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Abstract: Road pavement condition assessment is essential for maintenance, asset management, and 

budgeting for pavement infrastructure. Countries allocate a substantial annual budget to maintain 

and improve local, regional, and national highways. Pavement condition is assessed by measuring 

several pavement characteristics such as roughness, surface skid resistance, pavement strength, de-

flection, and visual surface distresses. Visual inspection identifies and quantifies surface distresses, 

and the condition is assessed using standard rating scales. This paper critically analyzes the research 

trends in the academic literature, professional practices and current commercial solutions for sur-

face condition ratings by civil authorities. We observe that various surface condition rating systems 

exist, and each uses its own defined subset of pavement characteristics to evaluate pavement con-

ditions. It is noted that automated visual sensing systems using intelligent algorithms can help re-

duce the cost and time required for assessing the condition of pavement infrastructure, especially 

for local and regional road networks. However, environmental factors, pavement types, and image 

collection devices are significant in this domain and lead to challenging variations. Commercial 

solutions for automatic pavement assessment with certain limitations exist. The topic is also a focus 

of academic research. More recently, academic research has pivoted toward deep learning, given 

that image data is now available in some form. However, research to automate pavement distress 

assessment often focuses on the regional pavement condition assessment standard that a country 

or state follows. We observe that the criteria a region adopts to make the evaluation depends on 

factors such as pavement construction type, type of road network in the area, flow and traffic, en-

vironmental conditions, and region’s economic situation. We summarized a list of publicly available 

datasets for distress detection and pavement condition assessment. We listed approaches focusing 

on crack segmentation and methods concentrating on distress detection and identification using 

object detection and classification. We segregated the recent academic literature in terms of the cam-

era’s view and the dataset used, the year and country in which the work was published, the F1 

score, and the architecture type. It is observed that the literature tends to focus more on distress 

identification (“presence/absence” detection) but less on distress quantification, which is essential 

for developing approaches for automated pavement rating.  

Keywords: deep learning; image segmentation; pavement surface condition index 

 

1. Introduction 

Two vital elements of road pavement (referred to as pavements in the rest of this 

paper) management are inventory management and periodic condition evaluation; both 
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are used to set future priorities for pavement construction management and maintenance. 

In this paper, pavement refers to hard surfaces used for motor vehicles. A complete pave-

ment management system consists of inventory data collection (i.e., width, length, shoul-

der, and pavement type) and pavement characteristic assessment, i.e., (roughness (ride), 

surface condition (distresses), surface skid resistance, pavement strength, and deflection). 

The current pavement networks, including motorways across a country, are developed 

and modernized over centuries. The construction, width, and length of a pavement de-

pend on the traffic it will carry and the type of connection it will make. They are classified 

into different categories; for example, in Ireland, they are classified as motorways, na-

tional primary, national secondary, regional roads, and local roads [1]. A common way to 

periodically evaluate surface condition, including distresses on a pavement network, is 

for the civil authority to conduct a visual surface condition assessment and a ride smooth-

ness test. Surface condition is assessed through visual surveying and usually consists of 

three steps: (1) pavement condition data collection, (2) distress identification and quanti-

fication, and (3) assigning a pavement rating index to a stretch of a pavement using a 

standard rating scale (e.g., pavement surface evaluation rating-PASER [2]) that is typically 

localized to a specific geographical region [3]. Figure 1 gives a complete picture of the 

three-step process. The data collection is followed by distress occurrence, severity meas-

urement, and pavement condition rating decisions. 

 

Figure 1. Pavement condition rating process. 

Data collection, the first step of surface visual assessment, is usually carried out by 

specially adapted vehicles (or, more recently, on devices such as smartphones [4] or un-

manned aerial vehicles) for visual surface surveying. The vehicle is fitted with a computer, 

Global Positioning System (GPS) sensor, and an imaging sensor. In step 2, pavement dis-

tresses are identified and quantified using their shape, size, and texture. Due to environ-

mental and geographical conditions and the actual pavement construction process, pave-

ment distresses may vary in shape, size, and texture. Variations can also be caused by 

different image capture technologies and the placement of sensors in specialized vehicles 

used to collect pavement data. In step 3, a rating is assigned to a stretch of pavement based 

on distress identification and quantification from step 2. A rating is applied to an initial 

stretch after inspection and then will be adjusted along the road if the pavement surface 

changes noticeably. The length of the stretch of road typically ranges from 50 m to 200 m, 

while the width of the stretch ranges from 4 m to the entire width of the road. The rating 

is performed directly by civil authority staff or subcontracted to private companies. Civil 

authorities use this condition rating to estimate pavement service life and treatment 

measures to improve the condition. 

Maintenance and improvement of pavements are expensive. For example, Ireland’s 

government spent 850 Million Euros in 2021 to improve and maintain local, regional, and 

national primary and secondary roads [5]. There are 5413 km of national highways (pri-

mary, secondary, and motorways), 13,124 km of regional roads, and 81,300 km of local 

roads in Ireland. It totaled 99,830 Km of road network in 2018 in Ireland, meaning 95% of 

the road network in Ireland consists of regional and local roads [5]. Moreover, it takes 

most of the year to complete mechanical surveys on the national highways which are only 

5% of the network, therefore we need a quicker method for the other 95%.Manual rating 

requires cognitive skills built through extensive training and experience. It is also impos-
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sible for a manual rater to transverse the whole road network across the country in a spe-

cific time. It is a challenging process and prone to errors. To make the process faster, more 

economical, and reliable, researchers have investigated automated processes for pave-

ment condition evaluation, usually based on computer vision, machine learning, and, 

more recently, deep learning [6]–[9]. In recent years, researchers have reviewed different 

data acquisition technologies, including 1D-sensors, 2D-sensors, and 3D sensors, to auto-

mate pavement conditions [10]–[15]. Commercial solutions for automatic pavement as-

sessment with certain limitations exist; the topic is also a focus of academic research. More 

recently, academic research has pivoted toward deep learning, given that image data is 

now available in some form. However, research to automate pavement distress assess-

ment often focuses on the regional pavement condition assessment standards the country 

or state follows. 

This paper contributes a list of significant pavement condition rating indices (segre-

gated based on granularity and measurement criteria) used in various parts of the world. 

A comprehensive list of distress for asphalt and concrete roads is presented and segre-

gated into six main groups. Commercial solutions for data capture and assisted image 

analysis are reported along with their limitations. We then present a comprehensive list 

of publically available datasets along with a link to download, which is segregated based 

on view type, type of distress, resolution, type of ground truth, number of images availa-

ble, and country of origin. The review of recent (2018–2022) deep learning techniques for 

pavement distress detection, classification, segmentation, and direct pavement rating clas-

sification is presented. We segregated the literature in terms of the camera’s view and the 

dataset used, the year and country in which the work was published, the F1 score, and the 

architecture type that helps identify the latest trends. We observe that much of the litera-

ture focuses on automating step 2—distress identification and quantification- while there 

is less emphasis on automating step 3—automatically computing a pavement rating. We 

observe that the criteria a region adopt to make the evaluation qualitative depend on fac-

tors such as pavement construction type, type of road network in the area, flow and traffic, 

environmental conditions, and region’s economic situation. 

This paper is organized as follows. Section 2 explains the type of pavement surfaces, 

the types of distresses, and pavement rating indicators used around the world, including 

their advantages and limitations. Section 3 reviews data collection techniques for visual 

pavement inspection and commercial practices. Section 4 generalizes an automated rating 

system and publically available dataset and reviews classical and deep machine learning 

approaches. Then, we discuss the limitations of an AI-based automated pavement rating 

system. Finally, we conclude in Section 5. 

2. Pavement Surface Types and Distress Assessment Indicators 

This section briefly explains various pavement types, visual pavement distresses, and 

pavement assessment indicators. 

2.1. Pavement Surface and Distress 

Pavement or road surfaces can be categorized into four general classes, i.e., asphalt, 

concrete, gravel, and brick and block [16]. Asphalt, also known as flexible pavement, is 

widely used to construct national, regional, or local roads across the road network and 

has different sub-categories depending on its construction. Over 90% of the total Euro-

pean road network has an asphalt surface. Concrete surfaces are usually used in urban 

environments and can be subdivided into joined cement concrete and continuously rein-

forced concrete surfaces [17]. Concrete pavements are expensive and time-consuming to 

construct, but they are typically more potent and durable than asphalt roadways. They 

are more common in the USA; for example, approximately 60 percent of the interstate 

system in the USA is concrete. Pavement condition assessment considers several pave-

ment characteristics, i.e., roughness, surface condition (distress detection), surface skid 
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resistance, and pavement strength. Surface condition plays a significant role in pavement 

assessment, which requires pavement distress detection and quantification. Pavement 

surface distresses that occur in different geographical regions can be divided into six 

groups, i.e., cracks, surface openings, surface deformation, surface defects, joint deficien-

cies, and miscellaneous distress [17], [18] (see Table 1). 

Table 1. A comprehensive list of distresses in asphalt rural flexible, asphalt, urban flexible, joined 

Portland concrete, continuously concrete reinforced roads, and segregation in six main groups and 

their sub types [16,17]. 

Surface Distress 

Group 
Asphalt Rural Flexible 

Asphalt Urban Flexi-

ble 

Joined Portland Con-

crete 

Continuously Con-

crete Reinforced  

Cracks 

Alligator cracking 
Fatigue cracking 

Durability cracking Durability Cracking 
Block cracking 

Edge cracking Edge cracking 

Corner breakups  
Corner breakups and 

shattered slabs 
Reflection cracking at 

joints 

Reflection cracking at 

joints 

Longitudinal cracking 

Longitudinal cracking 

(wheel path and non-

wheel path) 

Longitudinal cracking Longitudinal cracking 

Transverse cracking Transverse cracking Transverse cracking Transverse cracking 

Meander and slippage Meander and slippage     

Surface Openings 

Patches 
Patches and utility 

patches 

Patches and utility 

patches 

Patches and utility 

patches 

Potholes Potholes  Blow-ups Blow-ups 

Surface disintegration Utility hole defects Utility hole defects Utility hole defects 

Surface Deformation 

Rutting Rutting 

-- -- 
Depression and bumps 

Shoving, depressions, 

bumps, sags, and 

heave 

Surface Defects 
Raveling Raveling Wearing Wearing 

Bleeding Bleeding Polish aggregate Polish aggregate 

Miscellaneous Dis-

tresses 

Lane-to-shoulder drop 

off 

Lane-to-shoulder drop 

off 

Lane-to-shoulder drop-

off and separation 

Lane-to-shoulder drop-

off and separation 

Water bleeding and 

pumping 

Water bleeding and 

pumping 

Water bleeding and 

pumping 

Water bleeding and 

pumping 

Joint Deficiencies --- --- 

Joint seal damage (lon-

gitudinal and trans-

verse)  

Joint seal damage (lon-

gitudinal and trans-

verse)  

Spalling of longitudi-

nal and transverse 

joints 

Spalling of longitudi-

nal and transverse 

joints 

Most of these distresses can be detected generally through visual inspection (stand-

ard practice) of pavement surfaces, and their severity and quantity can be recorded using 

manual measurement tools [17]. Visual distresses appears on the surface due to wear and 

tear, which may indicate a fault in the construction. It may appear differently in rural and 

urban regions, depending on the surface type, the severity (low, medium, high) of the 

underlying problem, and other environmental conditions. 
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2.2. Pavement Assessment Indicators 

Measuring different pavement characteristics is essential in long-term pavement per-

formance incorporating all or a subset of pavement characteristics to conduct pavement 

assessments. These condition rating systems vary from country to country (or within a 

state in the USA), considering local variations, the characteristics of the pavements, and 

economic conditions. 

Pavement characteristics that are generally separately measured include pavement 

roughness, a vital pavement characteristic measured on a rating index known as the In-

ternational Roughness Index (IRI) [19]. It is estimated in a moving vehicle from a longitu-

dinal pavement profile with sensors capable of measuring vertical movement [20],[21]. 

Another essential characteristic is transverse deflection, also known as rut depth, meas-

ured manually or using sensors that generate transverse pavement profiles [9]. Visual 

pavement condition assessment requires distress detection and quantification to measure 

pavement conditions and is more reliable than other methods are. Engineers and profes-

sionals have proposed several standards for visual surface assessment, such as Pavement 

Surface Evaluation Rating (PASER) [2], Pavement Condition Index (PCI) [19] [22], Pave-

ment Surface Condition Index (PSCI) [23], and the Road Condition Indicator (RCI) [24]. 

Table 2 lists different pavement condition ratings used around the world. The standard 

ratings of various regions differ in scale granularity, formula to estimate a value on the 

rating scale, and data acquisition procedure. 

Table 2. A summary of different pavement condition rating systems used by regional road trans-

portation departments or proposed by academics. 

Type of Indicators Granularity Measurement Criteria Standard Developing Body 

Present Serviceability In-

dex (PSI) 

5 (Excellent)—0 (Essen-

tially impassable) 

A mathematical formula based 

on the severity of surface rough-

ness, cracking, deflection 

Illinois, Minnesota, and Indi-

ana—AASHO Road Test 

(1961) Integer value 

Pavement Condition Index 

(PCI) 

100–85 (Good)—0–10 

(Failed) 

A mathematical formula based 

on the occurrence, and severity 

of distresses, mainly crack and 

IRI 

ASTM D6433—11 

Pavement Condition Rat-

ing (PCR) 

Alabama Department of 

Transport 

Pavement Structural Con-

dition (PSC) 

Washington Department of 

Transport 

Surface Condition Rating 

(SCR) 

Georgia Department of 

Transport 

Pavement Surface Evalua-

tion and Rating (PASER) 

10 (Excellent)—1 (failed) 
A direct rating based on visual 

distresses 

Wisconsin Transportation In-

formation Center, University 

of Wisconsin Madison, USA 
Integer value 

Pavement Surface Condi-

tion Index (PSCI) 

10 (Perfect)—1 (No sur-

face) 
A direct rating based on visual 

distresses 

Road Management Office, Ire-

land 
Integer value 

Unified Pavement Distress 

Index for Managing Flexi-

ble Pavements (UPDI 

0 (Failed)—1 (Perfect) 
A mathematical formula based 

on six visual distress 

Civil Engineering Depart-

ment, Clemson University, 

USA 

Pavement Distress Index 

(PDI) 
Good/Fair/Poor 

IRI, rutting, cracking, and fault-

ing are used to estimate PDI 

Arizona Department of 

Transport 

Pavement Performance 

Levels 
Good/Fair/Poor 

IRI, rutting, cracking, and fault-

ing are used to estimate PDI 

Kansas Department of 

Transport 

Pavement Quality Index 

(PQI) 
0 (Fail)—4.0 (Good) 

A square root of the product of 

roughness quality index (RQI) 

and visual surface rating (SR) 

Government Accounting 

Standards Board, Standard 34 

(GASB 34). Minnesota 
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Condition Rating Score 

(CR) 

1–59 (Very poor)—90–100 

(Very good) 

Mathematical combination of 

distress and ride quality (rough-

ness) 

Texas Department of 

Transport 

Pavement Condition Index 

-2 
1–100 (same as PCI) 

A mathematical formula based 

on cracking index, riding index, 

and rutting/faulting index 

IOWA STATE University In-

stitute for Transportation 

Pavement Condition Good/Fair/Poor/Very/Poor 

A pavement condition based on 

the international roughness in-

dex 

New Hampshire Department 

of Transportation 

Remaining Service Life 

(RSL) 
Good/Fair/Poor 

A superset rating is calculated 

based on PCI rating (0–100) 

Colorado Department of 

Transportation 

Chinese Pavement Condi-

tion Index 

100-85 (Good)—0–10 

(Failed) 

A mathematical formula based 

on the occurrence, and severity 

of distresses, mainly crack and 

IRI 

China 

Maintenance Control Index 

(MCI) 
10 (Good)—0–1 (Failed) 

A mathematical formula based 

on cracking Ratio, Rutting 

Depth, and roughness 

Japan (Until 2005) 

Repair Requirement Index 

(RRI) 
0-5 New – More than 12 

(Lifetime over) 

A mathematical formula based 

on International Roughness In-

dex, crack rate coefficient, and 

pothole rank coefficient 

Japan (after 2005) 

Tajikistan 

Road Condition Index 1 (poor)—4 (Good) 

A mathematical formula based 

on the occurrence and severity of 

visual distresses and roughness 

index 

UK 

Pavement Distress Condi-

tion Rating 
Good/Fair/Poor 

A rating is based on maintenance 

strategy and is a function of 

cracks, patches, and potholes 

India 

Condition Index (CI) 0 (Excellent)—100 (Failed) 

A mathematical formula based 

on visually measured condition 

defects 

New Zealand 

RMA 1 (Poor)—4 (Good) 

A mathematical formula based 

on the occurrence and severity of 

visual distresses and roughness 

index 

Germany 

The earliest work in creating a standardized condition assessment scale dates from 

the 1960s in the United States [25]. The scale used two pavement characteristics - pave-

ment roughness and visual surface distress identification, to determine the Present Ser-

viceability Index (PSI) ranges from zero (very poor) to five (very good condition). A 

roughness index was carried out by 3–5 individual raters trained to qualitatively estimate 

pavement roughness by driving a vehicle on the pavement. It was followed by visual in-

spection for cracks, patches, and potholes. These two were then combined mathematically 

to calculate the PSI score (0–5) [25]. 

Over the years, data acquisition techniques have evolved; different pavement condi-

tion assessment ratings have been proposed that mainly focus on assessing the different 

types of pavement characteristics, their quantity, and their effect on the overall condition 

of the pavement. PASER is a direct rating on a scale of 10-1 (9–10 is excellent condition, 

while 2-1 is extremely poor). On the other hand, the ASTM standard for pavement is PCI, 



Sensors 2022, 22, x FOR PEER REVIEW 7 of 36 
 

 

a rating on a scale of 100-0 (85-100 is a good condition, while 0-10 is completely deterio-

rated. It is mathematically based on distress occurrence and severity level. The Irish PSCI 

[18], [23], [26] rating is on a scale from 1–10, similar to PASER, where index-1 is the lowest 

(surface completely worn out or failed), and index-10 (no distress, new pavement) is the 

highest. It covers flexible urban pavements, urban concrete pavements, and flexible rural 

pavement separately. PSCI ratings are given to continuous stretches of pavements with 

similar conditions, with 200 m being the minimum length to have their distinct rating [26]. 

In the United States, the Federal Land Transportation program recommends visual dis-

tress detection based on PASER for direct pavement condition evaluation [27]. Some 

transportation departments (or road authorities) that use scales similar to PCI use a subset 

of the visual distresses and roughness index to calculate the PCI rating. For example, the 

New Zealand Road Assessment and Maintenance Management System (RAMM) assigns 

a CI (Condition Index) from 0–100 (0 - Excellent—100 - Failed); it includes a visual inspec-

tion of not only the pavement but the surface water channels along the pavement [28]. 

China uses the Chinese Pavement Condition Index (CPCI), a scale similar to PCI, and con-

siders cracking, raveling, potholes, rutting, and roughness. Japan used the Maintenance 

Control Index (MCI) until 2005, a function of cracking, rutting, and roughness, on a scale 

of 10 to 0 [29]. After 2005, the Ministry of Transportation Japan has used RRI, which is a 

function of cracking ratio, rutting depth, and International Roughtness Index [29]. A sim-

ilar index is used in Tajikistan under Japan International Cooperation Agency [30] . 

 . 

The RCI is a rating from 1–4 (with 1 meaning no physical deterioration, while 4 is 

severe deterioration), adopted in England, Wales, Scotland, and Northern Ireland, and 

fuses visual condition and gauging parameters of pavement condition [24]. In Germany, 

the RMA (Road Monitoring and Assessment) protocol rate the pavement into four cate-

gories based on visual distresses [31]. Some states use four classes in the USA, i.e., Good, 

Fair, Poor, Very-Poor, as a condition scale based on the original PSI rating. In some coun-

tries, such as India and Brazil, a visible pavement distress condition rating on a scale of 0 

to 3 is used [32]. Ratings are based on cracking, rutting, raveling, patching, and potholes, 

while roughness is not considered [3]. Pavement condition surveys of national and local 

roads are commonly conducted annually, every two years, or every five years in different 

regions across the world (for example, in Ireland, they are conducted every two years, 

while in Florida, state highway surveys are completed annually [33]). Therefore, these 

survey methods should be quick, fast, reliable, and economical. 

In summary, different regions have different ways of performing pavement condi-

tion rating; some take roughness and visual condition combined to assign a rating from a 

standard scale (e.g., China, Japan, and some states in the USA), while others rate only a 

subset of visual distress (e.g., UK, Ireland, Brazil, Germany, New Zealand, India, and 

some states in the USA). Some of these indices are very granular (1 to 100) such as PCI in 

some parts of USA versus that (0 to 3 scale) used in Brazil/India. The choice of scale has 

evolved with economic prosperity and maturity of the road network. 

3. Data acquisition Process and Commercial Practices 

This section describes how the data is acquired for pavement distress assessment and 

current commercial practices. 

3.1. Data Acquisition Process 

Different sensing technologies, sensing positions, and vehicles have been used to cap-

ture data to assess pavement conditions. The choice of technology depends on economic 

factors, availability of resources, and pavement characteristics to be measured [4], [34]; the 

sensor’s position depends on the sensing technology used to acquire data for pavement 

condition assessment [18], [26]. Figure 2 lists three types of sensing technologies available 
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for structural monitoring and distress detection that can be integrated into vehicles with 

a GPS. 

 

Figure 2. Different forms of data acquisition for pavement condition assessment that can be adopted. 

To measure the pavement surface’s vibration, deflection, displacement, stress, tem-

perature, or humidity, 1D or point sensors are usually used for structural condition as-

sessment, which is an indirect method of pavement surface condition assessment. Data 

from 2D or 3D sensors is generally used for visual distresses identification and direct 

pavement condition assessment. 3D sensors, including laser imaging, stereo pair, and 

ground penetrating radar, are used obtained from the top view of pavement. In contrast, 

2D sensors, including RGB (color) cameras, are used mainly in the frontal wide-view cam-

era configuration. 

Recently, research in [35]–[42] has shown promise in using aerial vehicles to help 

detect visual distress, such as potholes, cracks, and aging on asphalt pavement. Data col-

lection using aerial imagery poses other difficulties, such as occlusion due to ongoing traf-

fic, permission to fly in urban areas, and lower ground sampling distances. However, it 

does have limited use in pavement condition assessment, especially on airport runways 

[41]. Using a laser or color camera mounted at the back of the vehicles, a top view of the 

road, as used by [43]–[47], focuses on crack detections and potholes. A wide-angle view 

of the road, using a camera mounted on the front of the dashboard or top of the car, as 

used by [32], [48], [49], is used for detecting types of cracks, potholes, and types of surfaces 

and surface ratings. 

Hand-held mobile cameras, as used by [47], [50]–[53] have significant utilization in 

road surface distress detection. The top-view camera setup provides a better ground sam-

pling distance than the wide-view setup, while the wide-view is much quicker as it covers 

more area per image. Thus, the literature review highlights that different camera captur-

ing techniques for visual distress detection have been used: frontal wide-view, top-view, 

hand-held smartphone, and aerial view. 

3.2. Current Commercial Practices 

Many commercial systems are available for image data collection for pavement con-

dition assessment. These systems are reconfigurable and can be customized to carry dif-

ferent data sensors and inbuilt data analysis software for manual or semi-automated rat-

ing. The inbuilt software uses automated image analysis techniques to detect and quantify 

visual cracks for a pavement rating system. This section discusses currently available re-
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configurable commercial systems used in different regions for data collection and assess-

ment. A commercial vehicle usually consists of a GPS/GNSS module, transverse profile 

logger for rutting, laser profilometer for roughness estimation, high-resolution odometer, 

laser cracking measurement system, video logging modules for frontal wide-view cap-

ture, bump integrator, and an onboard computer for recording data (see Figure 4). 

PaveVision3D [12] is a system that contains a data vehicle, an automated surface im-

aging system capable of conducting a complete lane width distress-detection survey at 1-

mm resolution at a speed up to 100 KM/h. It uses a top-view approach with laser scanners 

and an intensity camera looking down on the pavement. It has dedicated software for 

crack identification, optional software and hardware for laser rut measurement, and laser 

roughness measurement. Pavemetrics [33] provides a similar solution called Laser Crack 

Measurement System (LCMS), which uses 3D laser scanners fitted on a vehicle. The LCMS 

software can geo-tag, measure, detect and quantify cracks, potholes, bleeding, shoving, 

raveling, and roughness. It can capture one lane of the pavement with a 1-mm resolution 

and a speed of 100 KM/h. The automated IRI and distress detection reports produced by 

LSTM comply with ASTM and the American Association of State Highway and Transpor-

tation Officials (AASHTO). These specialized vehicles are costly, and the distress detec-

tion software is calibrated for national highway pavement conditions in the USA or Can-

ada. 

. 

Figure 3. Picture of a particular commercial vehicle, typical sensors attached for capturing pavement 

images, and output shown by the software. This image is of a customizable vehicle reproduced from 

the website: https://romdas.com/romdas-dataview.html [54] (accessed on 15th November, 2022). 

In England, Wales, Scotland, and Northern Ireland, the pavement maintenance au-

thorities use TRACS (Traffic-speed Condition Surveys) and SCANNER (Surface Condi-

tion Assessment for the National Network of Roads), which consists mainly of a laser 

scanner mounted on the front and back of a van giving a top view of the pavement surface. 

ROMDAS [54] is another customizable data-capturing solution that can provide both top-

view using laser scanners for crack measurement or frontal view using the color camera 

for other detecting other distresses. STIER [55] is a customizable vehicle with a top-down 

stereo vision monochrome camera and a frontal view camera for data capture. It uses its 

https://romdas.com/romdas-dataview.html
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software to detect distresses defined by German FGSV regulation, i.e., cracks, potholes, 

inlaid patches, applied patches, open joints, and bleeding. This information is then used 

to rate roads into four categories [31]. 

PMS video survey van [56] is equipped with distance-measuring sensors and a GPS 

sensor attached to the onboard computer to provide accurate distance measurements. A 

frontal wide-view video camera mounted on the dashboard of the pavement surface offers 

a high-quality compressed video stream using a state-of-the-art compression algorithm to 

retrain high definition (1920 × 1080) at minimum storage space. The real-time software 

integrated with the onboard computer provides options for the expert to rate the pave-

ment condition on the go or record the video for offline manual PSCI rating. The ground 

sampling distance is lower than cameras providing top-view imaging. However, it can 

cover the whole pavement in one direction on multi-lane pavements with imaging every 

5 m. 

The speed of data collection through the PaveVision3D, Pavemetrics, and Ricoh (with 

a top-view 3D laser camera) [57] compared with less expensive dedicated vehicles [56] 

(with a high-resolution frontal wide-view camera) is comparable. However, the wide-

view camera systems can cover more lanes than the top-view systems due to frontal cov-

erage. The amount of data generated for records and further computation using top-view 

vehicles is more than from vehicles that use only frontal view for paving rating. The meth-

ods using 3D laser sensors (PaveVision3D, Pavemetrics, or RICOH) produce better 

ground sampling distance per pixel than frontal wide-view images. Still, the confidence 

in the final output of such reliable vehicles is much more than using a GoPro camera or a 

smartphone, as they do not have a customized processing unit to fuse readings from dif-

ferent sensors such as GPS and distance measuring sensors. 

Therefore, a vehicle with a wide-view camera in front of a dashboard without exter-

nal sensors (laser scanners or profilers), is more economical for an extensive network of 

local and regional roads with less maintenance requirement. It requires less storage to 

record pavement images by compromising spatial resolution; however, enough distress 

information to manually rate a pavement condition on a standard scale. On the other 

hand, vehicles with a top-view camera and external sensors are recommended for national 

highways and motorways [2]. They provide a higher spatial resolution, better for distin-

guishing different types of cracks and patches. Such vehicles have higher maintenance 

costs and would not be cost-effective when driven on the regional or local road network. 

The commercial solutions discussed are usually limited to automated data capture 

and semi-automated analysis for distress identification and quantification, followed by an 

assisted or manual pavement condition rating assessment for a stretch of pavement. Some 

companies in the USA and Japan do provide automated solutions for pavement condition 

ratings. RoadBotics [58] working locally on USA roads, use a limited version of PASER 

[2], i.e., they rate pavement from 1 to 5, with 5 being the lowest rating. An automated 

rating system from Ricoh [57] estimated the amount and location of cracks on a 50 cm × 

50 cm patch and has adopted its rating system for Japanese roads based on PCI. The au-

tomated solutions for frontal wide-view and top-view are still evolving toward robustness 

and generalization and require calibration and transfer learning with local data. 

In summary, there is no off-the-shelf solution for automated pavement condition rat-

ing. Most of the existing commercial solutions usually provide automatic data and image-

capturing solutions, while their ability to detect and quantify distress from images is lim-

ited to a few distresses. The limited automated solutions for intelligent distress detection 

(identification and quantification) from imagery require recalibration to capture regional 

variations in the pavement distresses for shape, size, or texture due to environmental con-

ditions. These automated solutions also do not support adaptation to different pavement 

condition rating standards used by different regional and local authorities. The choice of 

imaging technology for visual inspection depends on the type of distress, environmental 

conditions, and economic factors and how adequate they are in identifying those dis-

tresses. 
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4. Literature Review on Automated Visual Pavement Condition Rating Systems 

Automated visual pavement surface condition rating can be broken down into sev-

eral processes: a pavement surface classification process, a distress detection and quanti-

fication process, prediction of a rating score computed using the type of distress detection 

and its quantification based on a standard rating scheme, and predicting the rating for a 

given stretch of pavement based on majority voting scheme. The manual PCI system 

works similarly, i.e., it identifies all the individual distresses and quantities, calculates 

‘deduct’ values based on each distress type, severity, and amount, and then generates an 

overall rating by subtracting the sum of the weighted deduct values from a perfect score 

of 100. 

To generalize the above statement, let D0to 𝐷𝑛be the 0 to nth distinct types of dis-

tresses, 𝐴𝑚 be the area of the mth instance of the nth distress, and 𝑤𝑛 is the effect or 

weight on the rating score of the nth distinct distress, then we can define the rating score 

of a pavement condition in an image using equation 1. 

𝑺𝒄𝒐𝒓𝒆(𝟏𝟎−𝟏) = 𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝟏−𝟏𝟎(∑∑𝒘𝒏𝑨𝒎𝑫𝒏)

𝒏

𝒐

𝒎

𝒐

− − − (1) 

Where 𝐷𝑛 is the distress, and n is the type of distress. 𝐴𝑚 is the area in m_th instance of 

𝐷𝑛 and 𝑤𝑛 is the weight of each n_th distress to overall score. 

For decades, extracting useful information from images has been a task of computer 

vision-based systems. Early researchers used image processing techniques (such as gradi-

ent or change in intensity detection, color or intensity thresholding, and morphological 

processing) to extract useful information from the pixels [59] directly. We first present a 

few prominent image analysis techniques and their limitations. Then we present a brief 

history of the evolution of machine learning techniques, benchmarking, and state-of-the-

art models deep learning models for pavement condition assessment. 

4.1. Evolution of Machine Learning in Computer Vision 

With the development of machine learning algorithms such as K-mean classifiers 

[60], support vector machines (SVM) [61], ANN (artificial neural networks) [62], and many 

others [63], researchers started using hand-crafted features such as SIFT (scale-invariant 

feature transform) [64], ORB (Oriented FAST and rotated BRIEF) [65], or AKAZE [66] to 

uniquely describe an image, object, or region of interest. Image processing algorithms use 

these features to learn to classify, detect uniquely, or segment objects, areas of interest, or 

images. Hand-crafted features and classical machine learning provide robustness across 

scale, lighting, rotation, and other environmental conditions. Advancements in machine 

learning, including the development of dense neural networks [67], convolutional neural 

networks (CNN) [68], and more recently, Transformers [69], has provided solutions for 

computer vision tasks, which are more robust to changes in the input data and are coined 

as ‘deep learning’ computer vision or image analysis techniques. Handcrafted features are 

automatically extracted for a particular computer vision problem using deep learning al-

gorithms. 

4.2. Automated Distress Detection and Identification 

The review of the literature tells us that researchers have investigated pavement dis-

tress detection using different imaging technologies, computing suitable features, and 

learning data models to detect, classify, or segment distresses over the last decade. In [7], 

the authors listed technologies to enable researchers to choose the imaging technique for 

pavement stress detection. They mentioned the state-of-the-art methods using image pro-

cessing techniques for crack detection and potholes detection while highlighting the prob-

lems that need to be investigated, including pavement texture detection, temperature seg-
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regation detection, rutting detection, and joint faulting detection. The distress identifica-

tion literature can be segregated into image processing, classical machine learning, and 

deep learning techniques. 

4.2.1. Publicly Available Datasets 

Over the years, researchers have made available datasets for benchmarking auto-

mated distress detection systems, mainly covering different types of cracking and pot-

holes [4]. Only a few focus on other distresses or visual pavement classification. In [14], 

the authors have reviewed different methods to detect pavement surfaces and highlighted 

different benchmarks for pavement surface detection. In [4], the authors list contributions 

to existing publicly available pavement image datasets for distress detection. These very 

limited datasets can be categorized based on the view angles (top-view, wide-view, hand-

held), and imaging technologies (3D or intensity), mainly focused only on a subset of dis-

tress types (different crack types, potholes, and patches) found locally in the geographical 

regions (USA, China, India, Japan, Czech Republic, Brazil, Italy, and Mexico). In [73,74], 

the authors generated a pavement distress detection dataset using images available from 

Google APIs. The images available through Google APIs give both top-view and wide-

view images; however, the images are old, captured over the years, and not labeled for 

pavement distress. The authors in [4] highlight that most of the literature on distress de-

tection is based on image datasets not publicly available. Table 3 summarizes the current 

publically available datasets for distress detection and pavement condition assessments. 

The datasets are used as benchmarks to verify the crack segmentation algorithms include 

CrackTree200 [70], Crack500 [71], CrackForest [72], and Agile-RN [73]. Though several 

researchers have used it for verification of their deep learning-based architectures; how-

ever, they are limited in terms of covering various shapes, sizes, and textures of cracks 

formed due to different environmental conditions. 

GAPS (German Asphalt Pavement Distress Dataset) used by [31], [74] provides a top-

view, good quality, close range, high-resolution dataset (approx ~2468 images) for surface 

distress identification which trained operators to label in the field. Six different distress 

defined by German FGSV regulation [74], i.e., cracks, potholes, inlaid patches, applied 

patches, open joints, and bleeding, are labeled in the images using a bounding box. The 

dataset is limited to only a few distresses regulated by German FGSV and does not contain 

severity levels of these distresses. 

The second main contribution to the distress detection dataset is by [75], which has 

three different variants, namely, RDD2019 , RDD2020[75], and RDD2022 [76]. The dataset 

contains frontal-view images that are mainly labeled using a bounding box for four dis-

tresses, i.e., alligator, transverse and longitudinal cracks and potholes. The 2019 variant 

contains images of Japan, while the 2020 variant contains images from India and the Czech 

Republic. The 2022 variant contains images from China, Norway, and the USA. The da-

taset may be prone to labeling errors as it is labeled using crowdsourcing by labelers, not 

an expert in the field. A similar dataset for cracks with a wide-view camera located at the 

back of the vehicle is contributed by [77]. 

Two frontal view datasets focus on pavement rating; the first is the Paris-Saclay and 

the second is the Road Quality Dataset (RQ) [78]. The Paris-Saclay dataset [79] is annotated 

for pavement condition rating for a stretch of a road based on PASER for New York roads. 

The frontal-view images are extracted from Google Maps API, while the ground truth 

annotation for each stretch is extracted from the pavement condition rating of New York 

in [80]. The ground truth annotation contains the street index, the number of images in 

the street, the PASER rating for each street segment, and a rating of Good, Fair, and Poor 

for each street segment. A similar image dataset can be extracted from Google images for 

Oakland, USA, while the street segment pavement rating based on PCI can be generated 

from the database available at [81]. 
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RQ Dataset [78] is a manually annotated frontal-view image for pavement condition 

index ratings based on six different condition ratings for the Czech Republic. The pave-

ment condition rating criteria are defined in [78], while the images are obtained using 

Google Maps API. FHWA-LTPP [34] is another image-level classification resource com-

posed of for five distress (alligator, longitudinal and transverse cracking, deflection, and 

longitudinal profiles) captured from different states of the USA. 

4.2.2. Image Processing Techniques 

Techniques using decision-based rules and image processing mainly focus on crack 

segmentation and identification. The authors in [12] described different image processing 

techniques for edge detection to find surface defects and segregated the recent literature 

on pavement stress identification using machine learning models into classification, object 

detection, and pixel-level segmentation problems. The authors of [82] proposed a modi-

fied Otsu-Canny edge detection algorithm for pavement crack detection. They evaluated 

the technique on a publicly available dataset Crackforest [83]. Peng et al. [84] proposed a 

double thresholding segmentation technique. After applying an enhanced Otsu threshold 

segmentation algorithm to eliminate pavement symbols in a runway image, they applied 

an adaptive iterative threshold segmentation algorithm. Lastly, the shape of the crack is 

achieved through the morphological denoising technique. In [85], the authors propose a 

multiscale local optimal threshold segmentation for pavement crack segmentation and 

crack density distribution. The method achieves better results than the optical threshold 

and global thresholding techniques. Zhao et al. [86] proposed an improved pavement 

edge detection method for crack identification. In [87], authors have used image pro-

cessing, including thresholding, filtering, and morphological processing, to identify fa-

tigue cracks. CrackIT [88] uses image pre-processing techniques before applying machine 

learning models for crack detection. 

Image processing techniques are mainly applied to pictures with a top view of the 

pavement. Moreover, the early literature focuses on identifying characteristics of cracks 

or potholes. The image processing techniques are less robust to changes in intensity, noise, 

environmental factors, and pavement construction variations. 

4.2.3. Classical Machine Learning Techniques 

Machine learning approaches for distress identification can be classified as an image 

or object classification problems, object localization or detection problems, or pixel-seg-

mentation problems. Many classical machine-learning approaches have been investigated 

for crack detection, including [89]–[91]. Daniel et al. [92] proposed a method to detect and 

classify cracks and potholes on asphalt pavements. They offered a two-step approach, 

pavement defect detection and classification, and defect severity detection and evaluation. 

The second stage is important for an automated pavement condition assessment and com-

puted defect severity for each defect by calculating the area of the blobs. The method 

achieved 86% classification accuracy for cracks and potholes. 

Raveling is a common visual distress in asphalt pavements, which occurs due to the 

loss of surface stones. It is recognized visually by observing the change in the macrotex-

ture of the asphalt pavement along the stretch of the pavement. The severity of raveling 

increases with a higher chip loss from the pavement surface. In [93], authors evaluated 

different classical machine learning techniques such as AdaBoost with decision trees, sup-

port vector machine, and random forest to detect and classify different levels of raveling 

severity.. For data collection for raveling, they used 3D images from PaveVision3D [12].  

They observe that random forest is better than other techniques, with a recall ranging from 

86.9% for level -1 severity to 75.6% for level-3 severityVery little work is reported on rav-

eling detection and severity classification. In [94], the authors highlight the limitations in 

generalizing classical machine learning methods for crack detection. In [4], the authors 
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have listed many classical machine-learning approaches for distress detection. These ap-

proaches mainly focus on detecting fatigue cracks, longitudinal and transverse cracks, 

potholes, rutting, and raveling. The image dataset is mainly captured through the top-

view camera on a specialized vehicle, a hand-held camera view, or a UAV. Different hand-

craft features have been extracted in these techniques. Models such as K-nearest neighbor, 

support vector machine, artificial neural network, and random forests are used to train a 

pixel-classifier (image segmentation) or an object detector. The precision ranged from 

65.8% to 99% and recall from 79.4% to 98% [4]. 

However, these evaluation parameters are not generalizable as they depend highly 

on the image capture process. The datasets used mainly contain localized cracks or pot-

holes, do not have different severity levels and are limited to a particular pavement type 

in a specific geographic region. 
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Table 3. A list of publicly available datasets that can be used for distress detection analysis or pavement surface condition assessment. 

 

S.No Name Distress Ground 

Truth 

Device No. of Images Resolution Ch View Country Link 

1 Crack Forest Dataset (CFD) crack pixel-

level 

hand-held static 329 480 × 320 3 Top China https://bit.ly/3PMFWhl 
accessed on 20th Oct, 2022 

2 Amhaz Crack Dataset ( Ai-

gle_RN + ESAR + LCMS + 

LRIS = TEMPEST2) 

cracks pixel-

level 

vehicle with 5 

sensors 

66 (38 + 15 + 5 

+ 3 + 5) 

991 × 462 + 311 × 

462 + 768 × 512 + 

700 × 1000 + 3249 

× 1576 + 1127 × 

1598 

1 Top France https://bit.ly/3TdmOfB 
accessed on 20th Oct, 2022 

3 CRACK500 and CRACK-500-B cracks pixel-

level 

hand-held static 500 + 1896 2560 × 1440 

640 × 360 

3 Top China https://bit.ly/3QPeAsx 
accessed on 20th Oct, 2022 

4 GAPs-10m 22 classes pixel-

level 

JAI Pulnix 

TM2030 mono-

chrome cameras 

(vehicle) 

20 5030 × 11,505 1 Top Germany https://bit.ly/3cnqI4X 
accessed on 20th Oct, 2022 

5 GAPs crack, pothole, inlaid patch, 

applied patch, open joint, 

bleeding 

bound-

ing box 

JAI Pulnix 

TM2030 mono-

chrome cameras 

(vehicle) 

2468 1920 × 1080 1 Top Germany https://bit.ly/3cnqI4X 
accessed on 20th Oct, 2022 

6 Paris-Saclay pavement rating (1–3) image Google 

Streetview 

700,000 640 × 640 3 Frontal New 

York, 

USA 

https://bit.ly/3pNlYc4 
accessed on 20th Oct, 2022 

7 RDD2019 pothole, longitudinal crack, 

transverse crack, alligator 

crack, line markings 

bound-

ing box 

mobile device 

moving vehicle 

10,561 600 × 600 3 Frontal Japan 

https://bit.ly/3cqCKun 
accessed on 20th Oct, 2022 

 

8 RDD2020 (excluding Japan) pothole, longitudinal crack, 

transverse crack, alligator 

crack 

bound-

ing box 

mobile device 

moving vehicle 

11,000 720 × 720 (India) 

600*600 (Czech) 

3 Frontal India 

Czech 

Republic 

9 RDD2022 (excluding 

RDD2020) 

pothole, longitudinal crack, 

transverse crack, alligator 

crack 

bound-

ing box 

mobile device 

moving vehicle 

17,500 3650 × 2044 (Nor-

way) 640 × 640 

(USA) 512 × 512 

(China) 

3 frontal/top Norway 

USA 

China 

10 DatasetCrackDeepa2022 cracks pixel-

level 

hand-held static 3000 800 × 600 1 Top  https://bit.ly/3coASSY 
accessed on 20th Oct, 2022 

11 RQ Dataset pavement rating (1–6) image Google 

Streetview 

7247 640*480 3 frontal Czech https://bit.ly/3pMYofi 
accessed on 20th Oct, 2022 

https://bit.ly/3PMFWhl
https://bit.ly/3TdmOfB
https://bit.ly/3QPeAsx
https://bit.ly/3cnqI4X
https://bit.ly/3pNlYc4
https://bit.ly/3cqCKun
https://bit.ly/3coASSY
https://bit.ly/3pMYofi


Sensors 2022, 22, x FOR PEER REVIEW 16 of 36 
 

 

12 CrackIT crack pixel-

level 

hand-held static 56 1536 × 2048 3 Top Portugal https://bit.ly/3RajLCR 
accessed on 20th Oct, 2022 

13 EdmCrack600 crack pixel-

level 

camera 

mounted on ve-

hicle 

600 1920 × 1080 3 Back Canada https://bit.ly/3ThzDW8 

14 FHWA-LTPP aligator, transverse crack, 

longitudinal cracks, deflec-

tion, IRI 

image camera 

mounted on ve-

hicle (top and 

frontal) 

- 2048 × 3072 3 frontal 

and top 

USA 

Canada 

https://bit.ly/3CzyNOO 

15 bim-hackathon potholes bound-

ing box 

mobile camera 

mounted on ve-

hicle 

5676 3680 × 2760 3 frontal South 

Africa 

https://bit.ly/3RNGSDV 

16 LIST crack, patch-crack, pothole, 

patch-pothole, net, patch-

net, manhole 

- camera on a 

moving vehicle 

30,000 - 3 frontal China https://bit.ly/3qchLPd 

17 CrackTree200 cracks images hand-held static 260 512 × 512 1 Top China https://bit.ly/3ARIEg6 

18 CRKWH100 crack images hand-held static 100 512 × 512 1 Top China https://bit.ly/3QcPdzL 

19 CrackLS315 crack images hand-held static 315 512 × 513 1 Top China https://bit.ly/3QcPdzL 

20 APR cracks pixel-

level 

camera on a 

moving robot 

19 + 14 1200 × 900 + 2040 

× 2048 

2 Top China https://bit.ly/3RwZF6y 

https://bit.ly/3RajLCR
https://bit.ly/3ARIEg6
https://bit.ly/3QcPdzL
https://bit.ly/3RwZF6y
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In summary, the public datasets available are limited to certain distress and mainly 

annotated by presence or absence of the distress. The image dataset annotated for pave-

ment rating indices is also limited and does not cover the full range of standard visual 

rating scales, i.e., PASER[2] and PSCI [18]. The dataset does not cover distinct types of 

distress (mentioned in Table 1), or different shapes and textures, which vary due to dif-

ferent viewing angles, camera sensors, and geographical locations. Therefore, the evalua-

tion matrix based on these benchmarks is less helpful in developing real-world automated 

pavement condition assessment systems. 

4.2.4. Deep Learning Techniques 

We focused on literature from 2018 onwards for deep learning techniques. The tech-

niques are mainly broken into segmentation, classification, and object detection algo-

rithms. Deep learning techniques, mainly convolutional or filtering layers, require a large 

amounts of data. Deep learning techniques are now widely used for computer vision 

tasks, including semantic segmentation, image classification, object detection, and image 

generation [95]. Deep architectures have also been used to solve classification hyperspec-

tral imagery for remote sensing [96], [97]. 

Deep learning algorithms or architectures mainly consist of two parts the feature ex-

traction phase and a classification, segmentation, or detection phase. In simple terms, for 

a deep learning-based classification, the CNN provides feature extraction layers, and the 

dense neural layer is added to estimate a class based on a feature extracted by the CNN. 

In deep learning-based segmentation, the CNN provides a feature extraction layer and is 

termed an encoder, while a set of de-convolutional layers are added to obtain pixel-level 

classification and termed a decoder layer. In deep learning-based object detection or lo-

calization, the CNN is used for feature extraction, followed by region proposal layers for 

object detection bounding box on the original image [68]. The interlinked deep learning 

layers are usually termed as ‘architectures’ or, when referred to alongside the weights and 

biases, as models. 

Distress detection using a deep neural network can be separated into object detection, 

segmentation, and classification-based approaches [4], [8]. One major bottleneck for de-

veloping a model using deep learning is a good set of balanced training data for different 

distresses in the images, instances, and quantity [98]. In [99], authors present the first 

CNN-based raveling detection by training macro texture features obtained from the 3D 

images from PaveVision3D [12]. They achieved the highest accuracy of 90.8% for different 

raveling detection and an 85% accuracy for severity classification. 

Classification Approaches to Distress Detection 

Classification-based distress detection focuses on whether an image or part of the 

image is classified as a particular type of distress. The authors in [100], [101] proposed a 

flexible pavement distress classification convolutional neural network (CNN) framework 

to classify whether a patch is a crack or not. The images used are taken from a hand-held 

mobile phone camera. They evaluated the accuracy of their approach by comparing it with 

different classification approaches. Aparna et al. [102] assessed the feasibility of hand-held 

thermal imaging for pothole patch classification. Image data is acquired under various 

lighting conditions with offline data augmentation. A residual CNN model with pre-

trained weights gave an accuracy of 99.7% for pothole patch image classification with an 

image size of 224 × 224 pixels. Yusof et al. [103] proposed a multi-label classifier for crack-

type classification, i.e., transverse, alligator, and longitudinal. The images were taken from 

a hand-held Nikon digital camera with a dimension of 1024 × 768 pixels. The image was 

broken into a 32 x 32 patch image to classify different crack types. The data collection was 

carried out for Malaysian pavements. 

An average accuracy of 98% was achieved to classify crack types with a precision of 

97%. In [104], authors presented an algorithm for occurrence and severity classification in 
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images captured from a top-view camera of urban flexible pavements in Spain. Their oc-

currence detection is based on patch classification using ResNet architecture, while the 

severity classifier is also a ResNet architecture. Each image is cropped to remove the back-

ground, broken down into three smaller blocks, resized to 224 × 224 pixels, and labeled 

for six classes, i.e., alligator cracks, longitudinal cracks, transverse cracks, pothole, ravel-

ing, and patches. To determine the severity of four distresses, mainly longitudinal cracks, 

transverse cracks, potholes, and patches, they labeled each distress with a bounding box 

in each image block. Although there were multiple distresses in each image block, the 

smaller block size minimized the likelihood of having different types of distress in each 

block. For the distress occurrence stage, the classifier’s average F1-Score was reported to 

be 0.9262 on validation data, while the average Intersection of Union (IoU) was 0.729. 

Researchers [31], [105]–[109] have also used a similar patch-based approach, i.e., di-

viding a higher resolution image into small image patches to detect localized distress, i.e., 

distinct types of cracks and potholes. In summary, most classification-based approaches 

focus on identifying types of distress in an image patch of higher-resolution images. Lo-

calized distresses are investigated, i.e., potholes and cracks. The images are taken from a 

top view or a hand-held camera view; the data set is localized to only specific to one re-

gion. The number of image patches is reasonable in number with a limited higher resolu-

tion image from where the patches have been extracted. 
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Table 4. A summary of the literature focusing on distress classification using either patch classification, image classification, or semantic segmentation. 

 

S.No Year Coun-

try 

Dataset Architecture Learn-

ing 

Method 

Input Size View Chan-

nel 

Distress Size of 

Train-

ing 

Patches 

F1-

SCORE 

(or Accu-

racy*) of 

Test Data 

Method-Type Ref. 

1 2019 Itlay private (It-

aly) 

ResNet101 Transfer 224 × 224 Top RGB 9 distresses (e.g., longitu-

dinal cracks, transverse 

cracks, alligator cracks, 

potholes, patches, 

12,728 0.92 patch-based classi-

fication for sliding 

window 

[43] 

2 2019 Ger-

many 

GAPs 

(Germany) 

RestNet34 Transfer 160x160 Top Inten-

sity 

cracks applied patches, 

inlaid patches, open 

joints, potholes 

50,000 0.9041 patch-based classi-

fication for sliding 

window 

[44] 

3 2020 China private 

(China) 

customized 

(RCNN + FCN) 

Scratch 75 × 75 Top Laser 

3D im-

ages 

cracks, pothole, patch 2208 0.87 semantic segmen-

tation 

[45] 

4 2020 China private 

(China) + 

CFD 

YoloV3 + UNET 

with ResNet34 

Transfer 128 × 128 + 256 

× 256 + 320 × 

320 

Top RGB longitudinal and trans-

verse cracks, block crack, 

alligator and linear crack 

16,780 0.906 (de-

tection) 

0.957 (seg-

mentation) 

instance detection 

and segmentation 

[46] 

5 2020 Canada private 

(Canada) 

customized U-

Net 

Scratch 1024 × 1024 Top RGB transverse and longitudi-

nal cracks, alligator 

cracks, and block cracks 

3000 0.984 semantic segmen-

tation 

[47] 

6 2021 Iran private 

(Iran) 

SqueezeNet Transfer 224 × 224 Frontal  RGB bleeding detection and 

severity classification 

800 0.98 image classifica-

tion 

[110] 

7 2021 USA private 

(USA) 

ResNet18 Transfer 520 × 417 Top Laser 

3D im-

ages 

raveling detection and 

classification 

2500 0.915 image classifica-

tion 

[99] 
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Many researchers have used patch or image classification techniques for multiple 

distress detection. Researchers in [43] and [44] used top-view color images for the experi-

ment and then used ResNet-based architectures to develop a model for multiple distress 

classification. The ResNet model used in [43] has an F1-score of 0.92, whereas the model 

used in [44] has an F1-score of 0.90 on their test datasets. An image classification technique 

for multiple distress detection is mainly used for bleeding, raveling detection, and severity 

classification by [110] for pavements in Iran and [99] for pavements in the USA. In [46], 

the authors used detection and segmentation algorithms to classify four different types of 

cracks and then segment crack pixels. They [46] observe a better pixel segmentation F1-

score on the CrackForest dataset than others using a multiple image-resolution training 

strategy. 

Most researchers are focusing on multiple crack classification and having a better a 

F1-score using an image from a camera with an orthogonal view of the pavement and high 

ground sampling distances (i.e., pixel per inch). The evaluation of patch-based classifica-

tion approaches for distress and its severity classification is limited in the literature. Patch-

based classification and identification of distress instances are helpful for localized dis-

tresses; the technique is suitable for images that capture the top view of the road. It is 

computationally less expensive than pixel-level segmentation approaches. Table 4 pro-

vides a summary of the literature focusing on distress classification using either patch 

classification, image classification, or semantic segmentation. 

Pixel Segmentation Approaches to Distress Detection 

Segmentation-based approaches classify or label each pixel as a group or distress. 

Usually, distinct types of crack distresses are good candidates for pixel-level segmenta-

tion. The precise location of a crack can be determined using pixel-level labeling. In [111], 

the authors used U-Net architecture to segment crack pixels using a publicly available 

crack image database. The number of input training and test images is minimal; the ex-

periment shows promise to segment crack pixels. In [112], the authors summarize a re-

view of 68 manuscripts covering deep learning techniques for crack detection using seg-

mentation. The authors evaluated eight segmentation models on 3D pavement images 

obtained from systems like [113]. They observed that FCN[114] and U-Net [115] per-

formed better than others for 3D pavement images. In another attempt by [116], the author 

proposed a CNN-based segmentation algorithm named DeepCrack. The images are pub-

licly available datasets of cracks from an intensity camera with a top view of the pave-

ments with a dimension of 512 × 512 pixels. DeepCrack architecture, built with different 

scales and inspired by the SegNet network [116]. The authors in [100] used VGG-16 

DCNN to detect cracks, by dividing high resolution images into smaller patches and use 

an image classification approach to detect cracks. 

The authors have extensively evaluated DeepCrack with other state-of-the-art pixel 

segmentation models. The experimental result was an average F1-score of 0.85 for 

DeepCrack. The researchers in [117] have investigated the U-Net model architecture for 

crack segmentation; they used transfer learning techniques on pre-trained weights to train 

the classifier. The data on the concrete pavement is collected through a mobile phone at 

various locations at the Huazhong University of Science and Technology, China, with an 

image dimension of 512 × 512 pixels. The authors claim a higher accuracy and precision 

for crack pixel classification for concrete pavement types. In [118], researchers have pro-

posed an asphalt pavement crack segmentation using a new CNN architecture. The data 

were collected from 12 cities in Liaoning province, China, through a hand-held mobile 

phone camera. The researchers have compared the results with existing segmentation 

models such as U-Net[119], SegNet[120], PSPNet[121], and DeepLabV3[122]. The pro-

posed model performance is better than the existing segmentation CNN architecture. 

Tang et al. [123] proposed an encoder-decoder network EDNet for crack segmentation. 

The network caters to quantity imbalance between crack and non-crack pixels. The images 
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are taken from the top-view laser scanning camera to acquire 3D pavement images. The 

proposed method achieves an average F1 score of 97.80% and 97.82%. 

Researchers focus more on cracks than other visual distress on the pavement surface 

when using deep learning techniques. One reason for this is that the crack is a fatigue on 

the surface that further disintegrates into potholes or total failure of the pavement surface. 

In Section 2.2, we observe that the occurrence and severity of visual distress, especially 

cracks, are essential to estimate the pavement conditions index. Table 5 summarizes crack 

segmentation and detection using deep learning. Researchers have mainly used encoder 

and decoder convolutional neural network architectures to segment crack pixels. Re-

searchers in [94], [107], [109], [124] proposed smaller customized CNN encoder-decoder 

networks, and the model is trained on smaller patches extracted from the higher-resolu-

tion image, while [116], [125]–[127] used a modified UNET [114] based architecture, which 

is a fully convolutional network for semantic segmentation, and used a smaller resized 

image. Researchers combined three [128] and five publicly available datasets [51] for train-

ing their models and reported a lower F-1 score than previous ones using three deep learn-

ing architectures namely Holistically-Nested Edge Detection (HED), Richer Convolu-

tional Features (RCF) and the Feature Pyramid and Hierarchical Boosting network 

(FPHB). For crack segmentation, the top orthogonal view is preferred over than front wide 

view of the pavement. The orthogonal view has the advantage of controlled lighting and 

higher pixels per inch; however, the disadvantage is of covering a lesser view of the pave-

ment. 
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Table 5. A summary of the literature reviewed that focuses only on crack segmentation and detection using deep learning techniques (2018–2022). 

 

S.N

o 
Year Country Dataset Architecture 

Learning 

Method 
Input Size View Channel 

Size of In-

put Patch 

F1-Score (or 

Accuracy*) 
Method Ref. 

1 2018 USA LTPP-FHWA VGG16 Transfer 2072 × 2048 Top Intensity 760 0.9 image classification [100] 

2 2018 Vietnam 
custom (Similar 

to CrackIT) 
custom CNN Scratch 100 × 100 Top RGB 12,500 0.91 

patch-based classification 

for sliding window 
[109] 

3 2018 China private (China) custom CNN Scratch 256 × 256 Top 
Laser 3D 

images 
4000 0.98 * 

patch-based classification 

for sliding window 
[107] 

4 2018 Vietnam 
private (Vi-

etnam) 
custom CNN Scratch 150 × 150 Top Intensity 400 0.907 

patch-based classification 

for sliding window 
[124] 

5 2018 France 
Amhaz Crack 

dataset + CFD 
custom CNN Scratch 27 × 27 Top RGB 898,764 0.8954 + 0.9244 

patch-based classification 

for sliding window 
[94] 

6 2019 USA private (USA) 
custom CNN (en-

coder + decoder) 
Scratch 1024 × 512 Top 

Laser 3D 

images 
3800 0.94 semantic segmentation [129] 

7 2019 USA 

crackTree 

CRKWH100 

CrackLS315 

custom UNET 

(DeepCrack) 
Transfer 512 × 512 Top 

RGB + La-

ser 
260 

0.95 + 0.84 + 

0.85 
semantic segmentation [116] 

8 2019 China CrackForest 
U-Net with patch 

training 
Scratch 48x48 Top Intensity 20,000 0.874 semantic segmentation [111] 

9 2019 China 
CrackForest + 

Aigle_RN 

U-Net with residual 

block, attention 

Unit, and patch 

training 

Scratch 48*49 Top Intensity 142,000 0.92 semantic segmentation [130] 

10 2019 Korea private (Korea) 
custom CNN (Res-

Net +decoder) 
Transfer 1920 × 1080 Front RGB 427 0.74 semantic segmentation [125] 

11 2019 China 

Aigle_RN + 

crackForest + 

APR 

multi-scale fusion 

(unsupervised) 

learning 

Scratch - Top RGB 
118 + 38 + 

33 

0.698 + 0.88 + 

0.87 
semantic segmentation [131] 

12 2019 USA 

crack500-B + 

GAPs + Crack-

tree200 + Crack-

Forest + Amhaz 

Crack 

feature pyramid hi-

erarchical boosting 

network 

Scratch - Top 
RGB + La-

ser 
- 

0.60 + 0.22 + 

0.51 + 0.68 + 

0.49 

semantic segmentation [51] 

13 2020 China 
crackForest + 

Crack500 
customized U-Net Scratch 320 × 320 Top Intensity 72 + 1896 0.955 + 0.7327 semantic segmentation [46] 
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14 2020 Canada 
EdmCrack600 + 

CrackForest 

121-layer custom 

CNN 
Transfer 256 × 256 Back RGB - 0.77 + 0.92 semantic segmentation [126] 

15 2020 USA 
custom + Crack-

Forest 

custom CNN (en-

coder + decoder) 

crackNet-V 

Scratch 512*256 Top 
Laser 3D 

images 
6000 0.871 + 0.891 semantic segmentation [132] 

16 2020 USA 
Aigle_RN + 

crackForest 

custom CNN (en-

coder +decoder) 
Scratch 48 × 48 Top RGB 

142,000 + 

84,000 
0.923 + 0.9533 semantic segmentation [133] 

17 2021 Iran private (Iran) faster RCNN + SSD Scratch - Top RGB-D 2085 0.97 * object detection [127] 

18 2021 China 

Aigle_RN + 

cracktree200 + 

crack500-B 

customized U-Net 

with dense connec-

tion and deep super-

vision module 

Scratch 800 × 800 Top RGB 
58 + 1896 + 

206 

0.65 + 0.67 + 

0.64 
semantic segmentation [134] 

19 2021 China crack500-B custom CNN model Scratch 512 × 512 Top RGB 1896 0.827 semantic segmentation [135] 
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We observe that the biases and weights of the encoder (feature extraction part) are 

trained primarily from scratch instead of pre-trained on the ImageNet benchmark for de-

veloping a crack pixel classifier. Most crack detection and segmentation models are eval-

uated on publicly available datasets. Table 5 shows the test performance (F1- score) of 

different models developed using different architectures and training datasets. The deep-

learning-based algorithms perform well when the test data is similar to the training im-

ages (i.e., from the same device); however, the performance degrades when the multiple 

training datasets are combined, or the test dataset is from a different capturing device and 

region. We also observe that automated segmentation deep learning algorithms using or-

thogonal images show a higher F1-score than the front or back view images. Methods like 

DeepCrack [116] holds promise to identify linear (transverse, longitudinal) cracks that are 

difficult to detect in patch-based methods. 

Object Detection Approach to Distress Detection 

Distress detection can also be approached using object detection. The approach is 

somewhat like patch-based image classification; however, the implementation is different 

in terms of the input and output of the CNN architecture. The object detection method 

can be used to find multiple object (distress) instances in a high-resolution image using 

CNN networks like Faster RCNN [136], the SSD MobileNet [137], or the YoloV3 [138]. 

Object detection-based techniques are usually used to detect different distresses, mainly 

including potholes, patches, cracks, and their various types and severities (see Table 6). 

In [139], the author proposed a pothole detection system trained on images taken 

from a hand-held camera. The model was tested and compared with four object detectors. 

The authors observed that single-shot multi-box detectors (SSD) have higher accuracy but 

lower computational speed than YoloV3. YoloV3 fails in cases where the size of the pot-

hole is small. In [140], researchers used Squeeznet architecture to train a model on image 

patches of size 64 × 64 extracted from two datasets with an orthogonal view of the pave-

ment. The F1-score using the GAPs dataset was poorer than the F1-score obtained on the 

custom dataset obtained in the USA. Researchers in [45], [141]–[146] used a version of the 

YOLO [138] architecture to train a model to detect different distresses. A crack severity 

detector for the top view of the pavement using YOLO with an average F1-score of 0.70 

was proposed in [45]. 

Table 6. A list of publicly available datasets that used for distress detection analysis or pavement 

surface condition assessment. 

S. No Year Country Dataset 
Architec-

ture 

Learn-

ing 

Method 

Input 

Size 
View Channel Distress 

Size of 

Train-

ing 

Patches 

F1-Score 

(or Accu-

racy *) of 

Test Data 

Method -

Type 
Ref. 

1 2018 
Ger-

many 

GAPs/ 

ICIP 
SqueezeNet Scratch 

64 × 64 

64 × 64 
top-view Intensity 

cracks, 

potholes 

1,600,00

0/1,300,0

00 

0.73/0.90 
object de-

tection 
[140] 

2 2018 China 
private 

(China) 

Faster 

RCNN 
Transfer - 

frontal 

view 
RGB 

cracks, 

potholes 
3200 0.88 

object de-

tection 
[147] 

3 2018 
Timor 

Leste 

private 

(Timor 

Leste) 

Custom 

CNN 
Scratch 200 × 200 

frontal 

view 
color 

potholes 

detection 
15,500 0.96 

object de-

tection 
[148] 

4 2019 China 
private 

(China) 

Faster 

RCNN 
Scratch 

1024 × 

1024 
top-view RGB 

crack pot-

hole, 

bleeding, 

surface 

dots, 

6498 0.89 
object de-

tection 
[149] 

5 2019 India 
private 

(India) 

ResNet50 + 

YOLO 
Transfer 224 × 224 

frontal 

view 
RGB 

pothole, 

pumps 
5283 0.54 

object de-

tection 
[141] 
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6 2020 China LIST YoloV3 Transfer - 
frontal 

view 
RGB 

crack, 

patch-

crack, pot-

hole, 

patch-pot-

hole, net, 

patch-net, 

manhole 

30,000 

0.747 (ex-

cluding 

utility 

hole) 

object de-

tection 
[142] 

7 2020 USA 
Paris-

Saclay 

YoloV2 for 

detection 
Transfer 640 × 640 

frontal 

view 
RGB 

longitudi-

nal cracks, 

transverse 

cracks, al-

ligator 

cracks, 

potholes, 

block 

cracks, re-

flective 

cracks, 

5789 0.84 
object de-

tection 
[143] 

8 2020 
South 

Africa 

IBM-

Hacka-

thon 

Custom 2-

stage 

(LCNN ob-

ject detec-

tion and 

PCNN for 

classifica-

tion) 

Transfer 352 × 224 
frontal 

view 
RGB potholes 5000 0.936 

object de-

tection and 

classifica-

tion 

[144] 

9 2020 China 

private 

(China-

Baidu) 

Yolo3 Transfer 
1024 × 

512 

frontal 

view 
RGB 

potholes, 

net-crack, 

cracks, 

patches 

20,886 - 
object de-

tection 
[145] 

10 2020 USA 

private 

(USA) - 

Google 

Yolo2 Transfer 640 × 640 
frontal 

view 
RGB 

reflective 

crack, 

transverse 

cracks, 

block 

crack, lon-

gitudinal 

crack, alli-

gator 

crack, pot-

hole 

7237 0.84 
object de-

tection 
[143] 

11 2021 China 
private 

(China) 

Faster 

RCNN 
Scratch - top-view 

Laser 3D 

images 

crack, pot-

hole, patch 
2208 

0.95 * 

(MIOU) 

object de-

tection 
[45] 

12 2021 China 
private 

(China) 
YoloV5 Transfer 640 × 640 top-view RGB 

low-me-

dium-high 

severity 

cracks 

70,000 0.5 
object de-

tection 
[45] 

13 2021 India 
private 

(India) 

Custom 

CNN 
Scratch 64 × 64 

handhel

d 
RGB 

potholes 

detection 
3424 0.97 

object de-

tection 
[52] 

14 2022 Lebanon 

private 

(Leba-

non) 

YoloV3 Transfer 416 × 416 
frontal 

view 
RGB pothole 344 0.6 

object de-

tection 
[146] 

Similarly, in [150], the authors experimented with thermal imagery and used object 

detection algorithms with an average precision of 91.15%. Maeda et al. [151] proposed an 
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object detector based on SSD MobileNet and Inception V2 architectures. They achieved an 

average recall of 77% with a precision of 71% for potholes, alligator cracking, and blurry 

line marks. However, the ‘presence/absence’ detection is not very helpful for quantifying 

distress, which is essential for pavement surface evaluation. 

Table 6 shows a summary of object-detection-based distress detection. The F1-scores 

indicate that the performance of the object detector deteriorates for multiple distress de-

tection compared to detectors that detect one or two distresses. We observe that Yolo ar-

chitectures promise to detect distresses from a frontal view of the camera; however, de-

veloping a robust model for a region will require calibration from the local distresses. Top-

view, hand-held cameras, and wide-view images have been used in experiments. The ob-

ject detection-based algorithm can be used for localized distress detection, such as alliga-

tor cracks and potholes. The localization and detection accuracy is better than the patch-

based method. Recall or accuracy for detecting cracks (linear or edge) using a frontal view 

image is less when object detection networks such as Yolo [138] are used compared to top-

view images. 

4.2.5. Automated Direct Pavement Condition Rating  

It is highlighted in the introduction of this paper that the primary purpose of distress 

detection and identification is to evaluate the condition of the pavement using a standard-

ized scale. Distresses must first be identified to compute a rating for an extensive pave-

ment network. Then the number of distinct distresses and their severity must be consid-

ered over a given stretch of pavement. Most research focuses on distress identification but 

falls short of computing a direct pavement rating for a stretch of pavement. One approach 

to computing direct ratings is described in [152], where the authors present a hybrid 

model of an object detector and semantic segmentation for classifying and quantifying 

distress severity on pavements and predicted PASER indices for each patch. The images 

are collected from Google Street View maps - 70-degree wide-angle views, and 90-degree 

birds-eye view images. Wide-view photos are used for crack and pothole detection, and 

top-view images are used to quantify crack severity. The results from the hybrid model 

are then fed to a linear and weighted regressor for predicting PASER indices to pavement 

patches. They trained YOLO to detect distress and used U-Net (based on a fully convolu-

tional layer) to classify crack severity. The results from the two models are then combined 

to find the crack density per pavement defect. The results are then fed to a linear and a 

weightage regressor to label each image a PASER index. The photos are from USA pave-

ments, and the PASER calibration set is minimal. The predicted PASER model fits with an 

R2 of 0.9382 or test data with a root mean square error of 10.45. One of the limitations of 

this research is the use of Google API images that are usually older. In this system, only 

two distresses are taken for the rating (cracks and potholes); however, in most practical 

scenarios, cracks, potholes, patches, raveling, and bleeding also need to be considered, 

requiring transfer learning for adding localized distresses further modification in the al-

gorithm for raveling and bleeding. 

In [153], the authors have presented an image classification approach to surface rat-

ing using a three-rating index-good, regular, and bad. The dataset used for the experi-

ments is RTK [32], caRINE [154], and KITTI [155]. It classifies roads into three different 

types and three different ratings. The images are cropped to extract the region of interest 

that contains the road. Data augmentation is performed to increase the robustness and 

avoid overfitting. The authors used three convolutional layers, a flattening layer, and two 

fully connected dense layers to classify the road types into asphalts, paved, and unpaved. 

The classified images are then further passed through another classifier to estimate the 

quality of each road, as good, regular, and bad for each class. The surface type accuracy is 

reported as 98% for three types. The classification accuracy for the three quality types is 

98% for good asphalt and 96% for bad asphalt. The precision of classifying the good class 

is 86.7%, while classifying the bad asphalt class is 81%. The number of rating indices is 

limited to three—good, bad, and regular, and they only relate to Brazil’s actual standard 
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rating system. However, judging on a scale of 3 levels is not very useful in real life, where 

maintenance decisions are based on the overall rating, and individual distresses that lead 

to that rating. Moreover, it also requires further experiments to increase the number of 

image classes to be adopted for visual standards such as PASER or PSCI. The higher sta-

tistics of recall and precision are much easier to obtain if the images are simple-complex 

images with multiple distress and different quantities are much more difficult. 

In [156] the author presented the complexity of manual PCSI practices. The author 

used pixel segmentation using a semantic segmentation CNN-based model from [157] to 

extract roads, marks, and background pixels. They analyzed state-of-the-art EfficientNet 

V2 [158] image classification approach for automating PSCI ratings. Each image in the 

training and test set has a ‘segmented’ pavement image, an ‘augmented’ image, and an 

‘original’ image. Image height is cropped 250 pixels from the top and 50 pixels from the 

bottom to remove the sky and pavement pixels further away from the camera and pave-

ment pixels too close to the camera. ‘Augmented’ image is computed by combining the 

pavement segmented intensity image, the pavement plus mark pixel intensity image, and 

the original intensity image. They used a combination of these images to evaluate the per-

formance of the classifier. For a 10-class classification, the best model achieved an F1-score 

of 0.57, while a 0.73 for a five-class classification after combining adjacent classes. 

4.3. Benchmarking and State-of-the-Art Models 

During the last decade, researchers have developed benchmark datasets to evaluate 

deep learning models, especially CNN feature extraction layers [159], and images labeled 

for a particular computer vision task. The algorithm is known as a state-of-the-art model 

if the model’s performance matrix is the best if evaluated against benchmarks [160]. The 

website [161] gives a structured approach to finding state-of-the-art models for different 

computer vision, natural language processing, and signal processing tasks on the respec-

tive datasets. Improving the state-of-the-art models using benchmark datasets is one ap-

proach; however, recently, researchers have argued that an application-centric process 

must be followed for a deep learning solution. In [161], Hooker argues that chasing bench-

marks is incorrect for evolving a machine learning model. Instead, smartly chosen training 

images specific to a particular application helps in better understanding for developing a 

deep learning-based solution as suggested by [162]. Across different subfields of AI, spe-

cifically in machine learning, current benchmarking practices tend to distort the develop-

ment of fair and flexible AI systems for real-world scenarios. In [163], the authors system-

atically explored the limitations of influential dataset-based benchmarks, revealed the 

construct validity issue, pointed out the risk associated with their framing, and proposed 

alternative performance evaluation methods. The authors [163] have logically argued that 

the state-of-the-art performance of AI models on these benchmarks does not validate the 

general-purpose capabilities of models, particularly in visual and language understand-

ing domains. 

Therefore, benchmarking is a conservative approach to assessing general model ca-

pabilities due to limited task design, de-contextualized data, hidden biases, false perfor-

mance reporting, and inappropriate community use in the machine learning context. 

These benchmarks are arbitrarily selected subsets of objects from the real world and can-

not cover the domain knowledge for a particular application. It is recommended that 

along with recalibration or transfer learning with a localized dataset, alternative methods 

such as unit testing and failure mode analysis could measure the broader capabilities of 

an automated pavement rating system. 

4.4. Limitations of AI-Based Automated Pavement Rating Systems 

A country or region’s adaptation to a standard, or defining local variants for pave-

ment condition assessment depends on environmental factors, local pavement distresses, 

and economic factors in the data collection process. The evolution in imaging technology, 
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computational power, and CNNs have made pavement condition assessment through 

visual distress detection fast, quick, easy, and cost-effective for a country’s comprehensive 

pavement survey. In [9], the authors summarized different imaging technologies, types 

and sub-types of distress, and distinct levels of distress severity (i.e., low, medium, and 

high). The variation in shape, size, and texture is due to different severity levels of these 

distresses due to various weather conditions in different geographical locations[17]. The 

variation in data in different regions is not only because of changes in shape, size, and 

texture of distresses but also due to different imaging technology and placement of sen-

sors in specialized vehicles. Automated condition rating for a pavement stretch depends 

on types and sub-types (severity-level) of distress and the amount of distress present in a 

particular stretch. The CNN-based automated decision tools depend on learning from sta-

tistical information present in images; therefore, data injected for learning needs to be 

centric to the problem domain, smartly sized, and less noisy [162]. The accuracies and 

precisions mentioned in the literature are reported on limited data sets, certainly not with 

complex images with multiple distresses of different shapes, sizes, or textures. Any auto-

mated rating system using imaging technology needs to be recalibrated (for example, us-

ing transfer learning techniques) for the regional distress to capture variation in shape 

size, the texture of distresses, and variation in light intensity. The highlighted environ-

mental factors (such as rain, standing water, poor lighting, and moisture) play a crucial 

role in distress shape, size, and texture. Moreover, while imaging these distresses for 

pavement condition assessment, the algorithm is not generalizable for different geograph-

ical locations due to the distress’s environmental factors, shape, size, and texture. 

Orthogonal views capturing the pavement requires expensive external 2D and 3D 

sensors mounted outside the back of the vehicle, which makes it expensive to maintain. It 

increases the budget for pavement condition assessment for a road network across the 

country, especially the local network. However, it captures images with controlled light-

ing conditions, which help in the automated detection and segmentation of cracks and 

patches. It is recommended for use on national highways and motorways. The frontal 

view capturing of the pavement requires low-cost cameras that can be mounted inside the 

vehicle, which makes it less expensive and lower budget. It captures a wide view of the 

pavement, which helps in the automated detection and classification of different distress 

types, including raveling, bleeding, different types of patches, cracks, and potholes. It is 

recommended to cover a bigger network of pavement surfaces, including local and re-

gional roads. Another challenge for such approaches is the unavailability of very large 

datasets of labeled data—labeled images identifying multiple distress types and their se-

verity levels are expensive to create, requiring both time and expert knowledge. 

5. Conclusions 

Technology and intelligent algorithms for automated pavement surface condition 

evaluation have evolved during the last decade. The literature indicates the experimenta-

tion in evaluating different imaging technologies (such as intensity, color, and 3D laser 

camera), imaging road views (top-view, wide-view, or hand-held), and developing a ro-

bust algorithm for detecting distinct instances of distresses in an image—moreover, very 

little work is found on pavement condition assessment rating. The current limitations in-

clude a lack of a general evaluation matrix to evaluate the robustness of the detecting 

algorithms for different shapes, sizes, and textures of distinct distresses in different geo-

graphical locations. The lack of algorithms for quantifying these distresses in images and, 

finally, for rating a stretch of pavement using a sequence of images to develop a real-world 

automated pavement condition assessment rating. In practice, a rating is assigned to a 

stretch (200 m or 100 m) of pavement instead of one image; different regions follow dif-

ferent assessment standards. 

We found little work on automatically computing direct pavement ratings. The re-

cent literature reviews pavement condition evaluation summarize imaging technologies 
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and different machine learning approaches for distress detection and identification; how-

ever, they have limited insight into the correlation between standard condition rating 

practice to distress detection and its quantification. Road or pavement rating conditions 

depend on the type of distress and quantification, which changes (shape, size, and texture) 

with several factors, including environmental conditions (weather) and the pavement 

construction process. The highlighted environmental factors (such as rain, standing water, 

poor lighting, and moisture) play a crucial role in these distresses’ shape, size, and texture. 

For data collection, the top view of the pavement and a wide-angle view of the pave-

ment has been used for distress detection, identification, segmentation, and pavement 

condition ratings. Choosing an imaging technology for visual inspection depends not only 

on the type of distress but also on environmental conditions and economic factors and 

how adequate they are in identifying those distress. The top view gives a higher ground 

sampling distance but covers less area per image than wide-view images. Vehicles with 

external laser scanners and stereo pairs are more expensive to operate and maintain than 

vehicles with an internal high-resolution camera with a frontal view. In summary, there 

is no off-the-shelf solution for automated pavement condition rating. Most of the existing 

commercial solutions usually provide automatic data and image-capturing solutions, 

while their ability to detect and quantify distress from images is limited to a few distresses. 

Many of the datasets available as benchmarks are limited only to cracks and potholes 

and are localized to a geographical location. Research on automated pavement distress 

assessment is often limited to the regional pavement condition assessment standard that 

a country or state follows. The criteria a region adopts to make the evaluation qualitative 

depends on factors such as pavement construction type, type of road network in the area, 

flow and traffic, environmental condition, and region’s economic situation. 

Most of the automated image-analysis-based pavement condition assessment focuses 

on two primary distress, i.e., distinct types of cracks and potholes. Very few experiments 

can be seen in the literature on raveling or bleeding (see ([164], [165]), which are forms of 

surface defects and contribute toward a unified pavement surface rating. Other surface 

distress, such as patching, utility patches, and utility cover, is seldom considered(see 

[166]). PASER (used in the USA and other regions) and PSCI (used in Ireland), the ratings 

10-7, are decided based on the amount of raveling and bleeding alone. Similarly, the study 

of direct pavement ratings from images as a classification problem is limited, apart from 

[153] and [152]. The ‘presence/absence’ detection is not very helpful for quantifying dis-

tress, essential for pavement surface evaluation. Higher levels of recall and precision are 

much easier to obtain if the images are simple; complex images with multiple distresses, 

and their quantities are much more difficult. Automated distress detection and condition 

rating is not a time-critical process, it can be conducted offline, so accuracy and precision 

are more important than computational time. 

In the future, automatically computing a rating for a stretch of pavement will need 

to combine several methods. For example, image processing techniques such as cropping 

may be required to remove objects such as the sky, buildings, cars, and sidewalks to pre-

pare images for use by machine or deep learning models. Then, segmentation may be used 

to segment the distinct distress and use the number of pixels of each different instance to 

calculate the area of the distress. A similar approach could be implemented using object 

detection-based approaches to detect individual distresses. Distresses such as rutting and 

sag may require multiple images or a fusion of point sensor information to establish the 

presence of such stresses. Deep learning models will need to be calibrated (trained) to 

capture the severity levels of each distress for a local region where it needs to be deployed. 

The number of distresses and their severity can be used to compute a rating score aver-

aged over a set of images for a given stretch of road. Advances in deep learning may allow 

computing a rating directly using image classification. Still, a lack of benchmark datasets 

containing various distresses for learning may hinder such approaches. Developing a 

benchmark dataset for a diverse set of distinct distresses and their severity levels is chal-
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lenging, as it requires extensive data collection to capture different environmental condi-

tions and regional variations. We propose that any automated rating system for pavement 

conditions using imaging technologies will require re-calibration (i.e., transfer learning) 

for the regional distress to capture variations in shape, size, the texture of distresses, and 

variation in light intensity. 
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