61,709 research outputs found

    Enabling collaboration in virtual reality navigators

    Get PDF
    In this paper we characterize a feature superset for Collaborative Virtual Reality Environments (CVRE), and derive a component framework to transform stand-alone VR navigators into full-fledged multithreaded collaborative environments. The contributions of our approach rely on a cost-effective and extensible technique for loading software components into separate POSIX threads for rendering, user interaction and network communications, and adding a top layer for managing session collaboration. The framework recasts a VR navigator under a distributed peer-to-peer topology for scene and object sharing, using callback hooks for broadcasting remote events and multicamera perspective sharing with avatar interaction. We validate the framework by applying it to our own ALICE VR Navigator. Experimental results show that our approach has good performance in the collaborative inspection of complex models.Postprint (published version

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Design Creativity: Future Directions for Integrated Visualisation

    Get PDF
    The Architecture, Engineering and Construction (AEC) sectors are facing unprecedented challenges, not just with increased complexity of projects per se, but design-related integration. This requires stakeholders to radically re-think their existing business models (and thinking that underpins them), but also the technological challenges and skills required to deliver these projects. Whilst opponents will no doubt cite that this is nothing new as the sector as a whole has always had to respond to change; the counter to this is that design ‘creativity’ is now much more dependent on integration from day one. Given this, collaborative processes embedded in Building Information Modelling (BIM) models have been proffered as a panacea solution to embrace this change and deliver streamlined integration. The veracity of design teams’ “project data” is increasingly becoming paramount - not only for the coordination of design, processes, engineering services, fabrication, construction, and maintenance; but more importantly, facilitate ‘true’ project integration and interchange – the actualisation of which will require firm consensus and commitment. This Special Issue envisions some of these issues, challenges and opportunities (from a future landscape perspective), by highlighting a raft of concomitant factors, which include: technological challenges, design visualisation and integration, future digital tools, new and anticipated operating environments, and training requirements needed to deliver these aspirations. A fundamental part of this Special Issue’s ‘call’ was to capture best practice in order to demonstrate how design, visualisation and delivery processes (and technologies) affect the finished product viz: design outcome, design procedures, production methodologies and construction implementation. In this respect, the use of virtual environments are now particularly effective at supporting the design and delivery processes. In summary therefore, this Special Issue presents nine papers from leading scholars, industry and contemporaries. These papers provide an eclectic (but cognate) representation of AEC design visualisation and integration; which not only uncovers new insight and understanding of these challenges and solutions, but also provides new theoretical and practice signposts for future research

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Requirements engineering for computer integrated environments in construction

    Get PDF
    A Computer Integrated Environment (CIE) is the type of innovative integrated information system that helps to reduce fragmentation and enables the stakeholders to collaborate together in business. Researchers have observed that the concept of CIE has been the subject of research for many years but the uptake of this technology has been very limited because of the development of the technology and its effective implementation. Although CIE is very much valued by both industrialists and academics, the answers to the question of how to develop and how to implement it are still not clear. The industrialists and researchers conveyed that networking, collaboration, information sharing and communication will become popular and critical issues in the future, which can be managed through CIE systems. In order for successful development of the technology, successful delivery, and effective implementation of user and industry-oriented CIE systems, requirements engineering seems a key parameter. Therefore, through experiences and lessons learnt in various case studies of CIE systems developments, this book explains the development of a requirements engineering framework specific to the CIE system. The requirements engineering process that has been developed in the research is targeted at computer integrated environments with a particular interest in the construction industry as the implementation field. The key features of the requirements engineering framework are the following: (1) ready-to-use, (2) simple, (3) domain specific, (4) adaptable and (5) systematic, (6) integrated with the legacy systems. The method has three key constructs: i) techniques for requirements development, which includes the requirement elicitation, requirements analysis/modelling and requirements validation, ii) requirements documentation and iii) facilitating the requirements management. It focuses on system development methodologies for the human driven ICT solutions that provide communication, collaboration, information sharing and exchange through computer integrated environments for professionals situated in discrete locations but working in a multidisciplinary and interdisciplinary environment. The overview for each chapter of the book is as follows; Chapter 1 provides an overview by setting the scene and presents the issues involved in requirements engineering and CIE (Computer Integrated Environments). Furthermore, it makes an introduction to the necessity for requirements engineering for CIE system development, experiences and lessons learnt cumulatively from CIE systems developments that the authors have been involved in, and the process of the development of an ideal requirements engineering framework for CIE systems development, based on the experiences and lessons learnt from the multi-case studies. Chapter 2 aims at building up contextual knowledge to acquire a deeper understanding of the topic area. This includes a detailed definition of the requirements engineering discipline and the importance and principles of requirements engineering and its process. In addition, state of the art techniques and approaches, including contextual design approach, the use case modelling, and the agile requirements engineering processes, are explained to provide contextual knowledge and understanding about requirements engineering to the readers. After building contextual knowledge and understanding about requirements engineering in chapter 2, chapter 3 attempts to identify a scope and contextual knowledge and understanding about computer integrated environments and Building Information Modelling (BIM). In doing so, previous experiences of the authors about systems developments for computer integrated environments are explained in detail as the CIE/BIM case studies. In the light of contextual knowledge gained about requirements engineering in chapter 2, in order to realize the critical necessity of requirements engineering to combine technology, process and people issues in the right balance, chapter 4 will critically evaluate the requirements engineering activities of CIE systems developments that are explained in chapter 3. Furthermore, to support the necessity of requirements engineering for human centred CIE systems development, the findings from semi-structured interviews are shown in a concept map that is also explained in this chapter. In chapter 5, requirements engineering is investigated from different angles to pick up the key issues from discrete research studies and practice such as traceability through process and product modelling, goal-oriented requirements engineering, the essential and incidental complexities in requirements models, the measurability of quality requirements, the fundamentals of requirements engineering, identifying and involving the stakeholders, reconciling software requirements and system architectures and barriers to the industrial uptake of requirements engineering. In addition, a comprehensive research study measuring the success of requirements engineering processes through a set of evaluation criteria is introduced. Finally, the key issues and the criteria are comparatively analyzed and evaluated in order to match each other and confirm the validity of the criteria for the evaluation and assessment of the requirements engineering implementation in the CIE case study projects in chapter 7 and the key issues will be used in chapter 9 to support the CMM (Capability Maturity Model) for acceptance and wider implications of the requirements engineering framework to be proposed in chapter 8. Chapter 6 explains and particularly focuses on how the requirements engineering activities in the case study projects were handled by highlighting strengths and weaknesses. This will also include the experiences and lessons learnt from these system development practices. The findings from these developments will also be utilized to support the justification of the necessity of a requirements engineering framework for the CIE systems developments. In particular, the following are addressed. • common and shared understanding in requirements engineering efforts, • continuous improvement, • outputs of requirement engineering • reflections and the critical analysis of the requirements engineering approaches in these practices. The premise of chapter 7 is to evaluate and assess the requirements engineering approaches in the CIE case study developments from multiple viewpoints in order to find out the strengths and the weaknesses in these requirements engineering processes. This evaluation will be mainly based on the set of criteria developed by the researchers and developers in the requirements engineering community in order to measure the success rate of the requirements engineering techniques after their implementation in the various system development projects. This set of criteria has already been introduced in chapter 5. This critical assessment includes conducting a questionnaire based survey and descriptive statistical analysis. In chapter 8, the requirements engineering techniques tested in the CIE case study developments are composed and compiled into a requirements engineering process in the light of the strengths and the weaknesses identified in the previous chapter through benchmarking with a Capability Maturity Model (CMM) to ensure that it has the required level of maturity for implementation in the CIE systems developments. As a result of this chapter, a framework for a generic requirements engineering process for CIE systems development will be proposed. In chapter 9, the authors will discuss the acceptance and the wider implications of the proposed framework of requirements engineering process using the CMM from chapter 8 and the key issues from chapter 5. Chapter 10 is the concluding chapter and it summarizes the findings and brings the book to a close with recommendations for the implementation of the Proposed RE framework and also prescribes a guideline as a way forward for better implementation of requirements engineering for successful developments of the CIE systems in the future

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft
    • …
    corecore