14,939 research outputs found

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Modeling human and organizational behavior using a relation-centric multi-agent system design paradigm

    Get PDF
    Today's modeling and simulation communities are being challenged to create rich, detailed models incorporating human decision-making and organizational behavior. Recent advances in distributed artificial intelligence and complex systems theory have demonstrated that such ill-defined problems can be effectively modeled with agent-based simulation techniques using multiple, autonomoous, adaptive entities. RELATE, a relation-centric design paradigm for multi-agent systems (MAS), is presented to assist developers incorporate MAS solutions into their simulations. RELATe focuses the designer on six key concepts of MAS simulations: relationships, environment, laws, agents, things, and effectors. A library of Java classes is presented which enables the user to rapidly prototype an agent-based simulation. This library utilizes the Java programming language to support cross-platform and web based designs. All Java classes and interfaces are fully documented using HTML Javadoc format. Two reference cases are provided that allow for easy code reuse and modification. Finally, an existing metworked DIS-Java-VRML simulation was modified to demonstrate the ability to utilize the RELATE library to add agents to existing applications. LCDR Kim Roddy focused on the development and refinement of the RELATE design paradigm, while LT Mike Dickson focused on the actual Java implementation. Joint work was conducted on all research and reference caseshttp://www.archive.org/details/modelinghumanorg00roddU.S. Navy (U.S.N.) author

    Hacker Combat: A Competitive Sport from Programmatic Dueling & Cyberwarfare

    Full text link
    The history of humanhood has included competitive activities of many different forms. Sports have offered many benefits beyond that of entertainment. At the time of this article, there exists not a competitive ecosystem for cyber security beyond that of conventional capture the flag competitions, and the like. This paper introduces a competitive framework with a foundation on computer science, and hacking. This proposed competitive landscape encompasses the ideas underlying information security, software engineering, and cyber warfare. We also demonstrate the opportunity to rank, score, & categorize actionable skill levels into tiers of capability. Physiological metrics are analyzed from participants during gameplay. These analyses provide support regarding the intricacies required for competitive play, and analysis of play. We use these intricacies to build a case for an organized competitive ecosystem. Using previous player behavior from gameplay, we also demonstrate the generation of an artificial agent purposed with gameplay at a competitive level

    Theory of Effectiveness Measurement

    Get PDF
    Effectiveness measures provide decision makers feedback on the impact of deliberate actions and affect critical issues such as allocation of scarce resources, as well as whether to maintain or change existing strategy. Currently, however, there is no formal foundation for formulating effectiveness measures. This research presents a new framework for effectiveness measurement from both a theoretical and practical view. First, accepted effects-based principles, as well as fundamental measurement concepts are combined into a general, domain independent, effectiveness measurement methodology. This is accomplished by defining effectiveness measurement as the difference, or conceptual distance from a given system state to some reference system state (e.g. desired end-state). Then, by developing system attribute measures such that they yield a system state-space that can be characterized as a metric space, differences in system states relative to the reference state can be gauged over time, yielding a generalized, axiomatic definition of effectiveness measurement. The effectiveness measurement framework is then extended to mitigate the influence of measurement error and uncertainty by employing Kalman filtering techniques. Finally, the pragmatic nature of the approach is illustrated by measuring the effectiveness of a notional, security force response strategy in a scenario involving a terrorist attack on a United States Air Force base

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Applications of agent architectures to decision support in distributed simulation and training systems

    Get PDF
    This work develops the approach and presents the results of a new model for applying intelligent agents to complex distributed interactive simulation for command and control. In the framework of tactical command, control communications, computers and intelligence (C4I), software agents provide a novel approach for efficient decision support and distributed interactive mission training. An agent-based architecture for decision support is designed, implemented and is applied in a distributed interactive simulation to significantly enhance the command and control training during simulated exercises. The architecture is based on monitoring, evaluation, and advice agents, which cooperate to provide alternatives to the dec ision-maker in a time and resource constrained environment. The architecture is implemented and tested within the context of an AWACS Weapons Director trainer tool. The foundation of the work required a wide range of preliminary research topics to be covered, including real-time systems, resource allocation, agent-based computing, decision support systems, and distributed interactive simulations. The major contribution of our work is the construction of a multi-agent architecture and its application to an operational decision support system for command and control interactive simulation. The architectural design for the multi-agent system was drafted in the first stage of the work. In the next stage rules of engagement, objective and cost functions were determined in the AWACS (Airforce command and control) decision support domain. Finally, the multi-agent architecture was implemented and evaluated inside a distributed interactive simulation test-bed for AWACS Vv\u27Ds. The evaluation process combined individual and team use of the decision support system to improve the performance results of WD trainees. The decision support system is designed and implemented a distributed architecture for performance-oriented management of software agents. The approach provides new agent interaction protocols and utilizes agent performance monitoring and remote synchronization mechanisms. This multi-agent architecture enables direct and indirect agent communication as well as dynamic hierarchical agent coordination. Inter-agent communications use predefined interfaces, protocols, and open channels with specified ontology and semantics. Services can be requested and responses with results received over such communication modes. Both traditional (functional) parameters and nonfunctional (e.g. QoS, deadline, etc.) requirements and captured in service requests

    Proceedings, MSVSCC 2012

    Get PDF
    Proceedings of the 6th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2012 at VMASC in Suffolk, Virginia

    An Architectural Framework for Performance Analysis: Supporting the Design, Configuration, and Control of DIS /HLA Simulations

    Get PDF
    Technology advances are providing greater capabilities for most distributed computing environments. However, the advances in capabilities are paralleled by progressively increasing amounts of system complexity. In many instances, this complexity can lead to a lack of understanding regarding bottlenecks in run-time performance of distributed applications. This is especially true in the domain of distributed simulations where a myriad of enabling technologies are used as building blocks to provide large-scale, geographically disperse, dynamic virtual worlds. Persons responsible for the design, configuration, and control of distributed simulations need to understand the impact of decisions made regarding the allocation and use of the logical and physical resources that comprise a distributed simulation environment and how they effect run-time performance. Distributed Interactive Simulation (DIS) and High Level Architecture (HLA) simulation applications historically provide some of the most demanding distributed computing environments in terms of performance, and as such have a justified need for performance information sufficient to support decision-makers trying to improve system behavior. This research addresses two fundamental questions: (1) Is there an analysis framework suitable for characterizing DIS and HLA simulation performance? and (2) what kind of mechanism can be used to adequately monitor, measure, and collect performance data to support different performance analysis objectives for DIS and HLA simulations? This thesis presents a unified, architectural framework for DIS and HLA simulations, provides details on a performance monitoring system, and shows its effectiveness through a series of use cases that include practical applications of the framework to support real-world U.S. Department of Defense (DoD) programs. The thesis also discusses the robustness of the constructed framework and its applicability to performance analysis of more general distributed computing applications
    corecore