4 research outputs found

    Apport de l'échantillonnage aléatoire à temps quantifié pour le traitement en bande de base dans un contexte radio logicielle restreinte

    Get PDF
    The work presented in this Ph.D. dissertation deals with the design of multistandard radio receivers that process signals with heterogeneous specifications. The originality of these research activities comes from the application of random sampling at the baseband stage of a software defined radio receiver. The purpose behind the choice of random sampling is to take advantage of its alias-free feature. The originality of this work is the analytic proof of the alias attenuation feature of the time quantized random sampling, the implementation version of the random sampling. A second contribution concerns also the analytic study of the simplest implementation version of the random sampling, the time quantized pseudo-random sampling (TQ-PRS). Theoretical formulas allow the estimation of the alias attenuation in terms of time quantization factor and oversampling ratio. Alias attenuation measurement permits to design the baseband stage of the proposed multistandard radio receiver architecture. The design concerns different configuration of the baseband stage according to the performances of the used analog-to-digital converters (ADC). The TQPRS allows decreasing the anti-aliasing filter order or the sampling frequency. The design of the baseband stage reveals a difference on the choice of the time quantization factor for each standard. The power consumption budget analysis demonstrates a power consumption gain of 30% regarding the power consumption of the analog baseband stage. This gain becomes 27.5% when the TQ-PRS clock and the digital canal selection stages are considered.Ces travaux de recherche s’inscrivent dans le cadre de la conception de récepteurs multistandard optimisés pouvant traiter des signaux à spécifications hétérogènes. L’idée est d’appliquer l’échantillonnage aléatoire au niveau de l’étage en bande de base d’un récepteur radio logicielle restreinte afin de tirer profit de son pouvoir d’anti-repliement. La nouveauté dans ces travaux est l’étude analytique de la réduction du repliement spectral par l’échantillonnage aléatoire à temps quantifié, candidat favorable à l’implémentation matérielle. Une deuxième contribution concerne aussi l’étude analytique de l’échantillonnage pseudo-aléatoire à temps quantifié (TQ-PRS) dont l’importance réside en sa grande facilité d’implémentation matérielle. Les formulations théoriques ont permis d’estimer l’atténuation des répliques en fonction du facteur de la quantification temporelle et du facteur du sur-échantillonnage. Les mesures de l’atténuation du repliement spectral ont permis de dimensionner l’étage en bande de base d’une architecture de réception multistandard. Le dimensionnement s’intéresse à différentes configurations de l’étage en bande de base régies par les performances du convertisseur analogique numérique (ADC) utilisé.Les travaux de recherche ont démontré que l’application du TQ-PRS au niveau de l’ADC mène soit à une réduction de l’ordre du filtre anti-repliement soit à une réduction de la fréquence d’échantillonnage. Un bilan global de la consommation de puissance a permis un gain de 30% de la consommation de l’étage en bande de base analogique. En tenant compte du générateur de l’horloge TQ-PRS et de l’étage de sélection numérique du canal, ce gain devient 25%

    Interference Suppression Techniques for RF Receivers

    Get PDF

    Photonics-enabled very high capacity wireless communication for indoor applications

    Get PDF

    Architecture and Analysis for Next Generation Mobile Signal Processing.

    Full text link
    Mobile devices have proliferated at a spectacular rate, with more than 3.3 billion active cell phones in the world. With sales totaling hundreds of billions every year, the mobile phone has arguably become the dominant computing platform, replacing the personal computer. Soon, improvements to today’s smart phones, such as high-bandwidth internet access, high-definition video processing, and human-centric interfaces that integrate voice recognition and video-conferencing will be commonplace. Cost effective and power efficient support for these applications will be required. Looking forward to the next generation of mobile computing, computation requirements will increase by one to three orders of magnitude due to higher data rates, increased complexity algorithms, and greater computation diversity but the power requirements will be just as stringent to ensure reasonable battery lifetimes. The design of the next generation of mobile platforms must address three critical challenges: efficiency, programmability, and adaptivity. The computational efficiency of existing solutions is inadequate and straightforward scaling by increasing the number of cores or the amount of data-level parallelism will not suffice. Programmability provides the opportunity for a single platform to support multiple applications and even multiple standards within each application domain. Programmability also provides: faster time to market as hardware and software development can proceed in parallel; the ability to fix bugs and add features after manufacturing; and, higher chip volumes as a single platform can support a family of mobile devices. Lastly, hardware adaptivity is necessary to maintain efficiency as the computational characteristics of the applications change. Current solutions are tailored specifically for wireless signal processing algorithms, but lose their efficiency when other application domains like high definition video are processed. This thesis addresses these challenges by presenting analysis of next generation mobile signal processing applications and proposing an advanced signal processing architecture to deal with the stringent requirements. An application-centric design approach is taken to design our architecture. First, a next generation wireless protocol and high definition video is analyzed and algorithmic characterizations discussed. From these characterizations, key architectural implications are presented, which form the basis for the advanced signal processor architecture, AnySP.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86344/1/mwoh_1.pd
    corecore