its corresponding pavement extracted images for training the 
classification model should increase the robustness to varying back
ground pixels. To test this hypothesis, inspired by background 
augmentation technique by [92], we developed models with different 
input image types. In column three of Table 5 i.e., ‘Input Image’ the 
word ‘Segmented’ means only images with pavement pixels extracted, 
and cropped are used for training, while ‘Segmented + Original’ images 
means, the segmented images and its corresponding cropped original 
images is used for training the model. This means models (R2, S2, C2) 
that use segmented plus original images have twice the number of 
training images than models that use only segmented images (R1, S1, 
C1, and CT1). The images were resized to either 224 for R models and 
384 for C and S models before passing on to the models both for training 
and inference. 

2.3.3. Evaluation metrics 
The segmentation model’s evaluation criteria are the pixel accuracy 

and the intersection over union (IoU) for each of the seven classes and 
the mean value of accuracy and IoU. 

The per-class pixel accuracy (see Eq 2) is evaluating a binary mask, i. 
e., a true positive pixel represents a pixel correctly predicted to the given 
ground truth class. Whereas, a true negative pixel represents a pixel that 
is correctly predicted as not from the given class. 

Accuracy =
True positive + True negative

True positive + False positive + True negative + False negative
(2) 

The mean pixel accuracy is the average pixel accuracy of each class. 
The IoU metric for each class quantifies the overlap between the pre
dicted mask and the ground truth mask and is calculated as given in the 
equation Eq 2 

IoU =
predicted mask ∩ groundtruth mask
predicted mask ∪ groundtruth mask

(3) 

The evaluation criteria for classification are precision, recall, and F1- 
score per class, and the F1-score across all classes is computed using the 
equations Eq 4, 5, 6 and 7 below. 

precision =
TP

TP + FP
(4)  

Recall =
TP

TP + FN
(5)  

Average Recall =
∑

i=10TPi

Total No.of Images
(6)  

F1 score = 2*
precision*recall

precision + recall
(7)  

where TP is a true positive, FP is a false positive, TN is a true negative, 
and FN is a false negative. 

We also include the weighted Cohen’s Kappa score [93,94] for each 
model developed compared to the ground-truth labels assigned by 
expert data analysts for PSCI ratings. A confusion matrix is created for 
PSCI ratings between two raters, in which an element fij represent a 
number of images classified as a category i by rater-1 and category j by 
rater-2. The elements where i = j, are the agreements between two PSCI 
data analyst and i ∕= j is the disagreement between the two raters. While 
ri and cj the row and column totals for category i and j. Then, the 
weighted Cohen’s Kappa gives a measure of agreement and degree of 
disagreement between two raters and is given by Eq. Eq 8 [95]. 

κw =
Po(w) − Pe(w)

1 − Pe(w)
(8)  

where, Po(w) =
1
N
∑k

i=1
∑k

j=1wijfij,Pe(w) =
1

N2

∑k
i=1

∑k
j=1wijricj, wij = 1 −

|i− j|
k− 1.

3. Results and discussion 

This section reports the quantitative results for semantic segmenta
tion and PSCI classification on the respective test sets. We also discuss 
some strengths and limitations of the automated PSCI rating approach. 

3.1. Semantic segmentation 

Two different architectures were evaluated for image segmentation 
block. Table 6 summarizes the quantitative results of the three semantic 
segmentation models developed and evaluated for seven classes. The 
results show that the model developed using DeepLab version-3 with 
ResNet50-B performed best, with a mean IOU of 75.71% and a pixel 
accuracy of 82.05%. The segFormer performance was poorer than that 
of the DeepLab model. The pixel accuracy for classes road, human, and 
vehicles for DeepLab-RestNet50-b, which are important for the auto
mated PSCI classification application, are 97.74%, 85.25%, and 94.98%, 
with an IOU of 94.76%,76.18%, and 91.49% respectively. The IOU for 
poles, traffic lights, and traffic signs is poorer than the rest of the classes 
because of the coarse labelling in the IrishRoadSurvey-1. The other 
reason is that the poles for light-pole, traffic-light, and traffic-sign are 
sometimes visually similar due to colour, shape, and texture. In Table 6, 
we observe that segFormer [96] did not perform better than DeepLab on 
our evaluation dataset with seven classes which is due to the low pixel 
accuracy and IOU for the four classes, i.e. human, pole, traffic light, and 
traffic sign, for the SegFormer [96] based model. Fig. 10: show sample, 
from test dataset, of segmentation mask added on top of original images 
generated using the model DeepLab-RestNet50-b. We conclude that the 
low performance is because of the low-resolution image we used to train 
the model, which can also be concluded from similar experiments pre
sented by [97], and due to the coarse ground-truth labelling for the 
referenced classes in the IrishRoadSurvey-1 dataset. 

3.2. PSCI rating classification 

For a fair comparison we compared all the seven models with the 
ground truth. The ground truth is the data labelled by the expert data 
analyst-1. Fig. 8 show the graph between the validation accuracy, and 
training loss w.r.t. the epoch during the training of all the seven models 
on three different architectures. We include the F1-Score graph of the 
second data expert (human) along with other seven models as shown in 
the Fig. 9. The weighted Cohen kappa score between two expert data 
analysist is 0.98, while the average F1-score was 0.97 with an average 
precision and recall of 97% (a more detailed comparison is shown above 
in Table 3). 

Fig. 9 shows the F1-scores of different automated models developed 
in this study for PSCI classification on the test dataset of Roadsurvey-2. 
The results on the test data show that the automated system in general 
has a very good F1-score for ratings 1,6, and 10, while low F1-scores can 
be observed for classes 3 and 4 in general. 

A summary of evaluation results of seven different models is pre
sented in Table 7. The models R2, S2, and C2 use segmented plus orig
inal images, while the models that use only segmented images R1, S1, 
C1, and CT1 use segmented images. 

For each model, we show class wise F1-score for test images with and 
without pavement segmentation. The column labelled ‘Seg’ mean result 
of the segmented images. The column labelled ‘Orig’ means test result 
without applying segmentation. The comparison between The mean F1- 
score, the mean precision, recall, and Cohen Kappa score of each model 
is presented. The values in bold are the highest. We see that S2 (devel
oped using SwinV2 using both segmented and original images) and C2 
(developed using ConvNeXT using both segmented and original images) 
have better performance than the rest of the models. Models that are 
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trained on the original and the segmented images have performed 
slightly better than models that use only segmented images. Moreover, 
this also show that both the models’ S′ and ‘C’ models in general are 
learning the PSCI ratings from pavement pixels rather than background 

pixels. This also show that the models trained using this set of images are 
more robust to background when compared to models that are trained 
only on pavement segmented images. It can be concluded that ‘S’ and ‘C’ 
models are better performing because of the patchification performed 

Table 6 
Summary of evaluation of the different segmentation algorithms used for evaluating pavement segmentation. The evaluation is based on pixel accuracy and Inter
section over union (IOU).  

Class Iterations 160,000 160,000 160,000  

Test dataset pixel accuracy and IoU 

Classes segFormer (Transformer+MLP decoder) Deeplab ResNet-50_v1 Deeplab ResNet-50b  

IOU Accuracy IOU Accuracy IOU Accuracy 

0 BACKGROUND 90.67 95.91 93.88 97.89 94.76 97.73 
1 Human 50.11 58.74 73.59 82.8 76.18 85.25 
2 Pole 18.87 20.49 45.91 52.11 50.3 58.41 
3 Road 92.92 96.94 94.73 96.44 95.71 97.74 
4 Traffic Light 11.08 11.73 54.03 63.97 60.22 70.19 
5 Traffic Sign 24.17 27.76 57.82 69.69 61.31 70.01 
6 Vehicle 70.74 88.3 90.63 94.92 91.49 94.98  

Avg/mean 52.65 57.12 72.94 79.69 75.71 82.05  

Fig. 8. Graph between the validation accuracy, and training loss w.r.t. the number of epoch during the training of all the seven models.  
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Fig. 9. Comparison between the F-Score for different PSCI ratings method including the a typical human analyst for the test data in RoadSurvey-2 dataset.  
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before the sequential feature block as compared to ‘R’ models that uses 
aggressive downscaling of the images. 

Table 8 shows the comparison between recall and precision for the 
10 PSCI ratings between the C2 and the S2 model. The Table 8 show that 
the S2 model has a higher precision for a given recall than C2. Model-C2 
can predict a PSCI rating with an average recall of 84.10% ±8.60% and 
with a precision of 83.90% ± 8.17% between 1 and 10 PSCI classes. 
Model-S2 can predict a PSCI rating with an average recall of 83.60% 
±8.30% with a precision of 82.85 ± 8.10. Fig. 11:shows sample false 
postive by Model C2 for the PSCI ratings 1 and 10. 

We see that S2 model built with a transformer backbone and C2 
model with a convolutional neural network backbone are comparable. 
The model C2 has 42% less trainable parameters than S2 and is therefore 
much faster to retrain on new data than S2. Table 9 shows the confusion 
matrix on the test dataset for the models S2 and C2. The cells along a row 
show the predicted class for a manual PSCI rating classification. The 
empty cell means the value is zero. The diagonal cells show the true 
positive rate, while the cells along a row of a manual PSCI rating show 
the false negative rate; the cells along a column of a predicted PSCI 
rating except the diagonal element show the false positive rate. We 
observe some randomness in prediction specially for the middle classes i. 
e., 3, 4, and 5. We see that the false prediction is mostly of the adjacent 
classes, which is a natural disagreement occur even by the human data 
analyst. The type of distress present in these middle classes varies from 
linear cracking, patching, alligator cracking, and potholes, which may 
vary in shape, size, and texture. It is also important to analyse if the 
position of these distresses with respect to the camera effect the pre
dicted ratings by the model. The comparison of both S2 and C2 show 
that the predicted output is noisier for S2 than the C2 model. Table 10 
show the confusion matrix between manual PSCI rating to predicted 
PSCI rating, recall, and F1-score when the adjacent classes are combined 

for a 5-class classification. The choice of adjacent classes is based to 
relate the five treatment measures as given in the PSCI rating manual 
and shown in Table 1. The recall for each class is >90% except of the 
class three-four; similarly, the F1-score, which is the harmonic mean of 
precision and recall is higher than 0.9 for all except for class three-four. 
This indicates that the developed models hold promise towards an 
automated PSCI system that is related to treatments measure. 

4. Conclusions 

In conclusion, our study successfully developed a deep learning 
framework for automated pavement rating based on the PSCI standard 
for regional and local roads. However, there are some limitations to our 
study. Firstly, we only used data from the Irish road network, so it re
mains to be seen whether our model can be generalized to other regions. 
Secondly, while we developed a benchmark dataset for PSCI rating and a 
labelled dataset for pavement segmentation, it is still possible that our 
training dataset does not capture the full range of distresses associated 
with different classes of PSCI rating across road networks. While we 
made efforts to include as many variations as possible, we acknowledge 
that there may still be some diversity of distresses that we did not cap
ture. The dataset was subjected to a cleaning process to eliminate images 
that exhibited motion blur, insufficient lighting, and focus blur. This is a 
standard practice in many domains that use machine learning, as low- 
quality data can lead to suboptimal models. Notably, the framework 
incorporates an image processing step, which can effectively filter out 
such images from any similar dataset. In our framework, we utilize a 
direct classification approach for predicting PSCI ratings. While this 
approach offers high accuracy, it can be considered a “black box” 
method that may limit interpretability. However, from discussions with 
domain experts, accuracy is more important than interpretability in the 
pavement rating task, given the low-risk nature of the task. The inter
pretability of the model can be improved by combing its use with the 
PSCI rating manual (see Table 1) which gives the summary of each PSCI 
rating with regard to distress indicators, condition of surface and 
structure, and the treatment measures required for each rating. There
fore, given a PSCI rating manual and the direct PSCI rating value, the 
authorities can relate a treatment measure the patch require. 

Regional and local pavements cover a major part of the country’s 
road network, especially in Ireland. The most economical data collection 
for regional and local roads is from a video van (including an onboard 
computer to record distance and position) with a camera mounted on 
the front of the dashboard giving the frontal view. Our deep learning 
framework for PSCI classifications is divided into three main compo
nents, 1) a pavement pixel segmentation block, 2) an image processing 

Table 7 
Summary of seven different models developed using three different archiectures and 2 different image augmentation techniques. It summarizes the class wise F1-score, 
the mean F1-score, precision, recall, and weighted Kappa sore. The values in the bold are the highest.   

F1-Score 

Model R1 R2 S1 S2 C1 C2 CT1 

PSCI Seg Orig Seg Orig Seg Orig Seg Orig Seg Orig Seg Orig Seg Orig p 

1 0.694 0.229 0.750 0.776 0.924 0.709 0.921 0.949 0.919 0.805 0.932 0.918 0.931 0.780 
2 0.516 0.474 0.580 0.583 0.775 0.605 0.783 0.791 0.791 0.633 0.800 0.812 0.771 0.585 
3 0.426 0.456 0.445 0.449 0.707 0.582 0.711 0.738 0.730 0.599 0.741 0.761 0.718 0.581 
4 0.346 0.248 0.400 0.387 0.731 0.647 0.712 0.726 0.727 0.628 0.685 0.689 0.703 0.595 
5 0.307 0.056 0.325 0.264 0.826 0.697 0.803 0.831 0.838 0.711 0.844 0.849 0.820 0.659 
6 0.833 0.652 0.846 0.716 0.949 0.923 0.938 0.944 0.948 0.925 0.949 0.954 0.950 0.938 
7 0.489 0.353 0.559 0.541 0.864 0.784 0.852 0.857 0.855 0.746 0.853 0.859 0.843 0.745 
8 0.534 0.395 0.603 0.634 0.843 0.818 0.842 0.845 0.857 0.793 0.849 0.847 0.832 0.787 
9 0.449 0.340 0.492 0.496 0.827 0.765 0.827 0.815 0.798 0.717 0.813 0.804 0.782 0.684 
10 0.624 0.587 0.667 0.712 0.940 0.905 0.927 0.925 0.904 0.897 0.925 0.930 0.904 0.866 
Avg-F1 0.522 0.379 0.567 0.556 0.838 0.744 0.831 0.842 0.837 0.745 0.839 0.842 0.825 0.722 
Avg-Precision 0.543 0.495 0.585 0.571 0.837 0.770 0.828 0.841 0.839 0.777 0.839 0.842 0.828 0.762 
Avg-Recall 0.531 0.393 0.571 0.566 0.859 0.781 0.852 0.860 0.858 0.782 0.859 0.862 0.848 0.765 
weighted-Kappa 0.617 0.314 0.668 0.689 0.887 0.816 0.884 0.886 0.882 0.804 0.883 0.886 0.876 0.779  

Table 8 
Recall and precision of Models C2 and S2 for 10 PSCI ratings.   

Recall Precision 

PSCI C2 S2 S2 C2 

1 0.948905 0.941606 0.902098 0.915493 
2 0.814815 0.8 0.765957 0.785714 
3 0.767857 0.702381 0.719512 0.716667 
4 0.672619 0.690476 0.734177 0.697531 
5 0.797386 0.836601 0.771084 0.897059 
6 0.934164 0.907473 0.969582 0.965074 
7 0.868852 0.860656 0.843373 0.837945 
8 0.871886 0.893238 0.796825 0.827703 
9 0.781818 0.804545 0.850962 0.847291 
10 0.951456 0.92233 0.931373 0.899083  
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block, and 3) a PSCI-rating classification block. We developed a 
benchmark dataset for PSCI rating containing 7453 images labelled for 
1–10 PSCI. We also developed a labelled dataset for pavement seg
mentation containing 500 images to capture statistics on regional and 
local pavements in Ireland. We developed three models for the first 
blocks and evaluated their performance against each other using our 
dataset RoadSurveyDataset-1. For the second component, we developed 
an algorithm to remove poor segmented images, which improved the 
PSCI classification accuracy when compared to previous results [60]. 
For the third component, we developed seven models using three 
different architectures (ResNet50, ConvNeXt, SwinV2) and evaluated 
their performance against each other using our PSCI benchmark dataset. 

The models trained with our unique augmentation technique, i.e., 

training on the cropped and segmented pavement image and its corre
sponding cropped original image, have resulted in a better performance 
than the models that only use segmented pavement images. Overall, the 
models using ConvNeXt, and SwinV2 performed better than the baseline 
ResNet50 architecture-based models. Model-C2 can predict a PSCI rat
ing with an average recall of 84.10% ±8.60% with a precision of 
83.90% ± 8.17% between 1 and 10 PSCI classes. Model-S2 can predict a 
PSCI rating with an average recall of 83.60% ±8.30% with a precision of 
82.85 ± 8.10. It can be concluded that ‘S’ and ‘C’ models perform better 
because of the patchification performed before the sequential feature 
block than ‘R’ models that use aggressive downscaling of the images. 

It is important to note that the models were trained and evaluated on 
data collected from a video van with a camera mounted on the front 

Fig. 10. Sample segmentation mask overlaid on original images from test dataset using the Model DeepLabV3 b trained on IrishRoadSurvey-1 and Cityscape dataset 
with 7 classes. 

Fig. 11. Sample False negative for class 10 and for class 1 using the Model C2. The number inside the image gives the predicted label of the images.  
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Table 9 
Confusion matrix for PSCI classes for classifiers trained on SwinV2 (S2) and ConvNeXt (C2) models using segmented and original images. Each 
column shows the percentage of test images (segmented plus original) classified in that class. The empty cell means zero. The PSCI rating class in 
the row is manual rating, while the predicted PSCI class is in the column. 

Table 10 
Recall and precision, and confusion matrix for C2 and S2 model if we combine the adjacent classes as shown in the 
table. 
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dashboard, which may not accurately represent the conditions 
encountered by engineers in the field due to imaging sensor quality, 
depth of view, camera angle, height from the surface, and weather 
condition. Further evaluation using real-world video frames of stretches 
of regional and local roads will be necessary to assess the practicality 
and usability of our approach. Additionally, our study highlights the 
need for more research in this field, as there is very little academic 
literature available for direct pavement rating estimation. Our approach 
can be more easily applied in practice as it does not need dataset with 
individually labelled distresses, rather only dataset with ratings applied 
to each image which are easier to obtain as it is practiced in real-world in 
this domain. Our work can serve as a starting point for researchers to 
develop automated rating frameworks from image and video data for 
other regions that rate pavements using a standard rating scale based on 
visual distresses. 
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